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Abstract

Designing a public transport timetable that maximizes passenger service, measured in weighted travel time,
is an intricate problem. The weighted travel time depends on the free route choice of passengers. Passenger
route choice depends on the timetable. In turn, the timetable that minimizes weighted travel time depends
on the route choice of passengers – and therefore requires passenger route choice information. Consequently, a
sequential approach where timetables are designed provided pre-fixed passenger assignment to routes, may not
find the optimal timetable.

This paper aims to integrate passenger route choice and timetabling. It addresses the problem of designing
maximal passenger service public transport timetables in systems with free route choice within a budget for
operating costs. Operating costs are defined by the minimal cost vehicle schedule required to operate the
timetable.

The proposed methodology integrates a matheuristic for timetabling and vehicle scheduling with a passenger
assignment model in an iterative framework, where different forms of integration are evaluated. Focus is on
long to medium term timetabling, provided an initial timetable. Results for a realistic case study in the
Greater Copenhagen area indicate that our approach consistently leads, at no additional cost, to timetables
that represent a reduction in passenger weighted travel time in comparison to both an initial timetable and a
non-integrated timetabling method that receives a single passenger assignment as input.

Keywords: Public Transport Bus Timetabling Passenger Route Choice Mixed Integer Linear Programming
Matheuristic

1 Introduction

Timetabling consists of assigning specific points in time to a set of events. In bus timetabling, this set of events
follows from the service network designing, determining a set of lines, each with a given ordered list of stops and
a frequency. The output of the timetabling phase serves as input to the vehicle scheduling problem, that assigns
vehicles to specific services in the timetable. Timetabling generally represents a balance between high quality
passenger service, and low operating costs. Passenger service depends on the timetable, while the operating
costs depend on the vehicle assignment. Passenger service can be expressed in terms of weighted travel time
(WTT): a weighted sum of the components of initial waiting time (IWT), in-vehicle time (IVT), and transfer
time (TrT) Comi et al. (2017). Operating costs are expressed as a function of the number of required vehicles
and dead-heading distance.

Integrating passenger route choice and timetabling is an intricate problem, as there is a co-dependency
between passenger route choice and timetable design. Indeed, minor changes in the timetable can have large
effects on the WTT of routes with a transfer. Especially in dense networks, small changes in the timetable
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could lead to far larger changes in transfer times, and consequently may cause passengers preferring alternative
geographical routes. As a result, providing a fixed passenger assignment as input to the timetabling phase could
lead to finding sub-optimal timetables. Furthermore, also the vehicle schedules can be strongly affected by small
changes in the timetable. To ensure reasonable operating costs of the resulting timetable, it is vital to consider
vehicle scheduling as well.

This paper studies the Integrated Passenger Assignment, Timetabling and Vehicle Scheduling Problem
(IPAT-VSP) at a tactical level. The objective of the IPAT-VSP is to maximize passenger service in terms
of WTT within a budget for operating costs and a set of headway constraints. Input consists of a non-cyclical
initial timetable with time-dependent service times, and an Origin-Destination-Time (ODT) passenger demand
matrix. Timetable decisions consist of shifting departure times of trips, or extending dwell time at transfer
stops, with respect to the provided initial timetable. Operating costs are defined by the minimum cost vehicle
schedules to operate the timetable.

Key characteristics of passenger route choice as considered in this study are that (i) passengers have free
route choice, and (ii) passengers may have different route preferences. Thus passengers with the same origin,
destination, and departure time, may still choose different routes. The first is in contrast to the common
setting of a central controller assigning passengers to maximize a social optimum. The second is in contrast
to assuming all passengers choose the minimum weight path, and reflects that passengers may have different
preferences. Specifically, it will ensure that when two almost equivalent paths exist connecting an origin and
destination, passengers will be assigned to both. This assumption fits with commonly accepted route choice
theory Ben-Akiva et al. (2004).

A matheuristic approach for the IPAT-VSP is proposed that consists of an iterative framework between a
passenger route choice model, and an integrated timetabling and vehicle scheduling model. Different forms of
integration are evaluated. The implementation of this modular framework combines the integrated timetabling
and vehicle scheduling model of Fonseca et al. Fonseca et al. (2018) with the passenger route choice model of
Briem et al. Briem et al. (2017), that satisfies the above two key characteristics of free passenger route choice,
and different preferences for passengers. The latter also serves as a ground-truth for evaluating the passenger
service of any timetable.

A realistic case study representing a large part of the multi-modal public transport network of the Greater
Copenhagen Area, Denmark, serves to investigate the value of the IPAT-VSP timetabling approach: (i) in
comparison to a the status-quo reflected by an initial timetable; (ii) in case of a change in the line network; and
(iii) in case of a change in the OD matrix. Results indicate that including free passenger route choice results
in timetables with higher passenger service in all three situations compared to a fixed passenger route choice
approach as proposed in Fonseca et al.Fonseca et al. (2018). Moreover, our computational studies, supported
by a simple clarifying example, illustrate that in order to find timetables with high passenger service indicating
potentially interesting transfers is more important than estimating accurate usage of transfers in a current
timetable.

To summarize the contributions of this work: (i) we investigate the maximal passenger service timetabling
problem in the context of a free passenger route choice; (ii) we propose a modular matheuristic approach for the
IPAT-VSP that, in an iterative framework, combines two state of the art models: (1) the IT-VSP matheuristic
of Fonseca et al. Fonseca et al. (2018), which maximizes passenger service through minimizing excess transfer
time under the assumption of fixed passenger route choice, with (2) the passenger route choice model of Briem
et al. Briem et al. (2017), which represents free route choice of passengers; and (iii) we find that the inclusion
of free passenger route choice results in timetables with higher passenger service for a realistic case study of the
Greater Copenhagen area. Thereby the current study is different from Fonseca et al. (2018) by (a) indicating the
value of integrating passenger route choice and timetabling, where Fonseca et al. (2018) assumed the passenger
route choice as fixed input; (b) demonstrating the value of this approach for a larger, more complex network
case study, and contrasting this against the approach on Fonseca et al. (2018), and (c) the evaluation of the
value of the timetabling approach not only in comparison to the status-quo, but also in case of a small network
re-design, and a change in passenger demand. The later two would lead to a change in (expected) passenger
flows, which this model demonstratively is better capable of handling than the model of Fonseca et al. (2018).

The remainder of this paper is organized as follows: Section 2 reviews previous work on the integration
of timetabling and passenger route choice, Section 3 describes the IPAT-VSP and presents a small example,
Section 4 describes all components the solution approach for solving the IPAT-VSP, Section 5 describes the
case study, Section 6 discusses the results for the case study, and Section 7 shows conclusions and suggestions
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for future research.

2 Literature Review

Recent years saw an increase in research output that integrates passenger decisions into the optimization models,
especially in line planning, timetabling, and delay management models. Schmidt Schmidt (2014) provides an
overview on public transport problems integrated with routing decisions.

Schmidt and Schöbel Schmidt and Schöbel (2015) integrate timetabling with passenger route choice mini-
mizing total travel time, and investigate the computational complexity of the problem. Gattermann et al. Gat-
termann et al. (2016) present a boolean satisfiability problem (SAT) model that integrates periodic timetabling
with passenger routing, distributing OD pairs temporally using time slices to make the problem tractable. The
model is tested on Germany’s long-distance passenger railway network and, for a restricted set of OD pairs,
results show better objective values when compared with previous results. Computational time increases consid-
erably when the number of OD pairs increases. Borndörfer et al. Borndörfer et al. (2017) study the integration
of passenger routing with periodic timetabling models and propose a variety of models that allow different
passenger paths and different objective functions. For a case study in the city of Wuppertal, the authors report
a reduction of 1.24% in travel time and 23.57% in transfer waiting time in comparison to a real-world reference
solution. Zhu et al. Zhu et al. (2017) present a bi-level model to integrate single line timetabling with passenger
routing. The first level determines the headways to minimize total passenger costs (perceived travel time and
travel penalties), and the second level determines the passenger arrival times given the headways. The authors
use a two stage genetic algorithm to solve hypothetical examples of the problem. Chu Chu (2018) presents a
mixed integer program to integrate network design and timetable, while routing passengers through a procedure
based on the breadth-first search and path enumeration algorithms. A branch-and-price-and-cut algorithm is
presented to solve the problem, and results are presented for example networks. Robenek et al. Robenek et al.
(2018) address train timetabling design considering a probabilistic demand forecasting model. The demand
elasticities are calibrated using a logit model. The problem is solved using a simulated annealing heuristic and
results for a case study of Israeli Railways show revenue increases of 15%. Wu et al. Wu et al. (2019) present
a bi-level program to coordinate timetabling and consider passengers’ behavior to the timetable modifications
by rerouting passengers that in the new timetable have missed transfers. The first level uses a mixed integer
non-linear program to design the timetable, minimizing system cost composed by operating and user costs. The
second level is a passenger route choice model. The authors use a heuristic algorithm to solve the problem
and show results for two small examples: one with 3 lines and 3 transfer stops, and another with 4 lines and 4
transfer stops.

Laporte et al. Laporte et al. (2017) integrate timetabling and vehicle scheduling including special attention
to route choice. Their problem designs timetables keeping operating costs (expressed as number of vehicles
per line) under a certain budget. The Pareto front of solutions is calculated using an ε-constraint solution
approach. Also in Liu and Ceder (2017), passenger route choice is integrated with timetabling and vehicle
scheduling. The problem is modeled using a bi-objective, bi-level IP formulation, optimizing fleet size and
WTT. The authors allow timetable modifications by shifting departure times and initial vehicle schedules are
given as input. Deadheading is not allowed, meaning that vehicles are assigned to a single line and can only
service trips belonging to that line, which significantly reduces the complexity of the problem. They propose
a deficit function based sequential search to solve small examples with up to 4 unidirectional lines, 4 transfer
stops, and one hour of operations.

