

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Sep 11, 2019

A Memory-Efficient Parallelizable Method for Computation of Thévenin Equivalents
used in Real-Time Stability Assessment

Jørgensen, Christina Hildebrandt Lüthje; Møller, Jakob Glarbo; Sommer, Stefan; Jóhannsson, Hjörtur

Published in:
I E E E Transactions on Power Systems

Link to article, DOI:
10.1109/TPWRS.2019.2900560

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Jørgensen, C. H. L., Møller, J. G., Sommer, S., & Jóhannsson, H. (2019). A Memory-Efficient Parallelizable
Method for Computation of Thévenin Equivalents used in Real-Time Stability Assessment. I E E E Transactions
on Power Systems, 34(4), 2675-2684. https://doi.org/10.1109/TPWRS.2019.2900560

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/224788336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/TPWRS.2019.2900560
https://orbit.dtu.dk/en/publications/a-memoryefficient-parallelizable-method-for-computation-of-thevenin-equivalents-used-in-realtime-stability-assessment(da46be85-fbfe-4302-b537-27c6afe9aa50).html
https://doi.org/10.1109/TPWRS.2019.2900560

MANUSCRIPT 1

A Memory-Efficient Parallelizable Method for
Computation of Thévenin Equivalents used in

Real-Time Stability Assessment
Christina Hildebrandt Lüthje Jørgensen, Student Member, IEEE, Jakob Glarbo Møller, Member, IEEE,

Stefan Sommer and Hjörtur Jóhannsson, Member, IEEE

Abstract—This paper introduces a factor-solve method, which
efficiently computes Thévenin equivalents for all buses in the
power system. A range of real-time stability assessment methods
rely on Thévenin equivalents, and it is therefore essential that
these can be determined fast and efficiently. The factor-solve
method has runtime for computing Thévenin voltage that scales
linearly with system size resulting in runtime of only a few
milliseconds even for systems with several thousand buses. The
computations only need the sparse admittance matrix for the
power system and a sparse factorization resulting in low memory
requirements, and furthermore Thévenin impedances can be
determined in parallel. The factor-solve method is compared to
a reference method, which uses coefficients for super-position
to determine the Thévenin equivalents. The reference method is
shown to have dissatisfying runtime and complexity. The factor-
solve method is tested, parallelized and analysed, which shows a
considerable speed-up in computations of Thévenin equivalents
enabling them to be computed in real-time.

Index Terms—Algorithms, Power system analysis computing,
Real-time assessment, Thévenin equivalent

NOMENCLATURE

X Vector of complex entries

X Matrix with complex entries

|X| Number of non-zeros in matrix X

I Identity matrix

D (X) Diagonalization of the vector X into a diagonal

matrix

I. INTRODUCTION

THÉVENIN equivalent computations are used in assess-

ment of power system stability. Steady-state stability of

a generator can be determined as a margin of the maximum

power injection using Thévenin equivalents [1], [2]. In [3]–[5]

methods for voltage stability assessment are introduced which

takes advantage of Thévenin equivalents, while [6] derives

sensitivities based on a Thévenin equivalent representation to

detect transient voltage sags. In [7] the Thévenin equivalent

static contingency assessment (TESCA) method is introduced,

which uses Thévenin equivalents to solve the power-flow prob-

lem and to evaluate aperiodic small signal stability following

a contingency.

C. Jørgensen, J. Møller and H. Jóhannsson are with Center for Electric
Power and Energy, Department of Electrical Engineering, Technical University
of Denmark, Kongens Lyngby, Denmark (e-mail: chhil@elektro.dtu.dk).

S. Sommer is with Department of Computer Science, University of Copen-
hagen, Copenhagen, Denmark.

The introduction of methods for stability and security as-

sessment as well as methods for defining countermeasures

will either result in a competition for the available computa-

tional resources or introduce a need for larger computational

resources. It is therefore essential, that the methods are first of

all fast, but they should also use few computational resources

(CPU, memory, etc.). Therefore, Thévenin equivalents should

be computed both fast and efficiently. Decomposing the system

using a Schur complement has previously been proposed in

order to reduce system size and optimize computations.

In [8] the super-postion principle is used to determine the

contribution of each voltage or current source to the Thévenin

voltage. The method take advantage of a Schur complement,

which [9] use to decompose the system for dynamic power

system computations. In [5] a Schur complement is used

to limit the computational burden when finding Thévenin

equivalents for load buses, while [10] and the extended version

of this [11] applies a Schur complement to efficiently compute

Thévenin impedances for generators.

A range of methods for computing Thévenin equivalents

for loads is analysed in [12] in order to assess a voltage

stability margin. One method uses a Schur complement, and

the complexity is estimated to have a cubic overhead, which is

concluded to potentially become a burden for large systems.

The Schur complement is generally considered to be dense

[10], [13] and therefore it is computationally inefficient to

determine. In reality all the coefficients for super-position and

not just the Schur complement can be dense [14], which means

that computing the coefficients is computational expensive.

In [14] different factorization methods are analysed to

optimize the method for finding Thévenin equivalents. It is

identified, that the Clark Kent LU factorization (KLU) factor-

ization is the most efficient factorization method, however as

in [8] it is determined that the greatest share of the execution

time is spend on matrix multiplications due to the density of

the matrices involved. The coefficients for super-position and

Thévenin impedances are computed, whenever the topology

of the power system change, whereas the Thévenin voltage

can be determined for every new system state to monitor the

system or for every iteration of a steady-state analysis. In [8]

the method for determining coefficients for super-position was

optimized, however the computation of Thévenin voltages was

not addressed.

KLU is a factorization method optimized for sparse systems

[15]. The method transform the system to block triangular

MANUSCRIPT 2

form and use approximate minimum degree ordering of the

blocks to minimize fill-in before factorizing each block sepa-

rately. KLU uses block back substitution to solve a system of

linear equations. The factorization and the fill-in generated

for sparse systems is close to linear with systems size in

the context of this paper [10]. KLU is part of the library

SuiteSparse [16].

