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ARTICLE INFO ABSTRACT

Keywords: During its lifecycle, the generalist Ixodes ricinus takes up three blood meals from a wide selection of vertebrate
Ixodes ricinus hosts, some of which are reservoirs for multiple vector-associated pathogens. Since I. ricinus also readily bites
Borrelia humans, pets, and livestock, these hosts are at risk of becoming infected with more than one tick-borne pa-
2;‘]1(1;1[‘;‘;2“ thogen. Multiple tick-borne infections are a public health concern, since they may increase diversity and

duration of symptoms and complicate differential diagnosis and therapy. We used an existing Fluidigm real-time
PCR chip to identify the minimum risk of exposure to infected/co-infected ticks in Denmark. We screened 509
nymphs and 504 adult female I. ricinus ticks for 17 different vector-associated pathogenic agents. The questing
ticks were collected by flagging during the same season in two consecutive years in Grib forest in the capital
region of Copenhagen. Overall, 19.1% of the nymphs and 52.2% of the adult female ticks harbored at least one
zoonotic pathogen. The main agents were Borrelia spp., Anaplasma phagocytophilum and Rickettsia helvetica, while
Candidatus Neoehrlichia mikurensis and Babesia venatorum both were present in less than 1% of the ticks. In
3.5% of the nymphs and 12.3% of adults we found more than one tick-borne pathogen. Of these, 15% were
potentially triple or quadruple infections. Whereas mixed infections with Borrelia were equally distributed
among both life stages, the adult ticks hosted 84.5% of the co-infections with different species of tick-borne
pathogens, chiefly involving Borrelia species in combination with either R. helvetica or A. phagocytophilum.
Statistical analyses indicated non-random co-occurrence of Borrelia spielmanii/Borrelia garinii in both life stages
and B. garinii/Borrelia afzelii and B. garinii/Borrelia valaisiana in the nymphs. Although the overall prevalence of
ticks hosting more than one infection only constituted 7.9% at the particular site investigated in this study, our
results still underline that co-infections should be considered in diagnosis and treatment of tick-borne diseases in
northern Europe.

Mixed infections
Co-infections

1. Introduction (Jensen et al., 2017b; Rizzoli et al., 2011). Moreover, some pathogens,
such as Rickettsia and tick-borne encephalitis (TBE)-complex virus, can
be transovarially transmitted to the offspring (Karbowiak and Biernat,

2016; Sprong et al., 2009).

Hard ticks (Ixodidae) transmit a variety of pathogens affecting the
health of both humans and animals. Ixodes ricinus, the dominant tick

species in Denmark, has four life cycle stages (egg, larva, nymph, and
adult). For every instar, the tick requires a blood meal from a vertebrate
host, which for the generalist I. ricinus comprises a selection of more
than 300 vertebrate species (Herrmann and Gern, 2015). With each
feeding, the tick can take up several strains of bacteria, viruses, and
parasites, either by consuming a single blood meal from a host animal
with multiple infections or by transfer between co-feeding ticks in-
fecting each other through infectious saliva (Piesman and Happ, 2001).
Some of these tick-borne pathogens may persist in the ticks by trans-
stadial survival (from larva to nymph to adult ticks), in which case a
higher rate of infection is expected for these agents in the adult stage

So far, disease-causing agents identified from I ricinus in Denmark
comprise members of the genus Borrelia, Anaplasma phagocytophilum,
Rickettsia helvetica, Candidatus Neoehrlichia mikurensis, Babesia diver-
gens, Babesia microti, Babesia venatorum, Bartonella henselae, and TBE-
complex virus (Fertner et al., 2012; Fomsgaard et al., 2009; Michelet
et al., 2014; Nielsen et al., 2004; Skarphédinsson et al., 2005; Stensvold
et al., 2015; Vennestrgm et al., 2008). Specifically, B. burgdorferi, B.
garinii and B. afzelii have been isolated from Danish patients with Lyme
borreliosis (Lebech, 2002).