Integration of free passenger route choice with transport optimization problems is also present in other fields.
Dumas and Soumis Dumas and Soumis (2008) combine a fleet assignment optimization model with a passenger
flow simulation model in an integrated model for the airline booking process. The passenger simulation model in
Dumas et al. (2009) describes the passengers’ reaction to capacity restrictions and how their itineraries change if
their preferred flights are sold out. Cadarso et al. Cadarso et al. (2013) address disruption management in rapid
transit networks, integrating an optimization model for timetabling and rolling stock schedules with a model
for passengers’ behavior. Kroon et al. Kroon et al. (2014) study the integration of free passenger flows in a
real-time rolling stock rescheduling model for disruption management. The authors present a heuristic approach
that iterates between a simulation model for passenger flows and an optimization model for the rolling stock,
updating the objective function of the optimization model at each iteration according to the current passenger
flows. Recent research in integration of free passenger route choice in disruption management can be found
in Binder et al. (2017), Veelenturf et al. (2017), Wagenaar et al. (2017), Ortega et al. (2018), and Van der
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Hurk et al. (2018). Canca et al. Canca et al. (2016) present a mixed integer non linear program to optimize
line frequencies (minimizing operating costs and fleet acquisition costs) and simultaneously compute passenger
assignments (minimizing average trip time and number of transfers). They use a cutting plane algorithm and
present results for a simplification of the Madrid Metropolitan Railway Network.

In comparison to Laporte et al. (2017), we allow a wider set of timetable modifications. We consider free
passenger route choice, where passengers may have different preferences, while Fonseca et al. (2018) considered
passenger route choice as input. The proposed matheuristic framework is inspired by the framework proposed
in Dumas and Soumis (2008) for the airline booking process and Kroon et al. (2014) for disruption management.
In comparison to Wu et al. (2019), we consider free route choice for all passengers, while in Wu et al. (2019)
only passengers with missed transfers are re-routed. Furthermore, Wu et al. (2019) test the performance of
their method in small examples, while we test our method in a much larger real life case study.

3 The IPAT-VSP

The objective of the IPAT-VSP is to find the maximum passenger service timetable T ∗ of all feasible timetables
T ∈ T , which we define as the timetable with minimum total weighted travel time. Let l ∈ L be the set of
directed lines, where each line is defined by a sequence of stops s ∈ S, with S the set of all stops. Let a trip i
represent a vehicle servicing all stops of a line l once. Each line l is associated with a frequency, leading to a
set Tl of trips in the timetable for this line. The timetable is defined by the set of all trips T =

⋃
l∈L Tl and

Tl′ ∩ Tl′′ = ∅ for all l′, l′′ ∈ L, l′ 6= l′′. The timetabling problem is to for all trips i ∈ T assign arrival and
departure times to all stops of the trip s ∈ Si.

Passenger service, measured in weighted travel time, is defined by the route choice of passengers, and depends
on the timetable. A (passenger) route choice model calculates a passenger assignment (PA) provided a timetable
T and an origin-destination-departure-time matrix ODt. A passenger assignment consists of a set of paths P ,
where each path p ∈ P is associated with a number of passengers that select this path. A path p ∈ P represents
an ordered list of trips i ∈ T that connect the origin to the destination of the passenger in time and space,
where the departure time of the first trip, from the origin stop of the passenger, is not before the departure time
of the passenger. The path specifies per trip the boarding and departure stop of the passenger, where when
disembarking a trip i passengers have either arrived at their destination, or will transfer to a trip of another
line l ∈ L.

The the total weighted travel time, that follows from the passenger assignment, is defined as:

WTT =
∑
p∈P

wp · (α · IWTp + IVTp + β · TrTp)

where WTT is the total weighted travel time of the passenger assignment, wp the number of passengers that
will select path p, IWTp the initial waiting time of path p, IVTp the in-vehicle time of path p, and TrTp the
transfer penalty of path p. We assume α, β ≥ 1.

The IPAT-VSP is a bi-level optimization problem: (i) the operator aims to find the maximum passenger
service timetable within an operating budget, and (ii) the passengers aim to find their individual best paths
in this timetable. Here we assume that (ii) represents free route choice of passengers. In other words, the
social optimum for all passengers may not be equal to the individual optimum of each passenger. In addition,
we assume that passengers may have different preferences. The later will ensure that when two paths exist of
(almost) equal WTT, some passengers will prefer the one path, others the other path. As a consequence of these
properties, it is not straight forward to translate timetabling with passenger free route choice to the context of
a mathematical optimization model, where e.g. minimizing total WTT would lead to a social optimum, rather
than an individual optimum. Furthermore, timetabling itself is already a computationally hard problem, thus
the integration of the two is expected to be intractable as well.

Many models, like Fonseca et al. (2018), assume a PA as input. Specifically, Fonseca et al. (2018) assumed as
input the number of passengers per transfer location, where a transfer location is defined by a specific (feeder)
trip i ∈ T , at a stop s ∈ S, to another (receiver) line l ∈ L, so i 6 Tl. The problem is that the number of
passengers that will use such a transfer location, depends on the quality of the transfer (that is, excess waiting
time above of the minimum transfer time), as well as the availability of alternative paths. Both transfer times
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and quality of alternative paths depend on the timetable. As the timetable is unknown, the demand per transfer
location is unknown, and the input of a non-optimal PA may lead to the selection of non-optimal timetables.
Moreover, while the objective to minimize excess transfer time (transfer time longer than the minimum required
time to transfer), as in Fonseca et al. (2018), will lead to minimizing total WTT in case of fixed route choice;
when passengers have free route choice and may change their routes, higher total weighted transfer times may
actually represent solutions with lower total WTT. The example in Section 3.1 will illustrate this.

The example of Section 3.1 shows that even perfect information on the PA of an initial timetable cannot
guarantee the finding of the optimal passenger service timetable. Specifically, long transfer times in an initial
timetable can cause these transfer locations to be overlooked when they are not used in the initial timetable.
We hypothesize that identifying these potential beneficial transfer locations, rather than including the set of
current transfer locations, can lead to finding timetables with higher passenger service. We demonstrate by a
set of case studies that indeed our matheuristic approach is able to find timetables with higher passenger service
than (1) models assuming a static passenger assignment as input (specifically, than Fonseca et al. (2018)), and
(2) integration where input consists only of the passenger assignment for an initial, or current, timetable. In
section 4 we will present our modular math-heuristic approach to the IPAT-VSP.

3.1 Example

Consider the example in Figure 1, with three bus lines (1, 2, 3) and four stops (A, B, C, D). Consider that
all bus lines have a headway of 20 minutes. Information on travel times is indicated along the edges, and a
minimum transfer time of 4 minutes is required to guarantee a successful transfer, as indicated by the curved
arrows. Three transfer opportunities exist in this network: at B where lines 1 and 3 meet, at C where lines 1
and 2 meet, and at D where lines 2 and 3 meet.

This example is used to (1) illustrate that when the timetabling model receives a PA input that is different
from the PA of the optimal timetable, the timetabling model may not find the optimal timetable; and (2) that
although given a fixed PA, minimizing the weighted sum of (excess) transfer time, as in Fonseca et al. (2018),
will lead to minimizing total WTT, this is not true when the final PA is different from the input PA. Even
more, timetables with a higher weighted sum of (excess) transfer time could be associated to timetables with a
lower total WTT, and thus higher passenger service.

A

B

C

D

10m

10m

10m

5m

4m

4m

Line 1
Line 2
Line 3

Figure 1: Example of a public transport network with three lines and four stops

Passengers traveling from A to D have two routing options: (i) traveling with line 1 from A to C, then
transfer to line 2 to travel towards D; and (ii) traveling with line 1 from A to B, then transferring to line 3 to
travel towards D. The passenger service is reflected in the weighted travel time, which is calculated as WTT
= α·IWT + IVT + β·TrT, where α, β ≥ 1. We may focus on IVT and TrT alone, as for both (i) and (ii) the
IWT (dependent on the frequency of the first line) is equal. The IVT of (i) is 5+10+10=25, which is longer
than the IVT of (ii) 5+10=15. Passengers will however prefer the longer IVT of route (i) when 25+β·TrT(i) <
15 + β·TrT(ii).

Consider a timetable where the transfer from line 1 to 2 is perfectly synchronized at C, with no excess
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transfer time. Moreover, line 3 departs from B one minute before the arrival of line 1 at B, resulting in 19
minutes of transfer time at this location. For a value of β = 3 even under free route choice all passengers will
prefer route (i) with a WTT=25+3·4=37 over route (ii) with a WTT=15+3·19=72. However, passenger service
could be increased in this example if timetabling decisions would reduce the transfer time from line 1 to line 3
at B in route (ii) such that 15 + β·TrT(ii) < 25 + β · 4. This alternative has much lower IVT in exchange for a
transfer penalty and some additional waiting time, as required for the transfer.

(1): Indeed, in our example reducing the transfer time at stop B could improve passenger service by attracting
passengers to route (ii). However, as in the current PA no passengers are using this transfer location, the
timetabling model has no incentive to improve the synchronization of the two lines at this location. This shows
that a PA different from the optimal PA could prevent finding the optimal timetable.

(2): The reduction in transfer time at B could improve total WTT already at a positive excess transfer time
(when 15 + β·TrT(ii) < 25 + β · 4, with β ≥ 1). However, this would lead to an increase in total weighted excess
transfer time of the model in comparison to passengers only using the perfect synchronized transfer at C. In
fact, passengers only transferring at the perfect synchronized transfer in C leads to a minimal objective of 0
minutes excess transfer time, which could suggest the optimal timetable is found. This is true if route choice
was fixed. However, as it is not fixed, the total WTT would be lower when there is a low transfer time at B,
even if the transfer is not perfectly synchronized.