This paper introduces a new method for computing

Thévenin equivalents, opposed to the reference method [8],

[14]. The method builds on the ideas given in [10] of

developing a factor-solve method, where the method here

will compute the Thévenin equivalents for the entire system

instead of only the Thévenin impedances for generators. The

method will take advantage of block back substitution in KLU

to avoid computing coefficients for super-positon. Thereby,

the computationally expensive matrix multiplication of the

reference method will be omitted, and additionally the method

will be considerably more memory-efficient.

Although [12] estimates a cubic runtime, when using a

Schur complement, it will be shown that this is not the case

for the methods in this paper. The factor-solve method will

facilitate a speed-up of the runtime of both the computation

of the Thévenin impedances as well as the Thévenin voltages.

The method is split in to a sequential and parallel part com-

pared to the sequential reference method, making it suitable

for parallelization, which often enables the performance to

become considerably better.

Following the introduction Section I.A gives some examples

of real-time stability assessment methods using Thévenin

equivalents. Section II describes the reference method for com-

puting Thévenin equivalents using a Schur complement and

investigate the runtime of this method. A factor-solve method

for computing Thévenin equivalents is proposed in Section

III. The method is implemented and tested in Section IV and

lastly parallelized for optimal performance. The scalability

of the method is evaluated as well as the resulting runtime

and memory requirements of the computations. Section V

discusses the results and gives perspectives on the method,

while Section VI concludes the paper.

A. Thévenin equivalents in stability and security assessment

A range of methods for stability and security assessment use

Thévenin equivalents in their computations. To ensure that

these method can run in real-time, the Thévenin equivalent

computations should be fast and efficient. Below follows some

examples of Thévenin equivalents used in assessment methods.

1) Aperiodic small-signal rotor angle stability: In [1] the

maximal injectable power by a generator is determined. This

is used to determine a margin to the boundary for aperiodic

small-signal rotor angle stability as a percentage margin to

the maximal injectable power. This is based on algebraically

derived equations [17] and given as

%∆Pinj =
Pinj,max − Pinj

Pinj,max

· 100% (1)

=
cos (δ + φth) + 1

1 + |V |
|Vth|

cosφth

· 100%, (2)

where the generator is represented as a voltage source V with

angle δ and the remaining grid by its Thévenin equivalent with

a voltage source Vth and an impedance Zth with angle φth.

Vth is used as the phase angle reference.

A real-time remedial action can be computed as a coun-

termeasure to keep the system from becoming unstable [2].

This is done by computing the reduction in power needed

for the critical generator to become N-1 secure. The power is

then redispatched to the remaining generators in the system

ensuring these also remain secure.

2) Voltage stability: In [5] a voltage stability margin for the

loads is determined. This uses the impedance match criterion

to determine the maximum deliverable power to the load,

which is given by

Smax =
|V 2

th| [|Zth| − (imag (Zth) sin θ + real (Zth) cos θ)]

2 [imag (Zth) cos θ − real (Zth) sin θ]
2

(3)

with θ being the power factor angle of the load. The margin

is then determined using the apparent power of the load Si

%∆Si =
Smax,i − Si

Smax,i

· 100%, (4)

which determines the distance to the boundary of voltage

stability.

3) Post-contingency aperiodic small-signal stability: In [7]

a method for security assessment is described that deter-

mines the aperiodic small-signal stability of the power sys-

tem following a contingency. The post-contingency steady-

state nodal voltages is determined by first computing the

Thévenin impedances post-contingency and then computing

the Thévenin voltage and nodal voltage angle iteratively until

the steady state voltage is found. The voltage angle δi is

determined at each iteration as

δi = arccos

(

Pi|Zth,i|

|Vi||Vth,i|
−

Rth,i|Vi|

|Zth,i||Vth,i|

)

(5)

The resulting steady-state nodal voltage can then be used to

determine the N-1 stability using the earlier mentioned margin

for maximum injectable power by generators.

II. REFERENCE METHOD

A. Schur complement and Thévenin equivalents

In [8], [14] a method for computing Thévenin equiva-

lents is described, which uses coefficients for super-position.

Thévenin equivalents consist of a Thévenin impedance Zth

and Thévenin voltage Vth. The Thévenin equivalent seen from

node i satisfies

Vth,i = Vi − Zth,iIi, (6)

where Vi is the node voltage and Ii is the current injected in

to the network at node i.

Sources in a circuit can as in power-flow calculations be

partitioned in to two sets - current sources (cs) and volt-

age sources (vs). Floating nodes may be represented as a

current source injecting 0 current; loads may be represented

as impedances, dependent- or independent current sources;

generators with automatic voltage regulator (AVR) may be

MANUSCRIPT 3

represented as voltage sources; internal voltages of manually

excited machines may be represented as voltage sources.
The admittance matrix for the system can then be block-

wise partitioned as follows
[

Ics
Ivs

]

=

[

Ycs Yv→c

Yc→v Yvs

] [

Vcs

Vvs

]

(7)

Eliminating Vcs from (7) yields

Ivs = YeqVvs −QacIcs (8)

with

Yeq = Yvs −Yc→vY
−1

cs Yv→c (9)

Qac = −Yc→vY
−1

cs (10)

where Yeq is the Schur complement and Qac is the accom-

panying matrix. This reduction of the network is also known

as Kron reduction [18].
The Thévenin impedances seen from node i is determined

by short circuiting all voltage sources and open-circuiting all

current sources, which will be

Zth,i =

{

Zcs(i, i) i ∈ cs

Yeq(i, i)
−1 i ∈ vs

(11)

where Zcs = Y−1

cs [8].
Using the definition for Thévenin voltage given in (6) and

the above network equations (8)-(10) the Thévenin voltages

for the cs and vs nodes respectively are defined as
[

Vth,cs

Vth,vs

]

=

[

Zc Kv→c

Zc→v Kv

] [

Ics
Vvs

]

= K

[

Ics
Vvs

]

(12)

with

Zc = Zcs −D(Zth,cs) (13)

Kv→c = −ZcsYv→c (14)

Zc→v = D(Zth,vs)Qac (15)

Kv = I − D(Zth,vs)Yeq (16)

Algorithm 1 determines the Thévenin impedances and the

coefficient matrix K needed for computing the Thévenin

voltages.

