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Tyrosinase-loaded Multicompartment Microreactor 

toward Melanoma Depletion

María Godoy-Gallardo, Cédric Labay and Leticia Hosta-Rigau*

Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, DTU 

Nanotech, Technical University of Denmark, Building 423, 2800 Lyngby, Denmark

KEYWORDS. Enzymes, liposomes, macromolecular drug delivery, melanoma, microreactors, 

shear stress 

ABSTRACT. Melanoma is a malignant skin cancer occurring with increasing prevalence with no 

effective treatment. A unique feature of melanoma cells is that they require higher concentrations 

of L-tyrosine (L-tyr) for expansion than normal cells. As such, it has been demonstrated that dietary 

L-tyr restriction lowers systemic L-tyr and suppresses melanoma advancement in mice. 

Unfortunately, this diet is not well tolerated by humans. An alternative approach to impede 

melanoma progression will be to administer the enzyme tyrosinase (TYR) which converts L-tyr 

into melanin. Herein, a multicompartment carrier consisting of a polymer shell entrapping 

thousands of liposomes is employed to act as a microreactor depleting L-tyr in the presence of 

melanoma cells. It is shown that the TYR enzyme can be incorporated within the liposomal 

subunits with preserved catalytic activity. Aiming to mimic the dynamic environment at the tumor 

site, L-tyr conversion is conducted by co-culturing melanoma cells and microreactors in a 
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microfluidic set-up with applied intra-tumor shear stress. It is demonstrated that the microreactors 

are concurrently depleting L-tyr, which translates into inhibited melanoma cell growth. Thus, the 

first microreactor where the depletion of a substrate translates into anti-tumor properties in vitro 

is reported.

1. INTRODUCTION

Melanoma is currently the fifth most frequent type of cancer and the most threatening form of skin 

cancer.1 The incidence rate of melanoma has increased badly in the last century,2 and it is the cause 

of the largest part of skin cancer-related deaths.3 Despite extensive research, especially towards 

the development of targeted therapies and immunotherapies,4 current strategies have only 

demonstrated noticeable efficacy in some patients and their effect in the long-term survival is still 

variable.5 As such, newer therapeutic approaches are required for what is arguably the most 

difficult cancer to treat.5

A unique characteristic of melanoma cells is that the amino acid (AA) L-tyrosine (L-tyr) is crucial 

for their metabolic cycle and malignant melanomas require higher amounts of L-tyr to advance as 

compared to normal cells.6,7 L-tyr is an AA present in the body from protein metabolism, 

consumption of nutrients and phenylalanine hydroxylation.8 Research studies have demonstrated 

that lowering systemic levels of L-tyr using an L-tyr- and L-phenylalanine-restricted dietary intake 

can prevent the advancement of  melanoma both in vitro and in vivo.9–11 Unfortunately, low L-tyr 

diets have several drawbacks which include: a limited effect in lowering systemic L-tyr levels (to 

only ~67% of the normal levels);12 the extended treatment duration required for efficacy;8 and, 

what is worse, the fact that low L-tyr diets are not well tolerated by melanoma patients causing 

them severe adverse effects.13 Due to the associated detrimental effects, it has not been possible to 

conduct proper clinical trials by making use of restricted L-tyr diets. An alternative option to lower 
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the amount of L-tyr needed for melanoma progression would be the use of the enzyme tyrosinase 

(TYR). TYR depletes the AA L-tyr by a series of reactions and intermediate products that result 

in the formation of melanin (Scheme 1 and Figure S1, Supporting Information).14 However, the 

administration of enzymes has some limitations and risks related to their bioavailability, toxicity, 

immune response and fast degradation upon administration.15 In particular, TYR has an 

exceptional short half-life of only about several minutes following intravenous administration.8 

