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Abstract 

To meet the growing energy demands of the future, safer batteries, with higher energy density 

are required. Li-ion batteries have been on the market for nearly 30 years and although there has 

been improvements of the original technology of the 90’s, the theoretical capacities have been 

reached and little increment are expected, therefore new materials and chemistry are needed. 

 

Among alternatives to Li-ion batteries are Li-S batteries with higher energy densities, 

demonstrated 500 Whkg-1 vs 250 Whkg-1for the best Li-ion batteries. Conventional Li-S batteries 

use salts dissolve in liquid solvents as electrolyte. However the solvents are flammable, which 

causes safety concerns and cause the shuttling of dissolve polysulfide resulting in rapid self-

discharge of the batteries. Furthermore, lithium metal cannot be used as anode material and 

lithium dendrite formation shortens the lifetime of the batteries. A solution to these problems is 

to replace the liquid electrolyte by solid-state electrolytes based on ionic solids. In this work, two 

novel solid-state electrolytes, LiBH4-SiO2 and LiBF4-LiBH4, have been investigated as potential 

candidates for solid-state lithium sulfur batteries. These electrolytes have been synthesized and 

characterized using state of the art technics such as electrochemical impedance spectroscopy, 

Raman spectroscopy and nuclear magnetic resonance (NMR). High ionic conductivities were 

measured (0.1 mS/cm-1 at room temperature).   

 

The electrolyte made from a composite of LiBH4-SiO2 has a higher Li+ conductivity than that of 

pure LiBH4 (1000 times higher at room temperature, 0.1 mS/cm-1 vs 0.1 10-3 mS/cm-1). Our 

investigation showed no evidence for the formation of new bulk phases but the existence of a 

highly conductive interface between the insulating silica and the borohydride, most probably 

resulting from the reaction of LiBH4 with the surface silica silanol groups. The Raman and NMR 

measurements clearly sow the different behavior of the composites compared to pure LiBH4.  

 

For LiBH4-LiBF4, with low content of LiBF4 we found that the increased Li+ conductivity is 

occurring in modified LiBH4, possibly via a solid solution with LiBF4, while for higher LiBF4 

contents decomposition of LiBH4 occurs and result in lower conductivities. 
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Li-S batteries build around LiBH4-SiO2 solid electrolyte have been successfully assembled and 

tested. Capacityies of 794 mAhg-1 sulfur have been obtained after 10 cycles at charge-discharge  

rate of 0.03 C and 50 o C. Because larger capacities than the theoretical one were observed during 

the first discharge – charge cycle, protection of the sulfur cathode has been investigated. We 

deposited LiPON thin films on the cathode surface to protect it from direct contact with the 

electrolyte. These batteries showed, smaller capacities, but better capacity retention over cycling 

than the batteries with non-coated cathodes. The first discharge overcapacities disappeared. This 

result underlines the importance of the interface treatment and engineering within Li-S solid 

state batteries.  
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Dansk Resumé 

For at imødekomme det stigende energi behov for i fremtiden er der behov for sikre batterier 

med højt energi behov. Li-ion batterier har været på markedet i 30 år og selvom der har været 

forbedringer af den oprindelige teknologi er den teoretiske grænse ved at være nået og der kan 

derfor kun forventes små forbedringer fremadrettet, derfor er der behov for nye materialer og 

nye batteri teknologier. 

 

Iblandt alternativerne til Li-ion batterierne har Li-S batterierne højere energi tæthed. Normale Li-

S batterier benytter salte opløst i ioniske væsker som elektrolyt. Disse væsker er dog brandbare 

hvilket danner grundlag for bekymringer for sikkerheden af disse batterier og kan være årsag til 

udveksling af polysulfide der kortslutter batterierne. Ydermere, Li-metal er uegnet som anode 

materiale på grund af dendrit formation der begrænser levetiden af batterierne. En løsning på 

disse problemer er at erstatte den flydende elektrolyt med en faststof elektrolyt basseret på 

ikoniske faste stoffer. I dette projekt er to nye faste elektrolytter, LiBH4-SiO2 og LiBH4-LiBF4, 

blevet undersøgt som potentielle kandidater til fastestof Li-S batterier. Disse elektrolytter er 

blevet fremstillet og karakteriseret ved brug af teknikker som elektrokemisk impedans 

spektroskopi, Raman spektroskopi og nuclear magnetisk resonans.  Høje joniske ledningsevner 

blev målt (0.1 mS/cm-1 at ved stuetemperatur).   

 

 

Elektrolytten fremstillet af en LiBH4-SiO2 blanding har højere Li+ ion ledningsevne 

sammenlignet med ren LiBH4, helt op til en 1000 gange højere ved stuetemperatur, 10-7 S/cm-1) . 

Disse undersøgelser fandt ikke nogen beviser for formationen af nye bulk phaser men 

bekræftede eksistensen af en interface mellem silicium og borohydrid med høj ledningsevne. 

Højst sandsynligt stammer denne fase fra en reaktion mellem LiBH4 med overflade silicium 

silanol grupper. Raman og NMR målingerne viser tydeligt at blandingerne opfører sig anderledes 

for ren LiBH4. 

 

For LiBH4- LiBF4 blandinger med lavt LiBF4 blev det forslået at Li+ ledningsevnen opstår i 

LiBH4 fordi den indeholder LiBF4. For blandinger med højt LiBF4, dekomponerer LiBH4 hvilket 



 

 

iv 

 

resulterer i laver ledningsevne. Li-S batteri baseret på LiBH4-SiO2 faststofelektrolytten blev 

bygget og testet. Disse batterier havde en kapacitet på 794 mAhg-1 S efter 10 op- og afladninger 

ved 0.03 C ved 50 o C.  

 

På baggrund af målte kapaciteter der under første op- og afladning er højere end teoretisk muligt, 

blev det undersøgt om det var muligt at beskytte S-katoden. Dette blev gjort via deponering af 

LiPON tyndfilm på katodes overfalde for undgå direkte kontakt med elektrolytten. Disse batteri 

havde mindre kapacitet men mistede mindre kapacitet over tid sammenlignet med batterier uden 

beskyttelsen. Samtidig forsvandt den højere end muligt målte kapacitet under første op- og 

afladning. Dette understreger vigtigheden af at beskytte katodens interface med elektrolytten i Li-

S batterier.  
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Chapter 1  

Introduction 

1.1 Role of sustainable energy in modern world 

 

Among different types of energy vectors, electricity is the most commonly used one worldwide, 

both in the residential and commercial sector.1 The major sources of electric power are coal, 

natural gas, nuclear power, renewable sources and petroleum. Figure 1 shows distribution of 

global consumption of electric power by major sources in trillion ton BTU.  

 

Figure 1 Electric power consumption in trillion ton btu by major source globally, May 2018 

(reproduced from data 1) 

 

For example, in May 2018, 80 % of the generated electricity in the world was produced from 

non-renewable sources, within a share of 23% from nuclear power and only 20% was produced 

from renewable sources. 1   
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Emissions from burning fossil fuels cause various environmental and health problems on a 

global scale, such as acidification of oceans and pollutions in big cities, carbon dioxide is 

undoubtedly contributing to global warming while being dependent on gas or oil on a national 

level causes political and social instability. 2 

 

Data on greenhouse gas emissions from the Environmental Protection Agency (EPA) shows 

that since 1900 the levels of CO2 and non-CO2 greenhouse gases has increased as a consequence 

of industrial processes and burning fossil fuels. Figure 2 shows total carbon emissions since 1950 

to 2015 and as it can be seen, it has increased by more than 90% since 1970. 3 

 

Figure 2. Global carbon emissions in millions of metric tons (data from Boden, et al 4) 

 

In the recent decades, the energy sector has been in transition. Governments have realized the 

severity of the problem and concentrate on national and global initiatives to promote production 

of energy from renewable source and increase its utilization by using electric motors.2 Figure 3 

shows the difference in energy generation by source in 2013 and 2018 globally.  
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Figure 3 Distribution of generated electric power by source in 2013 and 2018. Blue represents non-

renewable souces, red nuclear and green renewable sources 

 (Reproduced data from U.S. Energy Information Administration, 2018 1) 

 

While in 2013, 13% of generated electric power originated from renewable sources, in 2018 the 

share increased to 20% at cost of nuclear power and non-renewable sources. This shift towards 

“green” power had a positive effect on the level of carbon emissions. During a period from 2014 

to 2016, little or no growth was observed in carbon emissions due to the increased share of 

renewable power on the energy market. However in 2017, the levels of CO2 emissions increased 

by 1.7% as primary energy consumption increased by 2.2%5. This increase in carbon dioxide 

emissions is among other reasons, due to the insufficient growth of the renewable energy 

production to keep up with the ever increasing energy demand in the world. 2 

 

The production of energy from renewable resources such as wind or solar energy varies with 

time and therefore efficient electrical energy storage systems (EES) are required.6 EES are 

especially important for future grid balancing services to make best use of available resources. 

This is an important issue for countries where the share of power generated from renewable 

sources is high. For example, in Denmark in 2017, 40% of generated electric power came from 

wind power7. Figure 4 shows the production of power from wind sources and a typical load 

curve for a winter day in Denmark8. 
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Figure 4 Wind production during a single day in Denmark (Reprinted from EnergiNet, 2017 8) 

 

As it can be seen from Figure 4, a mismatch power consumption (blue line) -and production 

(orange line) have caused overproduction and peak consumption. At hours during the night 

when the production exceeds the energy demand, the overproduced energy has to be sold at a 

low price on the market or balanced by frequency regulation. On the contrary, consumption 

peaks at early morning (8 am) and in the afternoon (6-7 pm) where the energy demand is twice as 

high as the production level, energy has to be bought on the market at high price. Although 

forecasts are made on the daily and hourly basis, it is not possible to make accurate predictions 

on energy production which is causing economic losses due to sales at low cost and frequency 

regulation where generated electricity cannot be used efficiently. 

 

As the share of electric power generated from renewable source should increase, the mismatch 

between production and consumption will be even more important. In a prognosis by the 

Danish Ministry of Climate, it is predicted that by 2025, 50% of electricity in Denmark will be 

generated by wind power, while by 2050, the goal is set to 100% of electricity from renewable 

sources8. As shown in the example above, it is difficult to match energy demand and production 

and therefore integration of electricity storage (EES) devices on the grid, on a much larger scale 

is required. On possibility for EES is of cause to use batteries. In the next section, the most 

commonly used battery technologies will be discussed in detail.  
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1.2 Energy storage: Lithium-ion and lithium sulfur batteries 

 

Before discussing batteries for energy storage applications, it should be noted that when it comes 

to electrical energy storage, the most common and cost-efficient way is the pumped-storage 

electricity whith prices as low as 10-20 USD/kWh associate with and high efficiency.9 Globally, 

around 184 GWh are stored in pumped-storage hydroelectricity which is also the most common 

load balancing system due to its reactivity.9 Pumped-storage hydroelectricity can be used with 

renewable energy sources, such as solar or wind, however the main disadvantage of 

hydroelectricity is that is requires a special nature of the site – typically mountainous regions are 

suited for hydropower as both reservoirs are needed together with a height difference. In the 

areas where water availability is low and the landscape is flat or where nature has a protected 

status, there is a need for storing energy in alternative ways, such as electric energy storage 

(EES). For example, batteries are commonly used for frequency regulation, peak shaving and 

wind ramp management. 

 

When it comes to electric energy storage, primary concern is the energy and power density and 

price per unit of the above. Figure 5 shows specific energy and power density of common 

battery technologies based on data from 2013. 10 

 

Figure 5. Specific energy and power density of common battery technologies on the market.  

Reprinted from van Noorden, 2013 10  
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While lead-based batteries are the oldest battery technology on the market, this type of battery is 

still the most commonly used.9 They are well-suited for grid applications due to following major 

advantages:9 

• Low installation and capital costs in range 50-200 $ per kWh11  

• Life-time up to 15 years (if operated under optimal conditions)12 13 

• Low self-discharge rates per day and per month (around 2%)13 

• Easy connection in large arrangement with no management systems required for 

operation 

 

Because the world market for energy storage is expected to increase rapidly, due to the increase 

in renewable energies production, lead-based batteries are becoming less and less adapted 

compared to other technologies. The low cost of lead-based batteries does not win over its 

disadvantages on a large scale which includes following issues: 

• specific densities that are much lower than that of competing technologies 

•  lead-based batteries have a significant limitation due to temperature dependence: a 

variation from optimal operating temperature (~25◦C) can result in shortening of a life-

time by a factor of 2.9  

• Batteries should be charged at slow rates limiting their application in load leveling and 

peak shaving. 

 

Li-ion batteries are an alternative to lead-based batteries and are among the most common 

battery types used today14. About 100 MWh are stored worldwide in Li-ion batteries connected 

to the grid for frequency regulation, peak shaving and load levelling9. Li-ion batteries have higher 

specific energy (150 to 200 Whkg-1)6 compared to other technologies, have efficiencies claimed to 

be up to 100% and long life time, high number of charge-discharge cycles.  

 

There is a competition for leading technology on the MW-scale. While Li-ion technology has 

undergone significant improvement since its introduction in the 1990’s, the limits of theoretical 

capacity of lithium-ion technology has been reached.14 While improvements have been made, 

only marginal increment is expected and therefore there is a need for new technologies to 

respond to the growing energy demands in the world. 

 

New battery technology offering higher energy densities are being explored; among them are 

lithium-sulfur batteries (Li-S). Compared to other emerging battery types, Li-S is one of the most 
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promising technology 6 as LiS batteries offer higher theoretical energy density (2700 Whkg-1)15 

and theoretical capacity of 1672 mAh g -1 of sulfur 6 which is more than 10 times the specific 

energy of commonly used lithium-ion technologies that are currently on the market; 180 mAh/g 

for Lithium Nickel Cobalt Aluminum Oxide (NCA), 160 mAh/g for Lithium Nickel Manganese 

Cobalt Oxide (NMC), 160 mAh/g for Lithium Iron Phosphate (LFP)16. Lithium-sulfur batteries 

with specific energy of 400 Wh/kg have been achieved at cell level by Oxis Energy Ltd. 15, Sony 

is planning to introduce a lithium-sulfur battery in its mobile devices by 2020. 17 There is a variety 

of materials that are used on cathode and anode side in lithium-sulfur batteries and it exists 

solution based on liquid or solid electrolytes. This is discussed in detail in following chapters. 

 

1.3 Batteries based on Solid state electrolytes 

 

At present time, commonly used electrolytes in commercial li-ion batteries are organic liquid 

electrolytes, typically carbonates (dimethyl carbonate, ethylene carbonate or diethyl carbonate) 6 

and gel-polymer electrolytes. These are good solvents for lithium salts. However they are 

flammable with flash point below 30 ◦C. 2 These are typically used with lithium salt LiPF6 , which 

is moisture and temperature sensitive18 and  undergoes autocatalytic decomposition into LiF and 

PF5 at temperatures above 60 ◦C with PF5 reacting with water and forming PF3O and HF which 

leads to degradation of the batteries and raises safety concerns.2 

 

Apart from being temperature and moisture sensitive, batteries with liquid electrolytes have 

another disadvantage, namely the formation of solid electrolyte interphase (SEI) on the anode 

side that is ionically conductive but electronically insulating and consumes both electrolyte and Li 

metal. Furthermore the SEI causes low coulombic efficiencies and poor reversibility of the 

electrochemical reactions. 19 Thick SEI will eventually cause Li dendrites to fall off the layer. Li 

diffuse through separator and cause internal short circuit. 19 

 

The solution to these safety issues would be using batteries built around solid electrolyte that 

have major advantages compared to liquid electrolytes: 

• Safety: Solid electrolytes eliminate the risk of vaporization or electrolyte leakage.  The 

need to monitor the temperature to avoid battery degradation is not so critical compared 

to batteries with liquid electrolyte; 

• Higher energy density: by using solid electrolyte it is possible to make thinner batteries 

as solid state batteries do not require separators and can be made with minimum volume 
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of electrolyte. Furthermore solid electrolytes allow bipolar stacking which reduces the 

need of space.  

• Higher current: as solid electrolytes will not ignite unlike liquid electrolytes at 

temperatures above flash point, it is possible to draw higher currents from solid-state 

batteries. 

• Lower costs of operation: as temperature is not an issue for certain types of solid-state 

batteries cooling systems are not necessary. 20 

 

While lithium-ion cells are commonly used in electric vehicles on the market, car manufacturers 

are actively investigating the possibility to use solid-state batteries as an alternative in new 

vehicles. In 2017, the following driving ranges were achieved by some car manufacturers using 

conventional electrolyte: Tesla S (208-315 miles), BMW i3 (114 miles), Nissan Leaf (107 miles), 

Volkswagen e-Golf (124 miles).16 While these ranges are longer than for the previous generations 

of electric cars, leading car brands are investing in solid-state battery research, for example: 

 

• Fisker: have stated that its next-generation cars with solid-state batteries will have a 

driving range of 460 miles and a fast charging option to recharging the batteries in 

minutes. 21 

• Hyundai: Hyundai’s subsidiary, Hyundai Cradle, is investing in Ionic Materials, a 

company using solid polymer materials in battery innovation. 22 

• BMW: has invested in Solid Power, a Colorado-based company producing batteries 

using inorganic solid state electrolyte. 20,23 Solid Power is planning to produce solid-state 

batteries with specific energy of 320-700 Wh/kg and specific power of more than 1000 

W/kg. 20 

• Toyota: Toyota motors are planning to commercialize battery technology based on 

solid-state batteries and introduce a vehicle by early 2020s. 23 

 

Due to the growing interest in solid state batteries in industry, much research in the battery field 

is now focusing on solid state electrolytes. There are various families of compounds that have 

been tested as solid state electrolyte, among others sulfide compounds, e.g. GeS2, P2S5
24, oxide/ 

oxinitrite glasses, such as LiPON24, LISICON.25 Sulfide solid-state electrolytes are difficult to 

prepare, furthermore they are easily oxidized after preparation.24 LiPON and LISICON 

compounds have shown to be good Li+ ion conductors with conductivities in the range from 0.1 

to 1 mScm-1, however the technology has significant drawbacks that limit their practical 
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application. These compounds are not stable against Li metal and it is difficulti to control their 

stoichiometry during synthesis. 26 

 

Complex metal hydrides, such as LiBH4, Mg(BH4)2 and NaBH4, have been considered as good 

candidates as solid-state electrolytes due to their high ionic conductivities.27 LiBH4 is a complex 

metal hydride that has been widely studied in hydrogen storage research due to its high hydrogen 

content (18.6 wt%).28–30 In this work, LiBH4 was chosen as solid-state electrolyte in combination 

with SiO2 or LiBF4, due to simple preparation procedures and higher conductivity values when 

compared to that of pure LiBH4. We have successfully assembled and cycled lithium-sulfur 

batteries built around LiBH4 as solid-state electrolyte, furthermore he mobility of lithium ions 

was studied in the electrolyte by a number of different techniques, including Nuclear magnetic 

resonance (NMR) and Raman spectroscopy.  

 

1.4 Outline of the thesis 

 

The thesis is divided into 6 chapters:  

 

Chapter 1 Introduction describes the scope and purpose of the thesis.   
 

Chapter 2 Theory gives an introduction on the working principle of Li-S batteries and explains 

the principles of ionic conduction in solids. The chapter also describes the theory behind the 

methods used in the experimental part. 
 

Chapter 3 Experimental Techniques describes the details of the cell design, material 

preparation and setup for the experimental techniques that were used for data collection in paper 

I-III. 
 

Chapter 4 Materials Preparation and Battery Setup describe the details of cell design, 

material preparation and setup of primary experimental techniques that were used for data 

collection in paper I-III. 
 

Chapter 5 Results presents the results of the different experimental studies performed on 

LiBH4-SiO2 and LiBh4-LiBF4 electrolytes and all-solid-state lithium-sulfur cells built around 

LiBH4-SiO2 electrolyte. 
 

Chapter 6 Conclusion presents the conclusions of the PhD project and gives an outlook of the 

results.  
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Chapter 2  

Theory 

2.1 Principle of operation of Li-S batteries 

 

A conventional Li-S battery consist of the following components14: 

• Negative electrode: Lithium (either metal or composite materials made of C-Li, Si-Li, 

Si-C-Li or other compounds). Lithium is the lightest metal in the periodic table and 

lightest solid element and for that reason is well suited for battery applications. 31 While 

ideally pure lithium metal can be used as anode, battery manufacturers use C-Li to 

prevent lithium reaction with liquid electrolytes. 

• Electrolyte: typically made of non-aqueous organic solvent based on single solvents  or 

binary/ mixtures of ethers18 and lithium salts such as LiPF6. 
31 

• Separator: a conductive polymer, such as polyaniline or filter paper; 

• Positive electrode: Due to insulating nature of sulfur, it is typically used in a matrix of 

carbon material that is lightweight and is highly electronically conductive. A binder, 

typically polyvinylidene fluoride (PVDF), or polytetrafluoroethylene (PTFE) are used to 

ensure adhesion between the electrode materials and the current collector.  

 

Typical U-I curve for Li-S battery with liquid electrolyte is shown in Figure 6. As it can be seen, 

solid S8 undergoes transition from solid to polysulfides dissolved in electrolyte and precipitates 

back as Li2S or Li2S2. 
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Figure 6 Principle of operation of a Li–S battery 

 (reprinted from Zhang, 201332) 

 

The overall reaction that is taking place can be written as: 

𝑆8 + 16𝐿𝑖 = 8𝐿𝑖2𝑆       Eq. 1 

As it can be seen in  Figure 6, the discharge occurs in the following steps33: 

• 2.4 - 2.3 V vs. Li/Li+: sulfur is reduced to high order polysulfides, Li2Sn where n >4, in 

following order: 

S8 -> Li2S8 ->  Li2S6-> Li2S4      Eq. 2 

Dissolved sulfur forms polysulfides and diffuse in the battery, ready to react in the next 

step;  

 

• 2.3 - 2.1 V vs. Li/Li+: high order polysulfides are reduced to Li2S2 

• < 2.1 V vs. Li/Li+: high order polysulfides are further reduced to Li2S2 and Li2S. Short 

chain polysulfides and the final discharge product, Li2S, is insoluble and precipitates on 

anode until the surface is fully covered 34. 

