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Abstract 

We present general formulas for planktonic predator-prey encounter rates with encounter zones of 

convex shape and randomly moving point-like prey with ballistic motion. When the predator is not 

moving, we show that the encounter rate is independent of the shape of the encounter zone around 

it and proportional to the product of the surface area of the encounter zone and the prey speed. In 

contrast, the shape of the encounter zone plays a role when both the predator and the prey are 

moving. Slow predator motion results in only a weak increase of the encounter rate relative to the 

non-motile predator situation, but it may lead to a significant shift in where prey impact the surface 

of the encounter zone. By analysing disk-like and rod-like encounter zones with lengthwise and 

sideways motion, respectively, we show that fast predator motion may significantly influence the 

encounter rate, depending on the shape and the direction of motion of the encounter zone. 

1. Introduction 

Encounters between individual organisms are essential for predator-prey interactions and mate 

finding in the planktonic world [1, 2]. Planktonic encounter rates depend on many factors, including 

the speeds of the organisms, size and shape of the encounter zone, and hydrodynamic effects. In 

encounter rate models, a spherical encounter zone with an effective size is often assumed [3, 4, 5, 

6]. This approach may be inadequate when the encounter zone is highly non-spherical as for 

ambush-feeding and mechano-sensing larvae and copepods [7, 8, 9, 10, 11], chemical trails [12], the 

long and slender prey capture structures (haptonema) of haptophytes [13], and the cone-shaped 

perceptual fields of visual predators [14, 15, 16, 17]. Additionally, the work on non-spherical 

encounter zones has focused on particular geometries such as cylinders with spherical end caps for 

which special simplifying assumptions allow modelling [7]. A systematic framework that enables 
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derivations of easily applicable formulas and general theorems for non-spherical encounter zones 

therefore appears to be missing in the plankton literature. 

Here we present a general approach that takes the shape of the encounter zone around the 

predator into account, and allows us to determine predator-prey encounter rates when the 

plankton move ballistically and hydrodynamic interactions are negligible. We restrict our attention 

to encounter zones with convex shape. As examples, we consider spheroidal, cylindrical, and cone-

shaped encounter zones, and throughout we treat the prey as point-like particles that move 

randomly with equal probability in all directions (figure 1). Our approach builds on determining the 

encounter rate kernel per unit surface area of the encounter zone, and it therefore allows 

description of where prey impact the surface of the encounter zone. We have organized our 

presentation as follows: We derive the general model framework for the encounter rate kernel in 

the methods section. In the results section, we first consider the encounter rate kernel when the 

encounter zone is not moving and we then proceed to analyse the more complex situation in which 

both predator and prey are moving. Throughout the results section we illustrate the general 

formulas by applying them to real-world cases, including ambush-feeding and mechano-sensing 

larvae (Chaoborus trivittatus), visual predators (fish), ambush-feeding copepods, and prey capturing 

haptophytes (flagellates). In the discussion section, we discuss the model assumptions, and in the 

conclusion section, we summarise our main findings. 

2. Method  

2.1. Ballistic encounter rate model 

Predator-prey encounters are quantified by the encounter rate 𝐸𝐸, i.e., the number of encounters 

per unit volume per unit time [1, 2]. (Table 1 provides a glossary of symbols.) The key quantity in 

our analysis is the encounter rate kernel 𝑄𝑄 that has dimension of volume per unit time and is 

independent of the concentrations of predators and prey. In general 𝐸𝐸 and 𝑄𝑄 are related through 

the expression: 

𝐸𝐸 = 𝑄𝑄 𝐶𝐶1 𝐶𝐶2 , 

where 𝐶𝐶1 and 𝐶𝐶2 denote the concentrations of predators and prey, respectively [1]. We shall 

describe the encounter zone by its size and shape, and we assume that the encounter zone is moving 
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with speed 𝑣𝑣 in a direction of motion specified relative to its orientation. We let the encounter zone 

represent the zone around the predator, on which prey is encountered, i.e., where prey can be 

directly touched or remotely sensed and thus made available for capture. We disregard size and 

shape of the prey and treat them as point-like particles that move randomly with speed 𝑢𝑢 and equal 

probability in all directions. We neglect hydrodynamic interactions and assume that the encounter 

zones and the prey move ballistically, i.e., with constant speeds along straight paths that are long in 

comparison with the characteristic length scale 𝐿𝐿 of the encounter zone [2, 18]. For randomly 

moving prey that move with ballistic runs of run time 𝜏𝜏 and run length 𝜆𝜆 = 𝑢𝑢 𝜏𝜏, and reorient in 

between consecutive runs, we need 𝜆𝜆 ≫ 𝐿𝐿 for the model assumption of straight paths to be 

applicable. If the run length instead were much smaller than the length scale of the encounter zone, 

the ballistic approximation would not be applicable, and instead the diffusive approximation would 

be appropriate [18]. Finally, we assume that the concentrations of predators and prey are uniform, 

and that any depletion of the prey concentration near the surface of the encounter zone is 

insignificant. This assumption does in general only hold if the shape of the encounter zone is convex, 

as we shall return to in the discussion.  