This fact will involve repeated injections resulting in immunological problems and very poor 

patients compliance. Due to those challenges, the concept of treating melanoma with TYR has 

been around for some years with quite limited success.8,16,17  Research efforts towards the delivery 

of TYR for melanoma treatment include: to chemically crosslink TYR to hemoglobin (Hb) to form 

a polyHb-TYR complex16 or TYR encapsulation within polymeric capsules for oral 

administration.18 While the first approach could lower the systemic L-tyr levels to ~13% in mice, 

which translated into delayed melanoma growth,16 this procedure had several drawbacks. The 

required chemical modification of TYR to create the polyHb-TYR complex altered its catalytic 

properties. Additionally, what is worse, recent years have revealed polyHb to have important toxic 

effects due to its nitric oxide scavenging properties that result in the associated cardiovascular 

problems and higher mortality rates.19,20 In contrast, the second approach results in a more 

appropriate system for the administration of enzymes since, by making use of an encapsulation 

platform, the TYR enzyme’s structure and catalytic activity are preserved.18 However, follow up 

studies towards melanoma progression using this system both in vitro and in vivo still remain to 

be performed.

Despite the initial encouraging results, it is worth noting that these examples date back from the 

early 2000s and, thanks to the advances in materials science, recent years have spurred progress in 
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a variety of different enzymatic micro/nanoreactors.21–23 The creation of encapsulation platforms 

entrapping enzymes protecting them from the external milieu and, thus, allowing them to conduct 

their enzymatic activity for a prolonged period of time, is envisioned to surmount the hurdles of 

enzyme delivery. The most prominent architectures able to operate as enzymatic 

micro/nanoreactors include liposomes,24 polymersomes,25,26 polymeric capsules and 

nanoparticles,27–29 and silica-based systems.30,31 Although the aforementioned structures can  

increase the applicability of enzymes by affording protection towards proteases, minimizing 

enzyme clearance while reducing their immunogenicity; it should be noted that they are all made 

of a single constituent material (i.e., lipids, polymers or silica). The exception are hybrid systems 

composed of thousands of liposomes entrapped within a polymeric carrier capsule.32,33 By 

combining these two inherently different building blocks, this multicompartment carrier exploits 

the advantages of both systems while diminishing some of their defficiencies.34–36 Liposomes are 

well suited to encapsulate fragile biomolecules such as enzymes due to their similarity to biological 

cell membranes. However, they have also some important shortcomings such as in vivo structural 

instability and scarce control over degradation.37,38 On the other hand, the polymer capsule 

overcomes the liposomes limitations by providing structural integrity and preventing liposomes 

rapid degradation.34 Importantly, the polymeric carrier shell is semi-permeable allowing the 

substrates and products to permeate in and out of the carrier, a crucial feature to perform as 

(enzymatic) microreactors in a continuous manner.

Herein we employ this multicompartment platform to encapsulate TYR and inhibit melanoma cell 

growth in vitro (Scheme 1). By using such a hybrid carrier, TYR will be entrapped within 

biomimetic liposomes avoiding misfolding or denaturation while, thanks to the polymer carrier 

shell, the liposomes will be stopped from interacting with the degrading proteases of the intra-
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tumor environment.39 It is important to note that, in contrast to previous approaches which aimed 

to administer TYR to deplete L-tyr systemically, our multicompartment platform is envisioned to 

act as an enzyme microreactor in the tumor site following up intra-tumor administration (e.g., as 

an injectable implant).  By diminishing the amount of L-tyr substrate locally, we anticipate an 

enhanced anti-tumor effect towards melanoma progression.  

Herein, we report a new class of TYR-loaded microreactors (Scheme 1) and demonstrate their 

ability to deplete L-tyr followed by the inhibition of melanoma cells growth. In particular, we (i) 

optimize the assembly of microreactors containing different amounts of TYR-loaded liposomes, 

(ii) demonstrate that the encapsulated TYR preserves its catalytic activity by depleting L-tyr in a 

test tube, (iii) show the absence of intrinsic toxicity for the empty microreactors as well as their 

integration within melanoma cells, (iv) evaluate the potential of the as-prepared microreactors to 

inhibit melanoma cells growth in vitro both in static and in intra-tumor mimicking dynamic 

conditions.