 

During charge, the formation of S8 occurs from Li2S in flat voltage plateau region and various 

intermediate species have been reported in the literature.19 Overall, during discharge, polysulfides 

starting from Li2S4 undergo transformation from in the dissolved state and then precipitate at 

lower voltages.35 

 

 



 

 

13 

 

2.2 Strategies for improvement of lithium-sulfur batteries 

 

Li-S batteries have some major issue related to polysulfide shuttle and formation of SEI layer. 19 

Following strategies are commonly applied in research to overcome limitations of li-s 

technology: 

 

Modification of the cathode side: 

• Encapsulation of S: encapsulation in carbon scaffolds ensures that the reactions between 

lithium and sulfur is occurring in the scaffold; 19 thus preventing the shuttling of the 

polysulfides. 

• Functionalizing sulfur: various groups are used (oxygen, nitrogen and boron functional 

groups) to avoid shuttle effect. 14 Figure 7 shows an example of functionalizing sulfur 

with nitrogen groups thus creating strong bonding between N and Li cations and 

preventing polysulfides dissolution in the electrolyte and the resulting polysulfide 

shuttlinge; 

 

 

Figure 7 Functionalizing sulfur using nitrogen functionalized groups (Reprinted from Fan, et al 201714) 
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Modification of electrolyte: 

• Ionic liquids are considered by some researchers as the ideal alternative to commonly 

used organic solvents, thanks to their high conductivities and non-volatility. However at 

present time they are  expensive, even for large-scale production and  pose a health threat 

due to their high toxicity;36  

• Polymeric electrolytes: short-chain polymeric electrolytes such as Tetraethylene glycol 

dimethyl ether (TEGDME) 6 

• Solid-state electrolytes: include among others members of LISICON family, Li2S – P2S5 

glasses, and Li10GeP2S12.
6 Solid-state electrolytes have many advantages compared to 

liquid electrolytes in terms of blocking shuttle effect and reducing solubility of 

polysulfides, furthermore, they are protecting the cathode and reducing the formation of 

dendrites. As for the disadvantages, solid-state electrolytes normally have low ionic 

conductivities due to high energy barriers for Li ion transport in solids 

 

2.3 Ionic conduction in ‘point defect type’ solids 

 

The process of ion transport in ionic solids has been well studied.37 For a crystalline solid with 

perfectly arranged atoms in its crystal lattice, one does not observe any ion transport since a 

direct exchange of places between neighboring cations and anions is highly unlikely. For 

example, for NaCl- the energy required for a direct exchange between two neighboring cation 

and anion, as shown in Figure 8, is around 15 eV and the possibility of this event to occur in one 

gram of salt is as low as every 1030 years. 38 

  

 

Figure 8 Exchange between neighboring cations and anions in a perfect crystal 

(reproduced from Chandra 37) 
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Ionic conductivity in regular crystal lattices by direct substitution is unlikely to occur and 

therefore must be mediated by defects present in the lattices. The two most likely types of 

defects in lattices are: 

 

• Schottky Defects: 

In lattices with Schottky defects, cations and anions move to existing vacancies as illustrated 

in Figure 9. This mechanism is commonly referred to as “vacancy mechanism”. 

 

 

Figure 9 Vacancy mechanism (reproduced from Chandra 37) 

 

• Frenkel defects:  

For lattices with Frenkel defects, ionic transport is mediated by interstitial jumps, either from 

interstitial sites to interstitial sites, as shown in Figure 10(left) or by jumping into normal sites 

and pushing atoms into interstitial sites Figure 10 (right). The former is referred to as 

“interstitial” mechanism while the latter as “interstitialcy” mechanism. 

 

  

Figure 10 Interstitial (left) and interstitialcy mechanisms (right) (reproduced from Chandra 37) 
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Ion transport in solids is determined by a jump probability of an ion in a lattice defect. This 

probability depends on two factors: 

• Jump frequency, ω, which is a probability of ion to jump in a lattice defect in a given time 

unit. Jump frequency depends on the energy barrier seen by the ions. 

• Probability of a site having a defect in a closest neighbor site. This probability can be 

found as a product of mole fraction of defects and number of closest neighboring sites. 

 

Jump frequency, ω, can be calculated using different approaches but its final form can be written 

as37: 

ω = ν0 exp (−
Ea

kT
)      Eq. 3 

 

where Ea is the free energy barrier between positions of saddle-point of ions and lattice site 

position and υ0 is the vibrational frequency of equilibrium positions. 

 

Equation (3) is valid for cases where ions can jump freely, i.e. this are no correlated jumps in the 

crystal lattices.  

 

Diffusion coefficient can be calculated as:39 

𝐷 =
1

6
Г𝑟2     Eq. 4 

Where Г is the random jump of a particle in a unit of time, r is the length of a jump. 

 

 

2.4 Conductivity in Heterogeneous Solid Electrolytes 

 

In this section, the ionic properties of heterogeneous solid electrolytes including ionic 

conductors and insulating oxides are discussed. The ionic conductivity of pure LiBH4 is detailed 

and some of the strategies to increase it at room temperature, by making binary systems with 

halides, oxides and carbon matrices are discussed.   
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2.4.1 Space-charge Model 

 

While defect chemistry and bulk conductivities of ionic conductors are well-studied, ion 

transport properties of heterogeneous systems are not fully understood.40 It is often considered 

that properties of non-uniform systems are the superposition of the properties its constituents, 

however new effects are often found in multiple phases heterogeneous conductive solids, 

showing that the properties of a system are not a simple addition of the properties its 

components. In the literature, there are different models to explain the increased conductivity 

obtained when mixing for example lithium salts and insulating oxides.  Therefore, there is a need 

to explain unambiguously the phenomenon and create a robust model to use for the analysis of 

experimental data. 41 

 

The effects of mixing ionic conductors with oxides, such as SiO2, ZrO2, Al2O3, Fe2O3, have been 

known for nearly 50 years. Such effects have also been observed for systems with two ionic 

conductors, e.g. metal halides such as a mixture of silver iodide and silver bromide; however X-

Ray studies have not shown evidence of new phases being formed in such mixtures.40 Difference 

in conductivities of mixtures may occur by two mechanisms: 

• Core region mechanism: Novel conductive path in the core region characterized by 

novel migration enthalpy  

• Space charge layer mechanism: Conductive path due to a change in defect 

concentrations formed as a result of interface interactions 

 

While the core region mechanism is a very specific problem, the space charge mechanism is a 

general mechanism that can be applied to various heterogeneous systems. This mechanism will 

occur due to thermo- and electro-static reasons and two cases can be considered: 

 

• Single interface or Bicystal:  in cases where the contact surface between two phases is 

considered to be a rectangular plane, i.e. the two phases are forming a bicrystal, extra 

conductance that is parallel to the interface between the phases. There is also a 

perpendicular contribution for the conductivity that needs to be considered, however for 

modelling of impedance spectra, fitting effective parallel capacitor gives good agreement 

with obtained results.40    

 



 

 

18 

 

• Two phase mixtures: for two-phase systems, the transport properties will differ in the 

bulk, boundary layer and grain boundaries of the conductive phase. A realistic model of 

the two-phase system with a lot of interfaces can be given as a three dimensional network 

with conductivity pathways formed in grains of an ionic conductor made by clusters of 

particles of a second phase that is an insulator. Impedance plots of two phases mixtures 

show two separate contributions: the high frequency branch that is originating from the 

bulk and parallel conduction pathways and lower frequency branch from the 

contribution of the core region and series boundary layers. In some studies, it has been 

shown that space charge regions are formed under free surfaces as a result of charge 

accumulation at the surface, however there is controversy in the literature regarding the 

sign of space charge layer even for well-understood materials, furthermore the systems 

are not well-defined from point of view of thermodynamics.40    

 

The space charge layer model will be used in this work to model LiBH4-SiO2 composites that will 

be discussed in details in Section 3.4.2. 
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2.5 Lithium Borohydride (LiBH4) as Li ion conductor 

 

LiBH4 has been widely studied a possible material for solid state hydrogen storage because of its 

high hydrogen content (18.6 wt% H2). It is widely use as reductant in industrial chemistry. 

Recently it has drawn attention as a material well suited for solid-state batteries because it is 

lightweight and has high ionic conductivity (~ 1 mScm-1) in its high temperature (T > 381 K) 

polymorph..27 

 

At room temperature, LiBH4 has an orthorhombic symmetry (space group Pnma) and low ionic 

conductivity in the range of 10-6 - 10-8 mScm-1
. 

42At temperatures above 381 K,  it undergoes a 

phase transition and crystallizes in a hexagonal structure (space group P63mc).43 Figure 11 displays 

the crystal structure of LiBH4 before the phase transition (left) and after the phase transition 

(right). 

  

Figure 11 LiBH4 crystal structure before (-Pnma, left) and 

after the phase transition (P63mc, right) 

 

While pure LiBH4 is a poor Li ion conductor at room temperature, an increase of two orders of 

magnitude is observed above the phase transition temperature.44 The effect of heating is 

reversible and once LiBH4 is cooled below the phase transition temperature, the conductivity 

drops with more than 3 orders of magnitude. Various attempts have been made to increase Li 

ion conductivity of pure LiBH4 at room temperature. The common ways to achieve high ionic 

conductivity of LiBH4, by making binary mixtures or reducing particle size of LiBH4 via 

nanocofinement, will be discussed in detail in the following section.  
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2.5.1 Modifications of LiBH4 for high ionic conductivity 

 

Several strategies are commonly used to increase conductivities of pure LiBH4. These include 

creation of solid solutions with halide, confinement of LiBH4 in nanostructures ( carbons or 

mesoporous silica structures) or mixing LiBH4 with insulating oxides.45 

 

Solid solution with lithium halides, such as chloride, iodide and bromide, has shown to decrease 

phase transition temperature for LiBH4. It was shown by Maekawa, et al46 that addition of 

lithium halides stabilizes the hexagonal phase at room temperature leading to a significant 

increase in Li ionic conductivity. As predicted by Maekawa, et al46, LiBH4-LiI has the highest 

conductivity values at room temperature among other LiBH4- halide systems and Matsuo, et al45 

and Sveinsbjörnsson, et al47 investigated the performance of LiBH4-LiI solid-state electrolyte. 

Matsuo, et al45 assumed that the higher ionic conductivity of iodide solid solution is due to 

replacement of the borohydride anion by  iodide anions which stabilized is  the system. Myrdal et 

al 48 have performed DFT calculations on vacancies and interstitials in LiBH4 – LiI solid 

solutions showing that the formation energy for defect pairs, Frenkel defects, starting  from a 

defect-free system is as low as E Frenkel = 0.44 eV and that the concentration of Frenkel pairs is 

~51018 cm-3. As the formation energy of vacancies and interstitials is very low, the conduction 

mechanism by which ion transport is mediated is vacancy diffusion. The most favorable jump 

mechanisms and rates calculated by Myrdal et al 48 are shown in Table 1: 

 

Table 1 Calculated favorable jump rates for Li+ ions in LiBH4-LiI solid solutions 

Jump mechanism Jump rates, s-1 

Li+int 1/3 to 1/3 8,3109 

I- to BH4
- 

9,8108 

 

The calculations performed by Myrdal et al 48 show that most favorable jumps are taking place in 

the hexagonal plane and therefore the diffusion can be considered as two dimensional. 

 

Apart from mixing LiBH4 with halides, another approach has been used namely confinement of 

LiBH4 in scaffolds with nanosized pores, for example in carbon scaffolds or in mesostructured 

silica MCM-41. For example, in a study conducted by Liu, et al, LiBH4 has been confined in 

nanoporous carbons (NPCs) with pores in nanometer range.49 NMR and Raman spectroscopy 

studies of nanoconfined LiBH4 have shown that  the confined Li  has different mobility  than 



 

 

21 

 

that of pure LiBH4. As neither NMR or QENS results have proven that a clear solid-solid phase 

transition has occurred, it was concluded by Liu, et al49 that the effect is due to particle size 

reduction in the pores of the carbon scaffolds. Confinement of LiBH4 in mesoporous silica 

scaffold have been used by Das, et al 50 who have successfully cycled batteries with LiBH4-MCM 

41 solid state electrolyte.  

 

Finally, attempts have been made to achieve high ionic conductivity of LiBH4 at room 

temperature by using oxides, Al2O3 
51, ZnO 52 and SiO2. 

53
  The increase in conductivity that can 

be achieved by mixing an ionic conductor with insulating oxides.54  The exact mechanism of 

conductivity in LiBH4 – oxide systems is unknown, however many researchers are assuming that 

the effect is due to particle size reduction and formation of defects in crystal lattices close to 

insulating particles.55  

 

In this work, we have studied the mechanism behind the conductivity in LiBH4-SiO2.  We 

needed to consider the nature of the surface of the SiO2 particles as well to understand the 

“cogwheel” mechanism of condu3ctivity in lithium salts. This is discussed in details in the 

following two chapters. 

 

2.6 Surface Chemistry of Silica Particles 

 

In order to understand the origin of high conductivity of LiBH4-SiO2 composites, it is important 

to consider surface properties of amorphous SiO2.  In this work, we will consider the Zhuravlev 

model56 for surface chemistry of amorphous silica. In Zhuravlev model, 56 groups on surface of 

silica particles are divided into following subgroups:  
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• Single silanols ( SiOH): are isolated, free OH groups 

Si
Si

Si

O
O

O

H

H

 

Figure 12 Silanol groups on the surface of a silica particle 

 

• Geminal silanols, also referred to as silanediols (= Si(OH)2) 

• Vicinal or bridged silanols (silanols that are bonded through H bonds) 

• Siloxane groups: exist on surface of silica as Si-O-Si (bridge with oxygens on silica 

surface) 

• Internal silanol groups (structurally bound water in silica skeleton) 

 

The hydroxyl groups on the surface of silica are formed during synthesis process of silica where 

Si(OH)4 undergoes condensation polymerization reactions or rehydroxylation reactions: Si-O-

Si interacting with H2O and  forming Si-O-H groups on the surface of silica particles. 

Hydroxyl groups are also formed during rehydroxylation of silica, when dehydroxylated SiO2 

particles come in contact with aqueous media. 

 

The ratio between groups changes as a result of thermal treatment and there is evidence of 

interaction between groups.56 When silica is heated in vacuum ratio between the number of 

silanol and siloxane groups is changing. In Zhuravlev model, silanol number, i.e. number of OH 

groups per surface area of silica (αOH), is a function of temperature during the process of thermal 

treatment of silica. The main stages of the surface composition are shown in 

Table 2. 56  
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Table 2 Main stages of surface of amorphous silica with heating  

Heating temperature Effect on silica 

Initial state: 298 K, in 

vacuum 

All groups described above are present on the surface. Maximum 

degree of hydroxylation of silica surface (αOH=4.60 OH nm-2). 

Physically adsorbed water covers surface of silica. Internal hydroxyl 

groups are present in silica skeleton. 

Heating to 463K, in 

vacuum 

In the beginning of the stage single layer of water, but towards the 

end of this stage, water monolayer is completely removed from the 

surface of silica. Surface is still in highest degree of hydroxylation 

(αOH=4.60 OH nm-2) and internal OH groups are still present in 

silica skeleton. 

Heating to 673K, in 

vacuum 

Decreased hydroxylation of surface is observed (4.60 ≥ αOH ≥2.35 

OH nm-2). Internal OH groups disappear with increased 

temperature. With increased temperature, the concentration of 

vicinal OH groups decreases (2.80 to 0.0 OH nm-2) until they 

disappear completely at the end of the stage. 

Heating to 1173K, in 

vacuum 

Decreased hydroxylation of surface, however the rate is different for 

isolated (5.05 ≥ αOH ≥0.4 OH nm-2) and genimal groups  (0.3 ≥ αOH 

≥0.0 OH nm-2) which are the only OH groups present on the 

surface of silica. At temperatures close to 1173, internal OH groups 

and geminal OH groups disappear. 

Heating to 1473K Concentration of siloxane bridges on surface of silica particles is 

increasing. At the end of the stage, all OH groups are removed from 

the surface of silica particles. 

Heating above 1473K Only siloxane bridges are present on the surface of silica 

 

Zhuravelev model can be useful describing dehydration, dihydroxylation and rehydroxylation 

and can be applied to various materials containing OH groups on their surface (e.g. solid oxide 

substances). 

  



 

 

24 

 

2.7 Paddle-Wheel mechanism of conductivity 

 

It has been debated that cations diffusion can occur by multiple mechanisms and are not limited 

to hopping between certain lattice positions as it was described above. The alternative 

mechanisms include that certain types of anions reorientation can promote diffusion of cations. 

The phenomenon was studied by Lunden who observed the so-called “paddle to wheel” or 

“cogwheel” effect in lithium sulfates57. Lunden stated that the high-conductivity of lithium 

sulfates could be due to the rotation of the sulfate anion “pushing” the smaller cations thus 

providing a new pathway for conductivity. Similar to lithium sulfates, an increase in ionic 

conductivity for mixtures of LiBH4 and oxides could be a case where similar “pushes” are 

observed thus resulting in higher ionic conductivity. Figure 13 is illustrating the paddle wheel 

concept on the example of BH4 anion showing rotary motion of the anion and Li+ being pushed 

by the anion. Eventhough this “paddle to wheel” mechanism still remains controversial, it is 

clear that the high Li+ conductivity is always accompagnied by high mobilitof their anions 

counterpart.     

. 

 

 
 

Figure 13 Side view of BH4 anion with Li+ (left) and top view of BH4 showing rotary motion 

 

As shown in Figure 13, faster reorientations of BH4 anion will increase the probability of lithium 

cations exchange between orthorhombic and hexagonal lattice positions. Similar effect if 

observed in lithium sulfides where Li ions are most likely exchanging between tetrahedral and 

octahedral lattice positions.57  
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Chapter 3  

Experimental Techniques 

This chapter presents  the techniques that are commonly used in material science and battery 

testing, including electrochemical testing, impedance measurements, Scanning Electron 

Microscopy (SEM), Transmission electron microscopy (TEM) and some more specialized 

techniques that were used to study the ion mobilities in the solid-state electolytes, including 

nuclear magnetic resonance (NMR), Raman spectroscopy and others for imaging and structural 

characterization such as X-Ray diffraction (XRD) and synchrotron-based techniques, such as 

Extended X-Ray Fine Absorption Structure (EXFAS) and X-ray absorption near edge structure 

(XANES). 

3.1 Battery operation  

In a 2-electrode setup, the electrochemical cells consist typically of the following components 

separated by the electrolyte: 

• Working electrode (WE): electrode where the reaction of interest takes place, e.g. 

sulfur in case of Li-s batteries 

• Counter electrode (CE): is the auxiliary electrode that provides the circuit over which 

the current is applied. The area of the counter electrode is normally larger than the area 

of the working electrode to make sure that a half-cell reaction occurring at the counter 

electrode is not acting as a limiting step for the reaction occurring at the working 

electrode. 

 

The overall reaction in a cell can be written as: 

 

OX + ne- ↔ RE    Eq. 5 

 

Where n is the number of electrons transferred in the reaction. 
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In the cell, the voltage is measured during the reaction. The Nernst Equation can then be used to 

determine the voltage of an electrochemical cell at OCV: 

 

𝐸 = 𝐸0′ +
𝑅𝑔𝑇

𝑛𝐹
𝑙𝑛 (

𝐶𝑜𝑥

𝐶𝑟𝑒
)  Eq. 6 

 

Where E is the cell voltage, E0’ is the formal potential, adjusted with activity coefficients for 

oxidized and reduced species, Rg is the gas constant, F is the Faraday constant and C is the bulk 

concentration of oxidized or reduced species. 

 

During charging or discharging of a battery, the measured voltage, E measured, will be different from 

voltage at OCV condition due to ohmic losses, electrochemical reactions in the battery and 

diffusion of different charge carriers. The difference between E measured and OCV can be founds as: 

 

𝑬𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅 =Eocv – IR  –  ηR – ηD   Eq. 1 

 

Where EOCV is the potential measured at OCV condition, ηR is the charge-transfer resistance and 

ηR is the diffusion processes in the battery 

 

The three components in the equation are explained as follow: 

 

• IR: is the ohmic loss in the battery from all the resistances resulting from battery design, 

e.g. electrode surfaces, grids, interphases in a battery, ionic conductivity of electrolyte and 

electron conductivity of active materials. 

 

• ηR: is the reaction overpotential that is occurring due to charge-transfer resistance which 

can be found from Butler-Volmer equation in its general form 58: 

 

𝐼 = 𝐴 𝑖𝑜  (
𝐶𝑂𝑥

𝐶𝑂𝑋
0  ∙ exp (

𝑎 𝑛 𝐹 𝑛𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝑅𝑇
) −

𝐶𝑅𝑒𝑑

𝐶𝑅𝑒𝑑
0  ∙ exp (

−(1 − 𝑎) 𝑛 𝐹 𝑛𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝑅𝑇
))  Eq. 8 

 

Where I is the electrode current, A is the active surface of the electrode, i0 is the 

exchange current density, a is the dimensionless symmetry factor for charging and 

discharging, n is the number of the electrons involved in the reaction at the electrodes, F 

is the Faraday constant, Rg is the gas constant, T is the absolute temperature, 𝑛𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 is 
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overvoltage of the reaction, 𝐶𝑅𝑒𝑑 and 𝐶𝑂𝑥 are concentrations of reducing / oxidizing ions in the 

electrolyte and 𝐶𝑜
𝑅𝑒𝑑 and 𝐶𝑜

𝑂𝑋 are concentrations of reducing / oxidizing ions in the electrolyte 

at equilibrium. 