The genus Borrelia includes species which cause Lyme borreliosis,
the most widespread vector-borne human infection in the temperate
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northern hemisphere (Rizzoli et al., 2011). The symptoms differ
somewhat between the species; Borrelia afzelii preferentially causes
erythema migrans (EM), and acrodermatitis chronica atrophicans;
Borrelia spielmanii has also been linked to EM in humans (Maraspin
et al., 2006). Lyme arthritis (LA) is most commonly associated with
Borrelia burgdorferi senso stricto infection and there is a high correlation
between neuroborreliosis and infection with Borrelia garinii (Rudenko
et al., 2011). Borrelia miyamotoi, which phylogenetically belongs to the
relapsing fever Borrelia, causes Borrelia miyamotoi disease (BMD) in
humans (Telford et al., 2015).

Reports of other tick-borne illnesses besides Lyme borreliosis are
rare in Denmark, but they may be under-reported due to the often mild
and uncharacteristic symptoms and/or lack of awareness in the
healthcare sector (Jensen et al., 2017a; Skarphédinsson et al., 2007;
Stuen et al., 2013). In Europe, species from the genera Babesia and
Anaplasma are well-known veterinary pathogens, particularly in do-
mestic livestock (Stuen et al., 2013). Human babesiosis is uncommon
and so far, no cases of tick-transferred babesiosis have been reported in
Denmark (Jensen et al., 2017a). A. phagocytophilum is the cause of
human granulocytic anaplasmosis (HGA); a disease which is often
subclinical or associated with mild, unspecific influenza-like symptoms,
but may cause severe or fatal disease in a subset of patients (Dumler
et al., 2007). R. helvetica may also cause illness characterized by mild
influenza-like symptoms including headache, muscle pain, or rashes
(Parola et al., 2005). Candidatus N. mikurensis is an emerging zoonotic
pathogen. In humans, EM-like rashes and infections caused by this
bacterium are primarily seen in immunocompromised patients
(Grankvist et al., 2014).

Experimental animal studies suggest that dual infections with some
of these tick-borne pathogens can alter disease transmission and reduce
or enhance severity of infection among hosts (Holden et al., 2005;
Swanson et al., 2006; Thomas et al., 2001). Due to these potential
public health implications, it is important to quantify the regional
prevalence of tick-acquired co-infections (infections by two or more
pathogens of different genera) or mixed infections (multiple infections
with pathogens of the same genus) (Wojcik-Fatla et al., 2016). Ac-
cording to molecular evidence from other parts of Europe, multiple
infections are common in I ricinus (Moutailler et al., 2016; Raulf et al.,
2018; Zajac et al., 2017). However, in Denmark, less is known about the
risk of acquiring more than one vector-borne pathogen from a tick bite
(Skarphédinsson et al., 2007; Vennestrgm et al., 2008). In the present
study, we therefore screened 509 individual questing nymphs and 504
questing female adult I ricinus ticks for 17 tick-associated agents of
zoonotic concern by using real-time PCR (RT-PCR). Here, we quantify
co-infections and multiple infections in Denmark and discuss the po-
tential mechanisms underlying these infections.

2. Materials and methods
2.1. Sample collection

We collected a total of 509 questing nymphs and 504 questing adult
female ticks in June 2016 (253 nymphs and 251 adults) and June 2017
(256 nymphs and 253 adults). The ticks were collected by flagging from
a 40x100m deciduous area situated near a pasture grazed by a low
number of cattle in Grib forest, North Zealand, Denmark (56°01’40.3”N,
12°20’11.0”E). Ticks were stored at —80 °C until use.

2.2. DNA extraction

We washed the ticks for 5min in 70% ethanol and subsequently
2 X 5min in sterile water. We used a Maxwell 16 LEV Blood DNA kit
(Promega, Madison, Wisconsin, USA) for the extraction procedure,
applying a protocol adapted for extraction of DNA from ticks. Briefly,
we homogenized the ticks using a TissueLyser II (Qiagen, Hilden,
Germany) for 2 X 2.5min at 25Hz in a mixture of 75l Incubation
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buffer (D920) and 75pl Lysis buffer (MC501) and with three 3-mm
Tungsten beads (Qiagen). After a brief centrifugation at 10,000 x g for
60 s (at that point, samples could be stored frozen at -20 °C until use),
we added 30 pl Proteinase K and incubated the samples at 56 °C over-
night. Next, we added 300 pl Lysis buffer (MC501) and vortexed the
samples briefly. We isolated genomic DNA using the Maxwell 16 LEV
Blood DNA kit (Promega, Madison, Wisconsin, USA) on a Maxwell®16
Instrument according to the manufacturer’s instructions.

