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Abstract 

Reproduction by individuals is typically recorded as count data (e.g. number of fledglings 

from a nest or inflorescences on a plant) and commonly modeled using Poisson or negative 

binomial distributions, which assume that variance is greater than or equal to the mean. 

However, distributions of reproductive effort are often underdispersed (i.e., variance < mean). 

When used in hypothesis tests, models that ignore underdispersion will be overly 

conservative and may fail to detect significant patterns. Here we show that generalized 

Poisson (GP) and Conway-Maxwell-Poisson (CMP) distributions are better choices for 

modeling reproductive effort because they can handle both overdispersion and 

underdispersion; we provide examples of how ecologists can use GP and CMP distributions 

in  generalized linear models (GLMs) and generalized linear mixed models (GLMMs) to 

quantify patterns in reproduction. Using a new R package, glmmTMB, we construct GLMMs 

to investigate how rainfall and population density influence the number of fledglings in the 

warbler Oreothlypis celata and how flowering rate of Heliconia acuminata differs between 
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fragmented and continuous forest. We also demonstrate how to deal with zero-inflation, 

which occurs when there are more zeros than expected in the distribution, e.g. due to 

complete reproductive failure by some individuals. 

 

Key Words: underdispersion, overdispersion, zero-inflation, generalized Poisson, Conway-

Maxwell-Poisson, regression, fecundity, Heliconia acuminata, Oreothlypis celata  

 

Introduction 

Among-individual variation in reproduction, due to both environmental conditions and 

individual attributes, underpins life-history theory and is central to empirical studies of 

demography (Lack 1947, Van Noordwijk and de Jong 1986). Across taxa, many metrics of 

individual reproduction used by ecologists (e.g., clutch size, seeds per fruit) are discrete 

counts with upper limits determined by behavioral or physiological constraints such as ovule 

number, resource availability, or parental care strategies. These constraints often lead to 

underdispersion where the variance is smaller than the mean (Kendall and Wittman 2010, 

Lynch et al. 2014). In addition, distributions of reproductive effort are often “zero-inflated”, 

meaning that there are more zeros observed than would be expected under a given statistical 

model. These zeros reflect complete reproductive failure – individuals might have insufficient 

resources to breed, or an entire clutch or brood could be depredated before fledging or 

germinating. A distribution that is not zero-inflated can still contain many zeroes if it has a 

low mean (Warton 2005). 

Underdispersion and zero-inflation pose major challenges in regression analyses that 

seek to detect patterns in individual reproduction. Count data can be modeled using 

generalized linear models (GLMs) or generalized linear mixed models (GLMMs); GLMMs 
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include random effects to account for correlations due for example to repeated observations 

of the same parent (Bolker 2015, O'Hara and Kotze 2010, Bolker et al. 2009). When 

individuals can produce multiple offspring at a time, researchers typically assume either 

Poisson or negative binomially distributed responses. A Poisson distribution assumes that the 

variance is equal to the mean, while a negative binomial allows the variance to be greater 

than the mean (i.e. overdispersed). However, the variance of reproduction is often less than 

the mean (i.e., underdispersion). Ordinal models relax these constraints on the variation (e.g. 

Hostetler et al. 2012), but they are only feasible when reproductive counts are small because 

the number of parameters increases with the number of possible outcomes. Quasi-Poisson 

models are an alternative which adjust standard errors, Z and p-values of coefficients from a 

Poisson regression model based on the observed dispersion; however, it is difficult to 

combine with zero-inflation. Failure to properly account for underdispersion in models leads 

to erroneously wide confidence intervals and thus statistical tests are more prone to produce 

false-negatives, i.e. they have reduced power to detect patterns (Harris et al. 2012). In 

addition, failing to account for zero-inflation results in biased parameter estimates (Harrison 

2014).  

