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Abstract—The European Space Agency Sentinel-1 satellites 

provide good resolution all weather SAR images. We describe 

algorithms for detection and classification of ships, icebergs and 

other objects at sea. Sidelobes from strongly reflecting objects as 

large ships are suppressed for better determination of ship 

parameters. The resulting improved ship lengths and breadths are 

larger than the ground truth values known from Automatic 

Identification System (AIS) data due to the limited resolution in 

the processing of the SAR images as compared to previous 

analyses of Sentinel-2 optical images. The limited resolution in 

SAR imagery degrades spatial classification algorithms but it is 

found that the backscatter horizontal and vertical polarizations 

can be exploited to distinguish icebergs in the Arctic from large 

ships but not small boats or wakes. 

 
Index Terms—Sentinel-1, SAR, ship detection, ship lengths, 

icebergs  

I. INTRODUCTION 

ARINE surveillance and situation awareness is essential 

for monitoring and controlling piracy, smuggling, 

fishing, irregular migration, trespassing, spying, traffic safety, 

icebergs, sea ice, shipwrecks, the environment (oil spill or 

pollution), etc. Dark ships are non-cooperative ships with non-

functioning transponder systems such as the automatic 

identification system (AIS). Their transmission may be 

jammed, spoofed, sometimes experience erroneous returns, or 

simply turned off deliberately or by accident. Furthermore, AIS 

satellite coverage at high latitudes is sparse, which means that 

other non-cooperative surveillance systems, including satellite 

or airborne systems, are required. 

The Sentinel satellites under the Copernicus program [1] 

provide excellent and freely available imagery with pixel 

resolutions down to 10 m in multispectral and Synthetic 

Aperture Radar bands. The orbital periods are 6 days between 

the Sentinel-1 (S1) satellites A + B, and 5 days between the 

Sentinel-2 (S2) satellites A + B. Furthermore, the swaths from 

different satellite orbits overlap at higher latitudes, and the 

resulting frequent transits over the polar regions make these 

satellites particularly useful for Artic surveillance and for 

monitoring sea-ice coverage, icebergs and ships in SAR [2–11] 

and multispectral images (see [12-13] and refs. therein), etc. 

Ship and iceberg detection in SAR imagery has recently 

been studied in detail for earlier satellites and TerraSAR-X [2-

8] and Sentinel-1 [9-10]. Their different modes and resolutions 

lead to interesting differences for the ship detection lengths 

[5,6,10,11], classification in comparison to AIS and false alarm 

rates [2-11], etc. A comparison to these results will be made in 

the conclusion of this work. 

In the following an analysis of the S1 SAR data and the 

search for objects in a sea background with masking of land and 

sea ice is presented. In addition, an algorithm for suppressing 

sidelobes from strongly reflecting objects as large ships is 

described, and a change detection algorithm which identifies 

stationary objects such as sea turbines, islands, piers, etc. 

Subsequently, the segment classification algorithm for ships 

and icebergs is described based on backscatter polarizations. 

Results for ships and icebergs in Denmark and Greenland are 

shown. Finally, ship lengths and breadths in S1 data are 

analysed and compared to AIS ground truth numbers. These 

results are also compared to earlier TerraSAR-X [4,5], S1 [9-

10], Envisat [11], and S2 multispectral results [12-13].  

II. SATELLITE IMAGES AND METHOD OF ANALYSIS 

The S1 SAR images are analyzed using dedicated 

software developed specifically to optimize the classification of 

smaller ships and icebergs in large images. 

A. Sentinel-1 SAR Images 

S1 carries the C-band Synthetic Aperture Radar all-

weather day-and-night imager [1]. As we are interested in small 

object classification and discrimination, we will focus on 

analyzing the processed level-1 high resolution ground range 

detected (GRDH) interferometric wide (IW) swath S1 images 

with 20x22m resolution, and pixel spacing l=10m. These are 

mega- to giga-pixel images with 16 bit grey levels. The titles 

above Figs. 1-5 are the filenames [1] that describes the data set 

(S1A-IW-GRD-polarization-date and time). 