2.3. Screening of bacterial and parasitic tick-borne pathogens by qPCR

We used the BioMark real-time PCR system (Fluidigm, San
Francisco, California, USA) for high-throughput microfluidic RT-PCR,
applying the 192.24 dynamic arrays (Fluidigm). The 23 primer/probe
sets used for RT-PCR target all the bacterial and parasitic tick-borne
pathogens which have previously been identified in I ricinus from
Denmark, as well as some of the most common tick-borne pathogens
known to circulate in Europe and two tick species: B. garinii, B. afzelii, B.
spielmanii, B. valaisiana, Borrelia lusitaniae, and B. miyamotoi, B. burg-
dorferi, A. phagocytophilum, Candidatus N. mikurensis, R. helvetica,
Francisella tularensis, Coxiella burnetii, B. divergens, B. microti, B. canis, B.
venatorum, B. henselae, The spotted fever group (SFG) rickettsiae and the
genus Borrelia. The assay also included primer/probe sets targeting
Ixodes ricinus and Dermacentor reticulatus (Michelet et al., 2014). We
pre-amplified the DNA in a final volume of 5L containing 3.5pL
TagMan PreAmp Master Mix, 1.2 pL pooled primer mix (except for those
targeting tick DNA), and 1.3 uL DNA, with one cycle at 95 °C for 10 min,
14 cycles at 95°C for 155 and 4 min at 60 °C. We diluted the pre-am-
plified DNA 5 x in water before we performed RT-PCR using FAM- and
black hole quencher (BHQ1)-labeled TagMan probes with TagMan
Gene Expression Master Mix in accordance with the manufacturer’s
instructions (Applied Biosystems, Foster City, California, USA). Thermal
cycling conditions were as follows: 50 °C for 2 min, 95 °C for 10 min, 40
cycles at 95°C for 15s, and 60 °C for 15s. Data were acquired on the
BioMark RT-PCR system and analyzed using the Fluidigm RT-PCR
Analysis software to obtain crossing point (CP) values. CP was set
to < 26. We included one negative water control per chip. In one lane,
we added Escherichia coli DNA plus primers and probes for internal
inhibition control (Michelet et al., 2014).

2.4. Statistical analysis

We assessed the prevalence with the exact confidence intervals
(based on beta distribution) of the individual microbes in the examined
ticks and the statistical interaction between pathogens for each instar
and year by a two-sided Fisher’s exact test using the FREQ procedure in
SAS Enterprise Guide 6.1 for Windows 7 Copyright © 2013 SAS
Institute Inc. Cary, NC, USA.

3. Results
3.1. Prevalence of infections among the I. ricinus ticks

In total, 19.1% (97/509) of the nymphs and 52.2% (263/504) of the
adult females were PCR-positive for at least one tick-borne pathogen. A
PCR run was considered valid when all NTCs were negative, all samples
were positive for I ricinus DNA (which served both to identify the tested
species and as a DNA extraction control), and all E. coli controls were
positive (served as internal inhibition controls for each sample). All the
ticks were of the species L ricinus. We failed to detect B. lusitaniae, F.
tularensis, C. burnetii, B. divergens, B. microti, B. canis, and B. henselae.

Members of the genus Borrelia were the most abundant bacteria in
both life stages; 8.6% (44/509) of the nymphs and 32.5% (164/504) of
the female adults were PCR-positive. A. phagocytophilum-positive PCRs
were seen in 6.1% (31/509) of the nymphs and 14.3% (72/504) of the
female adults, and R. helvetica-positive PCRs in 5.5% (28/509) of the
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Table 1
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DNA prevalence (%) of the tick-borne pathogens identified from I ricinus ticks collected in Grib forest, June 2016 and 2017.

Nymphs Adult Females

2016 2017 2016 + 2017 2016 2017 2016 + 2017 Sum

(n = 253) (n = 256) (n = 509) (n = 251) (n = 253) (n = 504) (n =1013)

