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Abstract. Faithful representation of pairwise pixel affinities is crucial
for the outcome of spectral segmentation methods. In conventional affin-
ity models only close-range pixels interact, and a variety of subsequent
techniques aims at faster propagation of local grouping cues across long-
range connections. In this paper we propose a general framework for
constructing a full-range affinity matrix. Our affinity matrix consists of
a global similarity matrix and an additive proximity matrix. The simi-
larity in appearance, including intensity and texture, is encoded for each
pair of image pixels. Despite being full-range, our similarity matrix has
a simple decomposition, which exploits an assignment of image pixels to
dictionary elements. The additive proximity enforces smoothness to the
segmentation by imposing interactions between near-by pixels. Our ap-
proach allows us to assess the advantages of using a full-range affinity for
various spectral segmentation problems. Within our general framework
we develop a few variants of full affinity for experimental validation. The
performance we accomplish on composite textured images is excellent,
and the results on natural images are promising.
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1 Introduction

Spectral clustering is fundamental in several popular methods for unsupervised
image segmentation [13, 2, 7]. The outcome of spectral segmentation depends
largely on pairwise pixel affinities. In general, there are two terms contributing
to affinities: a similarity term (how alike are the pixels values) and a proximity
term (how spatially close are the pixels).

In the original formulation of normalized cuts [13] similarity and proximity
are both modelled using a Gaussian similarity function spanning a certain scale.
The two contributions are multiplied, so only pairs of pixels that are within the
distance range and within the intensity range get assigned non-zero affinity. The
reasoning behind is that close-by pixels with similar intensity value are likely
to belong to one object. An argument in favor of short-range interactions is the
desire to reduce computational cost of the eigenvalue problem by using sparse
matrices.
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Fig. 1. The left column shows spectral segmentation of an image of size 2400 × 3200
using full-range affinity, middle column is an image from the Berkeley Segmentation
Dataset [1] and right is a composed texture from [12]. All images are segmented using
no training data.

Since longer range interactions generally make segmentation better, multi-
scale model [2] combines both coarse and fine-level details, but still on a fixed
neighborhood radius. Another popular approach is to use superpixels to propa-
gate grouping cues across larger image regions [7, 16, 17]. Such aggregating meth-
ods depend on the quality of initial oversegmentation.

Instead of purely merging regions, the method proposed in [6] utilizes initial
oversegmentation to propagate local affinities in the affinity matrix. In a single
optimization step all pairwise affinities are estimated, yielding impressive seg-
mentation results. The approach is however still based on propagating, and not
directly modelling full-range affinities.

Further challenge involves modelling pairwise similarity for images with re-
gions characterized by cues like boundary and texture. In the intervening contour
approach [10, 2] the pairwise pixel affinity is extended with a term which mea-
sures the magnitude of image edges on the straight line connecting two pixels.
Furthermore, textons are extracted from the image to define texture cue, but
still only close-by pixels are connected.

In our approach, pairwise pixel similarity and pairwise pixel proximity are
treated more independently. We model the full-range pairwise similarity, so pairs
of similar pixels have positive affinity regardless of their distance. Pixel similar-
ity is defined in terms of a dictionary assignment: two pixels are similar it they
link to the same dictionary element (or two similar dictionary elements, or if
they link to the dictionary elements in the similar way). This allows for a com-
pact representation of the full-range similarity using a biadjacency matrix, which
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also makes the computation of eigenvectors efficient. As for the proximity, we
incorporate it as an additive smoothness term modelled by the Gaussian simi-
larity function. The reasoning behind is that pixels likely to belong to one region
are either similar or close-by. This construction has great advantages when seg-
menting images containing textured regions. Close-by pixels in highly textured
regions need not be similar, but, due to the repetitive nature of the texture, sim-
ilar pixels will be found in a larger neighborhood, creating many unconnected
networks within the textured region. Additive smoothness contributes with ad-
ditional links, connecting those networks. The resulting general framework is
capable of handling both textured and not-textured images.