 

There are two liming cases of Butler-Volmer equation: 

 

• High overpotential region: For very larger overpotentials, Butler-Volmer equation 

can be simplified as Tafel equation58: 

 

𝐶𝑎𝑡ℎ𝑜𝑑𝑖𝑐 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛: 𝐸 − 𝐸𝑒𝑞 = 𝑎 𝐶𝑎𝑡ℎ𝑜𝑑𝑖𝑐 − 𝑏 𝐶𝑎𝑡ℎ𝑜𝑑𝑖𝑐 log(𝑖)   Eq.9 

 

𝐴𝑛𝑜𝑑𝑖𝑐 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛: 𝐸 − 𝐸𝑒𝑞 = 𝑎 𝐴𝑛𝑜𝑑𝑖𝑐 + 𝑏 𝐴𝑛𝑜𝑑𝑖𝑐 log(𝑖)    Eq. 10 

 

Where a and b are reaction’s Tafel equation constants (for a given temperature) 

 

• Low overpotential: 

𝑖 = 𝑖0 (𝐸 − 𝐸𝑒𝑞)
𝑛𝐹

𝑅𝑇
   Eq. 11 

 

 

• ηD: is the diffusion overpotential resulting from concentration gradients of the 

electrolyte. 

 

η𝐷 =
𝑅𝑇

𝑛𝐹
𝑙𝑛 (

𝐶

𝐶𝑜
)     Eq. 12 

Where C and Co are the actual and equilibrium ion concentration in the electrolyte 

 

3.2 Galvanostatic Cycling with Potential Limitation (GCPL) 

 

A common way to study battery performance is by doing Galvanostatic cycling with potential 

limitation (GCPL). During this type of cycling, a battery is charged and discharged in a given 

voltage range and at a given C-rate which is a measure of how fast a battery can be charged or 

discharged in respect to its capacity. For example C-rate of 1 C means that a battery can be 

charged or discharged in 1 hour while rate of 0.1 C means charge/discharge of 10 hours.  



 

 

28 

 

 

Two common indicators of the performance of a battery are the coulombic efficiency and 

discharge capacity retention. Coulombic efficiency is the ratio between discharge and charge 

capacity: 

 

𝜂𝐴ℎ =
𝑄𝐷

𝑄𝐶
    Eq. 13 

 

Where QC and QD are the charge and following discharge capacities 

 

Discharge capacity retention can be calculated as a ratio of discharge capacities between cycles 

and can be calculated as: 

∆𝑄𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 (𝐽) =  
𝑄𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 (𝐽)

𝑄𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 (𝐽−1) 
     Eq. 14 

 

While coulombic efficiency is showing irreversible losses in a cell, the discharge capacity 

retention can serve as an indication of state of health of battery after cycling. 

 

3.3 Cyclic Voltammetry (CV) 

 

Cycling voltammetry is a sweeping technique that allows to study electrochemical processes in a 

battery by sweeping the electrodes potential between two given limits (E1, E2,) and at a certain 

given rate, ν. 59 In potential sweep techniques, it is common that when reaching the limit E2 the 

sweeping of the potential is reversed and on reaching the initial potential E1, the sweep is 

reversed once more, halted or set to a new value E3. Typically, in a CV experiment, electrode 

potential is being ramped with time in cycles with a set potential sweeping rate as shown in 

Figure 14. 
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Figure 14 Cyclic voltammetry as a series of forward (t0 to t1) and reverse scans 

(graphics by Timothy M. Paschkewitz/ Wikimedia Commons /CC-BY 3.0) 

While the potential is ramped on the working electrode, the current on working electrode is 

measured and plotted as a function of valtage. A typical Voltammogram of a Li-s battery is 

shown in Figure 15.  

 

Figure 15 Cyclic Voltammogram of a Li-s battery with solid electrolyte where Ipa and Ipa are anodic and 

cathodic current and Epa and Epc are anodic and cathodic peak potentials 

 

Figure 15 shows anodic and cathodic peaks with corresponding currents and potentials. It should 

be noted that the area under the peak for anodic processes is smaller than that of corresponding 

cathodic processes. This is due to the difference in concentration at the electrodes which is 

driving reduced species, RE (see Eq.5), further away from the electrodes into the bulk. Once RE 

is diffused in the bulk, they cannot be re-oxidized back fast enough in the timescale of a cyclic 

voltammetry experiment. 59 
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3.4 Electrochemical Impendence Spectroscopy 

 

Electrochemical impedance spectroscopy (EIS) is a technique used to study electrochemical 

systems by applying alternating current (AC) to a system and measuring its response. The 

measurement is done over a range of frequencies. The frequency responses from a variety of 

interfaces in a cell are revealed.  

 
Impedance, Z, can be written in complex form as a sum of resistance and reactance: 

 

𝑍 = 𝑅 + 𝑖𝑋 = |𝑍|𝑒𝑖𝜃   Eq. 15 

 

Where R is the real part of impedance representing the resistance, X is the imaginary part 

representing the reactance, i is the imaginary unit, θ is the phase angle between the current and 

voltage. Graphical representation of impedance is shown in Figure 16. 
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Figure 16 Reactive (X) and Resistive (R) components of impedance (Z) 

 

𝑅𝑒(𝑍) = 𝑅 = |𝑍| cos(𝜃)    Eq. 16 

 

𝐼𝑀 (𝑍) = 𝑋 = |𝑍| sin(𝜃)    Eq. 17 

 

It is common to plot impedance spectra as Nyquist or Bode plots. Modern potentiostats present 

impedance data as Nyquist diagrams and for complex processes multiple arcs are often observed 

which will be discussed in detail in the following sections. 
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3.4.1 Elements of the circuit 

It is common to model and describe the results of impedance measurements in terms of 

electrical circuits with frequency responses similar to the measured electrochemical cell60. There 

are large numbers of possible elements but in this chapter we only focus on the ones relevant for 

the materials used in this work. 

 

Table 3 Elements of the electrical circuits that were used for modelling in this work 

Resistor For resistors, phase shift ( φ ) is zero and impedance in this case is represented only 

by its real component Z’. Resistance can be found by Ohm’s law:  

𝑍𝑅 =
𝑈

𝐼
  

For an ideal resistor the current flowing through is always proportional with the 

voltage across the resistor, independently of the frequency.  

Capacitor Capacitors are together with resistors passive elements of the electric circuit; 

however the behavior of a capacitance is very different than that of a resistance.  

For an ideal capacitor, DC current cannot pass through a capacitor, however in 

reality all capacitors have a small leak current, which we will not consider here.  If 

we apply DC current to a capacitor, a charge will build up and the voltage across 

the capacitor will rise over time.61 The relationship between charge and current can 

be expressed as: 

𝑉 =
𝑄

𝐶
 

If we invert the DC current, the charge will disappear over time and a charge with 

opposite sign will build up. This behavior gives a frequency depending impedance 

when alternating the current. The impedance of a capacitor can be described as:   

𝒁𝑪 =
1

𝑗𝜔𝐶
  

We can see that the impedance is infinite at DC current and inversely proportional 

to the frequency. In other words the impedance have low values at high 

frequencies.   
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Table 3 (continued) Elements of the electrical circuits that were used for modelling in this work 

Inductor Inductance is represented by a coil. Current induces electromotive force in a coil 

which opposes the changes in current. An ideal inductor has zero resistance (in the 

real world an inductor always has a small resistance). When passing a current 

through an inductor, a magnetic field builds up which will prevent any sudden 

change in current, since a magnetic field cannot be changed suddenly. This gives a 

behavior where current can flow through the inductor unhindered at DC current 

but will have impedance when alternating the current.  

 

𝒁𝑳 =  𝑗𝜔𝐶  

 

We can see that the impedance is zero at DC and is proportional with the 

frequency. In other words, the values of impedance are low at low frequencies and 

high impedance at high frequencies.  

Constant 

Phase 

Element 

(CPE) 

CPE is an element that is used to model double-layer diffusion that can be seen as 

imperfect capacitor. Imperfections in the sample, such as finite distribution of 

material, roughness of electrodes, make CPE a non-ideal circuit element. CPE is 

represented by a depressed semi-circle that originates under Z’ axis. Impedance of 

CPE can be found as: 

𝒁𝑸(𝒘) =
1

𝑄𝑜(𝑖𝜔)𝑛
  

Qo is the capacitance while n is an exponent that is an empirical constant that 

equals 1 for a capacitor  

Warburg 

Element 

(W) 

W is a distributed element that represents semi-infinite or finite-length diffusion. 

The element models the diffusion of active ions to the electrode interface. 

Impedance of a Warburg element is found as: 

𝒁𝑾(𝒘) =
𝐴𝑤

√𝜔
+

𝐴𝑤

𝑖√𝜔
  

 

Where Aw is the Warburg coefficient which is a diffusion coefficient of ions in 

solids or in solution. Warburg coefficient can be found as the slope of a function 

given by real part of impedance R plotted against square root of frequency 1/√ω. 
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3.4.2 Modeling of the system: the Brick Layer Model 

Interpreting results of impedance measurements of polycrystalline solids can be a difficult task. 

In case when contributions from various processes in a cell occur with different time constants, 

they are seen in different frequency ranges, however, when a number of processes occur with 

same or similar time constants and they cannot be resolved in an impedance spectrum. 

 

A way to solve this problem is by modelling behavior of an electrochemical system by using 

equivalent circuit elements. A model that is commonly used to fit impedance spectra is the brick 

layer model (BLM)  which model ion transport in conducive solids. BLM originates from 

Beekmans and Heyne's work who studied grain-boundary effects, and the so called “intergrain 

polarization”, on impedance spectrum. The authors conclude that this “intergrain polarization” 

is the reason behind why polycrystalline materials always have smaller conductivities than single 

crystalline grains62. Their work was developed further by Van Dijk and Burggraaf who included 

geometrical considerations (parallel and perpendicular boundaries) in the model.63 

 

According to Brick Layer Model, the contributions to the EIS spectra come from the following 

interfaces: 

• Electrodes: 

• Grain interior (bulk): 

• Parallel grain boundaries: 

• Perpendicular grain boundaries: 

 

Figure 17 shows a representation of Brick Layer Model showing two types of boundaries: grain 

boundaries parallel with the current (thick black), or perpendicular to current flow (orange): 

 

 



 

 

34 

 

 

Figure 17 Representation of Brick Layer Model showing bulk (gray) and two types of grain boundaries: 

parallel grain boundaries (black) and perpendicular grain boundaries (orange) 

 

Figure 18 shows an equivalent circuit for BLM shown in Figure 17. R1 and Q1 represent 

resistance and constant phase element (CPE) of parallel grain boundaries, R3 and Q3 represent 

grain (bulk) boundary, R2 and Q2 are perpendicular grain boundaries and Qec represents 

electrodes. The two components are in series with perpendicular grain boundaries and 

electrodes’ response. 

 

R3

Q3

Q2

R2

R1

Q1

Qec

 

Figure 18 Equivalent circuit for polycrystalline materials representing Brick Layer Model. 

 

The equivalent circuit from Figure 18 can be simplified by making a combination of resistors R1 

and R3 where the inverse of this single resistor (R1+3) will be equal to: 

 

1

R1
+

1

R3
     Eq. 18 

 

The pseudo-capacitance of component Q1+3 can be found as a sum of pseudo-capacitances of 

single component 1 (Y1) and 3 (Y3):  
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𝑌1 + 𝑌3     Eq. 19 

 

The resulting equivalent circuit is shown in Figure 19. 

 

R1+3

Q1+3 Q2

R2

 

Figure 19 A simplification of equivalent circuit for Brick Layer Model where contributions from bulk and 

parallel grain are considered as a single element 

 

Assuming that grain boundaries, parallel and perpendicular, are Effective conductivity of both 

components can be written as: 

 

1

𝜎𝑒
=

1

𝜎1+3
+

1

𝜎2
=

1

𝜎1+3
+

1

𝜎1+3
     Eq. 20 

 

Where G is the diameter or length of grains, g is the thickness of grain boundary 

 

The ration between conductivities for bulk and grain boundary can be written as: 

 

𝜎1+3

𝜎2
=

𝑅2

𝑅1+3
=

𝑔

𝐺
+

𝑅2

𝑅1+3
+

𝑔

𝐺
     Eq. 21 

 

To separate the contributions in impedance spectrum, one needs to consider three scenarios:64 

 

In case where conductivity of bulk is higher than the conductivity of grain, two arcs can be 

distinguished in the impedance spectrum of a given material: 

 

𝜎bulk > 𝜎g    Eq.22 
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For case where grain boundary conductivity is higher than that of the bulk, two arcs will not be 

distinguishable from one another: 

𝜎g> 𝜎bulk      Eq.23 
 

For cases where bulk conductivity is similar to grain conductivity, the two arcs cannot be 

distinguished: 

𝜎g~ 𝜎bulk     Eq.24 

 

To summarize, impedance spectra of polycrystalline solids will typically show a Nyquist plot with 

one or with two arcs. In the latter case, bulk conductivity of the sample is higher than the 

conductivity of the grain boundaries. In case of single arcs, the contributions from grain interior 

and grain boundary cannot be separated using impedance spectroscopy. 

 

 

3.5 Thermal Gravimetric Analysis (TGA) 

 

Thermal gravimetric Analysis (TGA) is a thermal analysis method where the mass of a sample is 

being measured as a function of time during heating or cooling.65 The mass of a sample is 

measured on a balance in a controlled atmosphere while being subjected to controlled 

temperature program.  

 

The analysis shows weight loss or gain of the sample due to chemical (e.g. oxidation and 

reduction) or physical phenomena (e.g. sublimation). Typical applications of TGA are among 

other determination of thermal stability, water or carbon content and reactivity with gases. 66 
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3.6 -state Nuclear Magnetic Resonance (SS-NMR) 

3.6.1 Introduction to NMR experiments 

 

Nuclear magnetic resonance (NMR) is a technique commonly used to study structure of 

molecules by exciting the nuclei and studying the emitted signals 67. An NMR experiment 

consists of 2 steps as shown Figure 20: 

1 2
 

Figure 20 Pricipal of a NMR experiment. The excitation pulse is applied to a sample (1) and the frequency 

of the signal emitted by the the sample is measured (2) 

 

1. Static magnetic field is applied to a sample and the nuclei are excited with a radio pulse. 

2. The frequency of the signal emitted by the sample is measured by a spectrometer. 

 

The signals are received by the spectrometer as Free Induction Decay (FID) and before they can 

be analyzed, need to be Fourier transformed from time domain to frequency spectrum by the 

software. 67  

 

The NMR properties of nuclei depend on its spin (I). Three cases are possible68: 

 

• I = 0, e.g. 12C, 16O: No NMR shifts are observed and the only effect on the nuclei will be 

the isotope shift.  

• I = ½, e.g. 1H1 (1/2), 7Li3 (3/2), 11B5 (3/2): shifts are observed with sharp lines and 

observed J coupling. J-coupling, also referred to as indirect dipole-dipole coupling, is 

mediated through hyperfine interactions between the spin of a nucleus and spins of 

intervening electrons.69 As the magnitude of J decreases rapidly with increasing number 

of intervening bonds, J-couplings provide information about bond distances and 

connectivity of atoms in molecules. 

• I > ½ (quadrupolar nuclei), e.g. 2H1, 
10B5, quadrupolar nuclei might have observable 

spectra, however there are often  issues related to them, for example they might  give 

broad line and no high resolution spectra can be acquired. 
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NMR sensitivity of commonly used nuclei in NMR are summarized in Figure 21: 

 

Figure 21 NMR sensitivity of commonly used nuclei 

Reprinted from Reich, 2018 68 

 

As it can be seen from Figure 21, H and F are highly sensitive nuclei and Li and B are accessible 

with broad band probes which makes the technique well suited for analysis of LiBH4-SiO2 and 

LiBH4-LiBF4 samples even with low content of LiBH4.  

 

3.6.2 Classical Vector Model 

 

In Classic Vector Model, the formation of net magnetization arising from all nuclei is studied in a 

sample.70 When no magnetic field is applied to the sample, all nuclear magnetic moments have 

random orientations and therefore net magnetization is equal to zero as single magnetic fields 

cancel out one another. When static magnetic field (B0) is applied to the sample, magnetic 

moments will align with the direction of the magnetic field as shown in Figure 22. Bulk 

magnetization, M, is defined as volume density of all nuclear magnetic moments that are aligned 

and is proportional to magnetic field. The intensity of M shows the ratio between the two spin 

populations aligned with or against the field. 
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M
B0

 

Figure 22 Formation of net magetization in a sample.  

When no external field is applied (left) nuclear magnetic vectors have random orientations 

 

When static magnetic field B0 is applied along the longitudinal axis, an angle between bulk 

magnetization, M, and B0 will be observed as M will be moving around B0 with angular frequency 

ω0 as shown in Figure 23. 

 

Figure 23 Angular momentum of an object in a magnetic field.  

Spin angular momentum is shown as a thin arrow and external magnetic field is a thicker arrow 

 (graphics by Yamavu/ Wikimedia Commons /CC-BY 3.0) 
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The frequency ω0 is known as Larmor frequency and is expressed as: 

 

ω0 =  γ B0      Eq. 25 

 

where γ is the gyromagnetic ratio which is a ratio of a particle's magnetic momentum and angular 

momentum and B0 is the strength of the magnetic field. As gyromagnetic ration can be positive 

or negative, it is the sign that determines the precession (clockwise or anticlockwise). 

 

3.6.3 Magic-Angle Spinning (MAS) 

For liquid samples, effects of anisotropy and dipolar coupling are rarely affecting the NMR 

spectra because of the rapid motion of molecules in solution. For samples in powder form in 

solid-state NMR, the obtained spectra are broad as random orientations in crystallites give 

different spectral frequensies71. For that reason, it is important to use NMR techniques that allow 

to obtain high resolution spectra like Magic-Angle Spinning (MAS). MAS measurements are used 

in a majority of solid-state NMR experiments. It helps to decrease the effects of heteronuclear 

dipolar coupling and chemical shift anisotropy. The dipolar coupling is the interaction between 

two atoms’ dipole moment. The magnitude of dipolar coupling depends on spin species, distance 

between the nuclei and orientation of the internuclear vector as shown in Figure 24. 

  

 

Figure 24 Dipolar coupling vector indicated as blue arrow.  

Angle  is the angle between applied magnetic field B and internuclear vector 

(graphics by Ksei/ Wikimedia Commons /CC-BY 3.0) 
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Maximum dipolar coupling, d, is expressed as 72: 

 

d =
k

R3
(cos2θ −

1

3
)       Eq. 26 

 

where R is the distance between two nuclei,  is the angle between magnetic field and 

internuclear vector. The term K is determined by the physical constants: 

 

k = −
3

8 π2
γ1γ2μ0

h

2π
      Eq. 27 

 

Where γ1 and γ2 are the gyromagnetic ratios of the spin 1 and 2, h is the Planck’s constant and μ0 

is the permeability of vacuum. 

 

In order to minimize the contribution from dipolar coupling, it is possible to choose the angle  

such as it would satisfy following condition:  

 

(3 cos2θm  −  1) =  0      Eq. 28 

 

Angle that satisfies this condition is  θm = 54,7° and at this  the term d is equal to zero and the 

contribution from dipolar coupling is zero.  

 

In practice, the sample is rotated along an axis inclined at an the angle θm with respect to the 

applied magnetic field, Bo (Figure 25). 

 

 

Figure 25. The principle of Magic Angle Spinning 

(graphics by Dtrx/ Wikimedia Commons /CC-BY 3.0) 
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Magic-angle spinning averages anisotropy in the sample and can be performed at different 

spinning speeds depending on the size of the rotor used. It is possible to average anisotropic 

interactions in a sample either completely or partially depending on MAS frequency. 73 In case of 

partial averaging, spinning sidebands appear in the spectrum corresponding to Fourier 

components of spinning frequency and with intensities that depend on primary component's 

interaction tensor and its spinning frequency. In case of complete averaging of anisotropic 

interactions, narrow lines will appear, however the narrowing is achieved at loss of orientation 

dependence which could give information of structure and dynamics in the sample.73 

 

3.6.4 Decoupling Experiments 

Decoupling  experiments are used when weak spins are to be  observed together with some 

abundant spin (e.g. 1H) giving broadening of spectral lines due to heteronuclear coupling.71 To 

remove effects of heteronuclear dipolar coupling, high-power decoupling is used. Decoupling 

experiments allow eliminating bands coming from different nuclei. The technique is based on 

using continuous high power irradiation (up to 1 kilowatt) with the frequency of proton 

resonance. Figure 27 shows a typical sequence for a high-power decoupling experiment for some 

given nucleus, X. 

 

Figure 26. Typical pulse sequence for a high-power decoupling experiment for a nucleus X.  

 

The proton irradiation is applied continuously, the pulse sequence of the measured nuclei is 

applied and the FID is measured which helps to remove lines coming from nearby protons in 

the sample. 
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3.6.5 Exchange Spectroscopy 

In exchange spectroscopy (EXSY) experiments are used to probe molecular motions of 

correlation times of milliseconds or slower74. An initial pulse at 90° to the main external magnetic 

field creates transverse magnetization. The magnetization is evolving during the time period t1 

and a characteristic frequency evolves from interactions of nuclear spins (Figure 27). 

Initial
Excitation

tm

t1 t2

 

Figure 27 Typical pulse sequence of an exchange measurement 

 

Exchange experiments are typically used to determine exchange rate between 2 or more nuclei or 

between anions exchange in different environments. 

 

2D-Exchange measurements carried out with different mixing time can be used to make 

estimations of rate constant of a two-site exchange process which can be found as:75 

 

across

adiagonal
= tanh(ktm)       Eq.29 

 

Where a cross and a diagonal are the integrated cross peak and diagonal-peak intensity of EXSY 

spectrum and tm is mixing time. 

 

3.6.6 Spin-lattice Relaxation Rate 

In spin-lattice relaxation rate measurements, the characteristic time needed for attainment of 

thermal equilibrium of spins or for the excess of energy to be given to a lattice as a results of 

redistribution of spins when magnetic field is applied to a sample, is measured. Longitudinal 

(spin-lattice) relaxation time, T1, is defined as decay constant of recovery of z-component of 

magnetization vector, compared to its equilibrium value, M0. 