2. EXPERIMENTAL SECTION

2.1. Materials. Triton X-100, sodium hydroxide (NaOH), hydrochloric acid, chloroform, 4-(2-

hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), dimethylchloride, bovine serum 

albumin (BSA), paraformaldehyde (PFA), Resomer® RG 502 H poly(D,L-lactic-co-glycolic acid) 

(PLGA, Mw ~12-13 kDa), poly(vinyl alcohol) (PVA, Mw ~13-23 kDa), poly(allylamine 

hydrochloride) (PAH, Mw 17.5 kDa), poly(styrenesulfonic acid sodium salt) (PSS, Mw ~77 kDa), 

tyrosinase from mushroom (TYR), L-tyrosine (L-tyr), trypsin from bovine pancreas, dimethyl 

sulfoxide (DMSO), sodium bicarbonate (NaHCO3), Phalloidin-Tetramethylrhodamine B 

isothiocyanate (Phalloidin-TRITC), 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO), 

penicillin-streptomycin, sodium pyruvate, Dulbecco’s phosphate buffered saline (PBS) and 
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6

Dulbecco´s Modified Eagle´s Medium-high glucose D5796 (DMEM) were purchased from 

Sigma-Aldrich (Sant Louis, MO, USA). 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, 

phase transition temperature 24 ℃), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, phase 

transition temperature 41 ℃) and 1-palmitoyl-2-{6-[(7-nitro-2-1,3-benzoxadiazol-4-

yl)amino]hexanoyl}-sn-glycero-3-phosphocholine (NBD-PC) were obtained from Avanti Polar 

Lipids (Alabaster, AL, USA). PrestoBlue cell viability reagent, fluorescein isothiocyanate 

(FITC) and PierceTM BCA Protein Assay Kit was obtained from Thermo Fisher Scientific 

(Waltham, MA, USA). Mus musculus skin melanoma B16-F10 (ATCC® CRL-6475™) were 

purchased from American Type Culture Collection (ATCC, USA) while RAW 264.7 cell line 

(ATCC® TIB-71™) were purchased from European Collection of Authenticated-Culture 

Collections (ECACC, UK). 

The different buffers employed were prepared with ultrapure water (Milli-Q gradient A 10 system, 

resistance 18 MV cm, TOC < 4 ppb, EMD Millipore, USA). The concentration of HEPES buffer 

was 10 mM HEPES (pH 7.4).

2.2. Enzymatic Reaction in a Test Tube. To assess the kinetics of the TYR reaction, different 

amounts of TYR (0, 4, 6, 12 and 18 U) were dissolved in either PBS or DMEM (200 µL) containing 

L-tyr (0.66 mM) and incubated at 37 ℃ for different time intervals. After the required incubation 

time, the obtained melanin product was quantified by adding NaOH (20 µL, 1M) and incubating 

for 5 h at 37 ℃ under continuous stirring. Next, the absorbance of the dissolved melanin product 

was monitored at 475 nm employing a multimode plate reader (Tecan Spark, TECAN, 

Switzerland).

2.3. Liposomes Assembly. Liposomes were fabricated according to the thin-film hydration 

method. Briefly, DMPC and DPPC at a weight ratio 7:3 were dissolved in chloroform. Following 
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solvent removal applying vacuum over 1 h, the resulting lipid film was hydrated in HEPES buffer 

(1 mL for 2.5 mg of lipids) at 37 ˚C under constant vortexing. Upon dissolution of the lipid film, 

the resulting dispersion was extruded 11 times at 37 °C (100 nm nucleopore polycarbonate filters 

(drain disc10 mm PE, Whatman, UK) were employed). 

For fluorescently labelled liposomes (LF) 0.5 wt % of either NBD-PC (for flow cytometry and 

optimization of microreactors assembly) or DiO (to assemble microreactors for assessing their cell 

integration) was added to the lipids dissolved in chloroform. For liposomes encapsulating the TYR 

enzyme (LTYR), the lipid film was hydrated with the required units of TYR in HEPES buffer (1 

mL). To dissolve the lipid film alternating vortexing and submersion into a water bath at 42 ℃ for 

30 min was employed. After extrusion, non-encapsulated TYR was removed by dialysis using a 

300 kDa dialysis membrane (Spectrum lab, Netherlands). The as-prepared liposomes were stored 

at 4°C.