Kendall and Wittman (2010) addressed the problem of underdispersion in 

distributions of annual reproductive success. They showed that offspring number in 

vertebrates can usually be described with the generalized Poisson (GP) distribution, which is 

flexible enough to accommodate both under- and overdispersion (Castellanos et al. 2003, 

Consul and Famoye 1992, Harris et al. 2012, Kendall and Wittmann 2010). Lynch et al. 

(2014) subsequently demonstrated that the Conway-Maxwell-Poisson (CMP) distribution, 

which has the same flexibility to model under- and overdispersion, is also well-suited to 

modeling reproductive data. Although regression models using the GP distribution commonly 

fail to converge when residuals are underdispersed (Famoye et al. 2004, Sellers et al. 2008, 
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Lynch et al. 2014), models using the CMP distribution have a far better tendency to converge.  

Failure to converge can occur if computational difficulties are encountered while finding a 

valid model fit.  

Previous studies elegantly demonstrated that distributions of reproductive rates are 

frequently underdispersed and that the GP and CMP distributions can be used in this 

scenario. However, dealing with zero-inflation and random effects remained challenging in 

this context, in part because the computational tools were unavailable. Here, we describe 

flexible and easy to use methods for modeling reproductive count data that allow for zero-

inflation, underdispersion or overdispersion, and random effects. We first describe the 

implementation of GP and CMP GLMMs in the recently developed glmmTMB package 

(version 0.2.3, Brooks et al. 2017, R Core Development Team 2018). We then demonstrate 

the application of these methods with reproductive data from a tropical perennial herb 

(Heliconia acuminata) and a North American songbird (the orange-crowned warbler, 

Oreothlypis celata).   

 

Methods 

glmmTMB implementation 

In glmmTMB, zero-inflated GLMMs have three components: a model for the conditional 

mean , a model for zero-inflation (i.e. the probability of excess zeros relative to the 

conditional model), and a dispersion model. The conditional mean and zero-inflation models 

can contain fixed and random effects to account for covariates and correlation. The 

conditional mean and dispersion are constrained to be positive using log links. The zero-

inflation probability is constrained to be between zero and one using a logit link. glmmTMB 
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estimates parameters using maximum likelihood estimation via the TMB package (Kristensen 

et al. 2016). Random effects are estimated using Laplace approximation (Bolker et al. 2009, 

Kristensen et al. 2016). 

Generalized Poisson distribution  

The GP distribution can be specified in a glmmTMB model using the argument 

family=genpois. Two parameters control the mean (µ) and variance (σ
2
): 

 ,     [1].  

Thus the dispersion parameter, which relates the variance to the mean such that      , is 

          . With this parameterization   can take any positive value, so the distribution 

can be either overdispersed or underdispersed relative to the Poisson. When the GP 

distribution is underdispersed (i.e., 0 <   < 1) it has an upper bound at        , which is 

convenient for characterizing reproductive data that has a finite upper bound (Kendall and 

Wittman 2010). The estimate of   can be extracted from a fitted model using the function 

sigma(). It is also possible to model   as a log-linear function of covariates (e.g. x) in a 

glmmTMB model using the argument dispformula=~x. 

 

Conway-Maxwell-Poisson distribution  

The CMP distribution can be specified in a glmmTMB model using the argument 

family=compois. Unlike the GP, the CMP distribution has no closed-form equation for the 

mean and variance. Approximations exist to allow for regression models on the approximate 

mean or the mode, and a method of doing regression on the true mean was recently 

developed (Huang 2017, Brooks et al. 2017). The approximation to the mean is problematic 
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because it fails when the data are underdispersed - typically the case in studies of 

reproduction (Shmueli et al. 2005, Lord et al. 2008, Lynch et al. 2014). The approximation to 

the mode is problematic because results, such as effect sizes, are hard to compare to studies 

that use Poisson, negative binomial, or GP distributions (Huang 2017). Comparability is 

essential for making results useful in meta-analyses. Thus, we use the mean-parameterized 

CMP distribution, which has a mean     and a parameter to control variation     

(Huang 2017).  When    , the CMP is equal to the Poisson distribution. It is approximately 

underdispersed when      , and approximately overdispersed when      . We report 

results in terms of       to facilitate comparison to the GP. As with the GP, it is possible 

to model   as a function of covariates in glmmTMB; the dispersion model describes   rather 

than  .  