4 Solution method

This paper proposes a modular matheuristic, the MHeuPA, to solve the IPAT-VSP. The objective is to maximize
passenger service in terms of minimizing WTT by modifying an initial timetable under the assumption of free
passenger route choice and respecting a budget on operating costs. It does so by integrating an integrated
timetabling and vehicle scheduling model, the MHeu (Section 4.1), with a passenger route choice model, the
PTTA model (Section 4.2). As the approach is modular, alternative models for timetabling and passenger route
choice could be used as well.

The two main points that need to be taken into account for solving the IPAT-VSP, that result from the
assumption of free route choice, are:

1. passenger volumes per transfer location in the current timetable may not represent the passenger volumes
per transfer location in the maximal passenger service timetable

2. higher objective values of the model of Fonseca et al. Fonseca et al. (2018) could actually be associated
with lower overall WTT, and thus higher passenger service.

These two points were illustrated by the example in Section 3.1. To address these two points, (1) different
passenger routings, by changing the waiting cost parameter in the PTTA model of Briem et al. Briem et al.
(2017), are tested in the integration, and (2) timetable quality in terms of WTT is always calculated by the
passenger route choice model.

Figure 2 outlines the IPAT-VSP matheuristic, the MHeuPA, that links the IT-VSP matheuristic (MHeu) of
Fonseca et al. Fonseca et al. (2018) with the passenger route choice model of Briem et al. Briem et al. (2017).
Section 4.3 will discuss this algorithm in detail.

Input consists of an initial timetable T0 defining departure and arrival times for the set of all timetabled
trips T , an ODt matrix ODt representing passenger demand over time, a stop criterion stopCriterion, and a
waiting cost function CostF for the PTTA (Section 4.3.1). These cost functions are the key to how the route
choice model and timetabling model are working together to solve the IPAT-VSP. We compare different cost
functions. Initialization consists of the PTTA calculating passenger assignment for an initial timetable according
to the realistic waiting cost value (φR), and determining the operating cost budget by calculating the minimum
cost vehicle schedule by running a Multi Depot Vehicle Scheduling Problem (MDVSP) for the initial timetable.

The core of the method consists of three blocks executed iteratively. First a PTTA is run, where the waiting
cost function CostF may have waiting cost values different from φR. This is done to generate different passenger
assignments than the ones that would be generated with φR, in an attempt to obtain timetables with higher
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Timetable T, T0

ODt
CostF

Input
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Timetable T ∗
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Passenger Assignment A∗

Output

R

ODt, T

T ′
R’

Λ

Initial
Solution

ODt, T
T ′

CORE

Figure 2: Flow diagram of the IPAT-VSP matheuristic approach

passenger service. The PTTA provides the IT-VSP with a set of passenger transfer demands R’ and a vector Λ
of passengers on board at each stop. Next, the IT-VSP MHeu is solved maximizing passenger service in terms
of minimizing excess transfer time and additional in-vehicle time resulting from a possible extension of vehicle
dwell time. The timetable is rescheduled within a budget for operating costs.

The resulting new timetable T ′ is evaluated in terms of passenger service according to the PTTA using φR.
The iterative procedure stops after the maximum running time is reached, and outputs the computed timetable
with highest passenger service T ∗ (the one with lowest WTT), the vehicle schedules X ∗ that cover that timetable
and respect the budget constraint, and the passenger assignment A∗ associated with timetable T ∗ computed
by PTTA. Note that the framework is modular in that any passenger route choice model could be used instead
of PTTA, and the timetabling module IT-VSP could be replaced by a different model.

4.1 Integrated timetabling and vehicle scheduling – the IT-VSP matheuristic ap-
proach

Input to the IT-VSP consists of an initial timetable for the set of all trips i ∈ T , passenger route choice
information, a budget for the operating costs, and costs and parameters related with the case study, such as
allowed headways, maximum dwell times, or turnaround times. The passenger route choice information consists
of a set of transfer opportunities R, where each r ∈ R defines a transfer stop, a transfer-from trip i ∈ T , a
desired to transfer to line l, and a number of passengers that are expected to make this transfer. Furthermore,
P contains the expected on-board passengers per trip i ∈ T at stop s ∈ Si, Λis. The passenger route choice
information is computed in the Public Transport Traffic Assignment (PTTA) model (Section 4.2), which requires
a timetable as input.

The objective of the IT-VSP is to minimize a weighted sum of passenger costs incurred by extending dwell
times at stops for passengers on-board, and passenger costs incurred when transferring. Passengers incur transfer
time costs when transfers are above the minimum transfer time. Transfers below the minimum transfer time
are infeasible.

Decision variables consists of: a) binary assignment variables xijk ∈ {0, 1} storing which vehicles are assigned
to which trips, b) departure and arrival time variables τdis and τais ∈ Z+

0 for each trip i ∈ T and each stop s ∈ Si,
c) excess transfer time variables γr ∈ R+

0 , which store the amount of excess transfer time for passengers using
each transfer location r ∈ R, d) binary transfer variables αijs ∈ {0, 1}, which indicate which trip j ∈ T
passengers of transfer location r = (i, lj , s) ∈ R embark, and e) dwell time variables δis ∈ Z+

0 , which store the
number of minutes of dwell time added to trip i ∈ T at stop s ∈ Ji.

Constraints ensure the assignment of all expected transferring passengers to specific transfers, ensure head-
way constraints to be within a specific range, and limit the amount of added dwell time per stop and per trip, in
addition to feasibility constraints for both the timetable and the vehicle schedule. Trips can only have additional
dwell time and not less dwell time than in the initial timetable, since the dwell time in the initial timetable is
considered to be the minimum dwell time. In fact, for the case study addressed in this paper, most trips have
a dwell time of zero at all visited stops. Output consist of a timetable and a vehicle schedule.
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The full mathematical model is presented in Appendix 1. This is an extended version of the model in Fonseca
et al. Fonseca et al. (2018). This extended version allows to explicitly include the effect of extended dwell time
for on-board passengers.

The IT-VSP is solved by a matheuristic approach based on the MILP formulation described above, which we
denote by MHeu. A heuristic is necessary since solving real-life instances of the IT-VSP directly with a general
solver is not feasible, due to the size of the instances making the problem intractable. The MHeu solves the
IT-VSP by iteratively solving a sub-problem IT-VSP(T ′) that only allows timetable modifications for a subset
of trips T ′ ⊆ T , but still solves the full vehicle scheduling problem. The heuristic stores the solution with lowest
weighted travel time encountered so far.

4.2 Passenger route choice model – the PTTA model

We measure passenger service using the PTTA to evaluate the WTT of a timetable. Furthermore, the PTTA

provides input to the MHeu in terms of the set of transfer opportunities R and the number of passengers on
board Λis.

Input to the passenger route choice model PTTA is a timetable T , a set of possible transfer locations, the
minimum required transfer time for a transfer to be feasible, and an ODt matrix. Output of the PTTA are the
set of transfer opportunities R, the number of passengers on board for each trip i ∈ T and each stop s ∈ Si,
Λis, and the WTT of the resulting passenger assignment.

To evaluate the quality of a timetable, cost parameters are set to use perceived arrival times (PAT) where
the actual arrival time is weighted with a factor of 1, waiting time is weighted with a factor of 2, and each
transfer receives an additional penalty of 5 minutes on top of the waiting time. When the PTTA model serves
as input to the timetabling heuristic IT-VSP, different waits for the waiting time component are evaluated. In
the route choice set generation, maximum difference in PAT is set to ∆max = 15 minutes. As random utility
model we use the linear decision model that was used in Briem et al. (2017).

The PTTA model is used to estimate which routes are likely to be chosen by passengers in a system with free
route choice, as well as the expected number of passengers per route. The underlying model and algorithm to
compute these routes were first presented in Briem et al. (2017). Conceptually, the PTTA model is a sequential
route choice model. This means, that decisions are not made based on complete routes, but one journey leg
at a time. Given a passenger, a current location, and a destination, the model specifies which step is probably
taken next by the passenger in order to reach the destination. The probability for every possible next step is
determined using a random utility model, with the utility being influenced by several cost functions, such as
travel time, waiting time, and number of transfers. The PTTA model iteratively repeats this process until every
passenger reached its destination, thereby compiling the complete routes used by the passengers.

For a given destination and journey leg, the random utility model in the PTTA characterizes the likelihood
of the journey leg being used as next leg of a route leading to the destination. Thus, the first step of computing
the overall passenger assignment in the PTTA model consists of computing the utilities for all pairs of possible
journey legs and destinations. The PAT at the destination when using the specific leg in turn determines the
utility of a leg (for a given destination). The PAT is a linear combination, which besides the actual arrival time,
factors in all criteria that effect the route choice. For this work, the PAT is the weighted sum of the actual
arrival time, the number of transfers, and the time spent waiting for the next trip. An important aspect of
the PTTA model is the algorithm that allows for an efficient computation of PATs for all pairs of journey legs
and destinations. To this end, PAT values are computed for one destination at a time. For a given destination,
the PATs of all possible journey legs are computed iteratively, sorted by time in decreasing order. A detailed
description of the process can be found in Briem et al. (2017). The benefit of processing the journey legs in
decreasing order of time is that for a given leg the PATs of all possible journey continuations are already known.
Thus, the PAT of every leg can be computed quite efficiently. If the leg itself ends at the destination then the
PAT of this leg is given by its actual arrival time (since a single leg does not comprise transfers by definition).
If the leg does not end at the destination, then the route has to be continued with another leg. In this case the
PAT is given as the PAT of the following leg (which is already known), plus the additional cost (transfer time,
waiting time) to connect the legs.

After all PATs have been computed, the actual passenger route choice is determined using a simulation
approach. For every passenger, a sequence of decisions is made based on a random utility model. Each of these
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decisions determines the next journey leg the passenger takes towards the destination. The choice set for this
decision is determined on basis of the PAT values. It consists of the leg with the lowest PAT as well as all other
legs, such that the difference of PATs in the choice set does not surpass a certain, user-defined limit (∆max).
The utility of each leg ` in the choice set is then defined as max(0,min`′ 6=`(PAT`′)−PAT`+ ∆max). Finally, the
probability of each leg in the choice set can be obtained using a random utility model. Proportional to these
probabilities one leg is chosen, e.g. the passenger is assigned to this leg as part of his route. This process is
repeated until all passengers have been assigned to full routes, reaching their destinations. In order to obtain a
distribution of several routes that could be used by a passenger (alongside with their respective probabilities),
several virtual passenger can be simulated for every actual passenger.