2.4. Enzyme Encapsulation. To determine the amount of TYR entrapped/associated with 

liposomes, LTYR (200 µL, 2.5 mg mL-1) were disassembled using Triton X (1% Triton X-100 in 

HEPES buffer). The amount of total enzyme was quantified by means of a bicinchoninic acid 

(BCA) assay following the commercial protocol. The encapsulation efficiency (EE) was assessed 

as described in the Supporting Information. To distinguish the amount of TYR encapsulated within 

or associated with LTYR membrane, LTYR (11 µL, 2.5 mg mL-1) were incubated in a L-tyr solution 

(200 µL, 1 M) at both 4 and 42 ℃ under continuous stirring for up to 7 days. At different time 

intervals, the samples were spun down (3 min, 8 rpm) employing a bench top centrifuge (MiniSpin, 

Eppendorf AG, Germany) and the supernatant removed. PBS (200 µL) and NaOH (20 µL, 1 M) 

were added to the supernatants and the mixture was incubated for 5 h at 37 ˚C under continuous 
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stirring. Finally, the absorbance of the dissolved melanin product was monitored at 475 nm 

employing the Tecan Spark multimode plate reader.

2.5. Synthesis of PLGA Microspheres. PLGA microspheres were synthesized following a 

previously reported water-in-oil-in-water (w/o/w) double emulsion procedure with minor 

modifications.40 Briefly, PLGA (240 mg) was dissolved in anhydrous dichloromethane (3 mL) 

while BSA (144 mg) was dissolved in deionized water (600 µL). The mixture was emulsified with 

an ultrasonic homogenizer (150 VT Ultrasonic Homogenizer, Biologics, Inc., USA) at 50 W for 

10 s in an ice bath. The resulting emulsion was vortexed for 5 s and emulsified again for 10 s at 

50 W with the ultrasonic homogenizer. A PVA solution (4% PVA in H2O, 15 mL) was added to 

the resultant emulsion (w/o) and emulsified again by means of a homogenizer (Ultra-Turrax T25 

digital, IKA-Werke GmbH & CO., Germany) at 6000 rpm for 50 min at room temperature (RT) 

to form a double emulsion (w/o/w). For solvent extraction, the double emulsion was added to a 

PVA solution (0.4% PVA in H2O, 300 mL) and stirred magnetically at 800 rpm overnight. The 

obtained microspheres were allowed to precipitate for 4 h and were washed with deionized water 

for at least five times. 

2.6. Characterization of PLGA Microspheres. Differential interference contrast (DIC) 

microscopy images of PLGA microspheres were taken employing an Olympus microscope IX83 

(Olympus Danmark A/S, Denmark) equipped with a DIC slider and a 63× oil immersion objective. 

To assess the size of the microspheres, four independent batches were analyzed and 100 

microspheres per batch were measured by making use of the Image J software. 

2.7. Morphological Analysis of PLGA Microspheres. Surface morphology of the PLGA 

microspheres was analyzed by scanning electron microscopy (SEM) employing a FEI Quanta 200 

ESEM FEG (FEI-Company, USA). First, the microspheres were coated with gold (1.4 nm 
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9

thickness) using a Q150T ES Turbo-Pumped Sputter (Quorum technologies, UK) and several 

images were taken at a working distance of 10 mm and a potential of 5 kV.

2.8. Dynamic Light Scattering (DLS) and Zeta ()-Potential. The size, polydispersity (PD) and 

-potential of liposomes and the -potential measurements of the coated PLGA microspheres at 

different steps of the assembly were assessed by adding 20 µL of a suspension of coated 

microspheres (1 × 104 microspheres µL-1) to Milli-Q water (2 mL). The measurements were carried 

out in triplicate at 25 ℃ in a ZetaPALS -potential analyzer (Brookhaven Instruments Corporation, 

USA).

2.9. Polymer Labelling. PAH was fluorescently labelled with FITC by adding a solution of FITC 

(3.7 mg in 300 µL DMSO) to a PAH solution (30 mg in 6 mL 0.05 M NaHCO3 pH 10 buffer) in 

a dropwise manner. Next, the reaction mixture was stirred overnight at RT. Next, the excess of 

FITC was thoroughly removed by two days dialysis against Milli-Q water followed by freeze-

drying to obtain PAHF.