 

Mz(t) = M0(1 − e 
−t

T1 )     Eq.30 
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When spin-lattice relaxation times are measured over a range of temperatures, it allows to 

calculate average jump rates of ions, -1 , using the equation:76 

 

1

𝑇1
=

2𝜋2

25
∙ 𝐶𝑞

2 ∙ (1 +
𝑛𝑄

2

3
) ∙ [

𝜏𝑐

1 + 𝜔𝑐𝜏𝑐
2

+
𝜏𝑐

1 + 4 𝜔𝑐𝜏𝑐
2

]      Eq. 31 

 

Where Cq is the quadrupole coupling constant, nQ is the asymmetry parameter, 𝜔 is the Larmor 

frequency, 1/T1 is the spin-lattice relaxation times, 𝜏−1
𝑐 is the motional correlation rates.  𝜏−1

𝑐 

with a factor of the order of unity equal to one (c = 1) is identified as average jump rates of ions,  

𝜏−1. 75 

 

Knowing the jump rates of ions, it is possible to calculate the activation energies using the main 

residence time of mobile spins, τX, using the Arrhenius law:77  

 

τ𝑥 = τ𝑜 𝑒𝑥𝑝 (
𝐸𝑎

𝑅𝑔𝑇
)      Eq.32 

 

Where τ𝑜 is mean residence time at infinite temperature or inverse of the frequency factor, Ea is 

the activation energy, Rg is the gas constant and T is the temperature. 

 

If average jump rates are known, it is possible to calculate the ion diffusion coefficient, DT, using 

the Einstein-Smoluchowski equation: 

 

D𝑇  =  𝑓
𝑙2

6𝜏
      Eq. 33 

 

Where f is the correlation factor for ion movements (for completely uncorrelated ion movements 

f=1 is used), l is the shortest jump distance for ion and 𝜏 -1 is the average jump rates. 

 

Another way to calculate diffusion coefficient DT is by using the Nerst equation: 

 

D𝑇  =  𝐻𝑅

𝑘𝑏𝑇

𝑁𝑞2
𝑐

∙ 𝜎𝑑𝑐       Eq. 34 
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Where HR is Haven ratio that is (almost but not exactly) equivalent to the correlation factor for 

ion movements, f,37 kb is the Boltzman constant.  

 

Mean residence time of mobile spins, τX, can be calculated with Arrhenius law as77:  

 

τ𝑥 = τ𝑜 𝑒𝑥𝑝 (
𝐸𝑎

𝑅𝑔𝑇
)       Eq. 35 

 

Where τo is mean residence time of ions inverse of frequency factor or the mean residence time, 

Ea is the activation energy, Rg is the gas constant and T is temperature 

 

 

3.6.7 Raman spectroscopy 

Raman spectroscopy is a technique aimed to study chemical fingerprint of a molecule by 

studying low the frequency modes, vibrations, rotations and other in molecules.78 Raman 

spectroscopy is used in various laboratories due to possibility to make rapid analyses of solids, 

liquids and gases. No or little preparation is required for solid samples while liquids can be 

analyzed in glass ware or through plastics. Even samples dissolved in water can be analyzed with 

Raman which is a limitation of other spectroscopic techniques, such as IR 79 

 

Raman effect occurs only when a change in polarizability happens during normal vibration, while 

for infrared spectroscopy, a change in permanent dipole moment happens during vibration79. 

Schrödinger equation for particle in a box shows that a limited number of energy levels are 

allowed: 

.  

Eν =  (ν +
1

2
) •  hvv (ν =  0, 1, 2, . . . )     Eq. 36 

 

Where ν is the vibrational quantumnumber, h is the Planck’s constant, νv is the molecular 

vibrational frequency.  

 

From equation 3 it is clear that Raman transitions occur in steps equal to ± hν. 79 
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If the difference between energy levels in equation 3 is 0, the transition is referred to as Rayleigh 

scattering as shown as blue and red arrows in Figure 28 , if the difference between levels is not 

zero, three cases are possible: 

• Infrared absorption: is a transition from ground state v=0 to the first excited state,  

v=1;  

• Stokes Raman scattering: is a transition from ground state to virtual energy state, i.e. 

photon lost energy to a molecule 

• Anti-stokes Raman scattering: is a transition from first excited state to ground state, 

i.e. photon gained energy from a molecule 

 

 

 

 

Figure 28 Energy levels difference Principle of Raman scattering 

(graphics by Moxfyre/ Wikimedia Commons /CC-BY 3.0) 

 

For a case where molecules are excited from v = 0 to v = 1, the symmetry of wave function in 

the ground state is equal to that of the molecules. As a consequence, for a vibrational transition 

to be allowed, it is required that the symmetry of the wave function in the excited state should be 

the same as the symmetry of the transition moment operator. While for infrared spectroscopy, 

this transition moment operator must transform as x or y or z and the excided state wave 

function should transform as at least one of the vectors. For Raman spectroscopy, the transition 

moment operator must transform as one of the second-order terms. For example, consider 

adamantine molecule with point group Td 
80
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Table 4 Character table for Td group (adopted from Salthouse, et al80) 

 
E 8 C3 3 C2 6 S4 6 σd 

  
A1 1 1 1 1 1 

 
x2 + y2 + z2  

A2 1 1 1 -1 -1 
  

E 2 -1 2 0 0 
 

(2 z2 - x2 - y2,x2 - y2)  

T1 3 0 -1 1 -1  (Rx, Ry, Rz) 
 

T2 3 0 -1 -1 1  (x, y, z) (xy, xz, yz)  

 

For adamantine molecules, four vibrations are Raman active and one is infrared active. 

 

Raman shifts are often reported as wavenumbers in inverse centimeters: 

𝜔 =
𝜈𝑚

𝑐
−

𝜈0

𝑐
       Eq. 37 

 

Where 𝜈𝑚  is the frequency of scattered light, 𝜈𝑜  is the incident radiation and c is the speed of 

light. 

3.6.8 Scanning Electron Microscopy   

Scanning Electron Microscopy (SEM) is a type of microscopy based on using a focused electron 

beam. The technique is commonly used in research when information is needed in the surface or 

in the near-surface regions of bulk specimens.81 Essential components of a SEM microscope 

include following parts: electron optical column that is shown in Figure 29, vacuum system, 

infrastructure requirements (e.g. cooling, power supply) and a computer with software for data 

analysis.82 
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Figure 29 Main components of SEM Microscope ( Reprinted from ThermoFisher Scientific, 201081) 

 

The optical column in SEM is much shorter that the ones used in transmission electron 

microscopes (TEM) as only lenses above the specimen are used in SEM while TEM uses both 

lenses above and below the specimen.81 At the same time, specimen chamber in SEM is larger 

than in TEM as there are no restrictions on the sample size in SEM. 

 

The electron source at the top of the column (e.g. hairpin tungsten or lanthanum hexaboride) 

generates an electron beam by accelerating electrons to 0,1-30 keV. As the diameter of the beam 

emitted by the electron gun is too big to produce image with high resolution, a set of lenses is 

used in the optical column to generate a beam with a smaller diameter that can form a required 

spot on a specimen.83 

 

The beam scans the surface of the specimen in a raster pattern and intensities of various types of 

signals that are caused by beam electrons interacting with the specimens are recorded. Various 

signals that are produced in SEM are illustrated in Figure 30 (reprinted from Zhou, et al).83 
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Figure 30 Types of signals analyzed in SEM (reprinted from Zhou, et al 83) 

 

• Secondary Electrons (SE): is the most widely used signal in SEM. The signal is 

produced when the primary beam hits the surface of the sample which leads to 

ionization of atoms in the specimen and emission of loosely bound electrons that are 

referred to as secondary electrons. Since SE have average energies of 3 to 5 eV, which is 

low, they are emitted within a region of few nanometers on the specimens' surface which 

gives topographic information (texture and roughness of the surface) with high 

resolution.83 

 

• Back-Scattered Electrons (BSE): are electrons that are scattered elastically at the angle 

>90° and have energy greater than 50 eV.83 BSE gives both topographic and 

compositional information of the surface which allows phase discrimination in samples 

with multiple phases.82 

 

• Characteristic X-Rays: the signal is produced by inelastic collisions of electron beam 

andelectrons in the shells of the atoms at the specimen surface. When excited electrons 

fall back to lower energy states, an X-ray photon is emitted to reestablish right charge 

balance. Characteristic X-rays are used mainly for chemical analysis in Energy-dispersive 

X-ray spectroscopy (EDS) which will be discussed in the next section.82 
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• Auger Electrons: are the electrons emitted when ion beam ionizes the atom causing 

outer shell electrons to fill inner shell vacancies. Auger electrons have characteristic 

energies and give chemical information about the surface .83 

 

• Transmitted Electrons: allows examining the internal structure of thin specimens 

(thinner than 1μ). It is used in scanning transmission electron microscopy (STEM).  

The major advantage of STEM compared to SEM is improved spatial resolution as 

electron scattering in the bulk is eliminated by using focused beam. 82 

 

• Cathodolumineschence (CL): are the phonons of various wavelengths; Infrared 

(IR), Visual (VIS) and Ultraviolet (UV) emitted by some materials, for example 

fluorescent dyes and zinc sulfide.83 

 

SEM is one of the most widely used techniques for analysis of solid materials, both in science 

and in industry. The majority of SEM machines today are user-friendly and easy to operate and 

for many applications, limited sample preparation is required and spectra acquisition takes short 

time. The limitations of SEM are the limited size of the specimen and that it has to be stable in 

vacuum, however low vacuum machines also exist. 82 

 

3.6.9 Energy-dispersive X-ray spectroscopy 

Energy-dispersive X-ray spectroscopy (EDS) is a technique that allows non-destructive chemical 

characterization of solids. EDS microscopes are normally integrated with SEM or electron probe 

micro-analyzers.84 

 

An EDS system consists of an x-ray detector that is mounted on the sample chamber of SEM 

instrument, a nitrogen tank for cooling and a software to record and analyze obtained spectra. 

An EDS detector that is used to separate x-ray signals of various elements contains typically of Si 

(Li) crystals absorbing energy of x-rays and thus yielding free electrons in the detector crystals 

and causing electrical charge bias. These electrical voltages correspond to characteristic x-rays of 

the elements.84 
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The advantages of using EDS are that it is possible to rapidly (within a few seconds) acquire a 

full elemental spectrum of a sample and to get information of unknown phases, furthermore 

EDS gives semi-quantitative information by peak-height ratio. One of the  disadvantages, is that 

EDS peaks may overlap because of emissions of different energy shells with same energies  for 

example k-alpha in Mn and k-beta in Cr. 84 Another disadvantage is that EDS cannot analyze 

light elements (H, He) and many instruments cannot analyze the elements before sodium. 

Finally, due to use of solid state X-ray detectors, EDS has a lower sensitivity and lower energy 

resolution compared to electron probe micro-analyzers or wavelength dispersive X-ray 

spectroscopy82.  

 

3.6.10 X-Ray diffraction 

X-ray Diffraction (XRD) is a non-destructive technique used for the characterization of 

crystalline materials. XRD makes possible phase identification in crystalline samples and 

measuring their unit cell dimensions. The technique is based on using monochromatic X-ray 

beam interfering with a sample. Consider two beams of x-rays that hit a crystal lattice as shown 

in Figure 31: 

 

Figure 31 The principle of Braggs Law 

 (graphics by Furiouslettuce/ Wikimedia Commons /CC-BY 2.0) 

 

The two beams are diffracted by the electron clouds of atoms sitting on two different plans of 

the crystal lattice.  When the Braggs Law is obeyed: 

𝜂𝜆 = 2𝑑 ∙ 𝑠𝑖𝑛𝛩       Eq. 38 
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Constructive interferences are obtained giving diffraction peaks in the diffraction pattern. When 

the Bragg law is not fulfilled, destructive interferences occur and no intensities are recorder by 

the detector except for the background. 

 

Interactions between X-Ray beam and the atoms depends on their atomic numbers – atoms with 

higher atomic numbers will produce stronger signals due to higher electron density, while atoms 

with lower numbers produce weak signals. Apart from the size of the atoms, signal intensity is 

also influenced by statistical distribution of planes – if a set of planes is predominant, a higher 

intensity of the peak is expected. 

 

3.6.11 Synchrotron Measurements 

 

3.6.11.1 Microtomography  

X-Ray microtomography is a technique that allows studying internal structure of a specimen by 

making a reconstruction of transverse sections of a sample irradiated by a monochromatic X-Ray 

beam. X-Ray Microtomography is a combination of X-Ray imaging and computed tomography 

(CT). 

 

In tomography, a number of images are taken in different sections. Consider a case, where the 

detector and  the intensity at a transverse section i can be written as: 85 

𝑖𝑖𝑘 = (
𝐼0

𝐼𝑖𝑘
) = ∑ 𝜇𝑖𝑟𝑟

𝑁

𝑗=1

     Eq. 39 

 

Where I is the intensity of the incoming beam, Iik is the intensity,  𝜇𝑖𝑟 is the absorption 

coefficient and r is the dimension of a single pixel. 

 

3.6.11.2 X-Ray Absorption Spectroscopy (XAS) 

X-Ray absorption spectroscopy (XAS) uses the absorption coefficient of a given element as a 

function of energy above its absorption edge to give information about the atomic energy.86  

XAS measurements are performed at  synchrotron radiation sources where  the X-ray beams are 

intense and tunable.87 A XAS spectrum consists of 2 major regions as shown in Figure 32. 
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• X-ray absorption near-edge structure (XANES). 

• Extended X-ray absorption fine structure (EXAFS) 

 

 

Figure 32 The areas of XAS spectrum: XANES shows in the cyan rectangles,  

EXAFES shown as a light bue rectangle  (graphics by Munzarin/ Wikimedia Commons /CC-BY 2.0) 

 

The difference between the two regions is that XANES is the structure close to the absorption 

edge, while the structure starting after 5 eV is referred to as EXAFES. 88  

 

XANES gives information such as valence state, bond angles and energy bandwidths. The 

location of an absorption edge shows the active charge of the atom. If any resolvable features are 

present, the final states' occupancy can be found based on location and intensity. It is also 

possible to study anisotropy in the final states for single crystals due to polarized nature of 

synchrotron radiation.89 

 

In XANES measurements, the absorption process comes from exciting the inner level electrons 

to higher energy level with incident photons. The final states are determined by selection rules 

for a given ground state and symmetry.  
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There are several ways to collect XANES data:  

• Transmission mode (Fluorescence mode): X-Ray are detected 

• Electron yield count mode: Secondary electrons are detected  

 

EXAFES is the effect caused by interaction between outgoing photoelectrons that are ejected 

from the inner shells of the atom and backscattered electrons from atoms nearby. The technique 

is useful for determination of distances between atoms and also lattice dynamics.89 

 

There are several way in which one can collect EXAFES data:  

• Transmission mode: is the most common mode in EXAFES for powder samples 

pressed into pellets,  thin single crystals or foil; 

• Fluorescence: Fluorescence (photons emitted by the sample) is measured by a 

Germanium detector. This mode is typically used for cases of dilute or self-absorbing 

samples; 

• Energy Dispersive: The method performs a scan over the entire energy range to obtain 

an EXAFS spectrum.  
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Chapter 4  

Experimental: Materials Preparation 

and Battery Setup 

4.1 Preparation of LiBH4-SiO2 electrolyte 

 

LiBH4 powder (Alfa Aesar, 95% purity) and SiO2 aerogel (Alfa Aesar, Silica gel 60, 400-600 

mesh) were mixed in various ratios (10/90, 20/80, 30/70, 40/60, 50/50 wt%). The SiO2 was 

dried for 12 hours at 393 K in a vacuum oven (Buchi, Switzerland) prior to mixing to remove the 

surface water. A Fritsch purverisette P6, planetary mill, with 5 tungsten carbide balls placed in a 

stainless-steel (80ml) container was used for mixing at, at a rotation speed of 300 rpm for a 

duration of 5 hours. The vials were rotated for 5 min. followed by 5 min. dwell to limit the 

temperature increase of the vial. 5 tungtsen carbide ball (10 mm) were used with typically 1 g of 

sample giving a ball to powder ration of BPR = 125:1. All the samples handling were performed 

in an argon glovebox. 

 

4.2 Preparation of LiBH4-LiBF4 electrolytes 

 

LiBH4 –LiBF4 composites were prepared by Peter Ngene from Utrecht University by mixing 

LiBH4 and LiBF4  in various ratios ( 5 to 35 wt% of LiBF4 using steps of 5 wt%). LiBH4 and 

LiBF4  were mixed in a mortar after which the powder was packed in a steel vessel and inserted 

in an autoclave. Packing was performed in argon atmosphere. The autoclave was then 

pressurized with 50 bar of hydrogen and heated to 200-250 ◦C at rate 5◦ C/min for and left at 

maximum for 30 minutes.  
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4.3 Preparation of the C+S and Li electrodes 

 

The C+S positive electrodes were chosen due to their high specific capacity of 1675 mAhg-1 

based on sulfur. The cathodes were prepared by a procedure describe by Das et al90 where 

Ketjen Black EC 600 JD (surface area 1400 m2g-1, pore volume of 4.80-5.10 m3g-1, Shanghai 

Tengmin Industry) was mixed with Maxsorb activated carbon MCS 30 (surface area 3000 m2g-1) 

in ration 1:1 by weight. Sulphur (Sigma Aldrich, 99.9% purity) was mixed with carbon in weight 

ration 45:55 for 30 min (400 rpm) in Fritsch Pulverisette P7. After mixing, the resulting powder 

was heated at 155◦ C durring 6 hours in sealed steel vessels (under argon atmosphere) at a rate of 

0.2◦ C/ min. When the mixture cooled down to room temperature, 10-15% polyvinylidene 

fluoride (PVDF) was added followed by N-methylpyrrolidinone (NMP). The resulting slurry was 

stirred overnight, casted on aluminum foil and dried for 24 hours at room temperature. Once 

dried, the electrodes were punched into disks of 10 mm in diameter. 

 

For Li electrodes, lithium foil ( 99.9 %, Sigma Aldrich, thickness of 40 µm) was cut in disks of 10 

mm in diameter for the electrochemical measurements.  

4.4 Preparation of Li-S battery with LiBH4-SiO2 electrolyte 

 

All-solid-state LiS cells with LiBH4-SiO2 electrolyte were made in in-house made cells with the 

design shown in Figure 33. The battery casing is made of a cylindrical die in polyethertherkethone 

(PEEK) with inner diameter of 10 mm. PEEK was chosen due to its high tensile strength ( 90-

100MPa) and high melting point (343◦C). 91 

PEEK die

Steel current 

collector

Steel current 

collector

Lithium electrode

C+S electrode
LiBH4-SiO2 solid electrolyte

 

Figure 33 The deisgn of the inhouse LiS cell 
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The cell assembly was done in a glovebox in argon atmosphere. The assembly was performed in 

layers starting from Li anodes punched as 10 mm disks, thereafter about 50 mg of solid state 

electrolyte was added to the cell and with C+S disks as the cathode. The assembled cells were 

pressed to 2 ton cm-2 to achieve good contact between the constituent elements. 

 

4.5 Cell Measurements 

4.5.1 Electrochemical Measurements 

After assembly, the batteries were connected to a VMP3 potentiostat (Bio-Logic SAS, France) 

and put in a heating chamber for 1 hour at 55◦C. During this period, Open Circuit Voltage 

(OCV) was measured followed by electrochemical impedance spectroscopy (EIS) which was also 

performed after each discharge/charge cycle. Impedance measurements were performed in the 

frequency range from 1Hz to 1 MHz. 

 

Charge and discharge of Li-S batteries were performed using Galvanostatic cycling with potential 

limitation (GCPL) set with cutoff voltages of 1 V (discharge) and 3.5 V (charge). The current 

was set to 5 µA which is equivalent to C-rate of 0.03 C calculated from the theoretical specific 

capacity of 1675 mAhg-1 based on sulfur. Cyclic Voltammetry (CV) measurements were 

performed  in voltage range from 1 to 3.5 V with sweeping rates of 0.1 mVs-1 
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4.5.2 Three-electrode setup 

For measurements in a three electrode setup mode, a modified cell was used as shown in Figure 

34.  

 

Figure 34 The design of the inhouse LiS cell modified for three electrode setup 

 

In order to be able to perform impedance measurement at a third electrode, a hole with a 

diameter of 0.6 mm was drilled in the middle of the PEEK casing. Figure 35 shows the setup that 

was used for Li-S battery cycling. 
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Figure 35 Three electrode setup during measurment with steel wire as third electrode 

 

Steel was chosen as third electrode material mainly due to its mechanical strength. The first test 

with copper were indeed not successful and we suspected the wire to bend and provoke short-

circuit. Before inserting the steel wire, it was platted with Li to serve as Li/Li+ reference. 

 

4.5.3 SEM/ESD/TEM 

SEM images were recorded using the following microscopes: 

• Hitachi TM3000 tabletop microscope (Hitachi High technologies American Inc) with 

acceleration voltage of 15 keV,  

• Carl Zeiss Supra 35 with acceleration voltage of 10 keV, 

• Carl Zeiss Merlin Field Emission Scanning Electron Microscope with acceleration 

voltage of 9-15 keV 

 

SEM measurements were performed using a specially designed transportation chamber that 

allows transport from the glovebox to the microscope, preventing the contact with air and 

moisture.92 EDS spectra were recorded using the Hitachi TM3000 tabletop microscope (Hitachi 
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High technologies American Inc). TEM images were recorded using a JEOL JEM 300F 

microscope with a 300 kV field emission gun. 

 

4.5.4 Raman Measurements 

Raman measurements were performed using a Renishaw inVia spectrometer and the laser diode 

of wavelength 785 nm. For most of the measurements, an Olympus 50x MPlan objective was 

used. For the heating measurements, a Linkam stage (TS1200, Linkam Scientific) was used. 

 

4.5.5 X-Ray Measurements 

XRD measurements in this work were performed using a Bruker D8 Advance diffractometer. 