The main contribution of our paper is an efficient and versatile method for
approximating a full affinity matrix. This is useful for segmenting an image
into global regions of homogeneous appearance, and may be included in more
specialized segmentation engines. Our approach is rather different from other
spectral methods, both in the problem statement and in the proposed solution.
The aim of this paper is to introduce this novel affinity matrix and to provide
insight in its properties and use.

The key contributions of our paper are:

1. For modelling full-range similarity we propose an efficient representation of
a similarity matrix based on dictionary assignment.

2. For spectral segmentation we propose using a full-range similarity matrix
and additive proximity. Our method has linear time complexity and can
handle images with millions of pixels, see Fig. 1, left column.

3. For segmenting natural images we propose similarity matrix based on dic-
tionary containing image patches and normalized image patches, see Fig. 1,
middle column.

4. For segmenting textured images we propose similarity matrix based on dic-
tionary containing image patches and SIFT features, see Fig. 1, right column.

2 Method

Our approach follows the common framework of spectral segmentation. To set
the stage, we start this section with a brief review of a spectral segmentation
using a conventional affinity matrix. After that, we cover the basic principles of
constructing our novel full-range similarity matrix, describe few of its variants,
and discuss its use.

2.1 Conventional affinity matrix

For an image I containing n pixels, an affinity matrix W is an n × n matrix
representing a graph build upon the image. Matrix elements wii′ represent a
weight of the edge between pixels i and i′. Dividing nodes of this graph in k par-
titions, using some optimality criteria, provides image segmentation. A popular
objective function is normalized cut [13], which can be conveniently rewritten
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using the graph Laplacian L = D −W, where D = diag(W1n×1) is a diag-
onal degree matrix. Relaxation of this discrete NP hard optimization problem
yields the solution as the smallest k generalized eigenvectors of the generalized
eigenproblem Lu = λDu. Real-valued eigenvectors lead to a new k-dimensional
representation of the image pixels which enhances the clustering properties in
the data. Typically k-means algorithm is used for detecting clusters of pixels
in this new representation. For a detailed coverage of spectral segmentation we
refer to [15]. It also shows that the solution equivalent to normalized cut may
be found as largest k eigenvectors of the matrix D−1/2WD−1/2 multiplied by
D−1/2, which is the approach we choose in practice.

Constructing affinity matrix is a crucial step in spectral segmentation. Con-
ventional approach is to define pixels affinities based on their intensities and
positions in the image grid. In [13] and [2] pairwise affinity is defined as a prod-
uct of intensity similarity term and spatial proximity term

wii′ =

{
exp

(
−dI(i,i

′)2

2σ2
I
− dX(i,i′)2

2σ2
X

)
if dX(i, i′) < r

0 otherwise
(1)

where dI(i, i
′) = |Ii − I ′i| is the absolute intensity difference and dX(i, i′) =

‖Xi−X ′i‖2 is the spatial distance between pixels, r is the radius of the interaction
and σI and σX are parameters of the Gaussian similarity functions. Approach
is that close-by pixels with similar intensity value are likely to belong to one
object.

2.2 Full-range affinity matrix

Instead of defining affinity as a multiplication of the similarity with the short-
range proximity we will define full-range similarity and add the proximity. By
replacing multiplication with addition we replace a similar-and -close assumption
with the similar-or -close assumption.

Dictionary assignment. The initial step of our method involves constructing
a dictionary and assigning every image pixel to a dictionary element. In the
simplest version a dictionary is constructed by collecting pixel intensities from
the image and clustering those in m clusters using k-means algorithm. All image
pixels are then assigned to the nearest intensity and this assignment is denoted
D(i), where i ∈ {1, . . . , n}, D(i) ∈ {1, . . . ,m}.