Algorithm 1 Thévenin equivalents

Lcs,Ucs ← factorization of Ycs

UZcs
← solve(Lcs, I)

LT
Zcs

← solve(UT
cs, I)

Zcs ← LZcs
UZcs

Zth,cs ← D(Zcs)
Qac ← −Yc→vZcs

Yeq ← Yvs +QacYv→c

Zth,vs ← D(Yeq)
−1

Zc ← Zcs −D(Zth,cs)
Kv→c ← −ZcsYv→c

Zc→v ← D(Zth,vs)Qac

Kv ← I −D(Zth,vs)Yeq

Zth ←

[

Zth,cs

Zth,vs

]

K ←

[

Zc Kv→c

Zc→v Kv

]

return Zth and K

B. Complexity of reference method

All computations of the reference method are done with sparse

matrices and the complexity of the computations will therefore

depend on the density of these matrices.
Computing Zcs will have the complexity O(|LZcs

||cs|),
which is the most expensive computation in Algorithm 1.

By comparison inverting sparse matrices will at maximum

have one computation per non-zero element in the matrix

for each column in the identity matrix, which gives a com-

plexity of O(|Lcs||cs|) = O(|Ucs||cs|) for solve(Lcs, I) and

solve(UT
cs, I). Empirically |Ucs| ≤ |LZcs

|, and therefore

inversion will be computationally cheaper than computing Zcs.

The remaining computations of Algorithm 1 will also be of

lower complexity, since they involve at least one sparse matrix,

and as stated earlier the factorization is close to linear in

complexity. Hence the complexity of the algorithm will be

O(|LZcs
||cs|).

Assuming that |LZcs
| (≃ |UZcs

|) scale close to linear with

system size like it’s the case in practise with the number

of non-zeros and fill-in generated in the factorization in this

context [10] the complexity will be O(|cs|2).
Determining Thévenin voltages (12) is O(|K|), and there-

fore the computation of Thévenin voltages will depend on the

density of the coefficient matrix.

C. Test of reference method

The reference method for determining Thévenin equivalents

using Algorithm 1 and equation (12) is analysed in MATLAB

on a CPU of Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz.

In the implementation KLU is used as the factorization

method, due to its efficiency for sparse systems.
The test systems are given in Table I. The Pegase and

Polish-Winter systems can be found in MATPOWER [19],

the PTI systems are included in the PSS R©E 33.0 examples

and Nordic32 can be found in [20]. EECC-PSSE-33-0 is a

representation of the American Eastern interconnection.

TABLE I
TEST SYSTEMS

Case no. of
buses

no. of vs
nodes

non-zeros
in Y

Nordic32 46 20 160

Pegase89 89 12 501

Pegase1354 1354 260 4774

PTI-WECC-1648 1648 313 6680

Polish-Winter99 2383 327 8155

Polish-Winter03 2746 374 9344

Pegase2869 2869 510 10805

Polish-Winter07 3012 347 10144

PTI-EECC-7991 7917 1325 32211

Pegase9241 9241 1445 37655

Pegase13659 13659 4092 50909

EECC-PSSE-33-0 29827 3780 107527

Table II shows the density of the coefficient matrix for each

test system. Here the density is given as the number of non-

zeros and as the percentage of non-zeros to the maximum size

of the matrix. Table III shows the resulting runtime.

MANUSCRIPT 4

TABLE II
DENSITY OF K FOR TEST SYSTEMS

Case non-zeros
in K

density of
K (%)

Nordic32 547 25.9

Pegase89 7663 96.7

Pegase1354 1120078 61.1

PTI-WECC-1648 1706580 62.8

Polish-Winter99 2825717 49.8

Polish-Winter03 3027555 40.2

Pegase2869 2961793 36.0

Polish-Winter07 4206582 46.4

PTI-EECC-7991 44852962 71.6

Pegase9241 42515659 49.8

Pegase13659 184786127 99.0

EECC-PSSE-33-0 854782395 96.1

TABLE III
RUNTIME OF ALGORITHM 1 AND OF COMPUTING THÉVENIN VOLTAGES

Case Runtime (s)
Algorithm 1

Runtime (ms)
Vth

Nordic32 2.98·10−4 1.27·10−2

Pegase89 1.34·10−3 3.13·10−2

Pegase1354 0.11 2.74

PTI-WECC-1648 0.20 4.62

Polish-Winter99 0.30 7.08

Polish-Winter03 0.31 8.50

Pegase2869 0.41 7.65

Polish-Winter07 0.42 10.51

PTI-EECC-7991 6.31 118.13

Pegase9241 11.58 118.95

Pegase13659 36.70 530.13

EECC-PSSE-33-0 253.08 2519.75

For small systems the method is viable and the algorithm

has a runtime of a few milliseconds, however as the system

size and complexity grows, so does the runtime. Figure 1

shows the runtime of Algorithm 1 and the runtime for com-

puting Thévenin voltages Vth (12) plotted against system size.

As expected, the figure shows complexity that is close to

quadratic to system size for Algorithm 1. The complexity is

dependent on |LZcs
|, which was assumed to scale close to

linear with |cs|. |cs| scales close to linear with system size as

seen in Table I. This results in an almost quadratic complexity.

The complexity of computing Thévenin voltages was anal-

ysed to be O(|K|). An increased system size result in larger

matrices and thereby also a possibility of a larger number of

non-zeros, therefore the close to quadractic tendency for these

computations is reasonable.