2.10. Microreactors Assembly. A suspension of PLGA microspheres (~1 × 104 particles µL-1) 

was incubated with PAH (40 mg mL-1, 15 min) followed by 3× washes in HEPES buffer (4000 

rpm, 45 s). All centrifugation steps were conducted making use of a benchtop centrifuge 

(MiniSpin, Eppendorf AG, Germany). Up to three bilayers of alternating liposomes (either LF, 

LF
TYR or LTYR) (3.6 mM, 50 min) and PAH (8 mg mL-1, 10 min) were absorbed onto the PLGA 

microspheres. Each layer deposition step was followed by 3× washes in HEPES buffer. Next, the 

carrier shell was assembled by the deposition of two bilayers of alternating PSS (1 mg mL-1, 10 

min) and PAH (8 mg mL-1, 10 min) and a final layer of PSS (1 mg mL-1, 10 min). Again, each 

layer deposition step was followed by 3× HEPES buffer washing steps. 

Page 9 of 53

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10

2.11. Flow Cytometry. The number of microreactors and the fluorescence intensity of the 

microreactors entrapping LF were assessed by flow cytometry. A BD Accuri cytometer instrument 

(BD Biosciences, Sparks, USA)  and an Accuri C6 auto sampler flow cytometer plus software (BD 

Biosciences, Sparks, USA) were employed. At least two experiments were conducted 

independently and at least 20 000 events were analyzed for each experiment. The fluorescence 

intensity of the microreactors due to the encapsulated LF was measured at an excitation wavelength 

of 488 nm and a filter of 533/30 nm.   

2.12. Confocal Laser Scanning Microscopy (CLSM). Microreactors loaded with LF were 

imaged with a Leica TCS SP5 CLSM (Leica Microsystems GmbH). The CLSM was equipped 

with an Ar laser with excitation/emission wavelengths of 476/510-550 nm, respectively and a 63× 

water immersion objective. 

2.13. DIC Microscopy. An Olympus Inverted IX83 microscope was employed to take DIC images 

of the microreactors. The microscope was equipped with a 63× oil immersion objective. 

2.14. Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D). A Q-sense E1 

instrument (Biolin Scientific) was employed to monitor the deposition of the different layers on a 

gold crystal (QSX301, Q-sense Biolin Scientific, Sweden). A 200 mL min-1 as flow rate was 

employed. Prior performing the measurements, the gold sensors were cleaned by exposure to 

UV/ozone for 10 min followed by immersion in a solution of Milli-Q: ammonia: hydrogen 

peroxide (5:1:1 v/v) for 5 min at 75˚C. Next, the gold sensors were rinsed with Milli-Q, dried with 

nitrogen and exposed to UV/ozone for 10 min. Next, after the HEPES baseline stabilization, a 

solution of PAH (40 mg mL-1) was loaded in the chamber reaching surface saturation. The unbound 

polymer was washed away with buffer. Next, the resulting PAH-coated surface was exposed to 

LTYR (2.5 mg mL-1) for 60 min until surface saturation was reached. The excess of LTYR was 
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11

washed away with HEPES buffer and the surface was again exposed to a PAH solution (8 mg mL-

1). Following surface saturation and rinsing with buffer, the process was repeated until three 

bilayers of LTYR-PAH were deposited onto the crystal. Finally, the surface was exposed to a PSS 

solution (1 mg mL-1) reaching surface saturation followed by washing off the PSS excess with 

HEPES buffer. The experiments were carried out at 25 ℃ and normalized frequency and 

dissipation values using the third harmonic are reported. 