Because there is no closed-form equation for the mean and variance of the CMP 

distribution, estimating mean-parameterized CMP models requires glmmTMB to perform an 

extra numerical step to solve for a normalizing coefficient; this makes estimation 

considerably slower than models using other distributions in glmmTMB. Due to this 

computational inefficiency, other distributions may be preferable where appropriate, such as 

the negative binomial distribution for overdispersed data.  

 

Application to inflorescence production 

Heliconia acuminata L. C. (Rich.) is a long-lived perennial plant common to the understory 

of the Amazonian lowland forests. It is a self-incompatible, simultaneous hermaphrodite with 

almost no asexual reproduction, making it a simple system in which to study reproductive 

allocation. Recruitment is exclusively via bird-dispersed seeds (Bruna 2002). Seed dispersal 

is spatially restricted (Uriarte et al. 2011), providing an opportunity for local adaptation.  
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Our data were collected at the Biological Dynamics of Forest Fragments Project, in 

which experimental fragments of Amazonian forest were isolated in the early 1980s (Gascon 

and Bierregaard 2001). In 1998, Bruna and Kress initiated a long-term study to examine how 

fragmentation affected the demography of H. acuminata (Bruna and Kress 2002). Plots of 

size 50m x100m were established in four one-hectare fragments and six locations in 

continuous forest. All H. acuminata in each of these plots were marked with a numbered tag 

and their size was measured in two ways: the height to the tallest leaf and by counting the 

number of vegetative shoots. Plots were then censused annually to assess individual survival, 

growth, and inflorescence production. New recruits were also marked and measured. Average 

plant densities at the study site in 2009 were 892/ha (653 s.d.) in continuous forest and 344/ha 

(49 s.d.) in fragments. The data set consists of 37,756 measurements across 12 years and 

5,290 individuals (1,075 in fragments and 4,215 in continuous forest), excluding observations 

of possibly dormant individuals which produced zero shoots in a year.  

We modeled Heliconia inflorescence production with the following distributions: 

Poisson (P), zero-inflated Poisson (ZIP), GP, zero-inflated GP (ZIGP), CMP, and zero-

inflated CMP (ZICMP). We fit full models, with each of these distributions, that allowed the 

conditional mean to vary with the log of plant size, habitat type (fragment vs. continuous 

forest), and their interaction. Because the conditional mean models use log links, using log 

plant size as a covariate is equivalent to fitting a power-law (allometric) relationship between 

conditional inflorescence number and plant size (Bolker 2008). For ZIP, ZIGP, and ZICMP 

distributions, the full models allow zero-inflation to vary with log plant size, habitat type, and 

their interaction. For each distribution, we fit all submodels from the full model to represent 

null hypotheses. We used small-sample-size corrected AICc via the AICctab() function from 

the bbmle package (Burnham and Anderson 2002, Bolker 2013) to compare all submodels 

across the six distributions. It is necessary to choose the distribution and covariate model 
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simultaneously because different covariate models will result in different residuals and thus 

different distributions. To demonstrate how to possibly avoid fitting the slower GP, CMP, 

ZIGP and ZICMP models, we tested for underdispersion in the residuals of the top Poisson or 

ZIP model using the testDispersion() function from the DHARMa package, which tests the 

quantiles of scaled simulated residuals against a uniform distribution (Hartig 2018).  One can 

also test whether the expected number of zeros based on a fitted model differs from the 

number of observed zeros, using the testZeroInflation() function from the DHARMa package 

(Hartig 2018). R code is available in Appendix S1. A Data Paper containing Heliconia 

inflorescence production and size is in preparation; until then, data are available by 

contacting Emilio Bruna at embruna@ufl.edu. 

