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ABSTRACT
Gaze may be a good alternative input modality for people with
limited hand mobility. This accessible control based on eye tracking
can be implemented into telepresence robots, which are widely
used to promote remote social interaction and providing the feeling
of presence. This extended abstract introduces a Ph.D. research
project, which takes a two-phase approach towards investigating
gaze-controlled telepresence robots. A system supporting gaze-
controlled telepresence has been implemented. However, our cur-
rent findings indicate that there were still serious challenges with
regard to gaze-based driving. Potential improvements are discussed,
and plans for future study are also presented.
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1 INTRODUCTION
Telepresence robots have become useful communication tools for
people who are physically prevented from participating in events
[Neustaedter et al. 2016]. According to [World Health Organiza-
tion 2011], more than 190 million individuals are suffering from
severe disabilities. Efficient social communication may be extremely
difficult and frustrating for some of them due to motor control dif-
ficulties. Enabling accessible control of telepresence robots may
bring new possibilities and potential benefits to them. Telerobots
are typically controlled with hands, but a few previous studies have
also demonstrated accessible hands-free control methods based on
speech [Tsui et al. 2013], brain activity [Leeb et al. 2015], and gaze
[Tall et al. 2009].
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2 PROBLEM STATEMENTS AND OBJECTIVES
The goal of our project is to develop a hands-free telepresence
control method, which is simple, and easy to use for people who
can onlymove their eyes, in order to improve their social interaction
and quality of communication [Zhang et al. 2019]. Gaze can be used
as accessible control method of telepresence robots for people with
profound motor deficits. However, it needs to be explored how this
control may influence users, and how to improve it.

In the first phase of our research, studies have been conducted
based on our gaze-controlled telepresence system[Hansen et al.
2018]. Observation in a pilot study [Zhang et al. 2018] suggested
that users were impacted by task complexity on their performance,
situation awareness (SA), and subjective experience rating, when
driving a gaze-controlled telerobot with gaze control.

3 APPROACH
We then aimed to evaluate the effectiveness and the challenges of
the gaze control in an experimental comparison. We hypothesized
that there were differences in users’ SA, presence, performance,
workload, and subjective experience between a control condition
with gaze and a control condition with hands, when wearing a
virtual reality head-mounted display (VR HMD) A within-subjects
design was used in the experiment with a total of 16 able-bodied
participants. The test subjects were sitting in a remote control room.
The HMD (FOVE) and a joystick (Microsoft Xbox 360 Controller)
were connected with a computer with Unity. The computer was
connected to the telerobot via a wireless network. In the driving
room, a telerobot carried a 360◦ camera,and a microphone. The
camera was 1.3 m above the floor. Five ultra-sound receivers were
mounted on the wall and a transmitter placed on top of the telerobot
to track its position with an accuracy of approximately 1 cm. Plastic
sticks on the floor were used to mark up the maze track that covered
an area of 5 x 4m. Three sheets of A4 paper with a pie-chart hung
on the wall to show how far the robot had driven at that position.

Each participant used gaze and hand control to navigate through
two mazes with both control methods. In total four different mazes
with a layout that were of similar length and complexity was used
for the experiment. The order by which participants were exposed
to each maze was counterbalanced.In total, 64 trials was conducted.
There were two groups of independent variables: input method
(gaze control & hand control), and order of trials with the same
method (Trial 1 & Trial 2). Dependent Variables included the partic-
ipants’ SA, presence, workload, performance, post-trial estimation
and recollection, self-assessment, and experience with the control
methods.

The main task was to navigate the telerobot through a maze. Half
of the participants did the first two trials using gaze control, and
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half of them did the first two trails using joystick control. Before
each gaze trial, a gaze calibration procedure for the headset was
conducted. The experimenter observed their operation via an LCD
display. When the telerobot passed certain areas in the maze or
when a maneuver, e.g. a turn, had been done, a query pop-up in
the control display was prompted by the experimenter. When the
participants had given a verbal response, their response time was
recorded in the system. In the remote driving room, a person was
standing at three different positions during the trials. When the
telerobot passed by, this person faced the camera and talked to
the participants via the telerobot, providing information related
to the remote environment. Log data from Unity and the teler-
obot, participants’ response to questionnaires and pop-up queries
were collected. At the end of the experiment, the participants were
interviewed.