We analyze 30 S1 images covering several parts of Denmark 

and Greenland. These images are convenient for classification 

because objects are abundant and relatively easy to identify at 

sea. In Denmark the objects are ships, wind turbines, islands, 

and wakes whereas in Greenland there can be abundant icebergs 

and floes, some islands but few ships all depending on region, 

weather, time of year and day. The S1 images analyzed here are 
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recorded in 2018 from north of Denmark (Skagerak) down to 

the southeast and the Baltic Sea, and along the west coast of 

Greenland from Nuuk and up to the Disko Bay. 

 

 

 

 

The S1 images contain polarimetric SAR backscatter for 

horizontal (H) and vertical (V) polarizations transmitted and 

reflected. The dual direct polarized backscatter images are HH 

and HV in Arctic regions with abundant sea ice, but VV and 

VH in sub-Arctic regions because  sea and wave reflect stronger 

in VV than in HH. The cross polarizations VH and HV are very 

similar. 

The spatial coordinates (x,y) are the pixel coordinates (i,j) 

multiplied by the pixel resolution l = 10m for the S1 high 

resolution Ground Range Detected (GRDH) images. The total 

vertical backscatter is 

 

              𝑉(𝑖, 𝑗)  =  VH(𝑖, 𝑗) + VV(𝑖, 𝑗)   , (1) 

and analogously for the horizontal backscatter H=HH+HV. 

Examples are shown in Figs. 1-3. 

B. Object detection from Background 

To detect an object, its backscatter must deviate from the 

sea background which varies with satellite viewing (incidence) 

angle, wind and waves. Ship, ice, sea turbines, oil rigs, islands, 

and other objects generally reflect more. The next step is to 

select a region-of-interest (ROI) and mask large areas of land 

and sea ice by a simple algorithm which detects and connects 

segments [13] above a given area. Choosing the ROI such that 

the sea covers more than half of the image after land removal, 

the median backscatter value for each ROI image provides an 

accurate and robust value for the background. The detection 

threshold TB is determined from the cumulative distribution for 

the ROI image such that the constant false alarm rate is 10-4. If 

the ROI has megapixel size, this can lead to a large number of 

false alarms – mostly single pixels. Therefore, we filter objects 

larger than three pixels only, which effectively removes most 

false alarms from noise. The false alarm rate is at the same time 

sufficiently large that most if not all large and medium size 

ships are detected. 

The total backscatter image V(i,j) or H(i,j) has the highest 

resolution and is therefore optimal for object search and 

detection. Treating these as matrices (see [13]), we construct a 

connectivity matrix in which pixels with total backscatter above 

and below the threshold TB are assigned 1 and 0 respectively. In 

this connectivity matrix, all neighboring entries with value 1 are 

then connected as a segment (s), and listed s = 1,..., Ns, where 

Ns is the total number of separate segments found in the image. 

Each segment has an observed area corresponding to the sum 

over the pixels in the segment 

                         A(s)  =  ∑ 1
 > TB
𝑖,𝑗 ∈ 𝑠  

 ,                                                   (2) (1) 
 

Fig. 1. The Disko Bay, Greenland.  (July 30th, 2018, 10:00 a.m. UTC). The 
title is the filename (see text).  The box is an iceberg ROI around the iceflow 

from the Ilulissat Icefjord, one of the worlds fastest flowing glaciers. 

  

Fig. 2. Copernicus Sentinel-1A image [August 21st, 2018 at 05:32 a.m. UTC] 

covering Skagen, the northern tip of Denmark. The added numbers refer to the 
list of objects found by the classification algorithm, where white numbers are 

ships and red numbers are mostly wakes, sidelobes, and harbor piers. 
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in units of the pixel area (l2). The cumulated backscatter of that 

segment is found by summing over its pixels 

                       X(s)  =  ∑ X(𝑖, 𝑗) 
> TB
𝑖,𝑗 ∈ 𝑠  

 ,                                            (3) (3) 
  

for the co-polarized X=VV or HH, cross polarization X=VH or 

HV, or total backscatter X=V or H. We define the average 

backscatters 

          �̅�(s)  =  𝑉(𝑠)/𝐴(𝑠) ,    𝐻(s)  =  𝐻(𝑠)/𝐴(𝑠) ,             (4) 

and the cross polarization ratios  

          CV(s) = VH(𝑠)/𝑉(𝑠) ,  CH(s) = HV(𝑠)/𝐻(𝑠) ,          (5) 

which are very useful classifiers as will be shown below. 