Biadjacency matrix. Dictionary assignment can be represented as a biadjacency
matrix B, where an element bij takes a value 1 if D(i) = j and 0 otherwise. An
n×n matrix S = BBT is the simplest variant of our full-range similarity matrix.
An important property of S is

sii′ =

m∑
j=1

bijbi′j =

{
1 if D(i) = D(i′)
0 otherwise

(2)
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We say that S encodes global binary similarity on the basis of dictionary
assignment. This full-range similarity and its extensions are fundamental for our
method.

A few variants of a full-range similarity. For the simplest segmentation
problems the similarity matrix given by (2) might suffice, but generally we want
a better description of pixel similarity, and here we describe a few possibilities.
Since all variants of full-range similarity may be used in the final segmentation
model, we will denote them all by S.

Pixel similarity weighted by dictionary similarity. One extension of the full affin-
ity incorporates an m × m matrix A containing pairwise similarity between
dictionary elements, computed in a conventional way using Gaussian similar-
ity function as explained in connection with similarity term from Eq. (1). In a
weighted similarity matrix S = BABT an element

sii′ =

m∑
j=1

m∑
j′=1

ajj′bijbi′j′ = aD(i)D(i′) (3)

is a similarity between dictionary element D(i), where pixel i is assigned to, and
a dictionary element D(i′), where pixel i′ is assigned to. As such, this version of S
approximates the conventional full pairwise similarity matrix, and the quality of
the approximation depends on how well the dictionary represents regions present
in the image. To our knowledge this type of a full affinity approximation has not
been used in spectral image segmentation.

Dictionary of features and patches. Another extension concerns the dictionary
construction. When image regions are characterized by the texture, we want a
better representation of pixel similarity. Instead of clustering pixel intensities,
we have an option of creating clusters according to any local feature, for example
a SIFT feature. In another choice, we extract a quadratic M ×M patch around
each image pixel, and use the collected pixel intensities as a feature vector. The
dictionary is constructed by clustering patches from the image using k-means
algorithm with Euclidian distance.

Dictionary of patch pixels. Using image patches as features opens for another
possibility. Instead of linking each pixel to one of m dictionary elements, we can,
in an approach similar to [3] and [4], define links between n image pixels and
mM2 dictionary pixels. Each assignment D(i) now contributes with M2 links
between the image and the dictionary. Since every pixel takes one ofM2 positions
in an patch, rows of B now sum to M2. The motivation for this approach is a
desire for a better localization of the boundaries between segments.

A final similarity-proximity model Full-range similarity matrix is a key
ingredient to our affinity model for spectral segmentation. However, using sim-
ilarity alone we risk a very fragmented segmentation, as it ignores the spatial
position of image pixels.



6 Dahl and Dahl

Proximity matrix. To enforce the smoothness of the segmentation we define a
proximity term which links the close-by pixels according to a Gaussian similarity
function of spatial distances. Proximity matrix P has elements

pii′ =
1

2πσ2
exp

(
−dX(i, i′)2

2σ2

)
,

where σ is a smoothing radius. For σ small compared to image dimensions,
matrix P will in effect be a sparse matrix.

Affinity matrix. We want to incorporate the proximity matrix to our final model
without reducing the range of interactions between pixels. Therefore we add the
proximity links to full-range similarity matrix, leading to the affinity matrix

W = S + αP

where S is one of the variants of the similarity matrix and P is the proximity
matrix weighted by α.

Normalization. In spectral clustering, normalizing the affinity matrix will favor
more balanced segmentation. This is important if degrees of the graph nodes
vary considerably. In case of our proximity matrix P, the degree of the nodes is
constant except at the boundary, so we only need to normalize S. In similarity
matrix S, a pixel is linked to all other pixels belonging to the same dictionary
element. This property allows us to define a normalized similarity matrix

S = B diag(B1m×1)−1BT.

Eigendecomposition. To calculate leading eigenvectors of W using power meth-
ods such as Lanczos solver [5] we do not need an explicit representation of W.
It is sufficient to define the result of the matrix-vector computation y = Wx for
every x. With minor modifications, depending on the variant of the similarity
matrix, we have

y = B diag(B1m×1)−1BTx + αPx .