2.2. Encounter rate kernel 

Encounters occur when prey hit somewhere on the surface of the encounter zone, and 

mathematically the encounter rate kernel 𝑄𝑄 is the surface integral of the encounter rate kernel per 

unit surface area 𝑞𝑞 over the surface of the encounter zone: 

𝑄𝑄 =  � 𝑞𝑞 d𝑆𝑆 .
𝑆𝑆

 

The encounter rate kernel per unit surface area has dimension of length per unit time. It varies over 

the surface when the encounter zone is moving, since 𝑞𝑞 depends on the local orientation of the 

surface of the encounter zone relative to its direction of motion (figure 2, inset). The encounter rate 

kernel per unit surface area turns out to have the following form: 

𝑞𝑞 =  �

0 if 𝑣𝑣𝑛𝑛 < −𝑢𝑢
1
4
𝑢𝑢 �1 +

𝑣𝑣𝑛𝑛
𝑢𝑢
�
2

if − 𝑢𝑢 ≤ 𝑣𝑣𝑛𝑛 < 𝑢𝑢

𝑣𝑣𝑛𝑛 if 𝑣𝑣𝑛𝑛 ≥ 𝑢𝑢 ,

 



4 
 

where 𝑣𝑣𝑛𝑛 is the outward normal (perpendicular) component of the velocity of the encounter zone 

(Appendix A). The formula shows that none of the prey immediately outside the encounter zone hit 

the surface when the encounter zone is moving rapidly away from the prey (𝑣𝑣𝑛𝑛 < −𝑢𝑢), whereas all 

of the prey immediately outside the encounter zone hit the surface when the encounter zone is 

moving rapidly into the prey (𝑣𝑣𝑛𝑛 ≥ 𝑢𝑢). In the intermediate interval (−𝑢𝑢 ≤ 𝑣𝑣𝑛𝑛 < 𝑢𝑢) the expression 

for 𝑞𝑞 displays a smooth transition between the two extreme behaviours (figure 2).  

3. Results  

3.1. Non-motile encounter zone and randomly moving prey 

We first consider the encounter situation in which the encounter zone is not moving and the prey 

move randomly with equal probability in all directions. In this case, 𝑞𝑞 is uniform over the surface of 

the encounter zone (figure 2), and it is proportional to the prey speed: 

𝑞𝑞 =  
1
4

 𝑢𝑢 . 

This result is equivalent to the expression for the collision rate of gas molecules with a surface that 

is derived in the kinetic theory of gasses [19]. Since 𝑞𝑞 is independent of position, the surface integral 

of 𝑞𝑞 over the surface of the encounter zone simplifies greatly [13]. We find the expression:  

𝑄𝑄 =
1
4

 𝑆𝑆 𝑢𝑢 , 

where 𝑆𝑆 is the surface area of the encounter zone: 

𝑆𝑆 =  � d𝑆𝑆
𝑆𝑆

 . 

The formula allows immediate analytical determination of 𝑄𝑄 for generic shapes such as sphere, 

cylinder, and spherical cone (table 2), and it reduces the calculation of 𝑄𝑄 to the calculation of 𝑆𝑆 when 

the encounter zone is only known empirically. Importantly the formula shows that 𝑄𝑄 is proportional 

to 𝑆𝑆 and independent of the shape of the encounter zone.  

It follows immediately from the previous analysis that 𝑄𝑄 is independent of the shape of the 

encounter zone, whereas this significant fact is not apparent when using the standard approach to 
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the problem [8]. In the standard approach, one does not need to assume that the encounter zone 

is convex, and 𝑄𝑄 is determined as the product of 𝑢𝑢 and the average of the projected area 𝐴𝐴 of the 

encounter zone. The standard expression for 𝑄𝑄 is therefore  

𝑄𝑄 =  〈𝐴𝐴〉 𝑢𝑢 , 

where 〈𝐴𝐴〉 denotes the average of 𝐴𝐴 over all possible directions (Appendix B). By comparing the two 

expressions for 𝑄𝑄 we are led to the geometrical identity 

〈𝐴𝐴〉 =  
1
4

 𝑆𝑆 . 

This remarkable relation between the average projected area and the surface area is valid when the 

shape of the encounter zone is convex, and it is known in mathematics as Cauchy’s surface area 

theorem [20, 21]. The two expressions for 𝑄𝑄 are therefore equivalent when the shape of the 

encounter zone is convex. Direct calculation of the average projected area of an encounter zone is 

typically tedious, and the expression for 𝑄𝑄 in terms of 𝑆𝑆 is often the easiest to work with.  

To illustrate the use of the general formula to real-world cases we consider two examples involving 

planktonic larvae and visual predators, respectively. We can model the ambush-feeding and 

mechano-sensing larvae Chaoborus trivittatus that feeds on swimming copepods (𝑢𝑢 = 1.5 mm s−1) 

as a non-motile, cylindrical encounter zone (𝐻𝐻 = 13.2 mm and 𝑅𝑅 = 2.4 mm) without and with  

spherical end caps [7]. For the cylindrical encounter zone without spherical end caps (table 2), we 

find the encounter rate kernel: 𝑄𝑄 = (1/2) 𝜋𝜋 (𝐻𝐻 + 𝑅𝑅) 𝑅𝑅 𝑢𝑢 = 88 mm3s−1, and for the cylindrical 

encounter zone with spherical end caps, we correspondingly find the larger value:  𝑄𝑄 = (1/4) 𝑆𝑆 𝑢𝑢 =