 

C. Sidelobe removal 

Sidelobes are often encountered in radar backscatter 

images. In particular ships and oil rigs, with large metal areas 

or corner reflectors can be very bright and produce strong 

sidelobes both along (i-direction) and transverse (j-direction) to 

the satellite swath direction. In Fig. 3 we show a typical SAR 

image of a container ship (Ivar Reefer) with strong sidelobes. 

These make classification difficult and corrupt the automatic 

determination of ship length, breadth and orientation. Therefore 

we apply a phenomenological correction algorithm which we 

have adjusted such that it effectively removes the sidelobes. 

Whenever a pixel (i,j) value is so bright that it exceeds a 

sidelobe threshold TS, the algorithm subtracts a value given by 

a simple sidelobe correction function 

   𝑆𝑖𝑗(𝑖′, 𝑗′)  =  𝑆0 V(𝑖, 𝑗) ( 
𝛿

𝑗𝑗′

1+ | 𝑖′−𝑖 |/𝜆𝑖 
+  

𝛿𝑖𝑖′

1+ | 𝑗′−𝑗 |/𝜆𝑗 
 )  ,         (6)  

for pixels in the x-direction and y-direction separately relative 

to the bright pixel (i,j). The magnitude parameter S0=0.1 is low 

such that the nearby pixels are not strongly suppressed such that 

the ship pixels remain, otherwise ships may be broken into 

separate segments. The sidelobe range parameters 𝜆𝑖 = 10 and 

𝜆𝑗 = 5 are chosen such that the long range sidelobes are 

sufficiently suppressed. More precise modeling of the radiation 

pattern is difficult due to the finite pixel resolution, which is 

comparable to the oscillation length and implicitly the range 

parameters λ. They differ because the sidelobes in S1 images 

are stronger in the y-direction along swath. The Kronecker 

delta’s 𝛿𝑖𝑖′ and 𝛿𝑗𝑗′ insure suppression of one row and one 

column respectively in the image matrix which cross at pixel 

(i,j). When several pixels (i,j) exceed the threshold, stripes are 

suppressed in the image as seen in Fig. 3.  

The oscillating nature of sidelobes often leads to separate 

segments nearby a strongly reflecting object. Such “collaterals” 

are automatically picked up in the search and segment detection 

algorithm and can be classified as sidelobe remnant segments. 

III. CLASSIFICATION 

For all segments their position, length, width, area, total 

backscatter and cross polarization are calculated and listed. The 

classification scheme will as explained below identify the 

segment as an object such as a ship, iceberg or ice floe, wake, 

sidelobe, or a stationary object as an island, wind turbine, or oil 

rig. Each segment is assigned a number referring to a list with 

details on the calculated spatial and backscattering parameters. 

The numbers are plotted at the segment coordinates as shown 

in Fig. 2 with a color classification code.  

A. Icebergs 

Fig. 1 shows a S1 image from the Disko Bay in Greenland 

with thousands of icebergs and ice floes from several glaciers. 

As icebergs can come in many sizes and shapes, spatial 

parameters as area and length are not good classifiers. Instead 

the �̅�  and CH classification parameters are useful for ice floe 

and iceberg classification as can be seen in Fig. 4.  Most 

icebergs have low 𝐻  and CH, and are situated below the dashed 

line which therefore can be used for separating into classes by 

the k-nearest neighbor method. 