Computational efficiency. The similarity term can be efficiently computed by
multiplying from right to left. Since B is n ×m binary and sparse matrix with
n non-zero entries, the first and the last multiplication is O(n). The time com-
plexity of the multiplication in the middle does not depend on n, yielding time
complexity of O(m) for diagonal matrix diag(B1)−1. Had we used a formulation
from Eq. (3) multiplication with A would give complexity of O(m2).

The proximity term can also be efficiently computed by arranging values
of x in an image grid and filtering this image-like construction with a one-
dimensional Gaussian kernel in each direction. The time complexity of this op-
eration is O(nr), where r is the size of the kernel. Assuming that dictionary size
m and kernel size r do not depend on the image size n, the running time for
computing Wx is linear with respect to n.
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Fig. 2. Example demonstrating the global property of the spectral segmentation when
employing our full-range affinity. All instances of grass, sky, skin and orange tulips
belong to the same regions. Left: the original image with segments found using our
method outlined in red. Middle left: average colors within segments. Middle right:
segments in false colors. Right: manual segmentation from BSDB shown with false
colors [1] lacks the global property.

The time complexity of the Lanczos method is O(ln)+O(lf(n)) where l is the
maximal number of matrix-vector computations required and f(n) is the cost of
each matrix-vector computation [13]. Consequently, the total running time for
the eigendecomposition of our full-range affinity matrix is O(ln).

The maximal number of matrix-vector computations depends on the ability
of the affinity matrix to propagate clustering cues. In our experience, a few
hundred iterations is usually enough, regardless of the size of the image. We
conclude that in practice our algorithm has linear time complexity.

3 Results

We have carried out a number of experiments in order to investigate the prop-
erties of our novel full range affinity matrix.

Since the self-similarity is most evident in composite images, we validate
the quality of our method on segmenting Brodatz texture mosaics from [12].
To demonstrate the potential of our method in a more realistic setting, we in-
clude segmentations examples of natural images from the Berkeley Segmentation
Dataset [11, 1]. In order to retain a focus on our contribution, we show those re-
sults without incorporating additional cues e.g. an edge term or a shape prior.

Global property. As a consequence of a full-range similarity, all image regions
with similar texture and color belong to the same segment despite being dis-
connected. An example of this is shown in Fig. 2, where an image of the girl is
segmented using 14 labels. The flowers, grass and bushes in the background, de-
spite being separated, are labeled together due to the similar color and texture.
The same is seen for the skin, sky, stockings and the paved curb.
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Fig. 3. Segmentation of a very large image. Left is a 4800× 6400 image with segmen-
tation boundaries in cyan. Right is a 750× 1125 cutout indicated by a rectangle in the
left image.

Efficiency. Our affinity matrix allows for an efficient decomposition, so we can
process large images. In Fig. 3 we show an image containing more than 30 million
pixels segmented in 5 segments. The dictionary used for this segmentation is
based on 3 × 3 patches grouped in 200 clusters. Smoothness parameters are
σ = 1 and α = 15.

Textured images. We have made a quantitative evaluation of our method on a
Randen texture dataset [12], with images composed of 5 - 16 different textures,
allowing us to evaluate our method against ground truth. In this experiment,
we base the dictionary on dense SIFT features grouped into 500 clusters. The
smoothness parameters are σ = 8 and α = 4. The segmentation on subset of
images from the dataset is shown in the Fig. 4.

Quantitative results for the texture segmentation images are shown in Tab. 1,
compared against other results reported for the dataset. It is important to note
that the methods we compare against are all trained on examples of textured
images, which gives them a great advantage. Our method takes a number of
classes as input, but no other information about the textures. In other words,
our method performs pixel clustering (unsupervised learning) while methods we
compare to perform pixel classification (supervised learning). Still we obtain
comparable results for most of the images. We compare to supervised methods
because no unsupervised results have been reported for the Randen dataset.