The samples were set in a rotating sample holder to improve representability of the sample. To 

protect LiBH4 from moisture, polyethylene films were used to seal the sample in the sample 

holder. We used Cu-K radiation. 

 

4.5.6 NMR 

Magnetic angle spinning nuclear magnetic resonance (MAS-NMR) measurements for pure LiBH4 

were performed using a Bruker AVANCE III HD 400 WB spectrometer with an Ascend wide-

bore (89 mm) using a 4 mm probe and MAS frequency of 6 kHz. MAS-NMR measurements for 

LiBH4-SiO2 and LiBH4 - LiBF4 composites were measured using a 9.4 T magnet and a Bruker 

AVANCE III HD 700 WB spectrometer with Ultra Shield Plus wide-bore (89 mm) and a 16.4 T 

magnet using a 2.5 mm probe and MAS frequency of 15 kHz.  

 

MAS-NMR spectra for 7Li and 11B nuclei were recorded with pulse powers of 130 kHz and 100 

kHz respectively. For decoupling measurements, low power 1H continuous wave decoupling 

program was used with the decoupling power optimized to achieve best spectral resolution. 

MAS-NMR spectra for 1H nuclei were recorded with “Depth” pulse sequence 93 to minimize the 

contribution from background signals coming from the probe and the components of the rotors. 

In these “depth” experiments, 1H pulse power of 110 kHz was used. Temperature calibration for 

the variable temperature experiments has been performed using lead nitrate following a 

procedure described by Bielecki, et al.94 
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4.5.7 LiPON Layer Deposition 

All experimental work with Lipon thin layer deposition was performed by Senior researcher 

Eugen Stamate, Section of Electrochemical Materials and Interfaces, DTU Energy. 

 

Lipon thin films were deposited with reactive radio frequency (RF) magnetron sputtering, using 

2 inch Li3PO4 targets (Kurt Lesker) under nitrogen atmosphere. In order to remove any 

impurities from the surface of the targets, presputtering of the target was performed for 1 h 

before deposition. Sputtering of Lipon thin layers was done using low nitrogen pressure (5 

mTorr) and moderate RF power (100 W). For a more detailed description of sputtering 

parameters, see Christiansen, et al. 95 

 

4.5.8 Synchrotron Measurements 

 

Microtomography  

The measurements at the micro-tomography setup at P05 beamline at DESY Petra III 

(Hamburg, Germany) were made in the EH2 mode with absorption contrast tomography. The 

detector-to-sample distance was 30 – 40 mm using edge-enhanced absorption contrast setting. 

The schematic and picture of the capillary Li-S battery used for the microtomography at P05 

beamline is shown in Figure 36.  
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Figure 36 Schematics of a Li-S solid state battery in a quartz capillary. The gray layer is a 30 wt% LiBH4-

SiO2 solid state electrolyte. 

 

The setup used for the measurements on the capillary cells at ESRF (ID20) is shown in Figure 

37.  

 

 

C
u
rr

en
t 

co
lle

ct
o

rs
 (

st
ee

l)

C
u
rr

en
t 

co
lle

ct
o

rs
 (

st
ee

l)

C
+

S

S
o

lid
 e

le
ct

ro
ly

te

L
i

 

Figure 37 In-house cell made for in-situ measurements at ESRF beamline ID20 
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XAFS 

Figure 38 shows the cell used at the Elettra synchrotron. The setup consists of carbon in sulfur 

as powder at the cathode side, lithium on the anode side and a steel grid serving as a current 

collector. In between a pressed pellet of electrolyte was placed. 

 

Figure 38. Cell for in-situ measurements for Elettra showing steel current collector and cathode material 

 

Figure 39 shows the setup at Elettra synchrotron. Assembled cell from Figure 38 is seen 

connected to electrodes inside of vacuum chamber connected to pumps. 

 

Figure 39 Experimental setup at Elettra: the cell is placed inside a vaccum chamber connected to pumps 
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Chapter 5  

Results and Discussion 

This section presents results of studies on all-solid-state batteries with Li-S batteries with solid-

state electrolyte based on lithium borohydride, LiBH4-SiO2 composites and LiBH4-LiBF4.  

 

5.1 Solid State Electrolyte 
 

5.1.1 LiBH4-SiO2 solid state electrolyte 

There has been studies on LiBH4 among other members of complex borohydrides family, 

nanoconfined LiBH4 in ordered mesoporous silica scaffold has shown to increase conductivity of 

LiBH4 below phase transition temperature. 96 

 

5.1.2 Structure and Morphology of LiBH4/SiO2 composites  

 

Size of LiBH4-SiO2 domains 

In order to make a model to account for Li ion diffusion in LiBH4-SiO4 solid electrolyte, it is 

important to study the properties of electrolyte and particle size distribution. Figure 40 shows 

SEM images of 30/70 wt% LiBH4-SiO2 electrolyte. Grains in the micron range, agglomerates of 

LiBH4-SiO2 particles are visible. 
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Figure 40 SEM images of 30 wt% LiBH4-SiO2 composites showing grains in the micrometer range 

 

In order to analyze the distribution of LiBH4 in silica, EDX analysis was performed on the 

composites. Figure 41 shows an EDX and corresponding SEM image of a 30/70 wt% ball-

milled LiBH4 – SiO2 composite. 

 

 
 

 

Figure 41 SEM and corresponding EDX image of a 30wt% LiBH4-SiO2 composite showing distribution of 

silicon (red), oxygen (green) and boron (blue) 
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As it can be seen from Figure 41, the distribution of LiBH4 and SiO2 appears homogeneous.    

Particle size analysis was performed on dried SiO2 sample prepared from 30 wt% LiBH4-SiO2 

ball milled and washed in acetone to remove LiBH4, the obtained results for put particle size 

distribution shown in  Figure 42 and Table 5.  

 

 

Figure 42 Measured particle size distribution diagram for silica from 30/70 wt% LiBH4-SiO2 mixtures 

 

Table 5 Particle size distribution for 30/70 wt% LiBH4-SiO2 composite 

 <10% <25% <50% <75% <90% 

Particle size 11.93 µm 24.32 µm 48.16 µm 93.04 µm 140.3 µm 

 

It follows from particle size distribution data, that while smaller particles (<12 µm) are present in 

powder, the average size of particles is ~ 30µm which corresponds to 40% of the total volume, 

while the rest is made up by aggregates of several particles. The average size of particles is 

important to know to model the conductivity as described below.   
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5.1.3 TGA analysis of SiO2 aerogel 

In order to analyze the stability and find the appropriate temperature to dry the SiO2 aerogel, 

Thermal Gravimetric Analysis (TGA) measurements were performed in temperature range from 

299 to1168 K. The obtained TGA curve is shown in Figure 43. 

 

 

Figure 43 TGA analysis of SiO2 aerogel. The two major regions where mass losses are observed are due to 

loss of water (red rectangle) and loss of various types of OH groups in silica skeleton and on the surface. 

 

As it can be seen from Figure 43, two different regions of weight losses are observed. The first 

region which is marked with a red square is due to removal of surface water. 

 

• Removal of H2O monolayer from 350 to 375 K 

 

The second region, green rectangle in Figure 43  is due to loss of OH groups:  

• Vicinal bridged OH: 550 to 750 K 

• Internal and germinal OH from 750 to 1150 K. 

 

During this work and from the analysis of the TGA, the drying of the silica aerogel was 

performed at 393 K for 12 hours to remove the surface water and avoid its reaction with LiBH4. 

However, and from the analysis presented in the theoretical section on the hydroxylation and 

removal of hydroxyl groups based on Zhuravlev’s model it could have been beneficial to use a 

slightly higher temperature, up to 463 K to ensure highest degree of hydroxylation of the silica 

particles. 
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5.1.4 Ionic Conductivity of Electrolyte 

The results of the ionic conductivity studies of LiBH4-SiO2 have been previously published in 

Paper I ( Lefevr et al, 2018). 97  This chapter proves new and complimentary results that have not 

been published to this day. 

 

Electrochemical Impedance spectroscopy (EIS) measurements were carried out on LiBH4 – SiO2 

composites with various composition labelled as wt% of LiBH4 in the below text.  Figure 44 

shows an example of EIS spectra for a 30 wt% LiBH4 – SiO2 composite where a single semi-

circle is observed. Despite of the presence of a single arc, it cannot be excluded that two arcs are 

overlapping in the spectrum, representing the contribution from bulk and grain boundary 

conductivity. 

 

 

Figure 44 Example of EIS for 30 wt% LiBH4-SiO2 composite at 333 K (Adapted from Lefevr, et al97) 

 

Figure 45 show the Arrhenius like plot of the conductivity for the different composites 

compositions. A large conductivity drop is seen for the pure LiBH4 while LiBH4-SiO2 composites 

do not have a significant conductivity drop below the phase transition temperature. It can be 

seen from Figure 45 that the best conductivity results were achieved for 30 and 40 wt% 

composites. 
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Figure 45 Arrhenius plots of Li+ conductivity for different ratios of LiBH4 in LiBH4-SiO2 composites with 

following wt% of LiBH4: black triangles (90%), gray circles (50%), gray pentagons (40%), black circles 

(30%), gray sqaure (25%), gray triangles (15%). (Adapted from Lefevr, et al97) 

 

While no obvious conductivity drop is seen for composites with lower loadings of LiBH4 in 

Figure 45 and Arrhenius plots may look like straight lines for all composites, smaller conductivity 

drops do exist for higher loadings of LiBH4. These changes in conductivity are similar to the one 

of pure LiBH4  show that for higher loadings, a major part of LiBH4 is not affected by mixing 

with silica. For lower loadings, only smaller curvatures are observed. The reasons for this will be 

discussed in details in section 5.1.7. 

 

Logarithms of the conductivities at 303 K, normalized to the conductivity of pure LiBH4 at the 

same temperature are shown in Figure 46. The activation energies for Li conduction, obtained 

from the Arrhenius plots logarithms of conductivities are shown in inset in Figure 46. It is clear 

that the lowest activation energy among the composites is obtained for the 30 wt% sample.  
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Figure 46 Logarithm of conductivities of LiBH4-SiO2 electrolyte normalized to conductivity of pure LiBH4 

at 303 K. The insert shows activation energies obtained from slopes of Arrhenius plots  

(Adapted from Lefevr, et al97) 

 

Choi, et al53 have also investigated LiBH4 ball milled with MCM-41 and fumed silica, and 

obtained higher values of conductivities for their LiBH4-SiO2 composites (55 vol% equivalent to 

our 30 wt% composites). We obtained lower conductivity values but also lower activation 

energies (0.35 eV compared to 0.43 eV as calculated by Choi, et al53) for an equivalent 

stoichiometry. As for the difference in conductivity values, that are slightly lower than those 

obtained by Choi, the discrepancy can come from difference in sample preparation or pressure 

applied when producing the electrolyte pellet. Another important difference could be the size of 

silica particles, drying temperature and presence of pores that will have an important effect for 

surface chemistry. 

 

The highest conductivity values, for the composites, are seen for 30 and 40 wt% of LiBH4. The 

optimal LiBH4-SiO2 composition  is due to a competition between the surface area of the SiO2 

particles, providing the interfacial conductive layer (this will be explain later on in section 5.1.7) 

and the need to have a percolation network of the interfacial conductive layer. 

 

5.1.5 XRD Measurements  

The diffraction patterns for 30/70 wt% LiBH4-SiO2 composite and pure LiBH4 are shown in 

Figure 47. For the comparison, the intensity of the pattern for pure LiBH4 has been divided with 

100 to match the intensity of the pattern for the LiBH4-SiO2 composite. It reflects that there is 

less amount of LiBH4 in the second sample. The part of the diffractogram between 21 and 23 
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degrees is removed as it contains peaks coming from polyethylene film used to protect LiBH4 

from exposure to air and moisture. 

 

 

Figure 47 XRD patterns of 30/70 wt% LiBH4-SiO2 (blue) compared to pure LiBH4 (red) 

 

It can be seen from Figure 47, that overall the position of the peaks for pure LiBH4 and 30/70 

wt% LiBH4-SiO2 composite are the same. There are otherwise a few mismatches in the peak 

intensities. It could be due to formation of lattice defects during ball-billing of the composite but 

also there is overlapping with the peak from the polyethylene film and SiO2 aerogel (Figure 48). 

 

 

Figure 48 XRD pattern of SiO2with protective polyethylene film. Most of the peaks come from the film. 

 

One can conclude here that most of the LiBH4 is in the low temperature orthorhombic structure 

after ball-milling with SiO2. 
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5.1.6 Raman Measurements 

As it was shown in section 5.1.4, the conductivity values for 30/70 wt% LiBH4-SiO2 are several 

orders of magnitude higher than the conductivity of pure LiBH4 which indicates modification of 

some part of the LiBH4 in the mixture already at room temperature. The XRD studies did not 

show the formation of new compounds in the composites that could account for higher ionic 

conductivity of the composites.  

We have performed Raman measurements on the 30/70 wt% LiBH4-SiO2 sample in temperature 

range from 293 to 393 K to analyze changes in vibration of the BH4
- with increased temperatures 

and how these might be related to increased conductivities of the composites. 

 

Pure LiBH4 at room temperature has point group symmetry Cs (space group Pnma). Figure 49 

shows Raman spectrum of pure LiBH4 at 293 K measured in range 2100-2600 cm-1. Three 

internal BH4
- vibrations (4υ4, υ3, υ1), out of the seven, are present in the studied range together 

with combination bands. The υ2 mode is present in the spectrum at 1286 cm-1 but is not shown in 

Figure 49. 

 

Figure 49 Raman spectrum of pure LiBH4 at 293 K showing 4υ4, υ3, υ1 modes 
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Table 7 shows assignment of observed peaks on the basis of previously reported values for pure 

LiBH4.
98 No new peaks or signs of decomposition (H2 gas has been reported in previous 

studies99) have been observed in the range 2100-2600 cm-1. 

 

Table 6 Experimentally observed peaks for pure LiBH4 at 293 K and their assignment 

Peak, cm-1 Mode 

2160 4υ4 

2275 υ3 

2300 υ1 

2321 (shoulder) Observed in the literature but not assigned98 

2390 Combination bands 

2490 Combination bands 

 

After the phase transition at 384 K, the symmetry of LiBH4 is increased to C3v. As reported in 

the literature, broad υ3 mode is observed masking the presence of other peaks in the range from 

2200 to 2400 cm-1. 98 Figure 50 shows the recorded Raman spectrum of pure LiBH4 above the 

phase transition temperature showing a single broad peak at 2300 cm-1 due to the overlapping υ3, 

υ1 and 4 υ4 modes. 

 

Figure 50 Raman spectrum of pure LiBH4 at 393 K showing broad υ3 mode masking the 4υ4 and υ1 modes 
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While the ν1 and ν3 can be distinguished at temperatures below 384 K, clear line broadening is 

observed with increased temperatures. While the symmetry of the system is increased above the  

phase transition temperature, the broadening of the spectra shows presence of disordered array, 

although borohydride anions are becoming more symmetric: from m-Cs to 3m - C3v.
98 The 

observed spectral changes, during the heating process, indicate dynamic disorder of the 

borohydride anions, with large amplitude of the librational motions rather than  free rotations.98 

 

 

After obtaining spectra of pure LiBH4 below and above the phase transition temperature, we 

have recorded the spectra of LiBH4-SiO2 composites. As the composites show no significant 

drop of conductivity below and above the phase transition temperature, we expected to see a 

broader υ3 mode as  for the high temperature LiBH4 but at room temperature. Figure 51shows 

Raman spectrum of a 30-70 wt% LiBH4-SiO2 composite at 293 K. As expected, the spectrum is 

broader than the one for pure LiBH4 which is showing higher level of disorder in the arrays of 

borohydride anions. 

 

 

 

Figure 51 Raman spectrum of a 30/70 wt% LiBH4 SiO2 at room temperature (green, orange and purple 

lines υ3, υ2, modes, blue line is the difference between calculated and actual spectrum) 
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Similar peak broadeing is observed for pure LiBH4 however at higher temperatures (in range 

323-333 K). Table 7 is showing assignment of observed peaks for pure LiBH4 range 2100-2600 

cm-1: 

 

Table 7 Observed peaks for pure LiBH4 at 343 K and their assignment 

Peak, cm-1 Mode 

2160 Weak: υ4 

2275 υ3 

2300 υ1 

2321 (shoulder) Observed in the literature but not assigned98 

2390 Not observed: Combination bands 

2490 Not observed: Combination bands 

 

For the composite, the combination peaks are disappearing already at room temperature while it 

was first observed around 360 K for pure LiBH4. 

 

Figure 52 shows spectrum of a 30 wt% LiBH4-SiO2 composite at 343 K. As it can be seen, 

already at temperatures close to 343 K, υ3 and υ1 modes in the vibrational spectrum of 30 wt% 

LiBH4-SiO2 composite are becoming so broad that they merge into one peak. With heating 

above 343 K, only one broad peak is observed.  

 

 

Figure 52 Raman spectrum of 30/70 wt% LiBH4-SiO2 composite at 343 K  (green, orange and purple lines 

υ3, υ2, modes, blue line is the difference between calculated and actual spectra) 
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This spectrum corresponds to spectra of pure LiBH4 after phase transition temperature at 384 K. 

This indicates that the rotations/vibrations of the borohydride anion   

 

This Raman study revealed that the 30/70 wt% composite has rotational/vibrational 

characteristics similar to pure LiBH4 but with shifted temperatures. Already at room temperature 

the composite got similar Raman Spectrum of the pure at 360 K and at 343 K it a spectrum seen 

for pure LiBH4  just before the phase transition.  This means that by ball-milling with silica  

causes structural changes, providing  a greater level of disorder in the system resulting in broader 

Raman shifts and reduced number of visible peaks.  

 

As for the fitting of components shown in Figure 52, different bonds have different 

polarizability, therefore it is not possible to make a quantitative analysis of the amount of the 

phases present in the spectra of the 30/70 wt% composite based on the results of Raman 

measurements alone. The quantification of phases is however possible by means of NMR 

spectroscopy which will be discussed in detail in following sections. 

 

5.1.7 Ion mobility studied by NMR 

In this section, ion dynamics in LiBH4 were studied by solid-state NMR. MAS-NMR spectra of 

7Li, 11B and 1H were recorded and analyzed, furthermore spin-lattice relaxation times and 

exchange studies were performed for 7Li nuclei to study the time scale of Li ion motions in 

LiBH4-SiO2 composites. 

 

Some of the results of ion mobility studies shown in this section have been previously published 

in Paper I (Lefevr et al, 2018).97 6This chapter proves new and complimentary results that have 

not been published yet.  

 

5.1.7.1 Proton NMR 

The behavior of pure LiBH4 is well-studied in the literature and a study of the BH4
- reorientations 

was carried out by Corey et al.  who studied the mobility of H ions by relaxation of the dipolar-

ordered state, T1D, times and full width at half maximum (FWHM) line widths.100 Previous 

studies of proton NMR in pure LiBH4 show a broad central transition at room temperature with 

slight narrowing towards phase transition temperature. 101 Single pulse proton resonance of 
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LiBH4-SiO2 composites was measured and compared to that of pure LiBH4 which shown in 

Figure 53.  

 

 

Figure 53 Proton NMR of pure LiBH4 (orange) at 293 K compared to 30/70 wt%  LiBH4-SiO2 composites 

at 293 K (blue) and 325 K (green) 

 

While a single component is seen in spectrum of pure LiBH4 (shown as orange) which is in 

agreement with previous results by Corey, et al 101, proton resonance of 30/70 wt% composite 

shows 2 components that are overlapping: a Gaussian component similar to the one of pure 

LiBH4 and a narrower Lorentzian component that is only present for the LiBH4-SiO2 

composites. Already at room temperature the recorded spectra show greater line narrowing than 

the spectrum of pure LiBH4 and as it can be seen it becomes even more pronounced with 

increasing temperatures.  

 

In order to study motional narrowing as a function of temperature, single pulse 1H experiments 

were carried out for different loadings of silica and at different temperatures. Fitting of the two 

components was performed for different loadings of silica in LiBH4-SiO2 composites and pure 

LiBH4 and obtained results are shown in Figure 54.  
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Figure 54 FWHM for the Lorentzian component as a function of temperature 

 

As it is shown in Figure 54, the width of the central transition of pure LiBH4 did not change 

significantly during heating which was expected and in agreement with previous studies showing 

that the proton resonance for pure LiBH4 does not change below the phase transition 

temperature. 100 The mixtures exhibit a significant line narrowing until th e phase transition 

temperature indicating higher mobility of the protons. The narrowing is observed especially well 

for the 30 wt% composite where the mobility is the highest. 

 

Motional narrowing of the Lorentzian component has been previously seen in literature for 

mixtures of e.g. LiBH4 in carbon networks102 and was associated with two types of proton 

environments: inside and outside of carbon scaffolds which is likely to represent two types of 

environment in the LiBH4-SiO2 as well.  

 

7Li NMR 

In order to study lithium ion mobility, four types of experiments were performed on pure LiBH4 

and 30/70 wt% LiBH4-SiO2 composite: single pulse measurements, high-power decoupling, 

spin-lattice relaxation time measurements (T1 times) and exchange measurements (EXSY). While 

the former two methods provide data on types on Li ion motions in the samples, the former two 

methods give an estimate of the time scale at which the Li jumps are occurring between sites in 

crystal lattices. 

 

 

7Li Single pulse spectra 
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Study of lithium ion mobility was performed for pure LiBH4 and composites with different wt% 

of SiO2. The single 7Li resonance of pure LiBH4 is showing a single peak at -1.4 ppm while the 

composites are showing an overlap of a Lorentzian component at -0.69 ppm and a Gaussian 

component at -1.1 ppm which as shown in Figure 55. 

 

Figure 55 7Li single pulse spectra for 10 (purple), 20 (green), 30 (red) wt% LiBH4-SiO2 composites 

compared to pure LiBH4 (blue) 

 

It is clear from Figure 55 that the two components for the composites are different from the 

single component for pure LiBH4 proving the assumption that during ballmilling of LiBH4 and 

SiO2, not only size reduction has occurred but a new Li environment is created that is clearly 

different from the one in pure LiBH4. We can assume that the two peaks represent two Li 

populations where one is more mobile (Lorentzian component) and the other one is more like 

the population in pure LiBH4 and is less mobile (Gaussian component). 