B. Ships 

Ships are identified from AIS ship coordinates and 

correlated with their positions in the satellite images. Fig. 2 

shows a S1 image where a number of ships are anchored in the 

tranquil sea east of Skagen, the northern tip of Denmark. Our 

Fig. 3.  Top: S1 SAR image of the container ship Ivar Reefer in Fig.2. Ship 

dimensions are 164x26m but show strong sidelobes. Bottom: sidelobes have 
been removed. Red bars show the resulting and improved ship length, breadth 

and direction. 
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detection and classification algorithm finds almost all ships 

recorded by AIS. 

 

 

Fig. 4.  Scatter plots of all segments (mainly icebergs) found  in the Disko Bay 

ROI of Fig.1. Backscatter distribution CH vs. �̅� , where size is proportional to 

area A and shading to B/L. This gives a visual view of the four classification 

parameters. Vertical line is the threshold TB. Almost  one thousand icebergs and 
ice floes are correctly classified below the dashed line. According to AIS there 

are two ships present of which the large cruise ship Ocean Diamond is clearly 

separated on the right whereas a smaller trawler is not identified. 

 

  As described in [12-13], one can for each object calculate 

the center of mass coordinates, length (L), width or breadth (B), 

orientation angle as well as a number of other spatial parameters 

for the segment. In the multispectral S2 images, these 

parameters were exploited for spatial classification of the 

segments as objects as ships are elongated and generally have 

small breadth to length ratio, B/L. As will be discussed in Sec. 

IV, the S1 IW SAR images have poorer resolution 20x22m. 

Also ship wakes are fragmented and not nearly as visible as for 

the S2 multispectral ship wakes. We therefore find that B/L is 

not as useful for a ship classification parameter for S1 images.  

 

 

 

The remaining classification possibilities are the two 

backscatter polarizations. We find that the average object 

backscatter �̅�  and the cross polarization CV are good classifiers 

as shown in Fig. 5. Ships reflect much stronger than wakes and 

ice floes, i.e. their radar cross sections are much larger due to 

metal and flat surfaces and possible corner reflectors, in 

particular for VH. Therefore large ships show up on the right 

in Fig. 5, whereas wakes, sidelobe segments and unfortunately 

also some small ships show up on the left.    

In Fig. 2 ships are denoted white numbers, whereas 

objects classified as wakes, sidelobes, harbor quay and a few 

small ships are denoted other colors. This allows for a quick 

identification of objects in the images with reference to the 

identification list with position, size, size after sidelobe 

correction, length, breadth, orientation, backscatter, etc. 

C. Islands, sea turbines, oil rigs 

Stationary objects such as islands and wind turbines are 

separated by change detection. By comparing to earlier S1 

image(s) of the same region, and checking whether an object was 

present at the same place within a few pixels, we can remove 

most stationary objects as islands, sea turbines, oil rigs, harbor 

quays, etc. We choose a 5 pixel radius corresponding to 50m, 

which is large enough to be robust towards noise and some 

change in backscatter with time, but small enough that 

accidental position overlap between two moving objects is 

improbable. 

D. Classification Accuracy and Comparison to AIS 

 The above object classifications indicate that the backscatter 

parameters 𝐻  or �̅�  and C are much more useful than spatial 

classification parameters A and B/L when it comes to 

discriminating ships from icebergs in S1 IW images. As shown 

in Fig. 5+6 large ships and icebergs can to a large degree be 

separated in both 𝐻 vs CH and �̅�  vs. CV plots by the dashed 

line.  

Smaller ships and boats as well as sidelobes and wakes, 

however, tend to be widely spread into the iceberg 

classification region - leading to mis-identification. These 

results for S1 SAR ship and iceberg classification are 

compatible with earlier analyses based on dual cross 

polarisations from RadarSAT, TerraSAR and other satellite 

data [2]. 

Note that almost all the Arctic S1 IW images are HH 

whereas non-Arctic are VV, which complicates the 

classification because there are few ships in HH and few 

icebergs in VV. We therefore use the same dashed line for 

classification in Figs. 4+5 for lack of data. A differentiated 

classification should exploit that the sea background has more 

than double reflection in VV than HH. This will, however, 

require more ships with AIS records in the Arctic and records 

of icebergs drifting south. 