2.15. Enzymatic Kinetics of Microreactors. To study the enzymatic reaction kinetics employing 

TYR-loaded microreactors, 200 µL of DMEM without phenol red containing 1 × 106 microreactors 

entrapping three LTYR layers (MR3LTYR) were incubated at 37 ℃ under continuous stirring. As 

controls, MR3LTYR at RT, free TYR at both 37 ˚C and RT, empty microreactors (MR3L) at 37 ℃ 

and DMEM only at 37 ℃ were employed. At different time points, the melanin precipitate of the 

different samples was dissolved by adjusting the pH to 11 (adding 20 µL NaOH 1M) followed by 

overnight incubation at 37 ℃. The dissolved melanin product was quantified by monitoring the 

absorbance at 475 nm employing the multimode plate reader.41

For the repeated enzymatic conversion, 1 × 106 MR3LTYR were incubated in DMEM without 

phenol red (200 µL) at 37 ℃ under continuous stirring for up to 5 days. At different time intervals, 

the samples were spun down (45 s, 4000 rpm) employing the bench top centrifuge and the 

supernatant was replaced by fresh DMEM without phenol red (200 µL). The melanin precipitate 

of the supernatants was dissolved by adjusting the pH to 11 (adding 20 µL NaOH 1M) followed 

by incubation at 37 ˚C overnight.  Next, the absorbance of the dissolved melanin product was 

monitored at 475 nm using the multimode plate reader.

2.16. Cell Experiments. Mus musculus B16-F10 melanoma cells and the macrophage RAW 264.7 

cell line were cultured in cell media consisting of DMEM supplemented with 10% (v/v) fetal 
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bovine serum (FBS), 1% (v/v) sodium pyruvate, 1% (v/v) penicillin/streptomycin (10 000 U mL-

1 and 10 µg mL-1) and 2% (v/v) HEPES at 37 °C and 5% (v/v) CO2. For cell culture, the medium 

was exchanged every two days and cells between passages three and seven (for B46-F10) and 

between passages four and six (for RAW 264.7) were used in all experiments. A cell scraper was 

employed to detach sub-confluent RAW 264.7 cells from the culture flask. For B16-F10 cells, sub-

confluent cells were detached from the culture flask by adding 3 mL trypsin. Both RAW 264.7 

and B16-F10 cells were aspirated and re-suspended in cell media. Appropriate aliquots of the as-

prepared cell suspension were added into new culture flasks. All cell experiments in the manuscript 

were conducted in triplicate. At least three independent experiments were carried out. For static 

conditions, for B16-F10, the cells were seeded  at a density of 10 000, 6000, 4000, 3000 and 2000 

cells per well for studies of 1, 2, 3, 4 and 5 days, respectively, in 300 µL of full cell media (for 

experiments performed in 96-well plates). For experiments conducted in 48-well plates, the cells 

were seeded at a density of 20 000, 12 000, 6000, 5000 and 4000 cells per well for studies of 1, 2, 

3, 4 and 5 days, respectively, in 500 µL of full cell media. For RAW 264.7, the cells were seeded 

at a density of 30 000, 15 000 and 8000 cells per well for studies of 1, 2 and 3 days, respectively, 

in 300 µL of full cell media (the experiments were conducted in 96-well plates). For dynamic 

conditions, B16-F10 melanoma cells were seeded at a density of 18 000, 11 000 and 8 000 cells in 

a closed perfusion channel (µ-slide VI0.4 six-well, ibiTreat channels, Ibidi GmbH, Munich, 

Germany) for studies of 1, 2 and 3 days, respectively, in 150 µL of full cell media. Prior adding 

the samples, the cells were allowed to attach for approximately 24 h at 37 ℃ and 5% CO2.

2.17. Microreactors Biocompatibility. Empty microreactors (MR3L) at different microreactors-

to-cell ratios (100:1 and 50:1) were added to the cells following incubation for different time 

intervals (up to 5 days) at 37 ℃ and 5% CO2. As controls, cells without microreactors exposure 
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(high control) and cell medium only (low control) were considered. After the different incubation 

times, the cells were washed 2× in PBS (200 µL) and 1× in a mixture of DMEM and PrestoBlue® 

cell viability reagent (90 µL DMEM + 10 µL PrestoBlue®). Next, the mixture of DMEM and 

PrestoBlue® cell viability reagent was added to the different wells and incubated for 1 h at 37 ˚C 

in the dark. Finally, the fluorescence intensity of the reduced resazurin product was assessed at 

excitation/emission wavelength of 535/615 nm using the multimodal plate reader. The normalized 

cell viability was calculated as follows: normalized cell viability (%)  (experimental value – low 

control value)/(high control value – low control value) × 100. 