4.3 IPAT-VSP matheuristic – the MHeuPA

Algorithm 1 presents the pseudo code for the MHeuPA approach.

Algorithm 1 : MHeuPA

Input: T , T0, ODt, stopCriterion, φR, CostF
Initialization procedure:

1: (A0, R0,Λ0)← PTTA(T0, ODt, φ
R)

2: (X0, T0)← solve IT-VSP(1)-(21) using R0 and Λ0 and with departure and arrival times (τdis, τ
a
is) fixed to

T0 for all i ∈ T
3: S0 =(X0, T0,A0)
4: S∗ = S0

5: η = 0
Iterative procedure:

6: while stopCriterion not reached do
7: η = η + 1
8: T ′ ← selectTrips(Sη−1)
9: (A′, R′,Λ′)← PTTA(Tη−1, ODt, CostF)

10: (Xη, Tη)← solve IT-VSP(1)-(21) using R′ and Λ′ and with departure and arrival times τdis, τ
a
is fixed to

Tη−1 for all i ∈ T \ T ′
11: (Aη, Rη,Λη)← PTTA(Tη, ODt, φR)
12: Sη =(Xη, Tη,Aη)
13: if WTT(Sη) <WTT(S∗) then
14: S∗ ← Sη
15: end if
16: end while
17: return S∗

Steps 1-5 are the initialization procedure. The algorithm starts by calculating an assignment for the initial
timetable T0 in step 1, using the PTTA with φR. The set of transfer opportunities R0 and the vehicle occupancy Λ0

computed by the PTTA are used as input to solve the MDVSP in step 2 without allowing timetable modifications,
thus the departure and arrival times of all trips i ∈ T from/to stop s ∈ Si, τdis, τais, are fixed to T0 (meaning that
these trips will have arrival and departure times at all stops visited equal to the ones in the initial timetable
T0). An initial solution S0 is defined in step 3, composed by vehicle schedules X0, the initial timetable T0, and
the initial assignment A0, and since this is the only solution so far, in step 4 it is also saved as the current
best solution in terms of WTT. The iterative procedure is described in Lines 6 - 16, which runs until the stop
criterion stopCriterion is met.

Each iteration η starts by selecting in step 8 the subset of trips T ′ ⊂ T to modify, being κ the number of
trips selected. Trips in T ′ are allowed modifications in arrival and departure times (shifts and stretches), while
all other trips i ∈ T \T ′ remain fixed to the timetable in solution Sη−1. In step 9, an assignment of passengers is
calculated for the current timetable Tη−1 according to CostF, generating transfer opportunities R′ and vehicle
occupancy Λ′. A new timetable Tη and vehicles schedules Xη are calculated in step 10, solving the restricted
IT-VSP(T ′), with τdis, τ

a
is fixed to Tη−1 for all i ∈ T \ T ′, optimizing the transfer opportunities R′ considering

the vector Λ′ of passengers on board. The realistic assignment (obtained using φR) of passengers Aη to the new
timetable is calculated in step 11 by running the realistic PTTA. The iteration solution Sη is set in step 12. Steps
13-15 save Sη as the best solution S∗ if the weighted travel time associated with it is lower than the weighted
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travel time associated with the current best solution. The IPAT-VSP concludes in step 17 by returning the best
solution S∗ found once the stop criterion stopCriterion is met.

4.3.1 Waiting cost functions

As demonstrated in the example in Section 3.1, the objective is to find all potentially beneficial transfer locations,
that is, transfer locations that, with a good synchronization of the transfer, could be used by passengers.
Whether the transfer location will be used by passengers, depends on the quality of the set of alternative
paths available, and therefore cannot be determined per transfer location independently. Different waiting cost
functions are used in a desire to find all potentially beneficial transfer locations.

Each run of the MHeuPA uses exactly one of five different waiting cost functions CostF. These functions
change the weight attributed to the waiting costs when computing a new passenger assignment to serve as input
to the IT-VSP MHeu.

• Realistic (Realistic): this waiting cost function runs the PTTA model with the realistic value φR for the
waiting costs at every iteration. It reflects a base-case where the PA of a current timetable is provided as
input to the timetabling module.

• No waiting costs (NoCosts): this waiting cost function runs the PTTA model without waiting costs at every
iteration. This will lead to passengers selecting the path with the minimal IVT.

• Linear ascending costs (LinAsc): this waiting cost function increases the waiting costs in the PTTA model
per iteration of the MHeuPA. Assuming a total running time of maxT seconds, the PTTA iterations in the
first maxT/10 seconds use a waiting costs parameter of 0. In the remainder of the iterations, the waiting
costs increase linearly until the realistic value is achieved by the end of the experiment. The waiting costs
at each iteration can be calculated using

WC =
φt

maxT

where t is the current total running time.

• Random waiting costs (Random): this waiting cost function runs the PTTA model with random waiting
costs at every iteration of the MHeuPA, with a value between 0 and the realistic waiting costs φ = 2, with
a uniform distribution.

• Random and linear ascending costs (RandLinAsc): this waiting cost function combines the Random and
LinAsc waiting cost functions. In the initial two thirds of the computational time, the PTTA model
iterations use a random value between 0 and the realistic value for the waiting costs. In the last third, it
uses linear ascending costs, calculated using

WC =
φ(t− 2maxT/3)

maxT − 2maxT/3

where t is the current total running time.

The advantage of a lower waiting time costs is that transfer locations that currently have high waiting time,
but would provide low in-vehicle time paths, will attract passengers – and thus provide an incentive to the
timetabling model to improve the synchronization of trips at these transfer locations. The downside is that
in dense networks it is unlikely that all transfer locations will be able to provide perfect transfers. Thus, the
real passenger assignment is likely to be different from the zero or small waiting cost assignment; and therefore
the trade-offs made in the timetable may be non-optimal due to erroneous numbers of expected passengers per
transfer location, and expected passengers on-board.

Additionally we define Route Fixed as running the MHeuPA with a fixed routing of passengers, using then
the PTTA to evaluate the solutions in terms of WTT only. The results using Route Fixed correspond to the
IT-VSP MHeu results evaluated in WTT, and are included in this paper to enable a comparison with Fonseca
et al. Fonseca et al. (2018).

Finally, any timetable is evaluated by running an independent passenger assignment of PTTA with a ground-
truth costs for waiting time. In our experiments, we will use the value of 2, which was selected in Briem et al.
(2017).
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5 Case study

For the experimental section, we focus on a subset of the public transport network in the Greater Copenhagen
area. We consider 8 bi-directional express-bus lines, referred to as S-Bus lines. In comparison to regular bus
lines, these are faster and with fewer stops, acting mainly as a complement to the local urban trains (S-Train)
across and radially. Figure 3 depicts a geographical representation of the network, which includes not only
the S-Bus and S-Train lines but also two bi-directional Metro lines, one bi-directional train line, and one high-
frequency bus line that connects the city center to the airport. The public transport agency Movia, which
is responsible for the planning of buses in the region of Zealand, provided data for the case study. We allow
timetable modifications by shifts and stretches to the trips in the S-Bus lines, while all other lines in the case
study operate according to a fixed timetable. The vehicle scheduling component of the IPAT-VSP is solved
solely for the S-Bus trips.

Central Station

20
0S

15
0S

Airport

Figure 3: Geographic representation of the case study network. The thick lines represent the S-Bus network,
while the dashed lines represent the S-Train, train, Metro and fixed bus lines

The data input for the IPAT-VSP is composed by: (i) a initial timetable for all S-Bus lines; (ii) a fixed
timetable for all other lines in the network; (iii) a distance matrix with all distances between stops and depots;
(iv) an ODt matrix describing passenger demand for the full network; (v) costs and parameters specific to the
case study: minimum and maximum turnaround times, minimum transfer times at stops, vehicle operating
costs, fixed costs per vehicle schedule created, travel time and waiting time costs for passengers, driving speed
for vehicles while deadheading, maximum deadhead distance, maximum added dwell time per trip and per stop,
and depot capacities.

The timetables used in input components (i) and (ii) are publicly available and the distance matrix (iii) was
obtained using geographical data. The ODt matrix (iv) was provided by Rapidis1. It describes minute-by-minute
passenger demand between the stations in our network. The ODt contains 164,333 entries representing 170,117
passengers. As for costs and parameters (v), these were estimated together with Movia. We use estimates of
operating waiting time, distance, and schedule costs expressed in Danish kroner (DKK, 1 euro is equivalent to
approximately 7.5 DKK), which together define the operating costs of a solution. Travel times, initial waiting
times, and transfer times are weighted by value of time (VOT) factors of respectively 100, 300, and 300 DKK.
We used value of time studies developed at the Center for Transport Analytics at the Technical University of
Denmark as inspiration for these values2.

1Rapidis is a Danish company that develops tools for planning in Transportation and Logistics. website: http://www.rapidis.
com/

2Center for Transport Analytics website: http://www.cta.man.dtu.dk/
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Table 1 shows information about all lines included in the case study network. The first column indicates
the name of the line, followed by the mode of transport, the number of stops with transfer opportunities, the
number of trips, an indication of whether the trips in the line are part of the timetabling design or not, the
minimum headway in the initial timetable, and the maximum headway in the initial timetable.