(1/2) 𝜋𝜋 (𝐻𝐻 + 2 𝑅𝑅) 𝑅𝑅 𝑢𝑢 = 102 mm3s−1 due to the larger surface area of the encounter zone. As a 

second example, we consider a cone-shaped encounter zone (𝑎𝑎 = 100 cm and 𝛾𝛾 = 45 deg) to 

represent the visual field of a fish of size 1 cm that feeds on prey of size 1 mm [17]. If we assume 

that the fish is not moving and encounters motile prey (𝑢𝑢 = 1.0 cm s−1), we estimate the encounter 

rate kernel: 𝑄𝑄 = (1/4) 𝜋𝜋 𝑎𝑎2 (2 − 2 cos 𝛾𝛾 + sin 𝛾𝛾) 𝑢𝑢 = 1.0 ∙ 104 cm3s−1 (table 2). This example 

illustrates the simple use of the general formula to an encounter zone that would be difficult to 

work with analytically using the standard approach. 
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3.2. Moving spherical encounter zone and randomly moving prey  

The encounter rate kernel is well-known for a spherical encounter zone when both the encounter 

zone and the prey are moving [3, 19]. With our approach the expression for 𝑄𝑄 can be obtained by 

direct evaluation of the integral of 𝑞𝑞 over the surface of the encounter zone. The result becomes: 

𝑄𝑄
𝜋𝜋 𝑎𝑎2 𝑢𝑢

=

⎩
⎪
⎨

⎪
⎧1 +  

1
3

 �
𝑣𝑣
𝑢𝑢
�
2

if  𝑣𝑣 < 𝑢𝑢

𝑢𝑢
3 𝑣𝑣

+
𝑣𝑣
𝑢𝑢

if  𝑣𝑣 ≥ 𝑢𝑢 ,
 

where 𝑎𝑎 is the radius of the encounter zone, and we have normalized 𝑄𝑄 with the encounter rate 

kernel (1/4) 𝑆𝑆 𝑢𝑢 = 𝜋𝜋 𝑎𝑎2 𝑢𝑢 for the non-motile encounter zone (figure 3). The motion of the 

encounter zone leads to a weak increase of 𝑄𝑄 when 𝑣𝑣 < 𝑢𝑢 [2], but this does not mean that the 

motion of the encounter zone does not strongly influence the encounter situation. To illustrate this 

effect we show 𝑞𝑞/𝑢𝑢 as function of the angle 𝜓𝜓 between the outward normal to the surface of the 

encounter zone and its direction of motion. The encounter rate kernel per unit surface area changes 

from being uniform when 𝑣𝑣 = 0 to being high on the front half of the encounter zone (𝜓𝜓 < 90 deg) 

and low on the back half of the encounter zone (𝜓𝜓 > 90 deg) when 𝑣𝑣 = 𝑢𝑢 (figure 4). To quantify 

the effect when 𝑣𝑣 < 𝑢𝑢 we determine the encounter rate kernel for the encounters on the front half 

of the encounter zone:    

𝑄𝑄front

𝜋𝜋 𝑎𝑎2 𝑢𝑢
=  

1
2

 �1 +
𝑣𝑣
𝑢𝑢

+
1
3
�
𝑣𝑣
𝑢𝑢
�
2
� , 

and the encounter rate kernel for the encounters on the back half of the encounter zone: 

𝑄𝑄back

𝜋𝜋 𝑎𝑎2 𝑢𝑢
=  

1
2

 �1 −
𝑣𝑣
𝑢𝑢

+
1
3
�
𝑣𝑣
𝑢𝑢
�
2
� . 

Interestingly, the two expressions contain linear 𝑣𝑣/𝑢𝑢 terms with opposite signs. The strong linear 

terms are of similar magnitude and they therefore cancel out in the expression for the total 

encounter rate kernel (𝑄𝑄 = 𝑄𝑄front + 𝑄𝑄back) and leave only a weak quadratic (𝑣𝑣/𝑢𝑢)2 term. However, 

the strong linear terms dominate the increase of 𝑄𝑄front and the decrease of 𝑄𝑄back, and they explain 

the significant shift from back to front of where prey impact the encounter zone (figure 4). 
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3.3. The effects of the shape of the encounter zone 

The shape and the direction of motion of a moving non-spherical encounter zone influence the 

encounter rate kernel, and the situation is particularly complex when both the encounter zone and 

the prey are moving. To show the key effects qualitatively, we consider the encounter rate kernel 

per unit surface area for disk-shaped (oblate) and rod-shaped (prolate) spheroidal encounter zones 

that are moving lengthwise (figure 5). Both disk-shaped and rod-shaped encounter zones 

experience an increase of 𝑞𝑞 on the front half and a decrease of 𝑞𝑞 on the back half due to the motion 

of the encounter zone, but the effect on the encounter rate kernel 𝑄𝑄 is strong and important for flat 

disks whereas it is weak and insignificant for slender rods.   