PCR- 95% CI  PCR- 95% CI  PCR-positive PCR- 95% CI PCR- 95% CI PCR-positive

positive positive samples (%) positive positive samples (%)

samples samples samples samples

(%) (%) (%) (%)
Borrelia” 11 (4.4~ 2.2-7.6 33(12.9)% 9.0-17.6 44 (8.6) 57 (22.7) 17.7-28.4 68 (26.9) 21.5-32.8 125 (24.8) 169 (16.7)
B. afzelii 0 (0.0)* 7 2.7)* 1.1-56 7 (1.4 3(1.2) 0.2-3.5 11 (4.3) 2.2-7.6 14 (2.8) 21 (2.1)
B. valaisiana 0 (0.0)* 10 (3.9)¢ 1.9-7.1 10 (2.0) 3(1.2) 0.2-3.5 3(1.2) 0.2-3.4 6(1.2) 16 (1.6)
B. miyamotoi 0 (0.0) 0 (0.0) 0 (0.0) 7 (2.8) 1.1-5.7 6 (2.4) 0.9-5.1 13 (2.6) 13 (1.3)
B. burgdorferi 0 (0.0)* 10 (3.9)° 1.9-7.1 10 (2.0) 4 (1.6)” 0.4-4.0 14 (5.5)" 3.1-9.1 18 (3.6) 28 (2.8)
B. garinii 2 (0.8)" 0.1-2.8 13 (5.1) 2.7-8.5% 15 (2.9) 7 (2.8) 1.1-5.7 8(3.2) 1.4-6.1 15 (3.0) 30 (3.0)
B. spielmanii 1(0.4) 0.0-2.2 5(2.0) 0.6-4.5 6(1.2) 25 (10.0) 6.5-14.4 26 (10.3) 6.8-14.7 51 (10.1) 57 (5.6)
R. helvetica 9 (3.6) 1.6-6.6 20 (7.8) 4.5-11.3 29 (5.7) 37(14.7) 10.6-19.7 30 (11.9) 8.1-16.5 67 (13.3) 96 (9.6)
A. phagocytophilum 12 (4.7) 2.5-8.1 19 (7.4) 4.5-11.3 31 (6.1) 36 (14.3) 10.3-19.3 36 (14.2) 10.2-19.2 72 (14.3) 103 (10.2)
Candidatus N. mikurensis 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (0.8) 0.1-2.8 2 (0.4) 2(0.2)
B. venatorum 0 (0.0) 1(0.4) 0.0-2.2 1(0.2) 0 (0.0) 4 (1.6) 0.4-4.0 4(0.8) 5(0.5)
Sum 35 (13.8) 118 (46.1) 153 (30.1) 179 (71.3) 208 (82.2) 387 (76.8) 540 (53.3)
* Designates significant differences in prevalence (p < 0.05) between the two different instars in a given year.
* Designates significant differences between the two years in prevalence (p < 0.05) for the same instar.
# Borrelia species that could only be determined at genus level. CI: Confidence Interval.

nymphs and 13.3% (67/504) of the female adults. B. venatorum and p < 0.02, A2016: p < 0.008, N2017: p < 0.0001, A2017:

Candidatus N. mikurensis were present in less than 1% of the ticks and
the latter was only identified in adult females. The prevalence of PCR-
positive pathogens (CP-values < 26) identified for each year and life
stage is detailed in Table 1.

In both years, the genus Borrelia, B. miyamotoi, B. spielmanii, and A.
phagocytophilum were significantly more abundant (Fisher’s exact test,
p < 0.05) in the adult females compared to the nymphs (Table 1). The
difference in prevalence of R. helvetica between life stages was sig-
nificant in 2016 (Fisher’s exact test, p = 0.0001). B. venatorum had a
very low occurrence and was only found in ticks from 2017 and Can-
didatus N. mikurensis-positive samples were solely seen in the adult
females from 2017. Yearly variations in infection prevalence were most
apparent in the nymphs, where B. afzelii, B. burgdorferi, B. valaisiana,
and B. garinii were all significantly more abundant in nymphs collected
in 2017 (Fisher’s exact test, p < 0.05).

3.2. Co-infections and mixed infections in I. ricinus ticks

The overall infection rate was 2.7 times higher in adults compared
to nymphs, but the average number of pathogens detected per infected
tick was 1.3 in both life stages. Ticks infected with more than one pa-
thogen constituted 3.5% (18/509) of the nymphs and 12.3% of the
adult females (62/504). Among infected ticks, 18.6% of the nymphs
(18/97) and 23.6% (62/263) of the adults carried more than one pa-
thogen species. Dual infections constituted 66.7% (12/18) and 90.3%
(56/62) in nymphs and adults with more than one pathogen, respec-
tively. The pathogen combinations found in nymphs and adult females
are shown in Table 2.