Table 1: Lines in the case study network

Line name Mode Stops Trips Timetabling Min headway Max headway

150S S-Bus 5 256 yes 4 21
200S S-Bus 7 186 yes 6 23
250S S-Bus 7 161 yes 8 24
300S S-Bus 8 230 yes 5 23
350S S-Bus 12 304 yes 4 22
400S S-Bus 7 140 yes 7 21
500S S-Bus 8 167 yes 7 31
600S S-Bus 7 141 yes 4 34
A S-Train 10 202 no 10 20
B S-Train 8 202 no 10 20
Bx S-Train 4 8 no 20 20
C S-Train 8 205 no 10 20
E S-Train 7 200 no 9 21
F S-Train 3 374 no 5 10
H S-Train 12 115 no 20 20
KB Train 6 246 no 3 32
M1 Metro 7 487 no 2 12
M2 Metro 6 450 no 2 12
5C Bus 8 542 no 4 4

For each trip i ∈ Tl at each stop s ∈ Ji ∪ sti, minimum and maximum headways, h−is and h+
is, are calculated

based on the scheduled headways between trip i and its immediate precedent trip in the line, trip i − 1, as
indicated in Table 2. Notice that in our case study the minimum scheduled headway is 4 minutes. In this case,
the minimum and maximum headways allowed will be 3 and 5 minutes respectively.

Table 2: Allowed headway variations based on scheduled headways

Scheduled headway (m) Minimum and maximum headway variation (m)

= 4 +/- 1
≤ 12 +/- 2
≤ 20 +/- 3
≥ 21 +/- 4

The maximum dwell time added at each stop is 3 minutes (i.e., w+
is = 3, i ∈ T, s ∈ Ji), meaning that a

maximum of 10 minutes of dwell time can be added in total to a trip (i.e., w = 10). The added dwell time is
deducted from the buffer in the turnaround time at the end of the trip. The shifts allowed in each trip departure
time were created based on the initial timetable for each bus line. Considering consecutively timetabled trips
(i − 1), i, (i + 1) ∈ Tl and with departure time from the first stop di−1,sti , di,sti , di+1,sti respectively, the lower
and upper shift limits for trip i are calculated with the expressions

d−i,sti = di,sti −
⌊di,sti − di−1,sti − 1

2

⌋
, d+i,sti = di,sti +

⌊di+1,sti − di,sti
2

⌋
ensuring that trips can never overtake each other in the timetable.

As they are not part of the input, vehicle schedules that cover the initial timetable for the S-Bus trips are
calculated using an MDVSP model. The solution consists of 205 vehicle schedules that cover the 1585 S-Bus
trips. It uses constraints (3)-(5) of the mathematical model in Section 4.1. The initial timetable considers
time dependent service times, but the mathematical model uses constant deadhead speeds along the day. Trips
from different lines can be included in the same vehicle schedule, which is known as interlining, thus allowing
deadheading between consecutive trips in a schedule. The maximum deadhead distance is 15 kilometers (i.e.,
u = 15), the minimum turnaround time is 12 minutes (i.e., q− = 12), and the maximum turnaround time is 30
minutes (i.e., q+ = 30).
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6 Computational experiments

This section evaluates the performance of the MHeuPA through a set of computational experiments for the case
study of the Greater Copenhagen Area described in Section 5. Results of the MHeuPA for different waiting cost
functions (Section 4.3.1) are compared to the fixed passenger route choice model of Fonseca et al. Fonseca
et al. (2018), the IT-VSP MHeu. Note that results between this paper and Fonseca et al. (2018) cannot be
directly compared as the current case study represents a larger network, with new detailed passenger demand
information that was not available yet during the Fonseca et al. Fonseca et al. (2018) study; and secondly
due to a different measure of passenger service, which in this paper is represented as WTT calculated by the
passenger route choice model of Briem et al. Briem et al. (2017). Route Fixed is an exact representation of the
model of Fonseca et al. Fonseca et al. (2018) in this new setting. Thus, the comparison between the MHeuPA

and the Route Fixed demonstrates the value of including free passenger route choice.

We evaluate our approach in the following three situations:

• In comparison to an initial timetable representing the current timetable for our case study area (Section
6.1). This case study is similar to the setting of Fonseca et al. (2018), and therefore allows the most
direct comparison between fixed and free passenger route choice. This section presents a detailed analysis
of the results for the different components of weighted travel time, benefits specifically for transferring
passengers, and the resulting vehicle schedules.

• In case of a change in the public transport network (Section 6.2). A change in the public transport
network results in a timetabling situation where one would expect a change in passenger route choice.
This situation is simulated by offsetting the timetables of one, or a set, of public transport lines in the
network, such that headway constraints and time-dependent vehicle travel times are still respected, but
transfers are likely offset.

• In case of a change in passenger demand (Section 6.3). A change in the passenger demand matrix
could lead to a change the relevance of transfer opportunities: making some transfer opportunities more
important than others; for instance in case of a special event. This could also make it important to
consider free passenger route choice. We assume that, whatever the change in demand, sufficient capacity
is available, as measures to increase capacity on routes (e.g. longer vehicles, or higher frequencies) are not
part of the timetabling decisions considered in this paper.

The algorithm is implemented in C++ and uses CPLEX version 12.6 to solve the mathematical program
at each iteration. All experiments were conducted on HPC servers, using Intel Xeon E5-2660 v3 2.60GHz
processors, and 8 computation cores. Each iteration uses CPLEX warm-start to start from the previous solution.
Presented are average results over five runs with each setting, with a 3 hour computation time limit. Fixed
parameters are the number of trips selected per iteration κ = 350, the maximum running time per iteration
ψ = 30, and the realistic value for waiting costs φ = 2. The values for the parameters κ and ψ are based on
the computational results of Fonseca et al. (2018) and taking into account that the current case study is larger
both in terms of network and OD matrix, while the value for φ is based on the findings of Briem et al. (2017).

The solution quality is expressed in terms of weighted travel time (WTT) and its components: in-vehicle time
(IVT), initial waiting time (IWT), and transfer time (TrT). We also compare the operating costs (OpC) across
experiments. To compare the solutions obtained with the MHeuPA with the initial timetable and with the solutions
obtained with the Route Fixed, we use percentage improvements to initial and percentage improvements to
Route Fixed. For x = {WTT, IVT, IWT, TrT, OpC} and fx(S) being the x-type average cost of a solution S over n
runs, we calculate the percentage improvement to the initial timetable as

fx(SMHeuPA)− fx(SInitial)
fx(SInitial)

× 100%

and the percentage improvement to the solutions obtained with the Route Fixed as

fx(SMHeuPA)− fx(SRoute Fixed)

fx(SRoute Fixed)
× 100%
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since there is only one solution for the initial timetable but n solutions for the Route Fixed (one for each
run). A negative percentage for x corresponds to a reduction of costs in the MHeuPA solution in comparison to
the initial timetable or to the Route Fixed solutions. Since we use the budget version of the IT-VSP MHeu in all
experiments, we keep the operating costs under a budget. We consider as budget the operating costs obtained
by solving the MDVSP for the initial timetable.

6.1 Results for the base scenario

In this section, we present the results for the base scenario: initial timetable and base ODt matrix. We
present results in terms of WTT and different WTT components, operating costs, timetable modifications and
characteristics of vehicle schedules. Additionally we show a convergence analysis for the different waiting cost
functions considered and histograms of WTT variations.

Table 3 shows the WTT results for the different waiting cost functions in absolute WTT values, percentage
improvement to initial timetable, and percentage improvement to Route Fixed solution. We present results
both for the full ODt matrix and for a version of the ODt matrix that considers only passengers that, given the
public transport network lines, will have to transfer at least one time.

Table 3: WTT results for the base scenario for 1) the full ODt matrix and 2) for the transferring passengers only

Full ODt Matrix Zoom on transferring passengers

Solution
WTT
(DKK)

Improv. to
Base (%)

Improv. to
Route Fixed (%)

WTT
(DKK)

Improv. to
Base (%)

Improv. to
Route Fixed (%)

initial timetable 14,952,021 - - 11,281,416 - -
Route Fixed 14,844,516 -0.72 - 11,153,787 -1.13 -
Realistic 14,832,916 -0.80 -0.08 11,138,733 -1.26 -0.13
NoCosts 14,805,563 -0.98 -0.26 11,110,820 -1.51 -0.39
LinAsc 14,810,788 -0.94 -0.23 11,114,746 -1.48 -0.35
Random 14,811,079 -0.94 -0.23 11,113,400 -1.49 -0.36
RandomLinAsc 14,811,457 -0.94 -0.22 11,112,630 -1.50 -0.37

The results in Table 3 support the hypothesis that inclusion of free route choice leads to timetables with
higher passenger service, and that using alternative cost models, to find potentially beneficial transfer locations,
also enable finding timetables with higher passenger service. Indeed, all MHeuPA solutions improve passenger
service in comparison to Route Fixed solutions by 0.08% to 0.26% in the full ODt matrix and by 0.13% to
0.39% in the zoom on transferring passengers. The NoCosts is the best performing waiting cost function, both
for the full ODt matrix and for transferring passengers only, while all alternative cost functions improve on
input from the Realistic assignment model. All approaches improve passenger service in terms of WTT in
relation to the initial timetable. The improvement in passenger service stems mainly from improved WTT for
passengers with a transfer in their path, which is observed when comparing the results for the full ODt matrix
with the results for transferring passengers only.

Figure 4 shows the convergence of WTT for the three best CostF functions LinAsc, NoCosts, and RandomLinAsc.
The horizontal axis shows the algorithm total computational time in minutes and the vertical axis shows the
percentage reduction in WTT in comparison to the initial timetable. The figure shows that the LinAsc waiting
cost function has a steeper initial decline in WTT, while NoCosts finds the overall minimum WTT from around
120 minutes of computational time. This indicates that the LinAsc waiting cost function allows to find good
timetables fast, but in the long run it is better to use the NoCosts waiting cost function. For all waiting cost
functions, the improvements in WTT decline after the first 1.5 hours of computational time.