PTI-EECC-7991 and Pegase9241 has almost the same num-

ber of non-zeros in the coefficient matrix |K| even though

the system size for Pegase9241 is considerably larger. As

expected this gives nearly identical runtimes for computing

Vth. Furthermore, the number of non-zeroes |K| for EECC-

PSSE-33-0 is almost 5 times larger than for Pegase13659

resulting in a runtime for Vth, which is also 5 times larger.

This is consistent with the analysed complexity.

101 102 103 104 105
10-6

10-4

10-2

100

102

104

Fig. 1. Runtime for the initial method depending on the number of buses.
The runtime is shown for Algorithm 1 and the Thévenin voltages (12) and
the plot is logarithmic.

III. INTRODUCTION OF FACTOR-SOLVE METHOD

Performance of Algorithm 1 and the computation of Thévenin

voltages is dissatisfying and doesn’t scale well with system

size, but it turns out that there is a potential for improvements.

KLU solves a system by using block back substitution. By

use of this solver it is possible to find the Thévenin voltages

without computing the coefficient matrix.

The equations from (12) can be written as

Vth,cs = (Zcs −D (Zth,cs)) Ics − ZcsYv→cVvs (17)

Vth,vs = D(Zth,vs)QacIcs + (I − D(Zth,vs)Yeq)Vvs (18)

Defining Ṽ as

Ṽ = Zcs (Ics −Yv→cVvs) (19)

and inserting this in to (17) and (18) gives

Vth,cs = Ṽ − Zth,csIcs (20)

Vth,vs = Vvs − Zth,vs

(

YvsVvs +Yc→vṼ
)

(21)

Solving Ycsx = b for x i.e. finding x = Zcsb can be

determined by block back substitution using the factors LU

from the KLU factorization. This will be defined as klu(LU, b)

and Ṽ can then be calculated by klu(LU, Ics −Yv→cVvs). It

is hereby possible to determine the Thévenin voltages using

only the factorization of Ycs and the Thévenin impedances.

This means, that the entire coefficient matrix K is no longer

needed, which will simplify the algorithm.

The Thévenin impedances for cs and vs nodes are defined

in (11). The diagonal of Zcs and the diagonal of the Schur

complement Yeq is needed in these computations.

The diagonal of Zcs determines the Thévenin impedances

for cs nodes and is computed by taking UZcs
= L−1

cs and

LZcs
= U−1

cs and multiplying the rows and columns, that result

in the diagonal i.e.

Zth,cs,k = LZcs
(k, :)UZcs

(:, k) ∀k ∈ cs, (22)

MANUSCRIPT 5

where LZcs
(k, :) is the k’th row of LZcs

and UZcs
(:, k) is the

k’th column of UZcs
.

The Thévenin impedances for the vs nodes are given as

the inverse of the diagonal elements of the Schur complement

Yeq .

Zth,vs,k = Yeq(k, k)
−1 ∀k ∈ vs, (23)

which is scalar inversion.

Using (9) this can be determined by

Yeq(k, k) = Yvs(k, k)−Yc→v(k, :)ZcsYv→c(:, k) (24)

As with the Thévenin voltages block back substitution is used

to determine part of the equation. The Thévenin impedances

for the vs nodes are found as

Û(:, k) = ZcsYv→c(:, k)← klu (LU,Yv→c(:, k)) (25)

Yeq(k, k) = Yvs(k, k)−Yc→v(k, :)Û(:, k) (26)

Zth,vs,k = Yeq(k, k)
−1 (27)

The computations for the vs nodes is similar to the compu-

tations given in [10], and the method will therefore be called a

factor-solve method. The method factorize part of the system

and then solves for part of the equations to efficiently compute

the solution. This approach is used to find the Thévenin

impedances for the vs nodes and to find the Thévenin voltages

for the entire system.

Algorithm 2 factorize Ycs and compute the Thévenin

impedances possibly in parallel.

Algorithm 2 Thévenin equivalents

Lcs,Ucs ← factorization of Ycs {Output: LU}
UZcs

← solve(Lcs, I)

LZcs
← solve(UT

cs, I)T

for k = 1..|cs| {In parallel} do

Zth,cs,k ← LZcs
(k, :)UZcs

(:, k)
end for

for k = 1..|vs| {In parallel} do

Û(:, k) ← klu(LU,Yv→c(:, k))
Yeq(k, k)← Yvs(k, k)−Yc→v(k, :)Û(:, k)
Zth,vs,k ← Yeq(k, k)

−1

end for

Zth ←

[

Zth,cs

Zth,vs

]

return Zth and LU

This way no computation time is spent on the coefficients

and furthermore the computation of the Thévenin voltages

is altered from matrix vector multiplication with the dense

coefficient matrix to a block back substitution and matrix

vector multiplications with sparse matrices.

A. Complexity of factor-solve method

The complexity of Algorithm 2 is split in to a sequential and a

parallel part. The first part is sequential and will be O(|cs|2),
since the inversions are O(|Lcs||cs|) and O(|Ucs||cs|) respec-

tively and the fill-in scales linearly with system size. The

factorization has negligible runtime compared to this due to

the close to linear complexity.

The two loops run sequential will be O(|cs|2) and

O(|cs||vs|), due to the linear complexity of the computations

in the loops. When run in parallel the runtime is theoretically

determined by the number of cores. By Amdahl’s law the

total runtime will only be limited by the sequential part of the

algorithm, since an unlimited number of cores can be added

to completely parallelize the loops. In practise however there

will be an overhead due to communication between the cores.

For the computation of the Thévenin voltages the complex-

ity will be O(|cs|). The matrix-vector multiplication is linear

due to the sparsity of the matrices scaling with system size,

and the block back substitution of KLU is close to linear. This

complexity is lower than the reference method’s complexity

of O(|K|), which is almost quadratic to system size for the

largest systems.