In the nymphs infected with more than one pathogen, we found
27.7% (5/18) potential triple infections and 5.6% (1/18) quadruple
infections. In the adult ticks infected with more than one pathogen,
8.1% (5/62) were triple infections and 1.6% (1/62) was quadruple
infections. However, due to potential cross reaction between primers
(pairwise interactions between B. burgdorferi s.s./B. garinii, B. burgdor-
feri /B. valaisiana, and B. afzelii/B. spielmanii), triple and quadruple
infections are not considered further in this study.

Mixed Borrelia infections were almost equally distributed between
nymphs (46%, 24/52) and adults (54%, 28/52). Ticks with combined B.
garinii/B. spielmanii infections occurred more often than expected by
chance in all life stages both years (Fisher’s exact test; N2016:
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p < 0.005). Likewise, mixed infections with B. garinii/B. valaisiana
were significantly higher than expected by chance in the nymphs
(Fisher’s exact test; N2016: p < 0.020, N2017: p < 0.01).

We found 58 ticks infected with pathogens of two different genera.
The adult female ticks hosted 84.5% (49/58) of these co-infections and
the nymphs 15.5% (9/58) (Table 2). 18 adult female ticks and 7
nymphs were infected with the combination Borrelia/ R. helvetica. B.
burgdorferi/A. phagocytophilum co-occurred in 20 adult females but in
none of the nymphs. Co-infections with R. helvetica/A. phagocytophilum
were present in two nymphs and six adult females. In the adult ticks, we
also observed two ticks with the combination Candidatus N. mikurensis/
Borrelia, and two ticks with the combination B. venatorum/ Borrelia. One
female adult hosted the combination B. venatorum/ R. helvetica. None of
these species combinations occurred more often than expected by
chance.

4. Discussion

The purpose of this study was to address the knowledge gap re-
garding infection and co-infections level of pathogens in individual tick
samples from Denmark. So far, Danish studies on this subject have
evaluated the prevalence of single genera, either Borrelia (Vennestrgm
et al., 2008) or Rickettsia (Kantsg et al., 2010), or screened the pre-
valence of multiple pathogens in pools of ticks, most often questing
nymphs (Jensen et al., 2017b; Michelet et al., 2014). The few available
co-infection studies have primarily targeted different species of Borrelia
(Skarphédinsson et al., 2007, Vennestrom et al., 2008). In this in-
vestigation, we simultaneously tested 1013 individual questing nymphs
and female adults for 17 different vector-associated pathogens. The
public Grib forest is located 25km north of Copenhagen and is re-
presentative of the moist deciduous forest areas of Eastern Denmark
and receives more than 650,000 visitors per year. The aim was to give a
detailed description of multiple infections in both nymph and adult
questing ticks in two consecutive years in a typical deciduous forest
area in the densely populated Eastern Denmark.

The risk of acquiring multiple infections is determined by the pre-
valence of tick-borne pathogens within the reservoir host and the ticks
at the specific geographic location (Swanson et al., 2006). In Grib
forest, 35.5% of the collected ticks were infected with at least one pa-
thogen. In agreement with previous Danish investigations, the major
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Table 2
Combinations of pathogens observed in 509 questing I ricinus nymphs (N) and 504 adult female I. ricinus ticks (A) collected in Grib forest, June 2016 and 2017.
Bb spp. Ba By Bm Bbs Bg Bs Rh Ap CN. Bbv Sum
N A N A N A N A N A N A N A N A N A N A N A
Ba - - 1 0 0 0 1 3 3 1 3 4 0 0 0 0 0 1 0 1
Bv - - 1 0 0 0 4 2 3 3 1 0 2 0 0 0 0 0 0 0
Bm - - 0 0 0 0 0 0 0 0 0 1 0 4 0 2 0 0 0 0
Bbs - - 1 3 4 2 0 0 2 4 0 3 2 0 0 1 0 0 0 0
Bg - - 3 1 3 3 0 0 2 4 6 7 1 1 0 0 0 0 0 0
Bs - - 3 4 1 0 0 1 0 3 6 7 1 5 0 7 0 1 0 1
Rh 1 0 0 2 0 0 4 2 0 1 1 1 5 2 6 0 0 0 1
Ap 0 10 0 0 0 0 0 2 0 1 0 0 0 7 2 6 0 0 0 0
CN. 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Bbv 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
Sum N 1 8 11 0 9 15 11 6 2 0 0 41
Sum A 18 10 7 7 13 16 29 17 16 2 3 138