To explore the problem quantitatively, we first consider the situation in which the encounter zone 

is moving slower than the prey. Assuming that 𝑣𝑣 < 𝑢𝑢 we find the general encounter rate kernel: 

𝑄𝑄 =  
1
4

 𝑆𝑆 𝑢𝑢 �1 + 2 𝛼𝛼 
𝑣𝑣
𝑢𝑢

+ 𝛽𝛽 �
𝑣𝑣
𝑢𝑢
�
2
�  , 

where we have defined two geometrical shape parameters for the encounter zone: 

𝛼𝛼 =  
1
𝑆𝑆

 � cos𝜓𝜓  d𝑆𝑆 ,
𝑆𝑆

𝛽𝛽 =  
1
𝑆𝑆

 � cos2𝜓𝜓
𝑆𝑆

 d𝑆𝑆 .
 

The expression for 𝑄𝑄 holds for both open and closed surfaces, and the two geometrical shape 

parameters satisfy the general constraints:  

−1 ≤ 𝛼𝛼 ≤ 1 ,
0 ≤ 𝛽𝛽 ≤ 1 . 

For closed surfaces, the linear α-term vanishes as can be shown using Gauss’ theorem, and 

irrespective of the shape of the encounter zone only the quadratic 𝛽𝛽-term remains in the expression 

for the encounter rate kernel: 

𝑄𝑄 =
1
4

 𝑆𝑆 𝑢𝑢 �1 + 𝛽𝛽 �
𝑣𝑣
𝑢𝑢
�
2
� . 
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We immediately notice that the expression reduces to the expression for 𝑄𝑄 with a non-motile 

encounter zone and randomly moving prey when 𝑣𝑣 = 0. In addition, the expression for a spherical 

encounter zone with radius 𝑎𝑎 is a special case with 𝑆𝑆 = 4 𝜋𝜋 𝑎𝑎2 and 𝛽𝛽 = 1/3 (table 3). 

To further illustrate the dependence of the parameter 𝛽𝛽 on the geometrical shape and the direction 

of motion of the encounter zone, we consider cylindrical encounter zones with lengthwise and 

sideways motion, respectively, and different aspect ratio, i.e., ratio between height 𝐻𝐻 and radius 𝑅𝑅. 

For a cylindrical encounter zone that is moving lengthwise with 𝑣𝑣 < 𝑢𝑢 we use the formula derived 

above (table 3). When 𝑣𝑣 ≥ 𝑢𝑢 we have at the front surface 𝑣𝑣𝑛𝑛 = 𝑣𝑣 and thus 𝑣𝑣𝑛𝑛 ≥ 𝑢𝑢 and 𝑞𝑞 = 𝑣𝑣, at 

the lateral surface 𝑣𝑣𝑛𝑛 = 0 and thus 𝑞𝑞 = (1/4) 𝑢𝑢, and at the back surface 𝑣𝑣𝑛𝑛 = −𝑣𝑣 and thus 𝑣𝑣𝑛𝑛 ≤

−𝑢𝑢 and 𝑞𝑞 = 0. In total, we find for a cylindrical encounter zone with lengthwise motion: 

𝑄𝑄
(1/4) 𝑆𝑆 𝑢𝑢

=

⎩
⎪
⎨

⎪
⎧1 +  𝛽𝛽 �

𝑣𝑣
𝑢𝑢
�
2

if  𝑣𝑣 < 𝑢𝑢

1 − 𝛽𝛽 + 2 𝛽𝛽
𝑣𝑣
𝑢𝑢

if  𝑣𝑣 ≥ 𝑢𝑢 ,
 

where 𝑆𝑆 = 2 𝜋𝜋 (𝐻𝐻 + 𝑅𝑅) 𝑅𝑅 and 𝛽𝛽 = 𝑅𝑅/(𝐻𝐻 + 𝑅𝑅). We see that lengthwise motion of a disk-shaped 

encounter zone (𝐻𝐻 ≪ 𝑅𝑅) leads to a strong (𝛽𝛽 ≈ 1) increase of 𝑄𝑄, whereas it for a rod-shaped 

encounter zone (𝐻𝐻 ≫ 𝑅𝑅) only leads to a weak (𝛽𝛽 ≈ 0) increase of 𝑄𝑄 (figure 6a). In contrast we 

observe a qualitatively reverse scenario when a cylindrical encounter zone is moving sideways, i.e., 

𝛽𝛽 ≈ 0 if 𝐻𝐻 ≪ 𝑅𝑅 and 𝛽𝛽 ≈ 1/2 if 𝐻𝐻 ≫ 𝑅𝑅 (table 3 and figure 6b). 

An instructive example is provided by the ambush-feeding copepod Oithona similis that uses its 

mechano-sensing antennae to perceive motile prey [8]. We treat the antennae as a cylindrical 

encounter zone (𝐻𝐻 = 1.0 mm and 𝑅𝑅 = 0.14 mm) that moves sideways with the sinking speed of 

the copepod (𝑣𝑣 = 0.09 mm s−1), and we consider the motile (𝑢𝑢 = 0.37 mm s−1) dinoflagellate 

Gymnodinium dominans as prey [8]. We find the value: 𝑄𝑄 = (1/4) 𝑆𝑆 𝑢𝑢 [1 + 𝛽𝛽(𝑣𝑣/𝑢𝑢)2] =

0.095 mm3s−1, where we have used 𝑆𝑆 and 𝛽𝛽 for a cylindrical encounter zone that moves sideways 

with 𝑣𝑣 < 𝑢𝑢 (table 3). We note that the slow sinking motion of the copepod increases the encounter 

rate kernel insignificantly from the value: 𝑄𝑄 = (1/4) 𝑆𝑆 𝑢𝑢 = 0.093 mm3s−1 that we would estimate 

if the copepod were not moving. 
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Estimation of the encounter rate kernel for the capture of motile, bacteria-sized prey on the 

capture-structure (haptonema) of the haptophyte Prymnesium polylepis provides a final example. 