4 PRELIMINARY RESULTS
Our main observation was that telepresence robots could be con-
trolled by gaze. All the participants were able to finish the trials
using gaze control. However, our results also suggested that there
are still serious challenges for users of gaze control. When com-
paring gaze control with hand control, statistical analysis with
two-way ANOVAs showed that participants had similar experience
of presence and self-assessment, but gaze control was 31% slower
than hand control. Gaze-controlled robots had more collisions and
higher deviations from optimal paths. Moreover, with gaze control,
participants reported a higher workload, a reduced feeling of dom-
inance, and their situation awareness was significantly degraded.
The accuracy of their post-trial reproduction of the maze layout
and the trial duration were also significantly lower. These aspects
were is of great importance to human-robot interaction [Steinfeld
et al. 2006].

5 PLANS FOR FUTUREWORK
Addressing the challenges, more features can be added to the system,
e.g. collision avoidance and an interface map view. The interface
for gaze control also needs to be improved to allow for more free ex-
amination of the environment without moving the telerobot at the
same time. Most importantly, novice users need more practice with
the gaze-controlled telerobots, in order to master this unfamiliar
control method. Besides practices with the robots in real scenarios,
training of gaze control in simulation-based environments (e.g. VR
environments) might be a potential solution. VR provides totally
immersive environments and is widely used in training for real task
scenarios, e.g. with mining [Tichon and Burgess-Limerick 2011], for
medical skill training [Izard and Méndez 2016; Reznek et al. 2002],
and skill training for people with intellectual disabilities [Brown
et al. 2016].

In the next phase of our plan, we aim to investigate potential
impacts of gaze-control training in VR. A VR simulation environ-
ment (cf. Figure 1) has been build for practice with a virtual gaze-
controlled telerobots. A between-group design with 32 participants
is planned in our forthcoming study. We hypothesize that users
who are tested in a real driving scenario show no difference in their
performance, situation awareness and workload, between having
been trained with the telerobot in a real driving task and having

Figure 1: Control panels for teleoperation in a VR training
environment (left) and in a real scenario (right). The small
pinks circles show the gaze course. In the drivingmode, gaze
movements are mapped to the virtual (left) or real (right)
robot’s movements. The live streams show the view of the
telerobots.

been trained with a virtual telerobot in VR. There will be two groups
of independent variables: training types (virtual robot in VR real
robot in reality), training environments (same or different as the
layout tested in). Dependent variables include the participants’ SA,
workload, performance, eye behaviour, post-trial estimation and
recollection, self-assessment, and subjective experience with the
control methods.

The test person will be seated in the lab and wearing a FOVE
headset. The test person is then introduced to the devices and task:
to remotely drive a gaze-controlled robot around an obstacle course,
interacting with a live person, and reaching to the track goal. After
this first assessment, the test person will be given training in VR
or in reality for five trials. After the five training sessions, the test
person is asked to do a remotely real driving of the gaze-controlled
robot again. During the first and last driving task, SA queries and
saccade test appear as pop-ups. When finishing the experiment,
there will be an interview.

The main test is to navigate the telerobot through a maze in a
lab twice. In between, each participant has will be given the same
number of training trials.

There will be four training conditions, given to eight participants
each: they are same layout in VR as the final test layout, a different
layout in VR from the final test layout, same layout in reality, and
a different layout in reality. In the driving room, a person will
introduce himself to the participants and inform them on thier next
task via the telerobot.

ACKNOWLEDGMENTS
We would like to thank the China Scholarship Council, and the
Danish Bevica Foundation for financial supports of this work.