* Bb Borrelia species that could only be determined at genus level in the statistical analysis, Ba: B. afzelii, Bv: B. valaisiana, Bm: B. miyamotoi, Bbs: B. burgdorferi., Bg:
B. garinii, Bs: B. spielmanii, Rh: R. helvetica, Ap: A. phagocytophilum, CN.: Candidatus N. mikurensis, Bbv: B. venatorum. Significant (P < 0.05) associations are

underlined. *.

tick-borne agents were Borrelia, A. phagocytophilum, and R. helvetica
(Jensen et al., 2017b; Michelet et al., 2014). The prevalence of infection
in the female adult instar was 2.7 times higher (52.2%) than in the
nymphs (19.1%), most likely due to transstadial accumulation in the
mature ticks. This increase was mainly caused by Borrelia spp., and A.
phagocytophilum.

4.1. Prevalence of multiple infections in nymphs and adult female I. ricinus

The effects of bacteria interacting in the host can be both synergistic
and antagonistic (Read and Taylor, 2001). Animal studies indicate that
increased severity and duration of illness are some of the complications
which may arise from multiple infections (Belongia, 2002; Thomas
et al., 2001). Further problems may arise due to misdiagnosis resulting
from symptom overlap (Jensen et al., 2017a), and the interactions of
multiple species have important consequences in shaping the evolution
of parasite virulence and disease severity (Herrmann et al., 2013).

In Europe, molecular evidence indicates that dual infections occur
in < 1% to 22% of I ricinus ticks (Capelli et al., 2012; Swanson et al.,
2006; Tomanovic et al., 2010). In Denmark, the few available in-
vestigations of multiple infections in individual I ricinus have mainly
focused on Borrelia spp. In a study from 2008 of ticks also collected in
Grib forest, the rate of mixed Borrelia infections in nymphs was 36/600
(6%) and they were more common than single infections (Vennestrgm
et al., 2008). In the present study, 3.5% of the collected I ricinus
nymphs and 12.3% of the adult females were infected with more than
one disease agent, constituting, respectively, 18.6% and 23.6% of all
the infected nymphs and adult instars. The majority of the multiple
infections were dual (85%); and, as in other epidemiological data from
Ixodes ticks in North America and Europe, Borrelia spp. were present in
most of the multiple infections (Swanson et al., 2006). The 52 mixed
Borrelia infections were almost equally distributed between nymphs
and adults, whereas the mature life stage hosted 85.5% (49/58) of the
multiple infections with tick-borne pathogens of different species. Only
co-occurrences of Borrelia species were more common than expected by
chance.

4.2. Mixed Borrelia infections

The frequency of mixed Borrelia infections reported here is a
minimum as the applied RT-PCR method has a limited sensitivity in
detecting species within Borrelia. In 46.2% of the samples, the chip was
positive for the Borrelia genus but negative for all the six Borrelia species
included on the chip. Consequently, species prevalence and hence also
prevalence of mixed infections of Borrelia are most likely
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underestimated with the present RT-PCR assay, since it is not possible
to achieve the same high sensitivity for Borrelia species as for the
Borrelia genus. In a meta-analysis of European I ricinus ticks, the most
frequent combination of Borrelia was B. garinii/B. valaisiana (Rauter and
Hartung, 2005). In the present study, these two species were also sig-
nificantly positively correlated in the nymphs; this was expected, since
mixed infections with Borrelia types adapted to the same vertebrate
reservoir host, birds in this case, are more likely to cluster (Herrmann
et al., 2013).

Conversely, mixed infections of Borrelia species specialized on dif-
ferent vertebrate reservoir hosts are predicted to have a negative co-
occurrence (Rauter and Hartung, 2005). In this context, the significant
positive co-occurrences of B. garinii/B. spielmanii and B. garinii/ B. afzelii
in the nymphal stage are somewhat unexpected (Table 2), considering
that B. garinii is associated with birds and B. spielmanii and B. afzelii
with rodents (Kurtenbach et al., 2002). Because these nymphs are fed
only once as larvae, the most likely origin of the mixed infections is
from one host infected with multiple pathogens (Ginsberg, 2008).
Others before us have also observed this unexpected correlation be-
tween Borrelia species with different vertebrate hosts in nymphs.
Vennestrgm et al. (2007) detected mixed infections of B. afzelii/B.
garinii and Strube et al. (2010) identified frequent double-infections
with B. garinii in combinations with B. spielmanii, or B. afzelii.