Table 4 shows for all waiting cost functions the average improvement in WTT expressed in DKK, the
percentages of passengers better and worse off, the percentage of passengers better off by more than 10 DKK
of WTT, and the percentage of passengers worse off by more than 10 DKK of WTT. The value of 10 DKK of
WTT is equivalent to 6 minutes of in-vehicle time or 2 minutes of excess transfer time or initial waiting time.

Table 4 shows that the NoCosts waiting cost function achieves the best average improvement in WTT per
passenger, with a value of -1.45 DKK, which follows from the results in Table 3. The percentage of passengers
better and worse off is similar across waiting cost functions, with more passengers being better off than worse off
when compared with the initial timetable. Specifically for differences in WTT larger than ±10%, the percentages
of passengers better off are higher than the percentages of passengers worse off, as evidenced by the last two
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Figure 4: WTT convergence of the LinAsc, NoCosts, and RandomLinAsc solutions over time

Table 4: Passenger WTT improvements for the base scenario

Solution
Avg. improvement
(DKK)

Pax better off
(%)

Pax worse off
(%)

Perc of pax with
WTT reduction
>10 DKK (%)

Perc of pax with
WTT increase
>10 DKK (%)

Route Fixed -1.12 34.37 28.52 10.23 6.84
Realistic -1.21 35.41 29.64 12.43 8.17
NoCosts -1.45 35.20 31.19 13.22 9.64
LinAsc -1.40 35.72 30.79 13.40 9.28
Random -1.39 35.86 30.94 13.54 9.40
RandomLinAsc -1.39 36.03 30.94 13.74 9.59

columns in Table 4. Although the NoCosts waiting cost function achieves the best average improvement, it is
not the one that achieves the highest percentage of passengers better off, with the RandomLinAsc surpassing
the 36% mark. If the objective is to maximize the percentage of passengers better off by a certain threshold or
to minimize the percentage of passengers worse off it might be preferable to use other waiting cost functions
than the NoCosts waiting cost function for this instance.

For better understanding how the MHeuPA solutions improve the WTT for passengers, Figures 5 and 6 show
histograms of changes in WTT in the best solutions obtained by the Route Fixed and by the MHeuPA. The
horizontal axis shows the change in WTT experienced by passengers and the vertical axis shows the absolute
number of passengers that experience changes in each interval. The histogram is divided in two figures due to
the difference in magnitude of the number of passengers.

Figures 5 and 6 show that in the MHeuPA solution more passengers experience high decreases in WTT,
especially in the interval [−70,−20[. From Figure 6, it is clearly observed that the amount of passengers on the
left hand side of the histogram (passengers better off) is larger than the one on the right hand side (passengers
worse off), which is linked to the results in Table 4. However, Figure 5 shows that in the Route Fixed solution
more passengers experience smaller changes in WTT than in the MHeuPA solution, between -10 DKK and 10
DKK. Additionally, Figures 5 and 6 show that the Route Fixed solution has less passengers worse off than the
MHeuPA solution, which is explained by existing in general less changes in the timetable. The timetables of the
MHeuPA represent a different trade-off between passenger groups, and although not a strict improvement for all
passengers; the disbenefits for some passengers are offset by the benefits for a larger group of other passengers.

Table 5 shows the results in terms of each of the components of WTT, for the same set of experiments as
in Tables 3 and 4. The table contains the absolute values in DKK of in-vehicle time (IVT), initial waiting time
(IWT), and transfer time (TrT), along with their percentage improvements in relation to the initial timetable.

The results in Table 5 show that all components of WTT are improved in relation to the initial timetable,
as evidenced by the negative percentages. Most of the improvement in WTT comes from the improvement in
transfer times, with decreases ranging from -2.59% to -3.17% compared to decreases of -0.13% to -0.34% in
in-vehicle time and of -0.04% to -0.40% in initial waiting time. This is expected, since transfer time is the WTT
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Figure 5: Histogram of variation in WTT for the Route Fixed solution and for the best solution obtained with our
algorithm
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Figure 6: Histogram of variation in WTT for the Route Fixed solution and for the best solution obtained with our
algorithm
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Table 5: WTT details for the base scenario

Solution IVT (DKK)
Improv to
Base (%)

IWT (DKK)
Improv to
Base (%)

TrT (DKK)
Improv to
Base (%)

initial timetable 7,399,710 - 4,043,178 - 3,509,133 -
Route Fixed 7,390,300 -0.13 4,036,102 -0.18 3,418,115 -2.59
Realistic 7,389,179 -0.14 4,041,434 -0.04 3,402,302 -3.04
NoCosts 7,374,506 -0.34 4,026,984 -0.40 3,404,074 -2.99
LinAsc 7,378,596 -0.29 4,034,440 -0.22 3,397,752 -3.17
Random 7,378,806 -0.28 4,033,539 -0.24 3,398,735 -3.15
RandomLinAsc 7,379,542 -0.27 4,033,954 -0.23 3,397,962 -3.17

component that is specifically considered in the IT-VSP objective function. Among the MHeuPA results, the
NoCosts waiting cost function obtains the smaller reduction in TrT, with a value of -3.00%, but obtains the
higher reductions in IVT and IWT, respectively -0.34% and -0.40%. Improvements in IVT show that passenger
routes actually change in comparison to the initial timetable, because trips can only have additional dwell time
and not less dwell time than in the initial timetable. This indicates that passengers are able to find better
routes to travel from origin to destination, spending less time in-vehicle. Improvements in IWT are incidental
since the IT-VSP objective does not include the effect of timetable modifications on IWT. Trips are shifted to
cater for transfer synchronization, but in the process also IWT could be reduced.

Figure 7 visualizes the excess transfer time (transfer time minus the minimum required transfer time for a
feasible transfer) experienced by passengers in the initial timetable and in the best MHeuPA solution. The hori-
zontal axis shows the excess transfer time in minutes and the vertical axis shows the percentage of transferring
passengers that experiences that value of excess transfer time.
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Figure 7: Comparison of excess transfer time in the initial timetable and in the best MHeuPA solution timetable

Figure 7 shows that in the MHeuPA timetable there are significantly more passengers experiencing perfectly
synchronized transfers, with 0 minutes of excess transfer time. A total of 22% of transferring passengers
experience perfectly synchronized transfers in the MHeuPA solution, while in the initial timetable this value is
18%. For all other excess transfer time values, the initial timetable has more passengers experiencing each value.
Furthermore, the average excess transfer time decrease from 2.29 m to 2.06 m in the MHeuPA solution, for more
than 100,000 transferring passengers.

Table 6 shows results for the same set of experiments from an operating perspective. The table contains
information on absolute value of operating costs in DKK, percentage improvement in relation to the initial
timetable, percentage of trips modified by shifts only, stretches only, and both, average added stretches, average
added shifts, number of vehicle schedules, and average schedule duration in minutes.

The results in Table 6 show that all waiting cost functions use less operating costs than the budget of
the initial timetable, but also considerably decrease them, with percentages between 1.64% and 2.19%. The
solutions obtained with the MHeuPA shift 52.8% to 56.6% of the trips, add stretches to 2.6% to 4.0% of the trips,
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Table 6: Operating costs, timetable and vehicle schedules for the 8 line case and for the base OD matrix

Solution
OpC
(DKK)

OpC
improv to
Base (%)

Trips with
shifts only
(%)

Trips with
stretches
only (%)

Trips with
shifts and
stretches (%)

Avg
added
dwell (m)

Avg
added
shift (m)

Number
Schedules

Avg
schedule
duration (m)

initial timetable 323,744 - - - - - - 205 784
Route Fixed 317,417 -1.95 48.3 3.8 15.4 2.3 1.7 200 802
Realistic 317,608 -1.90 52.8 3.3 14.2 2.4 2.0 201 800
NoCosts 318,124 -1.74 55.1 3.8 14.0 2.2 1.9 201 798
LinAsc 318,437 -1.64 56.6 2.6 13.6 2.3 2.0 201 798
Random 316,754 -2.16 54.0 4.0 17.1 2.3 2.0 200 802
RandomLinAsc 316,649 -2.19 54.4 3.8 16.6 2.4 2.1 200 803

and add both shifts and stretches to 13.6% to 17.1% of the trips. The values of added dwell time and added
shifts are averages over the total number of trips with added stretches and added shifts respectively. On average,
just 2 minutes of dwell time are added to modified trips. Regarding the vehicle schedules, the Route Fixed

and MHeuPA solutions use 200 to 201 schedules to cover all trips, while the base solution uses 205. Furthermore,
schedules are on average longer in the Route Fixed and MHeuPA solutions with values ranging between 798 and
803 minutes, compared to the 784 minutes in the initial timetable. This means that the Route Fixed and
MHeuPA solutions use resources more efficiently, with vehicles covering on average more trips.

The overall improvement in WTT in comparison to the initial timetable is approximately 1%, of which
0.25% is due to the inclusion of free passenger route choice. The 0.25% is equivalent to a daily reduction of
approximately 40,000 DKK when expressed as value of time. Due to the budget constraints, these savings come
at no additional operating costs, and in fact allow a reduction of operational costs, as demonstrated in Table 6.

6.2 Designing timetables - changes in the public transport network

In this section, we analyze solutions obtained when we start from a randomized timetable. Note that given
a line plan and frequency, we can always create an initial timetable. It may however be of bad quality. This
section demonstrates that also provided such a ”bad” starting point, the MHeuPA can be used for constructing a
timetable. Thus in principle it is suitable for designing new timetables. Results for the best performing waiting
cost functions from the previous section (NoCosts, LinAsc, and RandomLinAsc) are compared to solutions
obtained with the Route Fixed (fixed passenger route choice). We test four different scenarios:

1. offsetting the timetable for line 350S only, which is the line that transports the largest volume of passengers
in the network;

2. offsetting the timetables for lines 250S, 300S, and 400S, which are the lines with largest volumes of
passenger transfers;

3. offsetting the timetables for lines 350S, 500S, and 600S, which are the lines with largest volumes of
passenger transfers involving a bus trip;

4. offsetting the full S-Bus network timetable.