 
Fig. 5.  As Fig. 4 but for all segments (mainly ships, sidelobes and wakes) 

found in Fig. 2 of Skagen. Dashed line is the k-nearest-neighbor (kNN) 

classification decision boundary. 
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Santamaria et al. [9] have analyzed more than two thousand 

S1 extra wide swath (EW) images with 50x50m resolution in 

the Arctic in which they have detected 13,312 objects all 

believed to be ships. On average 84% of these were correlated 

to AIS ships. The detection probability was 80-100% for ship 

lengths above 150m but dropped to 60-70% for ship lengths 

around the S1 EW resolution of 90m, and below 20% for ships 

shorter than 20m. This gave an average detection of 52% of 

the AIS ships in the S1 EW images. 

We have performed a similar analysis for about 30 S1 IW 

images which contain about 200 ships in total. Although our 

statistics are limited, the about 5 times better resolution in the 

IW than EW images clearly improves the detection probability 

of large ships. We find almost 100% correlation between S1 IW 

and AIS for ships longer than 100m. For smaller ships, 

however, the detection probability drops rapidly to zero as for 

S1 EW. 

For comparison, the high resolution multispectral S2 

images had a detection probability of almost 100% even for 

small ships of length 20m [12-13]. Also, a greater number of 

small ships were detected which did not transmit AIS, probably 

because AIS reporting is only required by law for ships above 

25m. 

IV. SHIP LENGTHS AND WIDTHS 

For each connected segment in the images we can 

calculate its position, heading angle, length and breadth as 

described in detail in the ship model algorithm of [12]. The 

image processing techniques are general and apply to both S1 

and S2 images. However, the different backgrounds, noise, 

speckle and resolution affect the results. The resulting ship 

lengths and breadths are plotted in Figs. 6+7 vs. their ground 

truth values as given by AIS. We find that it is important to 

correct for sidelobes as they corrupt the ship images 

considerably and result in erroneous ship orientations, 

exaggerated lengths and breadths. The sidelobe corrected ship 

lengths and breadths from S1 data are closer to the ground truth 

numbers from AIS. The S1 ship lengths and breadths do, 

however, overestimate the ground truth dimensions by a 

constant offset of 36m and 26m respectively as shown in Fig. 

6+7. The discrepancy is due to the limited S1 GRDH resolution 

of 20x22m and less importantly the pixel resolution of 10m. 

Correcting for this off-set, the standard deviation σ defined as 

the root mean square average of the difference between the S1 

satellite data and the AIS ground truth (LS1 +B/2− LGT) is σ = 

24m for the ship lengths and σ(BS1 − BGT) = 9m for the ship 

breadths. Note that one can observe the effect of the ship sterns 

which extends the ship length by of order half the ship width as 

explained in [12]. 

In Fig.6+7 the S2 optical data ship lengths and breadths 

from [12] are also shown for comparison. These agree much 

better with ground truth AIS values because the resolution is 

only the pixel length l=10m and there are four high resolution 

bands. Also the background noise is less and no sidelobes are 

present. The resulting standard deviations were σ(LS2+B/2 − 

LGT) = 10 m and σ(BS2 − BGT) = 4 m and a very small offset of 

order 2m between S2 and AIS ship lengths and breadths. 

As described above the ship images are corrected for 

sidelobes, and the resulting ship lengths and breadths calculated 

depend on the parameters (𝑆0, 𝜆𝑖 , 𝜆𝑗  ) . The stronger the 

correction, the smaller the length and width, but at the same 

time the off-set decreases. The resulting offset corrected ship 

lengths and breadths are found to be robust, i.e. almost 

independent of the sidelobe parameters within a reasonable 

range around the parameters chosen. 

 

 

 

 

 

V. COMPARISON TO OTHER WORK AND CONCLUSION 

Brusch et al. [5] have performed a similar analysis of ship 

lengths for TerraSAR satellite images, which have resolution 

down to 3-4m. They find a good linear correlation for ship 

lengths between 50-300m with a standard deviation of 22m and 

an offset (negative bias) of 7m. The offset is smaller due to the 

better resolution as could be expected, and is comparable to the 

resolution as is also the case for our Sentinel-1 data. 