2.18. Microreactors Integration within B16-F10 Melanoma Cells. Sterile cover glasses were 

placed in the different wells of 48-well plates. Next, the B16-F10 cells were seeded either in the 

48-well plates (static conditions) or in the channels of the microfluidic set up (dynamic conditions). 

Following 24 h of cell attachment, TYR-loaded microreactors either assembled employing PAHF 

(MR3LTYR-PAHF) or LF
TYR (MR3LF

TYR) were added at a microreactors-to-cell ratio 50:1 were 

added to the wells (static conditions) or to the channels (dynamic conditions). For dynamic 

conditions, the syringes of the pump system (loaded with 7.5 mL of complete cell media) were 

connected to the channels. The Ibidi Pump System (Ibidi GmbH, Germany) was used to apply two 

different controlled shear stresses ( = 0.5 dyn cm-2 (τ0.5) and  = 20 dyn cm-2 (τ20)) for different 

time intervals.  The cells were then incubated at different time-points at 37 ℃ and 5% CO2. As 

controls, cells without microreactors exposure at both τ0.5 and τ20 for dynamic conditions and at 

τ0 for static conditions, were considered. After the different incubation times, the cells from either 

the wells or the channels were washed in PBS 2× to remove the loosely bound microreactors and 

fixed using a 4% PFA solution in PBS for 30 min. Next, the cells were washed in PBS 3×. For 

staining, the cells were first permeabilized using T-PBS (0.1% Triton X-100 in PBS) for 15 min. 

Page 13 of 53

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14

A BSA solution (2% BSA in PBS) for 2 h was used to block the nonspecific points. Incubation of 

the cells in a solution of phalloidin-TRITC (0.1 µg mL-1 in PBS) for 1 h at RT in the dark was used 

to stain the actin filaments. The cells in the wells or in the channels were then washed 3× in PBS 

and imaged by CLSM (Leica Microsystems GmbH, Wetzlar, Germany). A DPSS 561 laser with 

emission/excitation wavelength 561/565-670 nm was used for phalloidin-TRITC detection while 

an Ar laser with emission/excitation wavelength 488/495-505 nm was employed for both 

MR3LTYR-PAHF and MR3LF
TYR detection. A 63× water immersion objective was employed.

2.19. Inhibition of Melanoma Cells Proliferation. For static conditions, B16-F10 and RAW 

264.7 cells were seeded onto 96-well plates (static conditions) and to the channels of the 

microfluidic chamber (dynamic conditions). After 24 h incubation, the cells were washed in PBS 

(2×) and MR3LTYR at 50:1 microreactors-to-cell ratio were added to the wells and channels. For 

dynamic conditions, the syringes of the pump system (loaded with 7.5 mL of complete cell media) 

were connected to the channels. The Ibidi Pump System was used to apply two different controlled 

shear stresses (0.5 and τ20). The cells were incubated for different time intervals (up to three 

days) at 37 ℃ and 5% CO2. As controls, for both static and dynamic conditions, free TYR and 

cells without microreactors exposure were considered. Cells without microreactors exposure at 0 

was considered as the high control while medium only at 0 was considered as the low control. 

After the different incubation times, the cells from both the wells and the channels were washed 

2× in PBS (200 µL for wells and 100 µL for channels) and 1× in fresh DMEM (90 µL for both 

wells and channels) containing PrestoBlue® cell viability reagent (10 µL for both wells and 

channels). Next, fresh DMEM (90 µL for both wells and channels) containing PrestoBlue® cell 

viability reagent (10 µL for wells and channels) was added to the different wells/channels and 

incubated for 1 h at 37 ˚C in the dark. The fluorescence intensity of the reduced resazurin product 
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was assessed at excitation/emission wavelength of 535/615 nm using the multimodal plate reader. 

The normalized cell viability was calculated as follows: normalized cell viability (%) 

 (experimental value – low control value)/(high control value – low control value) × 100. 