IV. IMPLEMENTATION AND TEST OF FACTOR-SOLVE

METHOD

The factor-solve method is implemented in MATLAB to

evaluate the method with respect to runtime of both Algorithm

2 and the computation of Thévenin voltages as well as the

accuracy of the results and the memory requirements. The

method is tested on Intel(R) Xeon(R) CPU E5-2650 v4 @

2.20GHz. The test systems were given earlier in Table I.
The resulting runtime for Algorithm 2 and the runtime for

computing the Thévenin voltages (19)-(21) is shown in Table

IV, while Fig. 2 shows a plot of the runtime.

TABLE IV
RUNTIME AND SPEED-UP AND ERROR FOR FACTOR-SOLVE METHOD

Case Runtime (s)
Algorithm 2

Speed-up
Algorithm 2

Runtime
(ms) Vth

Speed-
up Vth

Nordic32 0.045 0.01 0.084 0.15

Pegase89 0.050 0.03 0.101 0.31

Pegase1354 0.114 0.97 0.295 9.28

PTI-WECC-1648 0.544 0.37 0.731 6.32

Polish-Winter99 0.241 1.23 0.457 15.50

Polish-Winter03 0.319 0.98 0.540 15.72

Pegase2869 0.355 1.15 0.604 12.66

Polish-Winter07 0.300 1.39 0.565 18.60

PTI-EECC-7991 1.745 3.62 1.473 80.18

Pegase9241 2.983 3.88 1.708 69.63

Pegase13659 6.276 5.85 2.328 227.75

EECC-PSSE-33-0 20.592 12.29 5.522 456.28

Algorithm 2 is seen to have close to quadratic complexity as

analysed earlier, while the Thévenin voltages is seen to have

an almost linear complexity as analysed earlier. The change

in complexity for the Thévenin voltages result in a significant

decrease in runtime compared to the reference method. It is

notable that, all test systems have runtimes for computing

Thévenin voltages below 6 ms. The system PTI-WECC-1648

has a runtime that is considerably different compared to the

other systems. The complexity is only close to linear and

actually depends on the fill-in in the factorization, which can

differ depending on the structure of the system.
The speed-up is calculated as a quantity for the performance

of the factor-solve method compared to the reference method.

This is defined as t1
t2
, where t1 is the runtime of the reference

MANUSCRIPT 6

101 102 103 104 105
10-5

10-4

10-3

10-2

10-1

100

101

102

Fig. 2. Runtime for the factor-solve method depending on the number of
buses. The runtime is shown for Algorithm 2 and the Thévenin voltages (12)
and the plot is logarithmic.

method and t2 is the runtime of the factor-solve method. The

speed-up is shown alongside the runtimes in Table IV.

For the smaller systems neither the algorithm nor the

calculations of Thévenin voltage receives a speed-up. Systems

larger than 1000 buses is sped up in Thévenin voltage com-

putations but only some benefit from Algorithm 2. Algorithm

2 requires large power systems to be faster than Algorithm 1.

Some systems benefit more from computing Thévenin volt-

ages with the factor-solve method instead of the reference

method. The systems Pegase2869 and Pegase9241 both have

a lower speed-up than test systems of similar size. The reason

for this is found in Table II. The coefficient matrix for both

Pegase2869 and Pegase9241 is less dense than for the systems

with similar size, and therefore weren’t as slow with the

reference method. The complexity has changed from being

dependent on the number of non-zeros in the coefficients to

be close to linearly dependent on system size, which now gives

runtimes, that scale better with system size.

Errors in Thévenin voltages obtained with the two methods

can be stated in terms of a total vector error (TVE) [21] using

the reference method with the standard LU factorization in

MATLAB (UMFPACK) as reference

TVE (%) =

√

(X̃r −Xr)2 + (X̃i −Xi)2

X2
r +X2

i

· 100%, (28)

where X̃ is the estimate (reference or factor-solve method)

and X is the true value (reference method with UMFPACK).

The maximum TVE can be seen in Table V. The two

methods only differs by a small margin in accuracy of the

resulting Thévenin voltages.

A benefit from the factor-solve method is the amount of

memory needed. The reference method need to store the

Thévenin impedances along with the coefficient matrix K,

while the factor-solve method need to store the Thévenin

impedances and the sparse factorization of Ycs. Especially for

the larger systems there is a significant reduction in memory

using the factor-solve method, since the coefficient matrix is

TABLE V
MAXIMUM TVE (%) FOR THE REFERENCE AND FACTOR-SOLVE METHOD

Case Max TVE (%)
(reference)

Max TVE (%)
(factor-solve)

Nordic32 2.43·10−13 2.23·10−13

Pegase89 1.71·10−12 1.71·10−12

Pegase1354 4.55·10−12 4.56·10−12

PTI-WECC-1648 6.98·10−12 7.02·10−12

Polish-Winter99 1.95·10−11 2.79·10−11

Polish-Winter03 2.98·10−11 2.98·10−11

Pegase2869 5.50·10−12 5.54·10−12

Polish-Winter07 1.52·10−11 1.52·10−11

PTI-EECC-7991 9.26·10−12 9.17·10−12

Pegase9241 2.13·10−11 2.13·10−11

Pegase13659 2.20·10−11 2.22·10−11

EECC-PSSE-33-0 1.30·10−09 8.01·10−10

dense. Sparse matrices store the location and value of a non-

zero entry, while full matrices store all entries of a matrix.

The test systems with a coefficient matrix with a high density,

see Table II, will therefore be more efficiently stored as a full

matrix than a sparse.

The KLU factorization of a matrix A is defined as

PRAQ = LU+ F (29)

P,Q are permutations stored as vectors, R is a scaling matrix

optimally stored as a vector, L,U are complex sparse matrices

and F = 0 in this context [14].

The memory requirements for storing the the coefficient

matrix (either in full or sparse format) compared to storing

the sparse factorization can be seen in Table VI. Integers like

doubles are stored using 64 bits.