 

Application to warbler fecundity 

We obtained data from the Dryad Digital Repository on the fecundity of a population of 

orange-crowned warblers nesting on Santa Catalina Island, California, USA (Sofaer et  al. 

2014a, Sofaer et  al.  2014b). During 7 years of observation (n=181), fledglings per nest 

ranged from 0 to 6 with a median of 0 and a mean of 1.4. The original analysis used a ZIP 

model to test for effects of local breeding density and precipitation. We tested the original 

ZIP model for underdispersion using DHARMa’s testDispersion() function (Hartig 2018). 

We fit all models described in the original publication with ZIP, ZIGP, and ZICMP 

distributions (Table 2). These models included all submodels of the full model, which 

contained main effects of breeding density and precipitation in both the conditional model 

and zero-inflation model. As in the original study, all models contained a random effect of 

year in the zero-inflation model. We compared the models using small-sample-size corrected 

AICc (Burnham and Anderson 2002). For the most parsimonious model chosen by AICc, we 
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examined the residuals using the function testUniformity() from the DHARMa package 

(Hartig 2018). R code is available in Appendix S2. 

 

Results 

Inflorescence production increases with size, faster in fragments 

The most parsimonious model of H. acuminata inflorescence production had a ZICMP 

distribution and was 33.9 ΔAICc units better than the most parsimonious CMP model 

(Burnham and Anderson 2002). The ZIP, GP, and Poisson distributions followed with  49.6, 

60.3, and 60.6 ΔAICc units respectively for their top models (Table 1; Appendix S3: Table 

S1).  The top ZICMP and ZIP models had the same formulas and similar coefficient estimates 

(Appendix S3: Fig. S1). All of the ZIGP, two of the ZICMP, and two of the ZIP models 

failed to converge. The top ZIP model had underdispersed residuals (p=0.046). The most 

parsimonious model indicated that the conditional mean and zero-inflation both varied with 

plant size and habitat type. Plants in fragments had higher size-dependent conditional means 

and thus higher predicted modes and fitted values at a given size compared to plants in 

continuous forest (Fig. 1).  

 

Warbler fecundity decreases with density and increases with precipitation 

The ZIP model from the original publication of this dataset (Sofaer et al. 2014a, Sofaer et al. 

2014b) had underdispersed residuals (p=0.003). The most parsimonious model of warbler 

fecundity had a ZICMP distribution, which was 4.9 Δ AICc units better than the most 

parsimonious ZIGP and 34.1 ΔAICc units better than the most parsimonious ZIP model 

(Table 2). For models with the ZIP distribution, AICc gave the same ranking and almost 
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identical AICc values as in the original publication of this data (Sofaer et al. 2014a) 

(Appendix S3: Table S2). However, models with the ZICMP and ZIGP distribution had a 

different ranking and lower AICc values than those with the ZIP distribution (Table 2).  The 

top five models involved the same predictor variables whether they had ZICMP or ZIGP 

distributions (Table 2).  The best model showed that average fecundity decreased with 

population density (slope = -0.14, std. err. =  0.05) and increased with precipitation (slope = 

0.005, std. err. =  0.002), while nest failure was more likely in years with high population 

density (slope = 1.66, std. err. =  0.42) and in drier years (slope = -0.6, std. err. =  0.01). The 

top ZIGP model had the same conditional and zero-inflation models and nearly identical 

coefficient estimates as the best ZICMP model; the only near exception was the coefficient 

for the effect of precipitation in the conditional model (slope = 0.006, std. err. =  0.002), 

which was still within the CI of the ZICMP estimate. 