When designing the timetable for one line, we start from its trips in the initial timetable. We then shift all
trips of that line by a random amount of time between 0 and double the minimum periodicity of that line. The
minimum periodicity of a line in the initial timetable is between 13% and 41% of its maximum periodicity, so
in most cases the timetable modifications will allow attaining a timetable close to the initial timetable. Each
direction in the offset line is shifted by a different random amount of time. Timetable modifications by shifts
and stretches are allowed for all S-Bus lines, in all scenarios. Offsetting the timetable may also change the
vehicle schedules obtained when solving the MDVSP. In order to enable a fair comparison between results in
this section and in the previous section, we use as budget for the operating costs the same budget used before,
i.e. the operating costs obtained by solving the MDVSP for the initial timetable. Table 7 shows results for all
four scenarios in terms of absolute WTT and DKK savings in comparison to the Route Fixed solutions. Each
scenario is associated with an α value, which is the percentage increase in WTT of the offset initial timetable
in comparison to the initial timetable.

The results in Table 7 show that all MHeuPA solutions have a lower WTT than the solutions obtained with
the Route Fixed, similarly to what is observed in Section 6.1. Again, the NoCosts waiting cost function is
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Table 7: WTT results for the four scenarios of designing timetables

Offset lines
(α)

350S
(0.07)

250S, 300S, 400S
(0.16)

350S, 500S, 600S
(0.13)

All S-Bus network
(0.39)

Solution
WTT
(DKK)

Savings ict
Route Fixed
(DKK)

WTT
(DKK)

Savings ict
Route Fixed
(DKK)

WTT
(DKK)

Savings ict
Route Fixed
(DKK)

WTT
(DKK)

Savings ict
Route Fixed
(DKK)

Route Fixed 14,858,155 - 14,862,350 - 14,886,838 - 14,928,154 -
NoCosts 14,813,879 -44,276 14,817,685 -44,665 14,840,451 -46,388 14,879,730 -48,424
LinAsc 14,818,344 -39,811 14,832,089 -30,261 14,843,607 -43,231 14,882,466 -45,689
RandomLinAsc 14,822,558 -35,596 14,832,355 -29,995 14,840,764 -46,074 14,894,508 -33,646

the one that shows the largest decreases in WTT. By comparing Tables 3 and 7, we see that the solutions in
Table 7 also have a lower WTT than the initial timetable of Section 6.1, despite starting from a worse timetable
(evidenced by all α values being positive). Solutions obtained in the previous sections with the same waiting
cost functions are better in terms of WTT by 0.05% to 0.56% than solutions obtained in this section, since they
start from a timetable with more transfer synchronization and therefore lower WTT.

6.3 Changes in passenger demand

In this section, we test the MHeuPA for different ODt matrices than the base matrix. We test two different
scenarios:

1. a random variation in the base ODt matrix (Random ±10%);

2. an event simulation ODt matrix (Event Simulation).

The random variation scenario was generated by varying OD hourly demand in the base ODt matrix randomly
by a value between -10% and 10%. As for the Special Event Simulation scenario, we selected three stations in
the city center and simulated a two hour event happening between 6p.m. and 8p.m. Consequently, we increase
by 50% all OD pairs in the base ODt towards these three stations with departure time during the two hours
prior to the event. We also increase by 50% all OD pairs in the base ODt originating from these three stations
in the two hours after the event.

Table 8 shows the results for the two scenarios, in absolute WTT and percentage improvement in relation
to the Route Fixed solutions. Similarly to Section 6.2, each scenario is associated with an α value, indicating
the percentage increase of the initial solution in comparison to the initial timetable for the base ODt matrix.

Table 8: WTT results for the two scenarios of changing the OD matrices

OD Variation
(α)

Random ± 10%
(0.03)

Special Event Simulation
(0.35)

initial timetable (Table 3)
(14,952,021 DKK)

Solution
WTT
(DKK)

Improv. to
Route Fixed (%)

WTT
(DKK)

Improv. to
Route Fixed (%)

Improv. in
Random (%)

Improv. in
Event (%)

Route Fixed 14,857,357 - 14,906,759 - -0.63 -0.30
NoCosts 14,814,032 -0.29 14,861,172 -0.31 -0.92 -0.61
LinAsc 14,825,444 -0.21 14,867,111 -0.27 -0.85 -0.57
RandomLinAsc 14,822,207 -0.24 14,865,578 -0.28 -0.87 -0.58

From Table 3, the initial timetable has a WTT of 14,952,021 DKK. We observe that, despite the changes
in passenger demand, the MHeuPA is able to obtain solutions that have lower WTT than the initial timetable.
Furthermore, the integration with a PTTA model proved to be beneficial, evidenced by the solutions with lower
WTT obtained with the MHeuPA solutions in comparison to the Route Fixed solutions. The NoCosts waiting cost
function once again outperforms the other cost functions, with a reduction in WTT of -0.29% in the random
ODt scenario and of -0.31% in the event simulation scenario, in comparison to the Route Fixed solutions.
Furthermore, the NoCosts is also the best performing waiting cost function when comparing with the initial
timetable, with WTT reductions of -0.92% in the random ODt scenario and of -0.61% in the special event
simulation scenario.

We acknowledge that, in general, in case of a large event it is important to evaluate if there is capacity to
transport the higher volumes of passengers. Since our approach does not take into account capacity constraints,
it is out of the scope of the current work to consider the analysis of capacity restrictions. The purpose of

19



the above described cases is to demonstrate new timetables can also be found in case of a change in demand
scenarios. Thus, the MHeuPA is suitable to use in a wide range of situations: improving on the current timetable,
dealing with a change in the network, dealing with a change in passenger demand.

7 Conclusions and future research

This paper addresses the problem of maximizing passenger service through timetabling under the assumptions
of free passenger route choice within a fixed budget for operating costs at a tactical level. Free route choice
implies that passengers follow their individually preferred path, rather than one that optimizes a social optimum,
and that passengers with the same origin, destination, and departure time may have different preferences. The
latter ensures that in case two equivalent routes exist, passengers are assumed to use both.

The proposed matheuristic for the IPAT-VSP combines two state-of-the-art models: the integrated timetabling
and vehicle scheduling model of Fonseca et al. (2018) with the passenger route choice model of Briem et al.
(2017). Provided an initial timetable and an ODt matrix describing passenger demand over time, the objective
of the MHeuPA is to maximize passenger service, expressed as weighted travel time, through modifications of the
timetable. These modifications consist of changes in the starting time of trips (shifts), and addition of dwell
time (stretches) at transfer stops, in comparison to the initial timetable within a set of headway constraints and
a budget on operating costs. Operating costs are defined by the minimum cost vehicle schedules for a timetable,
which problem is simultaneously solved during the timetabling procedure.

A realistic case study focused on timetabling bus lines in the context of the multi-modal network of the
Greater Copenhagen area illustrates that (i) including free passenger route choice leads to timetables with
higher passenger service than assuming fixed passenger route choice such as in Fonseca et al. (2018), (ii) that
the indication of potentially interesting transfers for passengers results in timetables with a higher passenger
service than providing the timetabling model information on the precise passenger route choice on the current
timetable, and (iii) that benefits of including free passenger route choice can be found in comparison to the
current timetable of our case study area, in case of a change in the network, and in case of a change in passenger
demand. The latter also suggests that the proposed MHeuPA approach could be used to design new timetables
in case of changes in the network, e.g. due to planned maintenance, or in case of an expected change in the
demand matrix, e.g. due to special events.

Although the higher passenger service in our case study results from a trade-off between passenger groups,
the increase in service results foremost from a sizable decrease in WTT for a large group of passengers that
offsets the increase in WTT for others. Overall improvement in WTT in comparison to the initial timetable
is approximately 1%, of which 0.25% is due to the inclusion of free passenger route choice. The 0.25% is
equivalent to a daily reduction of approximately 40,000 DKK when expressed as value of time. Due to the
budget constraints, these savings come at no additional operating costs.

In summary, this paper contributes to the field of timetabling and public transport planning by studying in-
tegrated maximal passenger service timetabling and vehicle scheduling in the context of a realistic free passenger
route choice model representing free route choice of passengers; demonstrating that the inclusion of free passen-
ger route choice leads to timetables with higher passenger service and that the indication of potential important
transfers for passengers is more important than providing a timetabling model with accurate information on
the passenger route choice in a current, initial timetable.

Future research may focus on a further integration of passenger route choice decisions into the timetabling
and vehicle scheduling model; or on extending the timetabling procedure to include decisions on stops per
line and frequency, which have a major influence on passenger service but are currently generally fixed in the
previous planning stage of line planning and network design. Moreover, future research could focus on finding
exact lower bounds for the maximal passenger service timetabling problem.
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Appendix 1 - IT-VSP mathematical model

Sets
S Set of all stops
L Set of all directed lines
T = {1, . . . , n} Set of all timetabled trips
Tl ⊆ T Subset of all trips in the directed line l ∈ L
T 1 ⊆ T Set of all trips which are the first in their directed line
Si ⊆ S Set of all stops visited by trip i ∈ T
Ji ⊆ Si Set of all intermediate stops visited by trip i ∈ T , i.e., Ji = Si \ {sti, eti}
R Set of all transfer opportunities, each defined by a triplet (i, l, s): passengers disem-

barking trip i ∈ T at stop s ∈ Ji ∪ {eti} with the intent of embarking a trip j ∈ Tl
of line l ∈ L such that l 6= li and s ∈ Jj ∪ {stj}

K Set of all depots
I Set of all compatible trips, I = {(i, j)|i, j ∈ T : i 6= j,Dist(eti, stj) ≤ u, a−i,eti + q−+

bij ≤ d+
j,stj

, a+
i,eti

+ q+ + bij ≥ d−j,stj}
Vk Set of nodes, which contains a node for each trip i ∈ T , as well as for depot k ∈ K

which is denoted n+ k, thus Vk = T ∪ {n+ k}
Ak Set of arcs, including deadhead trips, pull-out trips, and pull-in trips, thus Ak =