Natural images. Segmentation of natural images from the Berkeley Segmentation
Dataset [11, 1] in Fig. 5 is included to illustrate additional properties and the
potentials of our method. These experiments have been carried out using 3× 3
image patches clustered into dictionaries of 1000 elements. Segmenting into 2
to 6 regions was attempted, and we show the most meaningful result. Since
global property is not part of the manually segmented reference data in the
Berkeley Segmentation Dataset (see Fig. 2) we did not quantify our method
against reference data.



Global Similarity with Additive Smoothness for Spectral Segmentation 9

Fig. 4. Texture segmentation examples. Images 1 (top left), 2 (top middle), 3 (middle
left), 4 (middle), 6 (top right), 8 (bottom left) and 9 (bottom right) from the Randen
dataset [12].

Trained methods Our
Image [12] [8] [9] [14] (without

no. 1999 2007 2008 2014 training)

1 7.20 3.37 1.61 2.00 1.68
2 18.90 16.05 16.42 3.24 4.43
3 20.60 13.03 4.15 4.01 6.74
4 16.80 6.62 3.67 2.55 6.58
5 17.20 8.15 4.58 1.26 9.29
6 34.70 18.66 9.04 6.72 10.06

Trained methods Our
Image [12] [8] [9] [14] (without

no. 1999 2007 2008 2014 training)

7 41.70 21.67 8.80 4.14 31.57
8 32.30 21.96 2.24 4.80 2.55
9 27.80 9.61 2.04 3.90 7.99
10 0.70 0.36 0.17 0.42 0.24
11 0.20 1.33 0.60 0.61 0.26
12 2.50 1.14 0.78 0.70 0.75

Table 1. Comparison with Randen et al. [12], Lillo et al. [8], Mairal et al. [9], and
Skretting and Engang [14] (best reported method). Reported number is the error rate.
Unlike our method, the methods we compare to use training data.
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Fig. 5. Segmentation results for a selection of images from the Berkeley Segmentation
Dataset.

Smoothness parameters. Influence of the model parameters on the segmentation
results is shown in Fig. 6. We show the effect of changing the smoothing radius
for the proximity matrix σ and the weight for proximity matrix α. For this ex-
periment we use textured images and the dictionary based only on image patches
without using SIFT features. This is because we also want to demonstrate the
influence of the patch size M on the results.

4 Conclusion

The contribution of this paper is a general framework for the construction of
the global affinity matrix using full-range similarity and additive smoothness.
The full-range affinity matrix is constructed employing a dictionary and a bi-
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σ = 1 σ = 2 σ = 3 σ = 10

α = 3
M = 5

α = 1 α = 3 α = 5 α = 10

σ = 3
M = 5

M = 3 M = 5 M = 9 M = 15

α = 3
σ = 3

Fig. 6. The influence of the model parameters on the segmentation results. Parameters
are: smoothing radius for proximity σ, proximity weight α and patch size M .

partite graph representation linking pixels in the image to elements/pixels in the
dictionary.

Our approach is extremely versatile. Within the same general framework we
apply our method for unsupervised spectral segmentation of the grayscale tex-
tured images and the rgb natural images. Our approach is also very efficient.
Unlike other spectral methods, we obtain a linear time complexity for segmen-
tation using our affinity matrix. This is because we do not represent the affinity
matrix explicitly, and therefore it does not need to be sparse. We employ Lanczos
algorithm that iteratively updates eigenvectors using an implicit matrix vector
multiplication.

Our empirical investigation shows how the method partitions an image into
regions with similar texture and color despite these being spatially separated. In
addition we obtain impressive results on images composed of Brodatz textures,
where no training data is used and only the number of segments is given to the
algorithm.

In conclusion, we see our presented approach for spectral segmentation as
an interesting alternative to conventional methods, appropriate for segmenting
large images using a full-range affinity.
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