We model the encounter zone around the haptonema as cylindrical with radius equal to the 

(negligible) radius of the haptonema plus the radius of the spherical prey (𝐻𝐻 = 13.5 µm and 𝑅𝑅 =

0.85 µm). We assume that the haptonema is moving lengthwise with speed equal to the swimming 

speed of the haptophyte (𝑣𝑣 = 45 µm s−1), and we consider motile, bacteria-sized prey with run-

tumble motion and run length longer than the haptonema (𝑢𝑢 = 32 µm s−1 and 𝜆𝜆 = 46 µm) [13]. 

Using the formula for a cylindrical encounter zone with lengthwise motion we find the encounter 

rate kernel: 𝑄𝑄 = 679 µm3s−1, whereas we estimate the value: 𝑄𝑄 = 613 µm3s−1 if we disregard the 

swimming of the haptophyte [13]. We see that the swimming of the haptophyte increases the 

encounter rate kernel by only a small fraction as expected since the slender, cylindrical encounter 

zone is moving lengthwise. 

4. Discussion  

When applying the encounter rate expressions to concrete problems, one should keep in mind that 

hydrodynamic effects were disregarded in their derivations. Two types of hydrodynamic effects that 

are difficult to describe in simple models affect encounter rates. Firstly, low Reynolds number flows 

at the planktonic microscale lead to repulsive disturbances that hinder direct predator-prey contact 

[2, 22, 23], and secondly small-scale turbulent flows in the aquatic environments may facilitate 

predator-prey encounters, but also sometimes make the prey more difficult to catch [24, 5, 11]. 

Repulsive disturbances are of significance, e.g., when prey are caught by direct impact on the cell of 

the predator, and they can be disregarded when the encounter zone is a chemical trail or the cone-

shaped encounter zone of a visual predator. 

In all of our derivations, except the derivation of the expression 𝑄𝑄 = 〈𝐴𝐴〉 𝑢𝑢, we considered convex 

encounter zones. To illustrate the importance of this assumption, let us compare the results for a 

cylindrical (convex) encounter zone and a non-convex encounter zone in the shape of a cylindrical 

and thin-walled tube. We assume that the two encounter zones have the same height 𝐻𝐻 and outer 

radius 𝑅𝑅 and that they are slender with 𝐻𝐻 ≫ 𝑅𝑅. When the encounter zones are not moving and the 

prey move randomly, the expression 𝑄𝑄 = 〈𝐴𝐴〉 𝑢𝑢 correctly predicts 𝑄𝑄 ≈ (1/2) 𝜋𝜋 𝐻𝐻 𝑅𝑅 𝑢𝑢 in both cases, 

since the average projected areas are approximately the same (Appendix B). For the convex cylinder, 
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the expression 𝑄𝑄 = (1/4) 𝑆𝑆 𝑢𝑢 also correctly predicts 𝑄𝑄, but the expression wrongly overestimates 

𝑄𝑄 by a factor of approximately two for the non-convex tube, since its surface area is approximately 

twice as large as the surface area of the cylinder. The problem is that depletion of the prey 

concentration near the surface of the encounter zone is assumed insignificant in our approach. This 

assumption is not satisfied on the inside of the non-convex tube that is shielded from the outside 

ballistic prey motion, but it is applicable for the convex cylinder. 

5. Conclusion 

Building on the expression for the encounter rate kernel per unit surface area of the encounter zone, 

we have generalized the well-known expression for the encounter rate for a spherical encounter 

zone when both the encounter zone and the prey are moving. The general expressions are 

applicable to estimate encounter rates in concrete predator-prey encounter situations as we have 

illustrated in the four examples with different types of plankton, and they provide tools to make 

strong and testable predictions about the influence of the motion and the shape of the encounter 

zone. We have derived two main quantitative predictions. Firstly, we have shown that the encounter 

rate is proportional to the surface area of the encounter zone (𝑄𝑄 = (1/4) 𝑆𝑆 𝑢𝑢) and independent of 

its shape when the encounter zone is not moving. Secondly, we have shown how the encounter rate 

depends on the direction of motion and the shape of the encounter zone when it is non-spherical 

and in motion, and we have demonstrated that this dependence can be significant (figures 5 and 6). 

We hope that our predictions will be tested in future studies, both numerically to quantify the 

effects of our simplifying assumptions and against laboratory data on predator-prey encounter rates 

for planktonic organisms in different encounter situations.           