Accessible Control of Telepresence Robots based on Eye Tracking ETRA ’19, June 25–28, 2019, Denver, CO, USA

REFERENCES
Ross Brown, Laurianne Sitbon, Lauren Fell, Stewart Koplick, Chris Beaumont, and

Margot Brereton. 2016. Design insights into embedding virtual reality content into
life skills training for people with intellectual disability. In Proceedings of the 28th
Australian Conference on Computer-Human Interaction. ACM, 581–585.

John Paulin Hansen, Alexandre Alapetite, Martin Thomsen, Zhongyu Wang, Katsumi
Minakata, and Guangtao Zhang. 2018. Head and gaze control of a telepresence
robot with an HMD. In Proceedings of the 2018 ACM Symposium on Eye Tracking
Research & Applications. ACM, Article 82.

Santiago González Izard and Juan Antonio Juanes Méndez. 2016. Virtual reality
medical training system. In Proceedings of the Fourth International Conference on
Technological Ecosystems for Enhancing Multiculturality. ACM, 479–485.

Robert Leeb, Luca Tonin, Martin Rohm, Lorenzo Desideri, Tom Carlson, and José del R
Millán. 2015. Towards independence: a BCI telepresence robot for people with
severe motor disabilities. Proc. IEEE 103, 6 (2015), 969–982.

Carman Neustaedter, Gina Venolia, Jason Procyk, and Daniel Hawkins. 2016. To Beam
or not to Beam: A study of remote telepresence attendance at an academic confer-
ence. In Proceedings of the 19th acm conference on computer-supported cooperative
work & social computing. ACM, 418–431.

Martin Reznek, Phillip Harter, and Thomas Krummel. 2002. Virtual reality and simula-
tion: training the future emergency physician. Academic Emergency Medicine 9, 1
(2002), 78–87.

Aaron Steinfeld, Terrence Fong, David Kaber, Michael Lewis, Jean Scholtz, Alan Schultz,
and Michael Goodrich. 2006. Common metrics for human-robot interaction. In
Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot interaction.
ACM, 33–40.

Martin Tall, Alexandre Alapetite, Javier San Agustin, Henrik HT Skovsgaard,
John Paulin Hansen, Dan Witzner Hansen, and Emilie Møllenbach. 2009. Gaze-
controlled driving. In CHI’09 Extended Abstracts on Human Factors in Computing
Systems. ACM, 4387–4392.

Jennifer Tichon and Robin Burgess-Limerick. 2011. A review of virtual reality as a
medium for safety related training in mining. Journal of Health & Safety Research
& Practice 3, 1 (2011), 33–40.

Katherine M Tsui, Kelsey Flynn, Amelia McHugh, Holly A Yanco, and David Kontak.
2013. Designing speech-based interfaces for telepresence robots for people with
disabilities. In Rehabilitation Robotics (ICORR), 2013 IEEE International Conference
on. IEEE, 1–8.

World Health Organization. 2011. World report on disability. Geneva: WHO (2011).
Guangtao Zhang, John Paulin Hansen, Katsumi Minakata, Alexandre Alapetite, and

Zhongyu Wang. 2019. Eye-Gaze-Controlled Telepresence Robots for People with
Motor Disabilities. In 2019 14th ACM/IEEE International Conference on Human-Robot
Interaction (HRI). IEEE, 574–575.

Guangtao Zhang, Katsumi Minakata, Alexandre Alapetite, Zhongyu Wang, Martin
Thomsen, and John Paulin Hansen. 2018. Impact of task complexity on driving a
gaze-controlled telerobot. In Abstracts of the Scandinavian Workshop on Applied
Eye Tracking (SWAET 2018) (Journal of Eye Movement Research), Daniel Barratt,
Raymond Bertram, and Marcus Nyström (Eds.), Vol. 11. Frederiksberg, Denmark,
30.


	Abstract
	1 Introduction
	2 Problem Statements and Objectives
	3 Approach
	4 Preliminary Results
	5 Plans for Future work
	Acknowledgments
	References