 

Fitting of the areas under the peaks for the two components was performed for different wt% of 

SiO2 and the results are shown in Figure 56.  
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Figure 56 Ratios of the two components: Pink (10%), Light blue (20%),  

blue (30%), green (40%), orange (50%) 

  

The highest ratios of the second component is observed for the 20 and 30wt% samples which is 

in good agreement with the results of conductivity measurements. Lowest values are observed 

for 10 wt% and 50 wt%. The model of Li ion conductivity in LiBH4-SiO2 will be discussed in 

detail in the following section. 

 

T1 measurements for 7Li 

T1 measurements were performed on pure LiBH4 and LiBH4-SiO2 composites to study if the 

composites would show two Li populations, a “fast” and a “slow” one, which was seen from 

single pulse measurements reported in the previous section. 

 

Figure 57 shows T1 times measured for pure LiBH4. It can be seen that T1 times are increasing 

with increasing temperatures which was expected in the temperature range up to phase transition 
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temperature from previous studies. 103  Fitting of signal intensity to one T1 component gave a 

good fit which supports the idea that only one type of Li is present in pure LiBH4. 

 

Figure 57 T1 times for pure LiBH4 sample 

 

T1 measurements were carried out on LiBH4-SiO2 composites with different ratios of SiO2. 

Obtained signal intensity as a function of temperature was fitted with 1 component which gave a 

poor fit as shown in Figure 58.  

 

 

Figure 58 Fit of reovery time to a single component 

 

Therefore, fitting was performed with 2 components and better results were obtained.  It shows 

that more than one type of behavior is observed in the composites unlike pure LiBH4 where only 
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one population is observed. A fast and a slow components for the composites are observed. For 

example, for a 15/85 wt% composite,  a component with T1 3-4 seconds and   a component in 

the millisecond range were found. While the first component is constant with increasing 

temperature, the second component is decreasing with temperature, as shown in Figure 59. 

 

 

Figure 59 T1 time for "fast" component in 85/15 wt% LiBH4 SiO2 sample 

 

Fitting was performed for different wt% of SiO2 and obtained T1 times for “fast” and “slow” 

components differ between different loadings of silica. It indicates that firstly the mechanism of 

spin-lattice relaxation are different for different loadings due to a percolation threshold,  

secondly that the techniques used for the T1 relaxation measurements is limited and won’t allow 

to distinguish between 2 or more components with different but may be closed T1 times. While 

pure LiBH4 clearly shows one lithium population, the T1 relaxation measurements for the 

composites show more than one component and we fitted the results, with a reasonably good 

accuracy, with 2 T1 making the assumption that two different populations of Lithium were 

present. In reality, the transition between these two populations, if they exist, must be smooth 

and most probably a “continuous distribution” of population should be used.  
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EXSY for Li 

Exchange measurements are a good tool to investigate exchange between different Li sites in 

crystal lattice. Exchange measurements were performed at different time scales (delays of 10, 20, 

50 and 200ms) and at different temperatures (293 – 341 K). The spectra can be found in 

appendix in Figure A 1.  

 

Figure 60 shows exchange spectrum for 30/70 wt% recorded at room temperature. It is clear 

from the figure that off-diagonal peaks indicated with arrows are present in the EXSY spectrum 

which is indicating that already at room temperature exchange is taking place between the two Li 

populations corresponding to the “fast” population and the “slow” population..  

 

 

Figure 60 EXSY spectra of Li in LiBH4-SiO2 taken at RT 293 K showing clear evidence of cross peaks. 

 

As it can be seen from Figure 60, the intensities of off-diagonal peaks is not resolved well 

enough to make quantitative analysis of the data, furthermore it is it likely that the peaks show a 

distribution of exchange rates, and fitting the intensities to a model would be a difficult task 

similar to modelling the T1 times presented earlier in this section. However exchange 

measurements do provide information on time scale of Li jumps and from the obtained spectra 

it is possible to say that exchange is taking place at time scale of 10 or less ms already at room 

temperature. 
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11B NMR 

Since we saw seen different populations of Li for the composites, we have performed 11B 

measurements to see if we could also find different boron population.  Figure 61 shows high-

power decoupling spectra of 30/70wt% LiBH4-SiO2.  Three components can be seen in the 

boron resonance 

 

 

Figure 61 11B high power decoupling spectra of 30 (red), 40 (green) wt% LiBH4-SiO2 compared to pure 

LiBH4 (blue) 

 

The spectrum collected for the 30 wt% composite was fitted using three Gaussian/Lorentzian 

components (Figure 62). 
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Figure 62 High-power decoupling spectrum of 30/70 wt% LiBH4-SiO2 composite fitted with 3 components 

in DMFit Software 

 

The decomposition with 3 components was performed for various temperatures and the 

obtained percentages of populations calculated from the total area under the peaks are plotted in 

Figure 63. 

 

 

Figure 63 Percent of areal under the peak as a function of temperature 
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As it can be seen from Figure 63, 3 components are observed at lower temperatures while above 

300 K basically only 2 components were fitted, the third one almost disappearing.  Similar to the 

results obtained for the T1 measurements of Li, the fitting results show that there is more than 1 

population. 

5.1.7.2 Mobility model  

On the basis of analysis NMR spectra, we can conclude that there are at least three environments 

for Li ions which are schematically illustrated in Figure 64.  

 

SiO2

 

Figure 64 Model for layer distribution in the LiBH4-SiO2 electrolyte:  

orange color is representing the core region (silica regions), blue is representing the interface between 

LiBH4 and silica and purple is the LiBH4 

 

Following areas are represented in the model for LiBH4 - SiO2 electrolyte: 

• Layer 1 (orange): LiBH4 at the interphase with SiO2. This layer is likely the observed 

“fast” component in the 7Li spectra.  

• Layer 2 (blue): Interphase between “fast” Li at silica surface and “slow” lithium   

• Layer 3 (purple): is the “slow” population seen in the 7Li measurements. This 

population is similar in properties to bulk LiBH4 

 

On the basis of this model and obtained values for areas under the peaks for Li populations, we 

have calculated layer thickness of the “fast” Li population. The results for different wt% of silica 

are shown in Figure 65. 
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Figure 65 Calculated thickness of highly conductive Li ion layer: Green 50%, Blue 30%, Yellow 20%, 

Brown 10% LiBH4 

 

As it can be seen from Figure 65, highest layer thickness was calculated for the 30 wt% 

composite (2-4 nm). The thickness of the LiBH4 layer on top of the SiO2 particles was calculated 

(Choi, et al.)53 In their calculations, they obtained a value of 1 nm at various temperatures and 

different loadings of silica. We assume that the thicknesses of the layers will vary with 

temperature as there occur exchange between the two populations as shown from EXSY 

measurements and therefore variable thickness should be included in the model. It also follows 

that the optimal composition for LiBH4-SiO2 is around 30-40%, which seems to be optimal to 

create an even layer of LiBH4 on SiO2 particles. When taking the size of the areas under the peak 

into consideration, then is it reasonable to assume that below 10 wt% of LiBH4 , the volume of 

LiBH4 is under the percolation threshold, as LiBH4 particle are too far away to allow Li ion 

motion. At the same time for loadings with 50 wt% LiBH4, the area of silica particles is not 

sufficient to create an interface with LiBH4.. For that reason, optimal weight ration lies in range 

20-40% percent, as it both allows Li ion diffusion in the percolation network and sufficient area 

of silica particles that provide interface necessary for creating B-O bonds with LiBH4.  

 

5.1.8 Conclusions on LiBH4-SiO2 solid-state electrolyte 

The LiBH4-SiO2 is a promising material for solid-state lithium-sulfur batteries. LiBH4-SiO2 

composites have higher Li ion conductivity compared to pure LiBH4 and no significant drop of 

conductivity is observed for composites with lower loadings of LiBH4. While XRD 
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measurements showed no new phases formed for composites, NMR and Raman measurements 

show that behavior of composites is clearly different from the one observed for the bulk.  

 

Our assumption is that after mixing, Li ions that are found in interface at the silica particles are 

involved in formation of SiO-BH3 bonds which pas a positive effect in Li ion conductivity. This 

population is clearly seen in NMR results as sharp Lorentzian peaks. The rest of LiBH4 that is 

not in contact with silica particle exhibits behavior similar to the one of bulk LiBH4 with slower 

Li motions seen as Gaussian peaks in 7Li NMR. 

 

The thickness of the formed “fast” Li ion layer was calculated to be in nanometer range, which is 

in good agreement with previously published results. 53 As layer thickness depends on 

hydroxylation of the surface f silica particles, as there are participating in the formation of B-O 

bonds between LiBH4 and silica, a way to improve conductivity and increase “fast” layer 

thickness would be by surface modifications of silica particles to improve number of OH groups 

available for bonding with boron. An important aspect of electrolyte preparation is also drying of 

silica   and from the TCA and Zhuravlev model, the optimal drying temperature for silica would 

be 463 K 

 

5.2 LiBH4-LiBF4 electrolyte 

As it has been shown in the previous chapters, LiBH4-SiO2 solid-state electrolyte exhibits higher 

ionic conductivity than pure LiBH4 because of the existence of an interfacial  layer having higher 

ionic mobilities than bulk LiBH4 . Instead of creating this interfacial layer a second approach was 

used, to increase the bulk conductivity by modifying the crystal structure of LiBH4. The 

possibility to form solid solution with LiBF4 has been studied. Since BF4
- anions have larger 

diameter than BH4
- modification of the LiBH4 cell parameters or even stabilization of the high 

temperature phase could be obtained with some benefit on the ionic conductivity.  

 

The first part of this study was to examine the composition of the electrolytes synthesized with 

different LiBH4/LiBF4 ratio and to measure their conductivities.  The first conductivity and 

XRD results presented herein are extracted from measurements carried out  by Giovanni 

Crivellaro during his master thesis  at DTU Energy. 104 
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5.2.1 Conductivity of LiBH4-LiBF4 solid state electrolyte 

Conductivity measurements have been carried out on LiBH4-LiBF4 pellets. the results, for a series 

with composition 5 to 35 wt%  LiBF4 are shown as Arrhenius plots in Figure 66. 

 

 

Figure 66 Arrhenius plots of Li+ conductivity for different ratios of LiBF4 in LiBH4-LiBF4 composites. The 

data was obtained by Crivellaro (Crivellaro, 2018104) 

 

As it can be seen in Figure 66, the 5 to 20 wt% compositions show a significant conductivity 

drop at 110 ◦C (383 K), similar to pure LiBH4 for which a drop of conductivity to values in range 

10-5 to 10-6 Scm-1 is observed at temperatures below 383 K. The LiBH4-LiBF4 compounds show 

however larger conductivities than pure LiBH4 but lower than those of LiBH4-SiO2 composites 

with conductivities in range 10-2  to 10-3 below phase transition.  

 

The 25-35 wt% composition do not show the typical LiBH4 phase transition drop in 

conductivity  but their conductivity is much lower compared to the composition  with lower 

weight percent of LiBF4, indicating that while LiBH4 is present in some amount for mixtures 

with lower wt%, new products with lower conductivities are formed at higher wt%. In order to 

investigate what crystalline phases might have formed in these compounds, XRD measurements 

were carried out on LiBH4-LiBF4 samples.  
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5.2.2 XRD Measurements on LiBH4-LiBF4 solid state electrolyte 

Figure 67 shows an example of XRD pattern for the sample with the composition 10 wt% 

LiBF4- 90 wt% LiBH4. A Rietveld refinement was performed and the following phases identified: 

LiBH4, LiF and compounds that are commonly seen in decomposition of LiBH4, i.e Li2B12H12 

and Li2B10H10. 
105106 Those were the only phases observed in the different samples but with the 

abundance depending on the ratio of the initial constituents. 

 

 

Figure 67 XRD pattern of 10wt% LiBF4-LiBH4 mixture showing LiBH4, LiF and decomposition products. 

The data was obtained by Crivellaro (Crivellaro, 2018104) 

 

Figure 68 shows a diagram of the composition of the LiBH4-LiBF4 different ratios obtained from 

Rietveld refinement of their XRD patterns. It also includes their respective conductivities. 
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Figure 68 Composition of LiBH4-LiBF4 mixtures obtained from XRD measurements compared to their 

respective conductivities (purple dotted line). The data was obtained by Crivellaro (Crivellaro, 2018104) 

 

It is clear from Figure 68 that LiBH4 and LiBF4 react to form different product depending on the 

initial composition.  The final composition has an effect on the conductivity. The reaction can 

result in two products depending on the wt% of LiBF4: 

 

• Below 25 wt% of LiBF4: Lithium borohydride reacts with lithium boroflouride forming 

lithium borohydride, lithium fluoride and lithium dodecahydrododecaborate 𝐿𝑖2𝐵12𝐻12: 

 

𝐿𝑖𝐵𝐻4 + 𝐿𝑖𝐵𝐹4 →  𝐿𝑖𝐵𝐻4 + 𝐿𝑖𝐹 + 𝐿𝑖2𝐵12𝐻12 Eq. 40 

 

Apart from the three products, there is a forth one that has been observed but not been 

identified yet from the XRD pattern. A small amount of lithium decahydrodecaborate 

𝐿𝑖2𝐵10𝐻10 is formed. Both 𝐿𝑖2𝐵10𝐻10 and 𝐿𝑖2𝐵12𝐻12  are decomposition products of 

LiBH4. 
106 

 

• Above 25 wt% of LiBF4: LiBH4 undergoes full decomposition and the overall reaction 

can be written as: 

       

𝐿𝑖𝐵𝐻4 + 𝐿𝑖𝐵𝐹4 →  𝐿𝑖𝐵𝐹4 + 𝐿𝑖𝐹 + 𝐿𝑖2𝐵12𝐻12 Eq. 41 

 

It is seen from the reactions above that the expected stabilization of the LiBH4 high temperature 

or modification of the LiBH4 crystal structure via a solid solution with LiBF4 Did not occur. 
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However as it is shown in Figure 68, the conductivity of LiBH4-LiBF4 is higher for  15 and 20 

wt% samples than the conductivity of  pure LiBH4. This indicates that the Li ion mobility is 

higher for theses composition than for pure LiBH4 and therefore further investigation were 

performed on the ionic mobilities using, MAS-NMR measurements. NMR Measurements on 

LiBH4-LiBF4 solid state electrolyte 

 

5.2.3 NMR Measurements on LiBH4-LiBF4 solid state electrolyte 

NMR measurements have been performed for the 4 nuclei: 1H, 7Li, 11B and 19F to find their 

mobility when mixed with LiBF4. As shown  from the conductivity measurements, the properties 

of <25 wt% and >25 wt% samples are different due to different reaction products  For that 

reasons the two sets of results will be treated differently (where a significant difference is seen 

between the series).  

 

7 Li NMR 

The lithium resonance does not show significant differences between the sample of composition 

having weight percentage of LiBF4below or above 25 wt%. In fact, the signals from  LiF, LiBH4, 

LiBF4 and Li2B12H12 overlap in the spectra because of  similar shifts: -1.2 ppm, -1.4 ppm, -1.9 

ppm and -1.9 ppm respectively It makes it difficult to quantitatively analyze the results of the 

measurements. . Figure 69 shows single pulse 7Li measurements performed on 5, 10, 20, 30 wt% 

LiBF4-LiBH4 showing that all products have a central transition in range -1.4 to 1.9 ppm. 
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Figure 69: Single pulse 7Li resonance of pure LiF (blue) compared to 30 (red), 20 (green), 10 (purple), 5 

(yellow) wt% LiBF4- LiBH4  

 

We know from the XRD results that the following products are formed in the reaction between 

LiBH4 and LiBF4 below 20 wt% of LiBF4:  

 

𝐿𝑖𝐵𝐻4 + 𝐿𝑖𝐹 + 𝐿𝑖2𝐵12𝐻12 

 

While 7Li NMR spectra for 5, 10, 15 wt% shows a single peak at -1.4 ppm, which can be 

attributed to pure LiBH4, for 20 wt% sample the peak is broader and two components are 

observed: one at -1.4 ppm and one  at -1.3 ppm. The latter peak is likely to be the contribution 

from LiF . These results are in good agreement with the XRD results  showing a growing  

amount of LiF and decreasing amount of LiBH4  up to the 35 wt% composition. The results of 

XRD measurements also showed presence of a fourth phase , however no extra peak appear in 

the NMR measurements. Could be that this phase does not contain Li or gives peak overlapping 

with the previous ones.  
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Single pulse 7Li measurements have been performed on a 20 wt% sample to see if LiBF4-LiBH4 

mixtures follow the same trend as LiBH4-SiO2 where different Li populations are observed. It 

can be seen from the spectra in Figure 70 that a central transition shows splitting at temperatures 

around 318 K. 

 

Figure 70 Single pulse 7Li resonance 20 wt% LiBF4- LiBH4 at 293 K (blue), 318  K (green), 323 K (red)  

 

The three peaks appear at -0.6 pm, -1 ppm and -1.4 ppm. The former two peaks have the same 

shifts as the “fast” lithium ions in LiBF4-LiBH4, which explains higher conductivity values 

compared to pure LiBH4. “Fast” lithium ions are indeed present in LiBF4-LiBH4, which proves 

similarities in Li ion motions with LiBH4-SiO2, however this “fast” population is appearing at 

higher temperatures compared to LiBH4-SiO2 meaning that the activation energy barrier is higher 

for LiBF4-LiBH4. 

 

For the samples with initial LiBF4 contents >25 wt%  it is expected from the results of the XRD 

measurements that the following products will be formed: 

𝐿𝑖𝐵𝐹4 + 𝐿𝑖𝐹 + 𝐿𝑖2𝐵12𝐻12 

 

As it can be seen in Figure 69, the spectrum of the 30 wt% sample is broader and is clearly 

shifted towards -2 ppm due to a contribution from LiBF4. The spectra of 30 and 35 wt% 

samples that can be found in Figure A 2 in Appendix show overlapping peaks at -0.9 ppm, -1.4 

ppm and -2 ppm. The two former peaks were compared to peaks in LiBH4-SiO2 to study where 
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the new peaks could be the “fast” lithium ions. Figure 71 shows an example of single pulse Li 

resonance for 30 wt% LiBF4-LiBH4 (blue) at 293 K compared to  30/70 wt% LiBH4-SiO2 

composites at 293 K (red), 303 K (green) and 313 (purple) (left) and spectra of 30 wt% LiBF4-

LiBH4 with increasing temperature (right, top to bottom: 293, 312, 348  and 353 K) on the right. 

 

 
 

Figure 71 Left: Single pulse 7Li resonance of 30 wt% LiBF4- LiBH4 (blue) compared to  30/70 wt% LiBH4-

SiO2 composites at 293 K (red), 303 K (green) and 313 (purple) 

Right: Single pulse 7Li resonance of 30 wt% LiBF4- LiBH4 (blue) with increasing temperature (right, top to 

bottom: 293, 312, 348 and 353 K). 

 

Clearly, lithium resonance for 30 wt% LiBF4-LiBH4 is broader and does not show a peak 

splitting that is characteristic for LiBH4-SiO2 already at room temperature. It can be seen from 

the spectra in Figure 71, that for LiBF4-LiBH4  the type of Li ion motion  is similar to the one of 

“immobile” resonance in the  30/70 wt% LiBF4-SiO2 composite, which is the slow motion 

associated with pure LiBH4. When taking FWHM into consideration both peaks are observed at 

-1.4 ppm. The mobile component in LiBH4-SiO2 was previously observed at -0.68 ppm which is 

likely to be the same trend in LiBF4-LiBH4  where a -0.9 ppm peak is becoming more clear with 

increased temperatures.  However the “fast ions” do not appear as mobile in LiBF4-LiBH4   

compared to LiBF4-SiO2 which are already seen at room temperature. 
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11B NMR 
As it was shown in section 5.2.2, lithium decahydrodecaborate and dodecahydrododecaborate 

are expected to be formed when LiBH4 and LiBF4 react  which is causing changes in the boron 

environment and new peaks are  expected in the boron spectra. 

 

Figure A 3 in Appendix shows 11B high-power decoupling spectra of 30/70 wt% LiBH4-LiBF4 

(blue) compared to 30/70 wt% LiBH4-SiO2 composite (red) at 293 K. A close-up on the spectra 

is shown Figure 72. It should be noted that the broad peak between -70 and 50 ppm, presents in 

all the measurements originates from boron in the rotor walls and not from the samples. 

 

Figure 72 11B High-power decoupling spectra 5 (yellow), 20 (blue), 30 (red), 35 (green) wt% LiBF4-LiBH4 

compared to pure Li2B12H12 (purple) 

  

As it can be seen from the Figure 72, the spectra of 5 and 20 wt% samples are identical and have 

same peaks as LiBH4-SiO2. except for two new peaks at -15.3 ppm and -31.1 ppm. Similarly, for 

LiBF4-LiBH4 above 25 wt% of LiBF4, a new peak appears at -19.3 ppm which is due to 

contribution from pure LiBF4; and a peak at -31.1 ppm that is coming from lithium 

dodecahydrododecaborate.  

 

The unaccounted peak at -15.3 ppm for <20 wt% LiBH4-LiBF4 sample could be the result of 

decomposition of LiBH4 or alternatively coming from new compounds that are formed in the 

reaction between LiBH4 and LiBF4. 

 

There are two suggested mechanisms for decomposition of LiBH4 which depend on the back 

pressure and heating ramp. One includes Li2B12H12 (in some cases has Li2B10H10 been observed) 



 

 

97 

 

as intermediate and the other the formation B2H6. 
106 The final products of decomposition will 

be either lithium decahydrodecaborate or dodecahydrododecaborate depending on temperature 

of decomposition following one of the two reactions: 

 

• At 150◦C ( in presence of 5/2 B2H6):
 

 

𝐿𝑖𝐵𝐻4 →  
13

2
𝐻2 +

1

2
𝐿𝑖2𝐵12𝐻12  

 

• At 200◦C ( in presence of 2 B2H6):
 

 

𝐿𝑖𝐵𝐻4 →  
13

2
𝐻2 +

1

2
𝐿𝑖2𝐵10𝐻10 

 

It is likely that for 5-20 wt%, the peak at -15.3 ppm originates from Li2B12H12 which is seen from 

the XRD measurements by inspecting the areas under the peak for the two components.  