 

Discussion 

Models with a ZICMP distribution gave the best fits for both warbler fecundity and Heliconia 

inflorescence production, resulting in novel insights about the reproductive biology of both 

species. For instance, the increased power of the underdispersed distributions allowed us to 

detect a statistically significant effect of warbler population density on conditional fecundity 

in addition to its effect on nest failure (i.e. zero-inflation). For Heliconia, we found that plants 

of a given size produce more inflorescences in fragments than in continuous forest – an effect 

that is detectable whether the models account for underdispersion or not. Although this could 

be the result of changes in above- and below-ground biomass allocation (Bruna et al 2002), it 

could also provide some of the first evidence to date that plants in fragments may  “speed up” 
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their life-history in response to higher risk of mortality as previously theorized (Cohen 1971, 

Kozłowski and Uchmanski 1987, Jacquemyn et al. 2012).  

 It is difficult to precisely predict the effects on statistical inference of accounting for 

underdispersion. Predictions of Heliconia inflorescence production do not change much 

based on assumptions about dispersion in the conditional distribution (Fig. 1B); the 

probabilities of large numbers of offspring are only slightly smaller when allowing for  

underdispersion.  In contrast, models of warbler fledglings showed stronger underdispersion  

(see   in Table 2 versus Table 1); this underdispersion is evident in predicted probabilities of 

large reproductive events (Appendix S3: Fig. S2).  Having a low maximum reproductive 

count relative to the mean may make it more important to account for underdispersion as the 

value of   will be further below one and the distribution will diverge further from the 

Poisson. In general, smaller data sets (such as the warbler data set) will have lower power and 

thus the increased power that comes from accounting for underdispersion may be more 

important in distinguishing clear effects. 

 Accounting for underdispersion may be important in making population forecasts 

based on estimated model parameters by reducing predictions of unrealistically large 

reproductive events.  For example, in warblers, simulations from the top model with a 

ZICMP distribution are 44 times less likely to produce values above the observed range 

compared to the same model with a ZIP distribution (respectively, 0.0003 versus 0.0132 

overall probability of simulating more than 6 fledglings).  

Models with a ZIGP distribution were estimable for the warbler data set but not for 

the Heliconia data set.  It is well known that the GP frequently fails to converge when 

residuals are underdispersed (Famoye et al. 2004, Sellers et al. 2008, Lynch et al. 2014) as in 

both of our examples according to tests using the DHARMa package. The higher complexity 
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of the random effects in the Heliconia models may have made them harder to estimate than 

the warbler models. Future studies should address approaches for improved convergence of 

the GP, but until then the mean-parameterized CMP remains a good alternative. 

In the warbler example, ZIGP and ZICMP models gave very similar results; the 

ranking of the top five models and coefficients from the top model were the same. Note that 

comparing coefficients across distributions is only possible with the mean-parameterized 

CMP (Huang 2017, Brooks et al. 2017). We expect that, when it is possible to fit both 

distributions to the same data set, results from the GP and CMP will closely match. The main 

difference between the GP and CMP distributions is that the GP has an upper limit above 

which the density is exactly zero; this truncation is connected to the convergence problems 

(Sellers and Shmueli 2010, Huang 2017). It is therefore  possible that cases for which 

truncation matters are exactly the same cases that are numerically problematic, thus 

preventing a comparison between the GP and CMP. Future studies could test if models 

consistently agree and if the CMP consistently produces a moderately lower AIC, e.g. 4.9 Δ 

AIC units for the warbler data set. If the distributions consistently give the same results, then 

the relative speed of the GP could outweigh the importance of the small decrease in AIC from 

the CMP – if the GP model can be fitted. 

Beyond reproductive measures, there are many types of count data where the 

mechanisms that would give rise to Poisson or negative binomial distributions are not 

particularly compelling (e.g. species abundances, counts of discrete behavioral responses); 

evaluating underdispersion and considering use of the models discussed here might lead to 

improvements in data analysis. 
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Conclusion 

 Distributions of individual reproductive rates are often zero-inflated and 

underdispersed. When residuals from Poisson models show underdispersion, then either the 

generalized Poisson or the mean parameterized Conway-Maxwell-Poisson distribution are 

good choices for use in GLMMs and GLMs. Fitting models with the generalized Poisson will 

be faster, but with a higher risk of convergence problems. 
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Table 1. Inflorescence Model Selection Results.  Inflorescence production in Heliconia 

acuminata varies with log of plant size (lsize) and habitat type. Each conditional model 

contained random effects of individual, plot, and year. For brevity, we only present the top 2 

models from each distribution (see supplementary material for extended results). Values of   

<1 indicate underdispersion. The value of   is fixed at 1 for the P and ZIP, but estimated by 

glmmTMB for other distributions. k is the number of parameters. ‘*’ indicates interaction 

plus main effects. 