TABLE VI
MEMORY REQUIREMENTS FOR COEFFICIENT MATRIX K IN SPARSE AND

FULL FORMAT AND FOR THE FACTORIZATION OF Ycs

Case K

(full)
K

(sparse)
Factorization

of Ycs

Nordic32 33.1 kB 13.2 kB 2.9 kB

Pegase89 123.8 kB 180.3 kB 17.7 kB

Pegase1354 28.0 MB 25.6 MB 164.3 kB

PTI-WECC-1648 41.4 MB 39.1 MB 233.6 kB

Polish-Winter99 86.6 MB 64.7 MB 298.8 kB

Polish-Winter03 115.1 MB 69.3 MB 349.4 kB

Pegase2869 125.6 MB 67.8 MB 390.5 kB

Polish-Winter07 138.4 MB 96.3 MB 400.4 kB

PTI-EECC-7991 0.9 GB 1.0 GB 1.2 MB

Pegase9241 1.3 GB 1.0 GB 1.4 MB

Pegase13659 2.8 GB 4.1 GB 2.1 MB

EECC-PSSE-33-0 13.3 GB 19.1 GB 5.6 MB

Storing the factorization requires less memory than storing

the coefficient matrix for all test systems i.e. the factor-solve

method requires less than the reference method. As with the

runtime for the Thévenin voltages it is also here the largest

systems that have the biggest improvement. For the test system

EECC-PSSE-33-0, which is optimally stored as a full matrix,

the improvement is a factor of over 2400, while the factor is

around 220 for Polish-Winter99 and only 4.6 for Nordic32.

MANUSCRIPT 7

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

(a)

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

(b)

Fig. 3. Speed-up of Algorithm 2 compared to Algorithm 1 for all test systems - (a) shows all test systems and (b) is a zoom of the smaller systems.

This difference is due to the scaling of the memory. The

memory for storing K as a sparse matrix is scaling close to

quadratic with system size, while the memory for the sparse

factorization of Ycs is scaling linearly.

A. Parallelization of Algorithm 2

The runtime for computing Thévenin voltages has been de-

creased significantly, however Algorithm 2 is only consider-

able faster for the larger systems. A benefit from the factor-

solve method is that Algorithm 2 can easily be parallelized.

The runtime is therefore tested on a machine with 2 CPUs of

Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz with 12 cores

each. The algorithm will be tested on the following number

of cores 1, 2, 4, 6, . . . , 22, 24.

Fig. 3a shows the speed-up of Algorithm 2 compared to

Algorithm 1 for different number of cores for each test system

and Fig. 3b shows the same with the 4 largest systems

excluded.

Parallelization decrease the runtime of Algorithm 2 consid-

erably. As system size grows the speed-up increases signifi-

cantly up to a factor of 90 for the largest system compared

to a factor 12 without parallelization. The smallest systems

still has no speed-up, since these systems already have a short

runtime due to their limited size, and the introduction of loops

and overhead time only slows them down. There is a range

of test systems that when run sequential did not benefit from

Algorithm 2, however when parallelized there is now a benefit.

Fig. 3a and 3b furthermore show, that the optimal number of

cores increase with system size. After the point of maximal

speed-up it decreases due to the increased overhead time,

which will be larger than the gain of adding additional cores.

The for loops in Algorithm 2 are implemented with the

function parfor in Matlab for all cores. This will for 1

core i.e. the sequential version be a little slower than using

for, since there is a small penalty when using parfor. The

sequential version could therefore be a little faster.
Table VII shows the number of cores that maximize the

speed-up for Algorithm 2 and thereby also minimize the

runtime. It shows explicitly that the optimal number of cores

increase with systems size and so does the speed-up. Table

VII show a runtime of 2.8s for EECC-PSSE-33-0 with the

parallelized factor-solve method compared to 253s for the

reference method. This means that the factor-solve method

will be able to respond faster to a sudden change in the system

topology than the reference method.

TABLE VII
RESULTS FOR THE OPTIMAL NUMBER OF CORES FOR EACH TEST SYSTEM

Case Optimal
no. of
cores

Runtime (s)
Algorithm 2

Speed-up
Algorithm 2

Nordic32 1 0.045 0.007

Pegase89 1 0.050 0.027

Pegase1354 2 0.101 1.105

PTI-WECC-1648 4 0.281 0.727

Polish-Winter99 6 0.121 2.439

Polish-Winter03 10 0.155 2.008

Pegase2869 6 0.164 2.477

Polish-Winter07 8 0.136 3.070

PTI-EECC-7991 16 0.344 18.354

Pegase9241 14 0.497 23.289

Pegase13659 16 0.901 40.750

EECC-PSSE-33-0 16 2.759 91.715

Fig. 4 show the distribution of runtime on each part of

Algorithm 2 for the optimal number of cores given in Table

VII. Factorization time is negligible as expected by its almost

linear complexity compared to the quadratic complexity of the

entire algorithm as for the reference method [14].
The majority of time is spent on computing the Thévenin

impedances for the cs nodes. However, there is also a sig-

nificantly larger number of cs nodes than vs nodes as seen

in Table I. Dividing the runtimes by the number of cs and

vs nodes respectively, gives an average runtime for cs nodes

that is lower than for the vs nodes in every case. The reason

might be found in the difference in the computations. However,

it might also be that the optimal number of cores for the

MANUSCRIPT 8

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

Fig. 4. Distribution of the runtime of Algorithm 2 on to each part of the
algorithm for the optimal number of cores.

cs nodes is larger than for the vs nodes. The loops are

independent, and therefore running both loops on the same

number of cores might result in the computations for the vs

nodes being more dominated by overhead. Computations for

cs nodes are furthermore split in to a sequential part (inversion

of factorization factors) and a parallel part, where the first part

will not benefit from additional cores.

V. DISCUSSION AND PERSPECTIVES

The factor-solve method determines Thévenin voltages in lin-

ear time given the Thévenin impedances and the factorization

of the admittance matrix for the cs nodes. This means that

on the given CPU the Thévenin voltages for all buses in the

system could be determined in under 6 ms for tests system

up to a size of 30.000 buses. If the calculations where to be

used in connection with Phasor Measurement Units (PMUs)

[22], [23] the method would be able to determine the Thévenin

voltages for every measurement, since these will normally be

received at the rate of the system frequency (every 16-20ms).