Appendices  

Appendix A. Derivation of the encounter rate kernel per unit surface area 

To derive the expression for the encounter rate kernel per unit surface area: 

𝑞𝑞 =  �

0 if 𝑣𝑣𝑛𝑛 < −𝑢𝑢
1
4
𝑢𝑢 �1 +

𝑣𝑣𝑛𝑛
𝑢𝑢
�
2

if − 𝑢𝑢 ≤ 𝑣𝑣𝑛𝑛 < 𝑢𝑢

𝑣𝑣𝑛𝑛 if 𝑣𝑣𝑛𝑛 ≥ 𝑢𝑢 ,
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we look locally at the surface of the encounter zone. The outward normal component of the velocity 

of the encounter zone is by definition 

𝑣𝑣𝑛𝑛 = 𝑣⃗𝑣 ∙ 𝑛𝑛�⃗  , 

where 𝑣⃗𝑣 is the velocity of the encounter zone and 𝑛𝑛�⃗  the outward unit normal. When 𝑣𝑣𝑛𝑛 < −𝑢𝑢 the 

surface is moving inwards so rapidly that none of the prey immediately outside hit it, whereas when 

𝑣𝑣𝑛𝑛 ≥ 𝑢𝑢 the surface is moving outwards so rapidly that all of the prey immediately outside are swept 

in and 𝑞𝑞 = 𝑣𝑣𝑛𝑛. To derive the expression in the intermediate interval −𝑢𝑢 ≤ 𝑣𝑣𝑛𝑛 < 𝑢𝑢, we choose 

spherical polar coordinates with the polar axis in the direction of the inward normal, and we let 𝜃𝜃 

denote the polar angle and 𝜑𝜑 the azimuthal angle. We use the angles to describe the direction of 

motion of the prey, and we write the inward normal component of the velocity of the prey relative 

to the surface: 

𝑤𝑤 = 𝑣𝑣𝑛𝑛 + 𝑢𝑢 cos 𝜃𝜃 . 

The probability that the prey has directions of motion within the solid angle d𝛺𝛺 is d𝛺𝛺/(4 𝜋𝜋). To 

determine 𝑞𝑞 we use d𝛺𝛺 = sin𝜃𝜃 d𝜃𝜃 d𝜑𝜑 and integrate 𝑤𝑤 over all the directions of motion for which 

the prey approach the surface. We find that: 

𝑞𝑞 =  
1

4 𝜋𝜋 
� d𝜃𝜃
𝜒𝜒

0
�  (𝑣𝑣𝑛𝑛 + 𝑢𝑢 cos 𝜃𝜃) sin𝜃𝜃 d𝜑𝜑
2 𝜋𝜋

0
=

1
4
𝑢𝑢 �1 +

𝑣𝑣𝑛𝑛
𝑢𝑢
�
2

  , 

where the limiting angle 𝜒𝜒 is determined by the ratio between 𝑣𝑣𝑛𝑛 and 𝑢𝑢: 

cos𝜒𝜒 =  −
𝑣𝑣𝑛𝑛
𝑢𝑢

 . 

In the kinetic theory of gases, 𝑞𝑞 is derived along the same principles to determine the collision rate 

of gas molecules with a surface in the special case with 𝑣𝑣𝑛𝑛 = 0 [19]. 

Appendix B: Alternative derivation of the encounter rate kernel with a non-motile encounter zone 

When the encounter zone is not moving and the prey are moving randomly with equal probability 

in all directions, we can express 𝑄𝑄 using the alternative expression: 

𝑄𝑄 =  〈𝐴𝐴〉 𝑢𝑢 , 
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where 〈𝐴𝐴〉 denotes the average projected area (silhouette) of the encounter zone with the average 

extending over all the possible directions: 

〈𝐴𝐴〉 =  
1

4 𝜋𝜋
� d𝜃𝜃
𝜋𝜋

0
� 𝐴𝐴(𝜃𝜃,𝜑𝜑) sin𝜃𝜃 d𝜑𝜑 .  
2 𝜋𝜋

0
 

When the run length of the prey 𝜆𝜆 = 𝑢𝑢 𝜏𝜏 is large in comparison with the characteristic length scale 

𝐿𝐿 of the encounter zone, we can express 𝑄𝑄 as an integral over the spherical volume with radius 𝜆𝜆 

from which the prey can hit the encounter zone during a time-interval equal to the run time: 

𝑄𝑄 =  
1
𝜏𝜏
� d𝜃𝜃
𝜋𝜋

0
� sin𝜃𝜃 d𝜑𝜑� 𝑝𝑝(𝑟𝑟,𝜃𝜃,𝜑𝜑) 𝑟𝑟2d𝑟𝑟 

𝜆𝜆

0
.  

2 𝜋𝜋

0
 

We write the integral using spherical polar coordinates with the origin at the geometric centre of 

the encounter zone, and we let 𝑝𝑝(𝑟𝑟, 𝜃𝜃,𝜑𝜑) denote the probability for a prey with coordinates 𝑟𝑟,𝜃𝜃, 

and 𝜑𝜑 to hit the encounter zone during a time-interval equal to the run time. We can write 

𝑝𝑝(𝑟𝑟,𝜃𝜃,𝜑𝜑) =  
𝐴𝐴(𝜃𝜃,𝜑𝜑)
4 𝜋𝜋 𝑟𝑟2

 , 

where 𝐴𝐴(𝜃𝜃,𝜑𝜑) is the projected area of the encounter zone. From the integral, we should strictly 

speaking exclude the region of the encounter zone and extend the outer boundary of the integral 

correspondingly. Also, the above expression for 𝑝𝑝 is in general invalid for prey near the encounter 

zone. However, the contributions from these corrections are insignificant when 𝜆𝜆 ≫ 𝐿𝐿 and the prey 

concentration is uniform. The expression for the encounter rate kernel is therefore  