Conditional model Zero-inflation model Distribution   k ΔAICc 

~ lsize + habitat ~ lsize + habitat ZICMP  0.48 10 0 

~ lsize + habitat ~ lsize * habitat ZICMP  0.48 11 2 

~ lsize * habitat ~ 0 CMP  0.58 8 33.9 

~ lsize ~ 0 CMP  0.58 6 45.6 

~ lsize + habitat ~ lsize + habitat ZIP  1 9 49.6 

~ lsize * habitat ~ lsize ZIP  1 9 50.2 

~ lsize * habitat ~ 0 GP  0.9 8 60.3 

~ lsize * habitat ~ 0 P  1 7 60.6 

~ lsize ~ 0 P 1 5 72.8 

~ lsize ~ 0 GP 1 6 74.7 
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Table 2. Warbler Model Selection Results. Fecundity depends on breeding density (bd) and 

precipitation (precip). Each zero-inflation model contained a random effect of year. For each 

distribution, we only present the top five models in the main text (see supplementary material 

for extended results). Values of   <1 indicate underdispersion.   The value of   is fixed at 1 

for the ZIP, but estimated  by glmmTMB for other distributions. k is the number of 

parameters. 

Conditional model Zero-inflation model Distribution   k ΔAICc 

~ bd + precip ~ bd + precip ZICMP 0.26 8 0.0 

~ bd ~ bd + precip ZICMP 0.27 7 2.1 

~ 1 ~ bd + precip ZICMP 0.29 6 4.7 

~ bd + precip ~ bd + precip ZIGP 0.36 8 4.9 

~ precip ~ bd + precip ZICMP 0.29 7 5.6 

~ bd + precip ~ bd ZICMP 0.26 7 7.5 

~ bd ~ bd + precip ZIGP 0.41 7 9.2 

~ 1 ~ bd + precip ZIGP 0.42 6 10.8 

~ precip ~ bd + precip ZIGP 0.41 7 11.1 

~ bd + precip ~ bd ZIGP 0.36 7 12.4 

~ bd ~ bd + precip ZIP 1.00 6 34.0 

~ 1 ~ bd + precip ZIP 1.00 5 34.5 

~ bd + precip ~ bd + precip ZIP 1.00 7 34.6 

~ precip ~ bd + precip ZIP 1.00 6 36.2 

~ bd ~ bd ZIP 1.00 5 41.8 
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Figure 1. Inflorescence production in Heliconia acuminata depends on plant size and habitat. 

(A) Triangles represent observations, with sizes proportional to the number of observations. Lines 

(and ribbons) represent predicted zero-inflated modes (and 95% CI) from the most parsimonious 

model.  The mode is lower than the mean because random effects are zero at the mode and Jensen’s 

inequality pulls the mean up; this is true for all GLMMs with log links. (B) Simulations from the 

most parsimonious model which had a zero-inflated Conway-Maxwell-Poisson distribution 

(grey bars) and from the analogous model with a zero-inflated Poisson distribution (black 

bars) are plotted for comparison with the observed data (white bars). Each panel represents a 

given habitat and size of an individual plant (restricted to a subset of sizes for brevity: 1, 4, 

and 8). Bar heights represent the probability of producing a certain number of inflorescences, 

given the size and habitat for that panel. For each model, probabilities were calculated by 

summarizing 100 simulated data sets of equal size to the original data. 
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