 

From the NMR studies on the boron species, one can conclude that the starting products (LiBH4 

and LiBF4) are identified in the spectra together with the decomposition products of LiBH4 

(lithium decahydrodecaborate or dodecahydrododecaborate). No new compounds containing 

boron are observed and the forth component in the reaction between LiBH4 and LiBF4 is not 

likely a compound containing boron. 

 

1H NMR 

Proton resonance was recorded for the 5 to 35 wt% samples. It should be noted, that the spectra 

in this chapter has not been referenced in the same way as for the spectra of LiBH4-SIO2 in 

Section 5.1.7.1 because of the absence of suitable reference standard. Therefore, the shifts are 

reported relative to the central transition. 

 

For the <25% LiBF4 samples, the major product containing protons is LiBH4, therefore it was 

expected that the spectra of composites would be similar to pure lithium borohydride. Single 

pulse proton spectra of 5-20 wt% LiBF4 - LiBH4 samples was recorded and compared to pure 

LiBH4 at 293 K in Figure 73. 
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Figure 73 Single-pulse proton resonance of LiBH4 (yellow) compared to LiBH4-LiBF4 (blue 5%, red 10%, 

green 15% and purple wt 20% LiBF4) at 293 K 

 

Apart from the main peak, that are similar for all wt%, a new peak can be seen in the spectra of 

the composites especially pronounced in the proton resonance of the 20 wt % LiBF4 samples. 

These peaks at around -4.5 ppm relative to the central transition have been previously attributed 

to hydrogen trapped in solid medium as the result of decomposition of LiBH4
107. As it has been 

pointed out in the previous section, hydrogen and lithium decahydrodecaborate or 

dodecahydrododecaborate are the products of decomposition of LiBH4 and the area under the 

peak -4.5 ppm relative to central transition is increasing as the percent of Li2B12H12 and Li2B10H10 

are increasing thus the new peak is likely coming from hydrogen formed during the 

decomposition process of lithium borohydride. 

 

For the >25 wt% LiBF4 samples, pure lithium borohydride is not among the products and the 

spectra are expected to be dominated by the decomposition products. Figure 74 shows single-

pulse proton resonance in 30 wt% LiBH4-LiBF4 (red) sample compared to 30/70 wt% LiBH4-

SiO2 (blue) composite at room temperature (left) and proton resonance for 30 wt% LiBH4-LiBF4 

sample at 293 K (red), 312 K (green), 348 K (purple) and 353 K (blue).  
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Figure 74 Left: Single-pulse proton resonance of 30 wt% LiBH4-LiBF4 (red) compared to  30/70 wt% 

LiBH4-SiO2 composite (blue) at 293 K. Right: Single-pulse proton resonance of 30wt% LiBH4-LiBF4 

sample at 293 K (red), 312 K (green),  348 K (purple) and 353 K (blue) 

 

It can be seen from Figure 74 that the spectra of LiBH4-LiBF4 is a combination of several peaks 

which are much broader than the central transition in LiBH4-SiO2. For 30 wt% LiBH4-LiBF4  

while the full width at half maximum remain identical, there is an increasing shift with 

temperature  in the central transition.  This indicates that the motion of the protons is not as 

temperature dependent as the motions of the Li ions where a significant line narrowing was 

observed with increasing temperature. 

 

Hydrogen populations in LiBH4-LiBF4 and LiBH4-SiO2 are clearly different which was expected 

as LiBH4 is no longer present after the reaction. Figure 75 is showing proton resonance of 25 

wt% LiBH4-LiBF4 (blue) compared to pure Li2B12H12. 

   

 



 

 

100 

 

 

Figure 75 Single-pulse proton resonance of 25 wt% LiBH4-LiBF4 (blue) compared to pure Li2B12H12  

 

The spectrum for 25 wt% LiBH4-LiBF4 (blue) has clearly a contribution from Li2B12H12 together 

with peaks coming from another compound. This compound is likely to be Li2B10H10 which has a 

similar proton environment. The conclusion of the proton study is that no new proton 

environments apart from the expected products were observed for both <25 and >25 wt% 

samples. 

 

19F 

The spectra of <25% LiBF4 samples was expected to be containing LiF which is the only 

fluorine containing product, however the results of measurements showed that a new compound 

different from LiF and LiBF4 was formed in the reaction. 

 

Figure 76 shows 19F spectra of pure LiBF4 compared to 20 wt% LiBF4 – LiBH4. The spectra 

were referenced against 19F signal of pure LiBF4. Negative intensities in the phasing of LiBF4 – 

LiBH4 composite come from the background in the probe and are not related to the sample. 
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Figure 76 19F spectra of 20 wt% LiBH4-LiBF4 (blue) compared to pure LiBF4 (red) at 293 K 

 

As it can be seen from the Figure 76, the 19F spectra of the composite has a number of 

additional peaks compared to pure LiBF4 which indicates that the environment of 19F nuclei has 

changed after the reaction with LiBH4. The spectrum of composite shows chemical shift 

anisotropy (CSA) which indicates a much less symmetrical environment of 19F nuclei compared 

to isotropic shift in pure LiBF4. The spectra of composite compared to pure LiBF4 and LiF can 

be found in Figure A 4 in the Appendix. From these spectra it can be concluded that the 

composite is clearly different from LiBF4, however a small percentage of LiF cannot be excluded 

due to overlap in peaks. This could be the fourth compound formed in the reaction between 

LiBH4-LiBF4. 

 

For samples above 25 wt% of LiBF4, the spectra look much different than those of lower 

loadings. Figure 77 shows 19F spectrum of 25 wt% LiBH4-LiBF4 compared to spectra of pure LiF 

and LiBF4. It can be seen from the spectra of  the products that both the peaks from LiF and 

LiBF4 are present and this is very different from  the 20 wt% LiBF4 – LiBH4 sample where a new 

compound was formed while only little contribution from LiF was observed. This confirms  the 

assumption that the only fluorine-containing products formed in the reaction  LiBH4 and LiBF4 

with more than 25 wt% of LiBF4 are LiF and LiBF4. 
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Figure 77 19F spectrum for 25 wt%  LiBH4-LiBF4 at 299K ( red) and 240 K (blue) compared to pure LiF 

(purple) and pure LiBF4 (green) 

 

The spectra of the composites at two temperatures shows that there is a shift in central 

transition, which indicate that environment for 19F nuclei has changed. However the overall 

spectra does not show new peaks which was seen for the 20% sample.  

 

The results of the 19F measurements show that a new fluorine compound was formed at lower 

wt% of LiBF4, however it is not possible to say what compound is formed. A DFT study could 

give additional information on the origin of the new compound and the mechanism of the 

reaction between LiBH4 and LiBF4 that appears to be more complicated than originally thought. 

  



 

 

103 

 

 

5.2.4 Conclusions on LiBF4- LiBH4 electrolyte 

In this part of the work, we have studied LiBH4/ LiBF4 mixtures with different loadings of LiBF4 

(5, 15, 10, 20, 25, 30, 35 wt %) to understand the reaction mechanism between the two 

components. The conductivity results show that while 5-20 wt% mixtures are better ionic 

conductors than pure LiBH4, the values are lower than those of LiBH4-SiO2 composites. The 

conductivities of LiBH4-LiBF4 mixtures with higher loadings (>25 wt%) of LiBF4 show 

conductivities lower than pure LiBH4 due to higher content of LiBF4 that has lower ionic 

conductivity. The XRD measurements show that LiBH4 and LiBF4 react instead of forming a 

solid state solution as it was expected similar to lithium hallides s and lithium borohydrides solid  

solutions. At lower loadings of LiBF4, the reaction between LiBH4 and LiBF4 leads to 

decomposition of LiBH4 and formation of decomposition products (lithium 

decahydrodecaborate or dodecahydrododecaborate and likely hydrogen) and LiF, furthermore an 

unknown fluorine compound is formed. This compound appears to have a positive contribution 

to conductivity as a raise in conductivity was observed for these products. For higher loadings 

(>25 wt%), the products show a major contribution from LiBF4 which was expected both from 

XRD and conductivity measurements.  

 

Overall, the compounds obtained from the reaction of LiBH4 withLiBF4  are not as a good 

electrolyte than  LiBH4-SiO2 because of the existence of low conductivity compounds in the 

produtcs.  While lower loadings of LiBH4-LiBF4 exhibit similar ions mobilities than the  LiBH4-

SiO2 composite, the existence  of “fast” Li ions is occurring at higher temperature  which limits 

the applications of LiBH4-LiBF4 . It has not been possible to identified the actual phase bringing 

the conductivity and the measurements were performed on mixtures of several components with 

presumably some non-conductive. Therefore it could be interesting to identify and isolate the 

“good” phase(s) to evaluate their conductivity as pure compound.    
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5.3 Li-S Solid State Battery 

 

Some of the results of battery testing in this chapter have been previously published in Paper I ( 

Lefevr et al, 2018). 97  The sections in chapter provide new and complimentary results that have 

not been published yet.  

5.3.1 Battery Performance 

Charge-discharge curves of a Li-S battery are shown in Figure 78 (Adapted from Lefevr, et al97). 

Slight slopes are observed at charge and discharge plateaus which is different compared to flat 

plateaus of Li-S cells with liquid electrolyte.108 109  This suggest the non-homogeneity of the 

electrochemical reaction, it could illustrates the different reaction steps from S8 to Li2S or 

signifies that is becomes more and more difficult to reach the sulfur particles to perform the 

conversion reaction. The cell has also shown on average an overvoltage of 0.15 V.  

 

Figure 78 Discharge-charge cycles of a Li-S battery between 1 and 3.5 V (Adapted from Lefevr, et al 97). 

The insert shows development of the Coulombic efficiency (CE) as a function of cycle number. The cell 

was cycled at 0.03 C and 328 K 

 

As it can be seen from the figure, the first discharge and charge show larger capacity than the 

theoretical value for sulfur ( 3600 versus 1675 mAh g-1 sulfur), furthermore two voltage plateaus 

are seen (2.3 V and 2.1 V) during the first cycle. The high capacity during initial cycle is 
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consistent with observations of high capacity in Li-S cells using thio-LISICON electrolyte. 

There, it was assumed to originate from the reaction of lithium with the carbon matrix in the 

cathode. 110 Similar behavior was also observed for Li-S cells with LiBH4 nanoconfined in MCM-

41111 and LiBH4-LiI solid-state solutions 112 as solid electrolyte. In the latter case, Li2TiO3 was 

used as cathode active material and therefore we can exclude that a reaction with sulfur may lead 

to this too large cell capacity. 

 

In Figure 78, the capacity reached at the second discharge was around 1500 mAh g-1 sulfur which 

is 90% of the theoretical capacity and 100 times the capacity of Li2TiO3 /LiBH4- LiI-/Li cells 

that were proposed by Sveinsbjornsson.112 35.8 % of the capacity reached during the second 

discharge is found during the firth cycle and on average there is a loss of about 7 % of the 

capacity after each cycle.  

 

During the first ten cycles, the coulombic efficiency is on average of 88.8%. It shows that the 

electrochemical reaction occurring in the cell is reversible and based on voltage plateaus that are 

close to the theoretical values (2.15 V),113 the possibility of non-reversible reactions from the 

second and following cycles can be excluded. The decreasing capacity with cycling is more likely 

to be caused by a loss of contact at the electrolyte and electrode interphase, -because of the large 

volume changes at the cathode (200% from S to Li2S). The cell resistivity is found to increase 

during the cycling. This is described in detail in section 5.3.3 and 5.3.4 below, where the results 

from EIS are discussed.  

 

Li-S batteries with LiBH4-SiO2 electrolytes have been charged to higher voltages and show 

stability at least up to 6V and to see if the electrochemical reaction giving the too high capacity 

could be reversible, which is shown in Figure 79. 



 

 

106 

 

 

 

Figure 79 Charge discharge cycling of a Li-S battery between 1 and 6 V 

 

Recorded cyclic voltammetry of a Li-S battery with 30/70wt% LiBH4-SiO2 is shown in Figure 

80. 

 

 

Figure 80 Cyclic voltammogram of a LiS battery with LiBH4/SiO2 composite 
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Figure 80 shows a Voltammogram recorded of a Li-S battery made with 30-70 wt% LiBH4-SiO2 

electrolyte. Apart from the initial cycle, for second and following cycles of cyclic voltammetry, 

two peaks are observed at cathodic respectively anodic scans: 

• Reduction peak is observed at 1.5 V for the first three cycles and shifting towards 1.6 for 

following cycles. The peaks can be attributed to formation or low order polysulfides 

(L2S2 and L2S) 

• Oxidation peak is observed at 2.4 V which is due to conversion of polysulfides back to 

elemental sulfur and lithium. 

 

While the batteries show good cycling ability, the area of the cathodic peak is larger than the area 

of the anodic peak which is likely due to an increase in internal resistance of the battery during 

cycling which has been previously reported for Li-S batteries.111 

 

5.3.2 Morphology of C+S cathodes 

As it was shown in Figure 78, there is a significant drop in capacity between first and second 

discharge. This drop could be due to following reactions: 

• Reaction between LiBH4 and cathode material (carbon matrix, the reaction between 

LiBH4 and sulfur is unlikely which was discussed in section 5.3.1 ) 

• Formation of a blocking layer on the cathode or anode side due to difficulties of 

converting Li2S to high order polysulfides and to elemental sulfur. 

• Charge transfer resistance i.e the Li transfer form solid electrolyte to sulfur 

 

The possibility of direct reaction between LiBH4 and carbon matrix have been previously 

reported in the literature. 110 The second possibility is the formation of interphases on cathode 

side due to incomplete conversion of lithium sulfide back to elemental sulfur. In order to 

investigate this, we have cycled a Li-S battery and studied the cathode at different stages of 

charge/discharge to see if any changed in structure are observed after cycling. Figure 81 shows a 

sample of a surface of pristine C+S cathode showing uniform coating on the surface and no 

cracking. The sharp particles in the figure to the left are pieces of elemental sulfur. 
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Figure 81. SEM image of a surface of pristine C+S cathode at magnification 50 X (left) and 2140 X 

(right)and showing carbon layer and sharp particles (elemental sulfur) 

 

Figure 82 shows SEM image of a cross section of a pristine C+S cathode on aluminum support. 

The thickness of deposited C+S layer on the support was calculated to be 10 µm. As it can be 

seen from SEM image, the surface of cathode is homogenous. 

 

Figure 82. SEM image of a pristine cathode showing Al support and C+S layer on top 

 

AFM images were taken on the surface of cathode showing large height variations which are 

seen in Figure 83. As it can be seen from Figure 81, the surface shows particles of elemental 

sulfur in range 2-3 microns also seen on the AFM images. 

10µm
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Figure 83 AFM image of C+S cathode surface showing sulfur particles  

 

In order to study the changes in the cathode, a Li-S battery was discharged to 1 V, voltage eat 

which low order polysulfides are formed. SEM images of the cathode of that battery are shown 

in Figure 84. 

 

 

 

Figure 84 SEM image of C+S cathode after initial discharge to 1 V 

 

As it can be seen from Figure 84, after the initial discharge, rhombus-like grain structures with 

size 1-3 µm are formed on the surface of electrode. The EDS showed that the sulfur was 

distributed evenly on the surface, therefor have we decided to perform TEM imaging and 

synchrotron tomography (for further details see section 5.3.7) on the cathode material to study 

shape evolution of the formed structures.  
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TEM imaging was performed on the cathode after first discharge and compared to images of 

pristine cathode material. Obtained TEM micrographs are shown in Figure 85. 

  

Figure 85 TEM images of cathode material: pristine (left) and after 1 cycle (right) 

 

The images show that for the pure carbon and sulfur the domains are in size range 0.3-0.5 nm 

while for the cathode material extracted from the battery after 1st discharge, the size of domains 

were much larger, 2 – 2.5 nm. Furthermore, in the first case the material appears amorphous 

while it looks more crystalline in the second case. We have not been able to identify the formed 

substance for the cycled cathode but it is clear that new compounds were formed. 

 

The method has one major limitation, the sample that is used for TEM sample preparation is 

limited to the amount of particles that can be peeled of pressed cathode. As in a Li-S battery, 

pressure is applied, making it difficult to separate electrolyte from the cathode. It is also difficult 

to separate bulk, unreacted sulfur from the bottom of the layer and interfacial layer where the 

reaction is taking place. 
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5.3.3 Electrochemical Impedance Measurements 

Electrochemical Impedance measurements have been performed on Li-S batteries with LiBH4-

SiO2 electrolyte during charging and discharging. Figure 86 shows the impedance spectra taken 

on a pristine battery (blue) and after the 6 following discharge/charge cycles. The part of the 

spectra to the left of the minimum is the contribution from the solid state electrolyte. While a 

single arc is observed in EIS spectrum, it cannot be excluded that two arcs are overlapping from 

bulk LiBH4 and the interphase between silica and LiBH4. However, if this is the case, it is not 

possible to separate the different contributions from the two conductivities on the basis of EIS 

alone. 

 

 

Figure 86 Impedance spectra of a pristine Li-S battery (blue) and after the 6 first discharge-charge cycles – 

Insert: EIS spectra on the same battery for 14 cycles 

 

The equivalent circuit model that can be used for fitting the spectra of the solid-state Li-S 

batteries is shown in Figure 87: 

 

 

Figure 87 Circuit elements used to model the EIS of the Li-S sold state batteries 
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In the model shown in Figure 87, R1 is a resistor to take into account any wire resistance and 

contact resistance in the circuitry and cells. In principle, R1 is found to be very small, if not 

negligible ( < 1 m). The parallel elements, R2 and CPE1, model the electrolyte as explained 

earlier, while R3, W and CPE2 model the cathode behavior. The CPEs are the constant phase 

element which are used to model the imperfect capacitance of the electrolyte and the double 

layer capacitance in the cathode. R3 would represent the charge transfer at the electrode 

/electrolyte interface and W, the Warburg element, represents finite-length diffusion of lithium 

ions in the cathode. Figure 88 shows selected spectra, every five discharge/charge cycles of a Li-

S battery using the model shown in Figure 87.  

 

 

Figure 88 Every five discharge/charge cycles of a Li-S battery with their fits. 

 

Figure 89 shows the evolution of the values for R2 and R3, i.e. the electrolyte and cathode charge 

transfer resistances respectively, during the cycling of the Li-S battery. The values were obtained 

from the fits of the EIS spectra displayed in Figure 86 using the model shown in Figure 87 

 

  

Figure 89 Evolution of R2 and R3 during cycling. 
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It can be seen from Figure 89 that during the first ten cycles, R2 was found to increase from 1427 

to 2425 Ω. The development of the cell resistivity is nearly linear and is of about +10% between 

the cycles. The electrochemical reaction that is seen during the first discharge and results in the 

double capacity than the theoretical one does not cause any substantial increase in the resistivity 

between the pristine and firstly discharge battery. We can therefore assume that the development 

of a highly resistive passivating cathode interphase, reported for LiBH4-LiI cells, 112 is not 

observed for the LiBH4-SiO2 electrolyte. 

 

The values for R3 are scattered and do not show a clear trend. It illustrates the difficulty to model 

the tail of the EIS data. The average for the first ten cycles, is of 51 k Ω (Figure 89). The large 

value of the transfer resistance R3 which may be due to the poor contact between the electrolyte 

and the sulfur in the cathode but most probably to the poor lithium conductivity in sulfur and in 

the low order polysulfides which is as low as 10-14 Scm-1 for Li2S.114  
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5.3.4 Three Electrode setup 

Impedance measurements in this chapter were carried out by Giovanni Crivellaro, MSc student 

at DTU Energy using a three electrode cell that we developed and first tested together. The 

results of three electrode measurements, performed while cycling a Li-S cell build around the 

LiBH4-SiO2 electrolyte are shown in Figure 90. Equivalent circuits that were used to for the EIS 

measurements are shown in Figure 91. 

 

 

  

 

Figure 90 Development of cathodic and anodic EIS during cycling of a Li-S battery. The data were 

obtained by Giovanni Crivellaro (reprinted from Crivellaro, Master Thesis 2018)104 

 

As shown in Figure 91, impedance of a negative electrode is represented by resistance and 

inductance in series with a constant phase element (CPE) and a Randles element. As for the 

cathode electrode, the equivalent circuit consist of CPE and a Randles element in series with 

Warburg element. 
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Figure 91: Equivalent circuits for impedance fits: negative electrode equivalent circuit (left) and positive 

and total equivalent circuit (right) (reprinted from Crivellaro, Master Thesis 2018)104 

 

While the spectra  of cathodic EIS show two semicircles at low frequency end which is likely due 

to charge transport limitations, the EIS spectra on the anode side show a different behavior – 

only one semicircle is seen showing inductive behavior. This is proving the assumption that the 

charge transport limitations in our Li-S battery are coming from the cathode side as it is the 

cathodic resistivity that gives a major contribution to the overall resistivity of the cell. As it was 

discussed earlier, observed cathodic resistivity is likely arising from transport limitations between 

solid-state electrolyte and sulfur. 

 

Figure 92 and Figure 93 shows development of resistance on the anode and cathode side 

respectively. It can be seen from Figure 93 that the value for charge transfer resistance on eh 

cathode side, R2, is varying greatly during cycling and it correspond closely with the values 

obtained for total resistivity of the cell. 

 

 

Figure 92: Red: (R1A) Resistance of the electrolyte anode side. Green: (R1) Resistance of the electrolyte 

cathode side. Blue: (R1A+R1) simple addition of Red and Green. Yellow: resistance from the full cell. 