𝑄𝑄 =  
1

4 𝜋𝜋 𝜏𝜏
� d𝜃𝜃
𝜋𝜋

0
� 𝐴𝐴(𝜃𝜃,𝜑𝜑) sin𝜃𝜃 d𝜑𝜑�  d𝑟𝑟 = 〈𝐴𝐴〉  

𝜆𝜆
𝜏𝜏

 
𝜆𝜆

0
,

2 𝜋𝜋

0
 

from which the formula 𝑄𝑄 = 〈𝐴𝐴〉 𝑢𝑢 immediately follows.  

As an example, we consider a cylindrical encounter zone with height 𝐻𝐻 and radius 𝑅𝑅 with the 

assumption that the cylinder is slender (𝐻𝐻 ≫ 𝑅𝑅). We choose a spherical polar coordinate system 

with origin at the geometric centre of the cylinder, and oriented so that the polar axis is aligned with 

the axis of the cylinder. Seen from a point with coordinates 𝑟𝑟,𝜃𝜃, and 𝜑𝜑, the cylinder appears with a 
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projected area that is independent of the azimuthal angle 𝜑𝜑 and depends only on the polar angle 𝜃𝜃. 

The projected area of the cylinder is 

𝐴𝐴 ≈ 2 𝐻𝐻 𝑅𝑅 sin𝜃𝜃 , 

and for the average projected area we find 

〈𝐴𝐴〉 ≈ 𝐻𝐻 𝑅𝑅 � sin2𝜃𝜃 d𝜃𝜃 =  
1
2

 𝜋𝜋 𝐻𝐻 𝑅𝑅 .
𝜋𝜋

0
 

For the encounter rate kernel, we therefore obtain the expression: 

𝑄𝑄 ≈
1
2
𝜋𝜋 𝐻𝐻 𝑅𝑅 𝑢𝑢 . 

Since the cylindrical encounter zone is convex, the expression corresponds to the formula 

obtained from the expression for 𝑄𝑄 in terms of 𝑆𝑆 with 𝐻𝐻 ≫ 𝑅𝑅 (table 2). 
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TABLES AND TABLE CAPTIONS 

Table 1. Glossary of symbols. 

Symbol Description 

a Radius of sphere and spherical cone 

A Projected area of encounter zone 

C Concentration, number of organisms per unit volume 

E Encounter rate, number of encounters per unit volume per unit time  

H Height of cylindrical encounter zone 

L Characteristic length scale of encounter zone 

q Encounter rate kernel per unit surface area 

Q Encounter rate kernel, volume per unit time 

R Radius of cylindrical encounter zone 

S Surface area of encounter zone 

u Speed of prey 

v Speed of predator (encounter zone) 

α Geometrical shape parameter, linear term 

β Geometrical shape parameter, quadratic term 

γ Half cone angle of spherical cone 

θ Polar angle, spherical polar coordinates 

λ Run length of prey 

τ Run time of prey 

φ Azimuthal angle, spherical polar coordinates 

χ Angle used in encounter rate derivations 

ψ Angle between predator velocity and encounter surface normal 
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Table 2. Encounter rate kernel for non-motile encounter zones with different shape. 

Encounter zone Encounter rate kernel Q 

Sphere 𝜋𝜋 𝑎𝑎2 𝑢𝑢  

Cylinder 1
2

 𝜋𝜋 (𝐻𝐻 + 𝑅𝑅) 𝑅𝑅 𝑢𝑢 

Spherical cone 1
4

 𝜋𝜋 𝑎𝑎2 (2 − 2 cos 𝛾𝛾 + sin 𝛾𝛾) 𝑢𝑢 

 

Table 3. Encounter rate parameters for closed encounter zones with different shape and different 

direction of motion. We assume that the encounter zones move slower than the prey (𝑣𝑣 < 𝑢𝑢). 

Encounter zone Surface area S Direction of motion Geometrical shape parameter β 

Sphere 4 𝜋𝜋 𝑎𝑎2 Arbitrary 
1
3

 

Cylinder 2 𝜋𝜋 (𝐻𝐻 + 𝑅𝑅) 𝑅𝑅 
Lengthwise 

𝑅𝑅
𝐻𝐻 + 𝑅𝑅

 

Sideways 
𝐻𝐻

2 (𝐻𝐻 + 𝑅𝑅)
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FIGURES 

 