I ∪ ({n+ k} × T ) ∪ (T × {n+ k})
Gk = (Vk, Ak) Graph associated with depot k ∈ K
QD Set of all deadhead triplets QD = {(i, j, k) : k ∈ K, (i, j) ∈ I}
QO Set of all pull-out triplets QO = {(n+ k, j, k) : k ∈ K, j ∈ T}
QH Set of all pull-in triplets QH = {(i, n+ k, k) : i ∈ T, k ∈ K}
Q Set of all compatible triplets (i, j, k), representing a vehicle from depot k ∈ K

covering the pair of trips (i, j) ∈ Ak. Q = QD ∪QO ∪QH
T (Q) Set of all pairs of trips i, j ∈ T for which a triplet involving i and j exists, T (Q) =

{(i, j)|i, j ∈ T : ∃(i, j, k) ∈ Q}.
Parameters
li Directed line of trip i ∈ T
ti Total travel time of trip i ∈ T in the initial timetable
sti ∈ Si Start terminal of trip i ∈ T
eti ∈ Si End terminal of trip i ∈ T
h−is, h

+
is Minimum and maximum headways, respectively, in relation to the timetabled head-

ways, for each trip i ∈ T at each stop s ∈ Ji ∪ {sti}
d−i,sti , d

+
i,sti

Minimum and maximum departure shift from the first station for trip i ∈ T , defined
in relation to its departure time in the initial timetable

w−is Dwell time in the initial timetable of a trip i ∈ T at stop s ∈ Ji
w+
is Maximum allowed dwell time of a trip i ∈ T at stop s ∈ Ji

w Upper bound on the total added dwell time to all stops of any trip
Λis Number of passengers that are on board (and will continue on board) when trip

i ∈ T arrives at stop s ∈ Ji
a−is, a

+
is Earliest and latest arrival times of trip i ∈ T at stop s ∈ Ji ∪ {eti}, determined by

the possible timetable modifications
d−is, d

+
is Earliest and latest departure times of trip i ∈ T from stop s ∈ Ji∪{sti}, determined

by the possible timetable modifications
fr Number of passengers requesting transfer r ∈ R
er Minimum transfer time for transfer r ∈ R
q−, q+ Minimum and maximum turnaround times
bij Driving time between eti and stj
vk Number of vehicles available at depot k ∈ K
Dist(i, j) Distance between the end terminal of trip i ∈ T , eti, and the start terminal of trip

j ∈ T , stj
u Maximum deadhead distance
cijk Operating cost associated with servicing triplet (i, j, k) ∈ Q. The cost cijk of triplet

(i, j, k) ∈ Q is equal to the deadhead time bij multiplied by a driving cost per time
unit; if (i, j, k) ∈ QO, cijk also includes a fixed cost for creating a new schedule,
corresponding to the fixed cost for using a vehicle.

cDW Operating cost per minute of extra dwell time
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cOB Cost per minute of extra dwell time per on board passenger
cTR Cost per minute of excess transfer time at transfers per passenger
Decision variables
xijk ∈ {0, 1} 1 if and only if a vehicle from depot k travels from node i directly to node j, 0

otherwise
τdis ∈ Z+

0 Departure time of trip i ∈ T from stop s ∈ Ji ∪ {sti}
τais ∈ Z+

0 Arrival time of trip i ∈ T at stop s ∈ Ji ∪ {eti}
γr ∈ R+

0 Excess transfer time for passengers using transfer location r ∈ R
αijs ∈ {0, 1} 1 if and only if passengers of transfer location r = (i, lj , s) ∈ R embark trip j ∈ T ,

0 otherwise
δis ∈ Z+

0 Minutes of dwell time added to trip i ∈ T at stop s ∈ Ji

We define a directed line l ∈ L as a sequence of stops s ∈ S visited by a vehicle, the set of all trips T =
⋃
l∈L Tl

and Tl′ ∩ Tl′′ = ∅ for all l′, l′′ ∈ L, l′ 6= l′′. Passengers are assumed to transfer to the earliest feasible trip j ∈ Tl.
A transfer r from trip i to line l at stop s, r = (i, l, s) ∈ R, is feasible when the minimum transfer time for
transfer r ∈ R, er, is not greater than the difference between the departure time of trip j ∈ Tl from stop s and
the arrival time of trip i at stop s. The turnaround time should generally be in the interval [q−, q+]. Buffer
time added to the trip in the form of dwell time is subtracted from the minimum turnaround time q−. Each
vehicle used in a feasible solution covers a sequence of compatible trips and must return to the depot from
which it departed. Two trips i, j ∈ T are compatible if the following three conditions hold: (a) Dist(eti, stj) is
smaller than u; (b) The sum of a−i,eti , q

−, and bij is smaller or equal to d+
j,stj

; and (c) the sum of a+
i,eti

, q+, and

bij is greater or equal to d−j,stj . The αijs variables indicating transfer opportunities are defined only for a set

W = {(i, j, s)|i, j ∈ T, s ∈ S : r = (i, l, s) ∈ R, j ∈ Tl, i 6= j, a−is + er ≤ d+
js, a

+
is + er + 1.5hl ≥ d−js}, where hl is

the largest frequency observed for line l ∈ L throughout the day. This improves the tractability of the model
by reducing the number of αijs variables created, without imposing any practical constraints, since at least one
transfer to a trip in l ∈ L will be available given the timetable modifications.

The MILP formulation for the IT-VSP is:

min
∑
i∈T

∑
s∈Ji

cOBΛisδis +
∑
r∈R

cTRfrγr (1)

s.t.
∑

(i,j,k)∈Q

cijkxijk +
∑
i∈T

∑
s∈Ji

cDW δis ≤ B (2)

∑
(i,j,k)∈Q

xijk = 1 i ∈ T (3)

∑
(i,j,k)∈Q

xijk −
∑

(j,i,k)∈Q

xjik = 0 k ∈ K j ∈ Vk (4)

∑
(i,j,k)∈QO

xijk ≤ vk k ∈ K (5)

d−i,sti ≤ τ
d
i,sti ≤ d

+
i,sti

i ∈ T (6)

0 ≤ τdis − τais − w−is ≤ w
+
is i ∈ T s ∈ Ji (7)∑

s∈Ji

δis ≤ w i ∈ T (8)

δis = τdi,s − τai,s − w−is i ∈ T s ∈ Ji (9)

h−is ≤ τ
d
is − τdi−1,s ≤ h+

is l ∈ L i ∈ Tl : i 6∈ T 1 s ∈ Ji ∪ {sti} (10)

τai,eti + bij + q− −
∑
s∈Ji

δis −M(1−
∑

(i,j,k)∈Q

xijk) ≤ τdj,stj (i, j) ∈ T (Q) (11)

M
∑

k∈Tl:(i,k,s)∈W,
k≤j

αiks ≥ τdjs − τais − er r ∈ R (i, j, s) ∈W (12)

τdjs − τais − er ≥M(αijs − 1) r ∈ R (i, j, s) ∈W (13)∑
j∈Tl:(i,j,s)∈W

αijs = 1 r = (i, l, s) ∈ R (14)

τdjs − τais − er −M(1− αijs) ≤ γr r ∈ R (i, j, s) ∈W (15)

xijk ∈ {0, 1} (i, j, k) ∈ Q (16)

τdis ∈ Z+ i ∈ T s ∈ Ji ∪ {sti} (17)

24



τais ∈ Z+ i ∈ T s ∈ Ji ∪ {eti} (18)

δis ∈ Z+ i ∈ T s ∈ Ji (19)

γr ∈ R+ r ∈ R (20)

αijs ∈ {0, 1} (i, j, s) ∈W (21)

The objective function (1) minimizes a weighted sum of passengers’ costs. The first term refers to on board
passenger costs incurred when adding dwell time to trips. The second term refers to costs associated with excess
transfer times.

Constraints (2) impose an upper bound (budget) on the operating costs. The first term considers driving
operating costs for deadhead, pull out, and pull in trips, and the second term considers operating costs associated
with additional dwell times. Constraints (3) - (5) model classical MDVSP constraints: assignment constraints
(3) guarantee coverage of each trip i ∈ T by including it in exactly one vehicle schedule; flow conservation
constraints (4) on trip and depot nodes guarantee the continuity of the vehicle schedules created; and capacity
constraints (5) limit the number of pull-out trips to the maximum number of vehicles available at each depot
k ∈ K.

Constraints (6) - (10) model timetable modifications: constraints (6) force lower and upper shift bounds on
the departure time from the first stop of each trip; constraints (7) impose a maximum added dwell time at each
stop of a trip; constraints (8) bound the total added dwell time to all intermediate stops of a trip; constraints (9)
define the δis variables to the added dwell time in the corresponding intermediate stop s ∈ Ji of trip i ∈ T ; and
constraints (10) model the minimum and maximum headways between each trip i ∈ T and its precedent trip in
the same directed line at each stop s ∈ Ji ∪{sti}. Linking constraints (11) relate the vehicle scheduling and the
timetable modification parts of the problem. These guarantee that if trips i and j are serviced consecutively
by the same vehicle, then the vehicle has time to deadhead from eti to stj without violating the minimum
turnaround time q−.

Linking constraints (12) and (13) relate the transfer variables αijs and the departure and arrival times
of trips: constraints (12) ensure that passengers arriving from trip i at stop s transfer to one of the trips j,
such that (i, l(j), s) ∈ R, if the arrival and departure times allow the transfer to take place; constraints (13)
prevent variable αijs from taking value 1 whenever passengers do not have enough time to transfer from trip i
to trip j at stop s, where (i, l(j), s) ∈ R. Constraints (14) impose that each transfer location is performed by
transferring to exactly one trip j ∈ Tl. Constraints (15) define the values of γr variables to the excess transfer
times, determining this value for each transfer location based on the selected transfers. Constraints (16)-(21)
define the range of all sets of decision variables.
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