(reprinter from Crivellaro, Master Thesis 2018)104 
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Figure 93: Green: (R2) Charge transfer resistance in the cathode. Blue: (R1+R2) Charge transfer resistance 

in the cathode (reprinted from Crivellaro, Master Thesis 2018)104 

 

The changes in charge transfer resistance between charged and discharged state Figure 93 can be 

explained as while in the charged state, sulfur is formed on the cathode side and due to charge 

transfer resistance (Li+ transfer form solid-state electrolyte to sulfur) the overall resistivity is high. 

As for the discharged state, sulfur is reduced to Li2S thus charge transfer resistance. 

 

The conclusion of the three-electrode study is that the values of charge transfer resistance of the 

cathode side dominate total resistivity of the cell. This result is in good agreement with the EIS 

data that was discussed in the previous section. It was possible with help of three-electrode setup 

to attribute high values of charge transfer resistance to Li+ transfer form electrolyte to sulfur 

which is observed in charged state for lithium-sulfur cells.  
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5.3.5 LIPON coating for cathode protection 

As it was previously shown in this chapter, the larger capacity at first cycle which was shown in 

Figure 78 is indicating that a reaction is occurring between electrolyte an cathode material. 

Therefore we have decided to protect carbon and sulfur by depositing a layer of a Li ion 

conductor on top of C+S to avoid direct reaction. We have chosen to use Lipon as was 

previously studied as a suitable material for batteries, 95 and due to its low electronic conductivity 

(~ 810-14 Sm-1)115 and acceptable Li ion conductivity (~ 1.210-6 Sm-1). 115 Lipon thin films with 

different thickness (10, 500, 1000, 1400 nm) were deposited on surface of C+S cathodes using 

RF magnetron sputtering. Figure 94 shows SEM images of Lipon coated cathodes with layer 

thickness stated above. 

 

 
a) 10 nm Lipon coating 

 

 
b) 500 nm Lipon coating 

 

 
c) 1000 nm Lipon coating 

 

 
d) 1400 nm Lipon coating 

Figure 94 SEM micrograph of Lipon-coated cathodes with various thickness of Lipon layer 

 

As it can be seen from Figure 94, the coating of the surface of carbon and sulfur on the  

cathodes is uniform for the 1000 and 1400 nm thin films, while for 10 and 500 nm the coating is 
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not uniform and is showing cracking, which is especially obvious for the 10 nm coated sample 

where non-coated support areas are observed in between of cracks.  Figure 96 

 

Figure 95 shows a lower magnification SEM image of a larger area of surface of a 10 nm thick 

Lipon coating where cracks and uncoated surface can be seen. Poor adhesion of the thin film 

and carbon and sulfur to the surface of current collector can results in peeling of the active 

material from electrode, bad contact to current collector and as a result poor and unstable 

performance of a battery. 

 

 

Figure 95 Surface of a 10 nm coated lipon thin film deposited on a C+S cathode 

 

Cycling of Li-S batteries was performed using Lipon thin films with thickness stated above. 

While Li-S batteries with 10 and 500 nm thick Lipon layer had bad cycling capacities most likely 

due to bad contact between sulfur and electrolyte, the Li-S battery with 1400 nm thick coating 

showed no capacity at all which is likely because the Lipon layer is too thick and is a poor 

conductor due to thickness. The battery with a 1000 nm coating had a good cycling performance 

and its charge-discharge curves are shown in Figure 96. 
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Figure 96 Discharge-charge cycles of a LiS battery with 1µm Lipon coated C+S cathode  

(Adapted from Lefevt, el al, 2018 116) 

 

It can be seen from Figure 96, that no decrease in capacity after first and second discharge that is 

observed for a reference a Li-S battery with non-coated cathode which is shown in Figure 97.  

 

 

Figure 97 Discharge-charge cycles of a reference Li-S battery with C+S cathode  

(Adapted from Lefevt, el al, 2018 116) 
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The charge-discharge cycles in Figure 96 exhibit curved slopes compared to sharper lines in 

Figure 97, which can be explained with that a distribution of polysulfide species is present in the 

Lipon coated battery which means that the transition from one discharge plateau to another one 

will be smoothed. Lower voltage for a Li-S battery compared to a non-coated battery seen in 

Figure 78 can be explained with ohmic drop to the Lipon layer that was calculated to be 5-6 mV. 

 

Figure 98 Impedance spectra shows impedance spectra of a fresh Li-S battery with a 1µm Lipon 

coating (on the left) and a non-coated C+S cathode before first discharge (on the right). 

  

Figure 98 Impedance spectra of a fresh Li-S battery with a 1µm Lipon coathed C+S cathode (left) and non-

coated C+S cathode (right) 

 

As it can be seen in Figure 98 Impedance spectra the resistivity of a Lipon coated cathode is 

much higher (6 kΩ) compared to resistivity of a battery with non-coated cathode (1,4 kΩ) which 

is likely due to bad contact between sulfur particles and electrolyte. Some noise can be seen in 

impedance spectra which are likely due to the instrumental contribution as the equipment is 

working at frequency of 50 Hz which is causing noise. Furthermore, the presence of two arcs 

can be seen from the spectra of battery with coated which indicates the presence of two 

characteristic frequency intervals, however the two arcs are not well-resolved in impedance 

spectrum. 

 

Characterization of Lipon layer was performed on a cycled Li-S battery to see whether the high 

resistance of a Lipon thin film was mechanical problems, such as cracking of a film when the 

pressure was applied to the cell, or by degradation process, either by exposure to gases in the 

glovebox or during the operation of the cell. 
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Figure 99 SEM micrograph of 1 µm Lipon-coated cathodes showing growth of bubble-like structues 

 

As it can be seen from Figure 99, the surface of Lipon coating in a cycled battery is uniform 

(left), however after a short time after initial images are taken, surface of thin film becomes 

uneven with bubble-like objects growing on the surface. This effect is likely due to 

decomposition of Lipon thin film in the electron beam. 

 

 

5.3.6 XRS Measurements 

In order to study the possible reaction between the electrolyte and lithium metal  XRS 

Measurements have been performed on pristine LiBH4-MCM 41 solid electrolyte and a cycled 

pellet used during EIS measurement in a symmetric Li|SE|Li cell. MCM-41 is a mesoporous 

silica scaffold giving the similar increased in conductivity as SiO2 aerogel. Figure 100 compares 

the edges of Li, Si, B and O for the pristine (above) and cycled (below) pellets. The “pellet 

edges” are the two sides of the pellet which were in contact with Li. The percentage on the plots 

refers to the degree of pores filling of the mesoporous MCM-41. 100 % means that the LiBH4 

volume use to prepare the electrolyte should filled up all the pores of the scaffold while 50 % 

means that half of the volume of the pores should be filled. In the latter case it is expected that 

the ratio of interfacial layer to bulk LiBH4 is higher. The plot labelled as “mixture” is for a 

sample where the LiBH4 and SIO2 were just hand mixed, not ball-milled or melt infiltrated. The 

cycled pellet was made from the 100 % pore filling powder.  
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Figure 100 XRS measurements on LiBH4-MCM 41 pristine (above) and cycled (below) pellets 

 

While no major changes are observed in O and Si edges, which was expected as no oxidation is 

taking place, XRS Measurements show changes in lithium and boron edge. As for the changes in 

lithium edge, these are indicating significant difference in structure between composites and pure 

LiBH4. While one peak is seen for pure LiBH4, at least two peaks are observed for composites 

which supports the idea of several populations from NMR measurements.  

 

For boron edge, the differences are clear between different loadings of LiBH4 and furthermore 

within different parts of a pellet. New peaks are observed which is likely due to a reaction 

between sulfur and LiBH4 that can results in formation of Li2S, Li2B12H12 and Li3BS2  and gases 

such as H2, B2H6 and H2S. 117 Formation of H2 was also detected with Raman spectroscopy and 

NMR which indicates that a direct reaction is possible. In order to eliminate the possibility of the 

reaction, Lipon coating can be performed. 

 

As for the sulfur edge, no changes were observed before and after cycling. X-Ray Raman 

measurements carried out at Elletra Synchrotrone showed no changes on sulfur egde as well. 

These could be explained by that the reaction is taking place in the very center of pellet while the 

measurement is performed at the edges of the pellet where no reaction is taking place. 
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The conclusion of the XRS study is that before and after cycling, no new compounds are formed 

meaning that the battery is stable under operation. At the same time, change in boron edge are 

indicating that there is a possibility of direct reaction between sulfur and LiBH4 which can be  

avoided by means of cathode coating. 

 

5.3.7 Microtomography 

There is evidence of growing particle size and sulfur agglomeration in li-s liquid electrolyte 

systems118 which could be occurring in li-s systems with solid electrolyte as well as suggested by 

SEM image performed on the cathode material after discharge where Li2S is expected to be 

formed (see Section 5.3.2). Depletion of sulfur in certain areas of the cathode has also been 

observed for liquid systems which could be causing decreased capacity during cycling of solid li-s 

batteries as well.  

 

In order to study changes in sulfur distribution in cathode material during charging and 

discharging, X-Ray Microtomography has been performed on cycled batteries at different stages 

of charge. Microtomography of a capillary battery after initial discharge packed in quartz 

capillaries with outer diameter of 0.5-1 mm was performed using high precision rotation stage 

setup. Obtained images, raw and processed, are shown in Figure 101. 

 

 

Figure 101 Tomograms of a capillary LiS cells obtained from P05 beamline 

 

As it can be seen from Figure 101 to the left, the raw data that has been collected from the 

tomography beamline is superimposed by strong artifacts rings. These are common in analysis of 

tomographic images and arise from defects and non-uniformity of CCD camera pixels and 
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defects or impurities in the scintillator screen. While a common way to reduce ring artifacts in 

flatfield correction119 where background images without sample are taken at regular intervals 

before and after data acquisition with a sample was performed. 

 

Due to shortage of time for beamtime measurements, no flatfield correction was performed for 

the Li-S capillaries, for that reason ring artifacts had to be removed by filtering data. This is done 

by analyzing sonograms of measured data and studying sum values of gray color in each column. 

The results of filtering raw data are shown in Figure 101 to the right.  As it can be seen from the 

processed image, the removal of rings leads to creation of secondary rings (although less 

pronounced) and loss of data quality as filtering removes intensity of signal in the areas without 

rings which can be seen by comparing .  

 

The data obtained from processed images were then used to study distribution of sulfur in a Li-S 

battery by comparing images at different stages of charge/discharge process. As it was shown in 

Section 5.3.2, SEM images of batteries discharged to 1V reveal formation of grains (1-3 µm) 

which could be short-chain polysulfides such as Li2S which should be present at this stage of 

discharge. 

 

Contract enhancement was performed on the obtained images to distinguish between the two 

phases and the results are shown in Figure 102 where a randomly cropped slice of capillary 

battery with 30/70 wt% LiBH4-SiO2 electrolyte is seen without (left) and with enhanced contract 

between phases. 
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Figure 102 Tomographic image of a slice of a capillary (left) without and with enhanced contract (right) 

 

As it can be seen from Figure 102 on the left, the contrast contrast between silica particles and 

sulfur is very low as difference between silicon and sulfur’s attenuation coefficientss (ratios of 

atomic number-to-mass, Z/A are 0.49848 for silicon and 0,49897 for sulfur)120 is small which 

makes it difficul to see the formation of sulfur in solid electroyte.  

 

Figure 103 shows the reconstruction of a tomography as a lateral cut of a Li-S capillary. For this 

reconstruction, the images without enhanced correction were used. The colors were assigned to 

the image on the basis of color intensity which was assigned colors from green to yellow, orange 

and red. The red polygon that can be seen in the left part of the image is the steel rod serving as 

current collector.  

 

 

Figure 103 Latetal reconstruction of the tomography in 2D 

 

It can be seen from Figure 103, that heavier particles (shown in red) are found along the 

capillary, however large agglomerations of the particles is around the electrode (red polygon) 

which could be indicating that a process similar to the one observed in liquid li-s is occurring in 

solid state as well. Figure 104 shows a 3D reconstruction of three areas in the electrolyte: center 

of the battery (left below), interface between electrolyte and C+S layer (right top) and C+S layer 

(right below). 
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Figure 104 3D Reconstructions of areas in the middle of solid electrolyte (left), carbon and sulfur powder 

as cathode (right bottom) and interface between solid electrolyte and cathode material (right top) 

 

As it can be seen from the reconstruction, the distribution of sulfur is homogeneous as sulfur 

particles are well-dispersed in the electrolyte and in the C+S layer.  

 

In order to see a more precision distribution of larger particles which could be the formed Li2S 

during discharge, the reconstruction of images with increased contrast showing particles with 

highest density than LiBH4 that is made transparent was performed and the result of 

consonstruction of images in a capillary is shown in Figure 105. 

 

 

Figure 105 Reconstruction of a section (Adapted from Lefevt, el al, 2018 116) 

1 pixel = 1 m 
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As it can be seen from Figure 105, there are particles in the top part of the capillary, however it is 

difficult to say whether the particles are sulfur species formed that were seen om SEM images of 

a discharged battery or it larger pieces of sulfur mixed with electrolyte, it is also possible that the 

particles are the quarts pieces peeling off from the sides of the capaillary due to scratching sides 

with steel current collectors during preparation process. 

 

The limitation of the measurement is that the recorded spectra do not correspond directly to 

refractive indexes of the compounds, which would allow direct identification of compounds in 

the capillary. In order to make identification from the homographs obtained in this work, it is 

required to know densities of all intermediate species in the reaction: 

S8-Li2S8-Li2S6-Li2S4- Li2S2- Li2S 

 

As the intermediate species are not commercially available and only exist during charging and 

discharging of a battery, furthermore, the difference in weight which makes identification of 

sulfur species a difficult task.  

 

The conclusion that can be drawn from analyzing obtained homographs is that the formation of 

particles in the electrolyte is uniform, however  X-Ray tomography with resolution in micron-

range cannot give additional information to what already is known from electrochemical 

measurements and SEM imaging and other technique should be applied. 

 

5.3.8 Conclusions on Li-S batteries with LiBH4-SiO2 electrolyte 

All-solid-state lithium-sulfur batteries build around LiBH4-SiO2 solid-state electrolyte have been 

tested in this work. Batteries show high specific capacity and high capacity retention during 

cycling however at slow charge-discharge rates. The initial discharge-charge cycle of these Li-S 

batteries gave capacities almost the double of the theoretical ones due to a side reaction. This 

electrochemical side reaction is only partially reversible at the charging voltage used herein; a 

small overcapacity was also seen during the first charge. The side reaction must originate from a 

reaction at the cathode side as lithium has proven to be stable against LiBH4-SiO2 solid-state 

electrolyte, therefore this reaction most likely is due to an interaction of the solid-electrolyte with 

the carbon matrix.  
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In order to protect cathodes from a side reaction, cathodes have been coated with a LIPON 

layer. Li-S batteries with coated cathodes did not exhibit this first high discharge capacity and 

furthermore better capacity retention upon cycling where achieve than for the Li-S batteries with 

non-coated cathodes. These results prove that it is possible to protect the cathode from parasitic 

reactions with the solid-state electrolyte by depositing a nanometer thick thin film on its surface. 

 

Impedance measurements were performed on Li-S batteries and obtained spectra no evidence of 

formation of highly resistive passivating interphases on the cathode side which has been reported 

for LiBH4-LiI cells. 112 The overall increase of cell resistivity is likely due to poor contact between 

sulfur and solid state electrolyte. Apart from bad contact, the reasons for increased resistivity 

could be low conductivity of the low order polysulfides that is as low as 10-14 Scm-1 (for Li2S)114 

and charge transfer resistance between solid electrolyte and sulfur on the cathode side. This 

shows importance of surface engineering for lithium-sulfur cells.  

 

We have performed X-Ray diffraction, Raman and X-Ray tomography imaging to probe the 

formation of lithium polysulfides during discharging of the cells. It has not been possible to 

extract quantitative information from the microtomographs since the contrast is too low 

between the different species. However, the results show that the growth of particles was 

uniform in the cell, which means that the sulfur material was utilized uniformly and efficiently in 

the cell. No changes were observed in sulfur edge in X-Ray Raman measurements during 

discharging of the cell which is due to limited penetration depth of the X-Ray beam which 

resulted in probing of side of cathode far from the electrolyte. As the cells that were prepared for 

synchrotron measurements are not pressed as we otherwise did for Li-S batteries, it is difficult to 

achieve good contact between sulfur and solid state electrolyte. 
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Chapter 6  

Conclusions and Outlook  

6.1 Conclusions 

The main purpose of the present thesis was to investigate the possibility of improving 

performance of all solid-state Li-S batteries by using novel all-solid-state electrolytes based on 

LiBH4. Ballmilled LiBH4-SiO2 composites, various ratios of silica aerogel and LiBH4-LiBF4 were 

tested in all-solid state batteries. Furthermore the mobility of Li ions was investigated by 

techniques, such as impedance spectroscopy, Raman spectroscopy and NMR. As Li-S batteries 

show higher capacities than the theoretical ones at first discharge/charge cycle, the possibility of 

protecting cathode layer by magnetron sputtering with Lipon thin film of various thickness (10, 

500, 1000 and 1400 nm) was investigated in solid-state lithium sulfur batteries.  

 

Prepared LiBH4-SiO2 composites have higher Li + conductivities compared to pure LiBH4 at 

room temperature (10-4 S/cm-1 and 10-4 S/cm-1 and respectively). XRD measurements did not 

show any evidence of formation of new phases, however NMR and Raman measurements 

showed that the behavior of LiBH4-SiO2 composites is clearly different from pure LiBH4.  
7Li 

NMR showed formation of an interphase between silica and borohydride which is likely 

originating from a reaction between LiBH4 and silanol groups present on the surface of silica 

particles.     

 

The LiBH4 - LiBF4 composites with low loading of LiBF4 show higher conductivities than pure 

LiBH4 which is likely due to a formation of solid solution with LiBF4. For the higher LiBF4 

loadings, lower conductivities are seen which is likely to decomposition of LiBH4. 

 

All-solid-state lithium-sulfur batteries using LiBH4-SiO2 electrode have been successfully built 

and cycled. Batteries had coulombic efficiency of about 88.7%, with average capacity loss of 

around 7% after first 10 cycles. It was shown by using a three electrode setup that the increase of 

total resistivity of the cell was not due to formation of highly resistive interphase between 
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cathode and solid-state electrolyte but due to poor contract between cathode and electrolyte. 

Most likely there is a contribution from low conducting low order polysulfides that accounts for 

increase in total resistivity of the cell.  

 

As lithium-sulfur cells showed higher capacities than the theoretical ones at first 

discharge/charge cycle, which is likely to due to a reaction between LiBH4 and carbon matrix, we 

have investigate the possibility to protect cathode material with Lipon thin films. Li-S batteries 

with Lipon protected cathodes show better capacity retention during cycling compared to 

batteries with non-coated cathodes, furthermore they exhibit no overcapacities at first 

discharge/charge cycle. These results show the importance of surface treatment for improved 

performance of lithium-sulfur batteries. 

 

6.2 Outlook 

In the recent decades, much research has been focused on solid electrolytes as these are safer 

alternatives to liquid Li-ion batteries. Lithium borohydride is a promising material for battery 

storage and conductivity of LiBH4 could be improved by mixing with silica oxide and LiBF4 

which both introduce defects in LiBH4 crystal lattice and thus introducing a new pathway for Li 

ion diffusion.  

 

To improve conductivity of electrolyte, drying silica at higher temperature (up to 463 K) can be 

recommended as silica drying at higher temperatures gives highest state of hydroxylation and 

removes H2O monolayer from the surface of silica which will allow silanol groups to react with 

LiBH4 and form a highly mobile layer accounting for high Li ion conductivity. There are a 

number of metal oxides with surface hydroxyl groups that can be used for mixing with LiBH4 in 

a similar way that was performed with SiO2 in this work, e.g. ZnO, TiO2, Al2O3, to achieve 

increased conductivity at room temperature.  

 

To improve the performance of cathode, the use of techniques to study interfaces that could 

help to identify whether the formation of species follows the same steps as in LiS batteries with 

liquid electrolyte. Development of methods that allow studying what intermediate species are 

formed during charge and discharge process, as there is evidence of formation of various 

intermediate products in the literature. XANES could be a good technique to continue with 

research on polysulfides. Another technique that could give valuable results is XPS which was 

used by other research groups for characterization of liquid-based Li-S systems. 
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Furthermore, the origins of decreased capacity can be investigated in more detail to gain 

knowledge on how to protect cathode from a reaction that is likely to take place during first 

charge and discharge. As the batteries require pressure in order to work, it is difficult to 

investigate the role of interfaces, however there is evidence of a reaction during first charge-

discharge cycle which could be eliminated by coating of cathode by a suitable thin film. 

 

As for the cathodic protection, same method of deposition is required in order to have 

reproducible battery tests. Pressure could be another issue as it is difficult to control it once in 

the cell.  Protection of cathode could help to decrease loss of capacity during cycling and this can 

be seen as a major issue that needs to be addressed before Li-S technology can be 

commercialized. A way to improve contact could by polishing or pressing the surface of the 

cathode in order to reduce particle size of sulfur particles that are large and could be the reason 

behind bad contact of electrolyte and cathode. 
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Appendix 

 

D7=10 ms RT 293 K 

 

D7=50 ms RT 293 K 

 

 

D7 = 200 ms RT 293 K 

 

D7 = 20 ms RT 341 K 

Figure A 1 2-D EXSY spectra of 7Li for 30/70 wt% LiBH4-SiO2 
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Figure A 2: Single pulse 7Li resonance of 30 (red) and 35  (blue) wt% LiBF4- LiBH4 



 

 

143 

 

 

Figure A 3 11B High-power decoupling spectra 5 (yellow), 20 (blue), 30 (red), 35 (green) wt% LiBF4-

LiBH4 compared to pure Li2B12H12 (purple) 
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Figure A 4 19 F spectra of 80/20 wt% LiBH4-LiBF4 (green) compared to pure LiBF4 (red) and pure LiF 

(blue) at 293 K 