Figure 1. Examples of different encounter zones and situations. (a) Moving, spherical encounter 

zone and non-motile prey, (b) non-motile, cylindrical encounter zone and randomly moving prey, 

and (c) moving, cone-shaped encounter zone (spherical cone) and randomly moving prey. The black 

vectors show the velocities of the encounter zones (yellow) and the blue vectors the velocities of 

the small and randomly moving prey (red spheres). The three-dimensional positions of the prey are 

random, and the directions of motion of the prey are random with equal probability in all directions.  
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Figure 2. Encounter rate kernel per unit surface area as function of the outward normal component 

of the velocity of the encounter zone. The inset shows the local geometry at the surface (yellow) of 

the encounter zone with 𝑣⃗𝑣 indicating the velocity of the encounter zone and 𝑛𝑛�⃗  the outward unit 

normal. The descriptions “inside” and “outside” refer to the regions inside and outside of the encounter 

zone, respectively. All the prey are moving with speed 𝑢𝑢 and the directions of motion of the prey are 

random and with equal probability in all directions as indicated by the grey sphere. (The radius of 

the sphere indicates the speed 𝑢𝑢 that is common to all prey.)  The encounter rate kernel per unit 

surface area 𝑞𝑞 and the outward normal component of the velocity of the encounter zone 𝑣𝑣𝑛𝑛 = 𝑣⃗𝑣 ∙ 𝑛𝑛�⃗  

are both normalized by the prey speed 𝑢𝑢. We find that 𝑞𝑞/𝑢𝑢 = 0.25 (horizontal line) when 𝑣𝑣𝑛𝑛 = 0. 

None of the prey immediately outside the encounter zone hit the surface (𝑞𝑞 = 0) when 𝑣𝑣𝑛𝑛 < −𝑢𝑢, 

whereas all of the prey immediately outside hit the surface (𝑞𝑞 = 𝑣𝑣𝑛𝑛) when 𝑣𝑣𝑛𝑛 ≥ 𝑢𝑢.  
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Figure 3. Encounter rate kernel for a moving spherical encounter zone and randomly moving prey. 

The encounter rate kernel 𝑄𝑄 (solid line, red) is shown as function of the ratio between the encounter 

zone speed 𝑣𝑣 and the prey speed 𝑢𝑢, and it is normalized by the encounter rate kernel (1/4) 𝑆𝑆 𝑢𝑢 =

𝜋𝜋 𝑎𝑎2 𝑢𝑢 for the non-motile, spherical encounter zone. The motion of the encounter zone leads to an 

insignificant increase of 𝑄𝑄 when 𝑣𝑣 < 𝑢𝑢, but the increase of 𝑄𝑄 due to the motion of the encounter 

zone is significant when 𝑣𝑣 ≥ 𝑢𝑢. The linear approximation (dashed line, blue) is valid when the 

motion of the encounter zone dominates and the motion of the prey is negligible. 
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Figure 4. Encounter rate kernel per unit surface area as function of the position on the surface of a 

spherical encounter zone. Non-motile encounter zone (𝑣𝑣 = 0) and prey moving randomly with 

speed 𝑢𝑢 (solid line, black), both encounter zone and prey in motion with 𝑣𝑣 = 𝑢𝑢 (solid line, red), and 

both encounter zone and prey in motion with 𝑣𝑣 = 2 𝑢𝑢 (dashed line, blue). The inset shows the 

velocity of the encounter zone 𝑣⃗𝑣 and the outward unit normal 𝑛𝑛�⃗  at the angular position 𝜓𝜓. The motion 

of the encounter zone enhances 𝑞𝑞 on the front half and reduces 𝑞𝑞 to basically zero on the back half. 
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Figure 5. Encounter rate kernel per unit surface area for two differently shaped spheroidal 

encounter zones that are moving lengthwise. Disk-shaped zones with ratio 1/2 between polar radius 

and equatorial radius (left) and rod-shaped zones with ratio 2 between polar radius and equatorial 

radius (right). (a) Non-motile encounter zones (𝑣𝑣 = 0) and prey moving randomly with speed 𝑢𝑢, (b) 

both encounter zones and prey in motion (𝑣𝑣 = 𝑢𝑢), and (c) both encounter zones and prey in motion 

(𝑣𝑣 = 2 𝑢𝑢). The black vectors indicate the velocities of the encounter zones, the blue vectors the prey 

speed, and the surface colour plots the encounter rate kernel per unit surface area 𝑞𝑞 normalized by 

𝑢𝑢. The disk-shaped zone experiences a strong increase of 𝑞𝑞 on the front-half due to its motion, 

whereas the rod-shaped zone only experiences an increase of 𝑞𝑞 near the foremost point. 
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Figure 6. Encounter rate kernel for cylindrical encounter zones with different aspect ratio. The insets 

show the directions of motion of the encounter zones: (a) lengthwise and (b) sideways. The 

encounter rate kernel 𝑄𝑄 is normalized by the encounter rate kernel (1/4) 𝑆𝑆 𝑢𝑢 for the corresponding 

non-motile encounter zone, and it is shown as function of the aspect ratio 𝐻𝐻/𝑅𝑅. Non-motile 

encounter zone (𝑣𝑣 = 0) and prey moving randomly with speed 𝑢𝑢 (solid line, black), both encounter 

zone and prey in motion with 𝑣𝑣 = 𝑢𝑢 (solid line, red), and both encounter zone and prey in motion 

with 𝑣𝑣 = 2 𝑢𝑢 (dashed line, blue). Lengthwise motion leads to a strong increase of 𝑄𝑄 for disk-shaped 

(𝐻𝐻/𝑅𝑅 ≪ 1) encounter zones, whereas sideways motion leads to a strong increase of 𝑄𝑄 for rod-

shaped (𝐻𝐻/𝑅𝑅 ≫ 1) encounter zones. 
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