In the factor-solve method the runtime of Algorithm 2

dominates the computations, but this is only run, whenever the

system topology change. The factorization time is negligible

due to linearity, thus the majority of time is spent on deter-

mining the Thévenin impedances. Runtime for the factor-solve

method compared to the reference method is better especially

for the larger systems. The complexity is still quadratic as with

the reference method, however the implementation is a little

faster. More importantly the method can easily be parallelized,

since the factor-solve method is split in to a sequential and a

parallel part compared to the reference method consisting of

sequential matrix multiplications.

The fact that the algorithm can be parallelized enables the

method to have an even lower runtime. Using only a couple

of cores makes the method better than the initial method

for systems with 2000 buses or more, while a single core

is sufficient to decrease runtime for the larger systems. The

system size and the density of the larger systems furthermore

increases the gain from using parallelization.

The smallest systems does not benefit from the factor-solve

method, since these are so small that the time spend on matrix

multiplications is neglible and changing these computations in

to loops only worsen the runtime due to the overhead.

A few systems benefit from computing Thévenin voltages

by use of the factor-solve method without benefiting from

Algorithm 2 even with parallelization. An alternative method

for these system would be to combine the two methods. The

Thévenin impedances along with the factorization could be

computed by line 1-8 in Algorithm 1 and then the Thévenin

voltages would be computed by the factor-solve method.

These systems will then get the lowest possible runtime, and

furthermore only running line 1-8 of Algorithm 1 will also

result in a further decrease in the runtime of computing the

Thévenin impedances.

This sort of hybrid method would be useable for systems

consisting of between 1.000 and 2.000 busses. It should

however be noted that the runtime for both methods for these

systems is low enough for real-time computations and either

one would be suitable. The method can be used for security

assessment in for example the Thévenin equivalent static con-

tingency assessment method [7]. Here Thévenin impedances

is determined for all N-1 contingencies and Thévenin voltages

are then computed several times when determining the steady-

state nodal voltage. For contingency analysis it is important to

use the fastest combination to ensure that assessment can be

done in reasonable time.

An idea for future work would be to investigate the potential

use of GPUs instead of doing all the computations on the

CPU. Moving data to and from the GPU is expensive, but

when the data is there the computations can be executed and

parallelized more efficiently. It could potentially be used on

the loops in Algorithm 2. However, since there is no reuse of

data in the loops it might not give a better performance, since a

GPU excel when doing the same computations multiple times.

Furthermore, it would also be satisfactory if the sequential part

of the algorithm could have it’s complexity reduced in order

to scale better or be changed to be able to run in parallel.

In the complexity analysis the runtime was determined to

be dependent on the sparsity of the factors in the factorization,

which is almost linear to the system size. From the results it

can be seen that this is the case for most of the test systems,

however the structure of some systems give rise to a larger fill-

in and will affect the resulting runtime. It would be interesting

to find specific reasons for the behaviour of these system.

A clear benefit from the factor-solve method is the decrease

in memory usage, where a reduction in required memory was

seen for all test systems. This together with the now linear

complexity of the Thévenin voltages computations will make

the method use fewer computational resources and thereby

leave room for other assessment methods.

Future work would also be to include the factor-solve

method in stability assessment methods to test their perfor-

mance with the new calculations. It would then be possible to

analyse the these methods and determine new areas suitable

for optimization. It would furthermore be interesting to test

the method in a real-time setting on a SW-platform like [24].

MANUSCRIPT 9

VI. CONCLUSION

The paper describes a reference method for determining the

Thévenin equivalents for all nodes in a power system. The

reference method was analysed to be insufficient especially for

large power systems. The given complexity of the method is

dependent on the density of the coefficients and will therefore

be less viable for some systems compared to others due to the

structure of the power system.

A factor-solve method was introduced, which takes ad-

vantage of the block back substitution in KLU. The method

spends no computation time on generating coefficients and the

calculations of Thévenin voltages computation can be done in

linear time. Furthermore, the memory usage is significantly

lower than for the reference method changing from gigabytes

to a couple of megabytes for larger systems.

Computations of Thévenin impedances can take advantage

of parallelization and runtime will therefore be dependent on

the number of cores used. The optimal number of cores is

shown to increase with system size. The runtime for determin-

ing Thévenin impedances is still not satisfying for the largest

test system, however these will only be determined, when

system topology change. Thévenin voltages are determined

without relying on parallization and the linear scaling with

system size, enables the factor-solve method to have consid-

erably lower computation time than the reference method.

REFERENCES

[1] H. Jóhannsson, A. H. Nielsen, and J. Østergaard, “Wide-Area Assess-
ment of Aperiodic Small Signal Rotor Angle Stability in Real-Time,”
IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4545–4557,
2013.

[2] T. Weckesser, H. Jóhannsson, and J. Østergaard, “Real-Time Remedial
Action Against Aperiodic Small Signal Rotor Angle Instability,” IEEE

Transactions on Power Systems, vol. 31, no. 1, pp. 387–396, 2016.
[3] I. Šmon, G. Verbič, and F. Gubina, “Local voltage-stability index using

Tellegen’s theorem,” IEEE Transactions on Power Systems, vol. 21,
no. 3, pp. 1267–1275, 2006.

[4] S. Corsi and G. Taranto, “A Real-Time Voltage Instability Identification
Algorithm Based on Local Phasor Measurements,” IEEE Transactions
on Power Systems, vol. 23, no. 3, pp. 1271–1279, 2008.

[5] Y. Wang, I. R. Pordanjani, W. Li, W. Xu, T. Chen, E. Vaahedi, and
J. Gurney, “Voltage stability monitoring based on the concept of coupled
single-port circuit,” IEEE Transactions on Power Systems, vol. 26, no. 4,
pp. 2154–2163, 2011.