Mixed Borrelia infections are found in both vertebrate hosts and the
tick vector (Durand et al., 2017; Rauter and Hartung, 2005; Wéjcik-
Fatla et al., 2016); and human hosts can be infected with multiple
species (Demaerschalck et al., 1995; Ruzic-Sabljic et al., 2005; Swanson
et al., 2006; Wojcik-Fatla et al., 2016). At least five of the Borrelia
species detected in this study are considered human pathogens with
distinct clinical manifestations of disease. Presently, the literature on
the effects of mixed Borrelia infections is limited. However, there are
examples of dual Borrelia infections resulting in a more severe clinical
course and confounding diagnosis. In a mouse model, Hovius et al.
(2007) found that mixed infections with B. burgdorferi and B. garinii
resulted in more severe Lyme borreliosis. According to relatively recent
reports, the incidence of co-infections with BMD and Lyme borreliosis is
14-19% in the United States (Krause et al., 2014). Also, a recent case
from Japan show that mixed infection with B. miyamotoi and other
Borrelia species can result in mixed symptoms, which can confuse di-
agnosis (Oda et al., 2017).

4.3. Co-infections between different species of tick-associated pathogens

Meta-analyses of I ricinus-complex ticks have shown that co-infec-
tions with species from genus Borrelia/A. phagocytophilum and species
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from the genera Borrelia/Rickettsia are relatively common and geo-
graphically widespread, and generally occur more often than expected
by chance (Nieto and Foley, 2009; Raulf et al., 2018). In this study, we
did not observe any such significant co-associations between species
and genera. While mixed Borrelia infections appeared to be equally
distributed between the two instars, 84.5% of all co-infections were
seen in the adult I ricinus. In a small-scale study from 2007, Borrelia and
A. phagocytophilum occurred together in 1.9% of the Danish I ricinus
ticks (2/106) (Skarphédinsson et al., 2007). We found this combina-
tion—and almost as many co-infections of Borrelia/R. helvetica—in 4%
of the adults (8% of the infected adults). The only two genera combi-
nations in the nymphs were Borrelia /R. helvetica (1.4% of all nymphs
and 7.2% of the infected nymphs) and R. helvetica/A. phagocytophilum
(0.4% of all nymphs and 2.1% of the infected nymphs). In the adult
females, Rickettsia/A. phagocytophilum were the least prevalent combi-
nation (1.2% of all female adults and 2% of the infected). This is in
agreement with a German study including both nymphs and adult
stages, where 1% of the ticks were co-infected with Rickettsia/A. pha-
gocytophilum (Hildebrandt et al., 2010). In the adult females, we also
detected a few co-infections with Borrelia/ Candidatus N. mikurensis,
Borrelia/B. venatorum, and R. helvetica/B. venatorum.

There is evidence which suggests that co-infection with Borrelia and
A. phagocytophilum has a major impact on bacterial fitness, transmis-
sion, and pathology (Cabezas-Cruz et al., 2018). Dual infections with
these pathogens may result in increased bacterial burden, as well as
more severe and diverse clinical manifestation of disease, which in turn
makes diagnosis challenging (Holden et al., 2005; Krause et al., 2002;
Thomas et al., 2001). For example, combined infection with B. burg-
dorferi and A. phagocytophilum may result in more severe LD-asso-
ciated arthritis, than single infection with B. burgdorferi alone
(Swanson et al., 2006). Mice studies suggest that this is mainly due to
the immunosuppressive nature of A. phagocytophilum (Holden et al.,
2005).

5. Conclusion

In Grib forest approximately 1/5 of the nymphs contained a vector-
borne pathogen, and of these a minimum of 18.6% were mixed Borrelia
infections. In adult females, more than half of all questing ticks carried
the risk of a tick-borne infection and almost a quarter of these contained
more than one pathogen. Besides mixed Borrelia infections, we found a
risk of catching co-infections with HGA and LD, which may worsen
disease and confound diagnosis. This study showed that co-infections
are relatively common and therefore should be considered in diagnosis
of tick-borne diseases and that further studies on other Scandinavian
locations are needed in future studies.
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