Fig. 6. Ship lengths. Squares and circles are from S1 and S2 data 

respectively vs ground truth lengths and breadths from AIS ship 

records. Blue lines indicate best off-set fit to S1 data and dashed blue 

line to S2 data, see text. 
 

Fig. 7.  As Fig. 6 but for ship breadths. 
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Surprisingly, the standard deviation in TerraSAR ship lengths 

is much larger than the resolution and comparable to that found 

in the S1 analysis above. Part of the reason could be the sidelobe 

reduction performed on the S1 data. We also suspect that the 

higher detail in TerraSAR resolves high and low reflective parts 

of the ships, which complicates the spatial analysis and 

dimension determination. Therefore, the S1 images are useful 

for ship detection and they also cover larger areas and thus 

allow for faster wide area search. 

Bentes et al. [4] have analyzed a wide range of TerraSAR-

X modes and found relations between resolution and minimum 

ship length detection. At wide incidence angle and low wind 

speed they are similar, but at low incidence angle and/or higher 

wind speed the large backscatter from the sea makes detection 

more difficult and the minimum detection length can increase 

by an order of magnitude compared to the resolution. 

Extrapolating to the resolution and inclination angles in our S2 

data, we find that our ship length off-set and standard deviation 

are compatible with their ship size detectability lengths. 

Stasolla and Greidanus [10] have analysed 127 ships in S1 

GRDH images from the Panama Canal. Their method exploits 

the topology information of the ship backscatter geometry to 

place a rectangle for ship length and width estimates. Their 

methodology avoids an off-set. Comparing to AIS data they 

find an absolute error of 30m and 11m respectively. Both are 

compatible with the standard deviations found in this analysis. 

Hajduch et al. [11] analyse a large number of ships in 

Envisat ASAR/WSM/VV images. Besides geometrical 

information they also exploit the ship normalized radar cross 

section to improve their ship length and width estimates. Their 

methodology seems to remove off-set lengths. A comparison to 

AIS data shown in a plot seems to have a variation as in Fig. 7 

but no standard deviation is given. 

VI. SUMMARY 

Sentinel-1 SAR data was analyzed in detail including 

search and detection of objects above sea background with 

masking of land and sea ice. An algorithm for suppressing 

sidelobes from strongly reflecting objects such as large ships 

was found very useful for determining ship lengths and breadths 

more accurately. As result good comparison to AIS ground 

truth numbers was found, however, with a large offset of around 

30m due to the corresponding resolution of the S1 data. The 

standard deviation between ship lengths from AIS and satellite 

data was of similar size 24m and surprisingly similar to earlier 

TerraSAR-X [5] analyses although this data has much better 

resolution. In comparison Sentinel-2 multispectral analysis 

could determine ship lengths and breadths much better [12].  

For classification a change detection algorithm proved 

very useful for identifying stationary objects such as sea 

turbines, islands, piers, etc. by comparing object positions from 

different satellite overpass. This simplified the classification of 

the remaining changing objects such as ships and icebergs. 

However, it was found that for the S1 SAR data as opposed to 

S2 multispectral data [13], the spatial information such as area, 

length and width was not very useful for classifying ships in 

Greenland when icebergs are abundant because they can have 

very different form and sizes and the resolution is limited. 

Instead, the average and cross radar polarization backscatter 

were significantly larger for large ships and allowed for correct 

classification of large ships vs. icebergs using a simple k-

nearest-neighbor method. However, smaller ships and wakes 

proved very difficult to separate from icebergs.  

Neural networks show promising results for 

discriminating smaller ships from icebergs [14-15]. Correlating 

to AIS data will be important for better determination of 

true/false positive/negative alarms, and finding dark ships. The 

detection of ships vs. icebergs in all weather day and night SAR 

data will be useful in ice infested arctic seas for surveillance, 

monitoring navigation, rescue service, etc.  
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