[6] T. Weckesser, H. Jóhannsson, J. Østergaard, and T. Van Cutsem, “Sensi-
tivity based assessment of transient voltage sags caused by rotor swings,”
in Proceedings of the 18th Power Systems Computation Conference

(PSCC), Wroclaw, Poland, 2014.
[7] J. G. Møller, H. Jóhannsson, and J. Østergaard, “Thevenin equivalent

method for dynamic contingency assessment,” in Proceedings of IEEE

Power & Energy Society’s General Meeting, Denver, CO, USA, 2015.
[8] ——, “Super-Positioning of Voltage Sources for Fast Assessment of

Wide-Area Thévenin Equivalents,” IEEE Transactions on Smart Grid,
vol. 8, no. 3, pp. 1488–1493, 2017.

[9] P. Aristidou, D. Fabozzi, and T. Van Cutsem, “Dynamic Simulation of
Large-Scale Power Systems Using a Parallel Schur-Complement-Based
Decomposition Method,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 10, pp. 2561–2570, 2014.

[10] S. Sommer and H. Jóhannsson, “Real-time thevenin impedance compu-
tation,” in Proceedings of IEEE PES Innovative Smart Grid Technologies

Conference (ISGT), Washington, DC, USA, 2013, pp. 1–6.
[11] S. Sommer, A. Aabrandt, and H. Jóhannsson, “Reduce-Factor-Solve for

Fast Thevenin Impedance Computation and Network,” IET Generation,
Transmission & Distribution, nov 2018.

[12] H. Yuan and F. Li, “A comparative study of measurement-based
Thevenin equivalents identification methods,” in 2014 North American

Power Symposium (NAPS). Pullman, WA, USA: IEEE, 2014, pp. 1–6.

[13] L. Giraud, A. Haidar, and Y. Saad, “Sparse approximations of the Schur
complement for parallel algebraic hybrid solvers in 3D,” Numerical
Mathematics-theory Methods and Applications, vol. 3, no. 3, pp. 276–
294, 2010.

[14] C. Hildebrandt, B. C. Karatas, J. G. Møller, and H. Jóhannsson, “Evalua-
tion of Factorization Methods for Thévenin Equivalent Computations in
Real-Time Stability Assessment,” in Proceedings of 20th Power Systems

Computation Conference (PSCC), Dublin, Ireland, 2018.
[15] T. A. Davis, “Algorithm 907 : KLU , A Direct Sparse Solver for Circuit

Simulation Problems,” ACM Transactions on Mathematical Software,
vol. 37, no. 3, pp. 1–17, 2010.

[16] ——, Direct Methods For Sparse Linear Systems, N. J. Higham, Ed.
Gainesville, Florida: SIAM, 2006.

[17] H. Jóhannsson, J. Østergaard, and A. H. Nielsen, “Identification of
critical transmission limits in injection impedance plane,” International

Journal of Electrical Power & Energy Systems, vol. 43, no. 1, pp. 433–
443, 2012.

[18] F. Dorfler and F. Bullo, “Kron Reduction of Graphs With Applications
to Electrical Networks,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 60, no. 1, pp. 150–163, 2013.
[19] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “MAT-

POWER: Steady-State Operations, Planning, and Analysis Tools for
Power Systems Research and Education,” IEEE Transactions on Power

Systems, vol. 26, no. 1, pp. 12–19, 2011.
[20] CIGRÉ TF38.02.08, “Long Term Dynamics Phase II, Final Report,”

Tech. Rep., 1993.
[21] IEEE Standards Association, “C37.118.1-2011 IEEE Standard for Syn-

chrophasor Measurements for Power Systems.” Tech. Rep., 2011.
[22] M. Glavic and T. Van Cutsem, “Wide-Area Detection of Voltage

Instability From Synchronized Phasor Measurements. Part I: Principle,”
IEEE Transactions on Power Systems, vol. 24, no. 3, pp. 1408–1416,
2009.

[23] ——, “Wide-Area Detection of Voltage Instability From Synchronized
Phasor Measurements. Part II: Simulation Results,” IEEE Transactions
on Power Systems, vol. 24, no. 3, pp. 1417–1425, 2009.

[24] H. Jóhannsson, H. Morais, A. H. B. Pedersen, Q. Wu, and D. Ouellette,
“SW-platform for R&D in Applications of Synchrophasor Measurements
for Wide-Area Assessment, Control and Visualization in Real-Time,”
CIGRE US National Committee 2014 Grid of the Future Symposium,
2014.

Christina Hildebrandt Lüthje Jørgensen (S’17) received the M.Sc. degree
in mathematical modelling and computation from the Technical University of
Denmark in 2015, where she is currently pursuing the Ph.D. degree with the
Centre of Electric Power and Energy, Department of Electrical Engineering.
Her research interest includes developing high performance algorithms for
assessing stability of power systems.

Jakob Glarbo Møller (M’17) received the M.Sc. and Ph.D. degrees in
electrical engineering from the Technical University of Denmark in 2013 and
2017 respectively, where he is currently a postdoc with the Centre of Electric
Power and Energy, Department of Electrical Engineering. His research interest
includes algorithms for assessing operational security of power systems.

Stefan Sommer received his M.Sc. in mathematics in 2008 and his PhD in
computer science in 2012 from the University of Copenhagen. He is currently
Associate Professor at the Department of Computer Science, University of
Copenhagen. His research interests cover aspects of mathematical modelling,
numerical algorithms and statistics, including foundational and algorithmic
problems in analysis of data with complex structure.

Hjörtur Jóhannsson (M’11) received the M.Sc. and PhD degrees in electrical
engineering from the Technical University of Denmark in 2007 and 2011
respectively, where he is currently a Senior Scientific Consultant at the Center
of Electric Power and Energy, Department of Electrical Engineering. His
research interests concern the development of methods for secure and stable
operation of power systems with a high share of RES based production, with
special focus on real-time approaches.