2.20. Statistics. A Tukey´s multiple comparison posthoc test (n=3; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 

0.001; ****p ≤ 0.0001) was employed using a GraphPad Prism 7 software to assess the statistical 

differences between the different conditions. A one-way ANOVA with a confidence level of 95% 

(α = 0.05) was employed.

3. RESULTS AND DISCUSSION

3.1. Enzymatic Conversion Using Free TYR in Solution. As a first step, we aimed to illustrate 

that the activity of the enzymatic reaction could be monitored. TYR catalyzes the conversion of L-

tyr into melanin by a series of reactions (Figure S1, Supporting Information).42  To this end, we 

incubated different amounts of TYR in a L-tyr solution (0.66 mM in PBS) at 37 ˚C and quantified 

the amount of melanin formed at different time-points. The melanin precipitate was dissolved and 

the absorbance of the disintegrated product was measured at 475 nm (Figure S2a, Supporting 

Information).43,44 Our ultimate goal is to conduct the enzymatic conversion of L-tyr in the presence 

of melanoma cells. Therefore, we also monitored the kinetics of the TYR reaction in Dulbecco´s 

Modified Eagle´s Medium (DMEM) without the addition of phenol red. As expected, no 

differences in the kinetics of the enzymatic reaction were observed (Figure S2b, Supporting 

Information).

3.2. Assembly Optimization for TYR-Loaded Microreactors.  3.2.1. Liposomes Assembly and 

Characterization. The first step to assemble advanced microreactors involves enzyme 

encapsulation within liposomes. Liposomes are excellent candidates to entrap delicate 

biomolecules such as enzymes, preventing them from denaturation, by means of their lipid bilayer 
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membrane which resembles the membrane of biological cells.37,38 Since our multicompartment 

microreactors have as a goal depleting L-tyr inside the human body, we assembled TYR-loaded 

liposomes (LTYR) that operate close to physiological temperature (~37 ˚C). As such, LTYR were 

constituted by a lipid mixture displaying a liquid-to-gel phase transition temperature (Tm) close to 

37 ˚C. In particular, we employed 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, Tm ~24 

⁰C) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, Tm ~41 ⁰C) in a 7:3 weight ratio. 

At low temperatures such as room temperature (RT, ~23 ⁰C < Tm), LTYR offer an effective barrier 

for small molecules while, upon rising the temperature to or above the Tm, L-tyr can permeate 

through the lipid bilayer and interact with the entrapped TYR enzyme (Scheme 1a). Following on, 

to fabricate microreactors with high enzymatic activity, we evaluated the highest amount of TYR 

that could be encapsulated or associated with the liposomes. We assembled LTYR by hydrating the 

lipid film with different amounts of TYR. After removing the non-encapsulated/associated TYR 

by dialysis, the total amount of TYR was evaluated by rupturing the liposomes with Triton-X 

followed by a bicinchoninic acid (BCA) assay. Figure 1a shows a maximum experimental TYR 

concentration of ~750 µg mL-1 (or 2015 U) when LTYR are constituted by 2.5 mg mL-1 lipids. This 

loading was achieved when hydrating the lipid film with 1 mL of a 1116 µg mL-1 TYR solution in 

(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES) buffer. LTYR had a diameter of 

166.6  6.4 nm and a surface charge of -21.4  2.9 mV, respectively, as shown by dynamic light 

scattering (DLS) and zeta (ζ)-potential measurements (Figure 1b and c). Barely any change in the 

liposomes diameter was observed for LTYR vs empty L. In contrast, an increase in negative ζ-

potential is observed for LTYR upon increasing the TYR concentration (until reaching saturation 

conditions), which we attribute to the negatively charged nature of TYR at physiological pH 

(Figure 1c). 
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To discern between the amount of TYR encapsulated from the TYR associated with the liposomes 

membrane, we evaluated the enzymatic conversion at temperatures below (4 ˚C) and above (42 

˚C) the Tm of the liposomes. At 4 ˚C the liposomes membrane is in the “gel state” and, thus, L-tyr 

can only react with the TYR enzyme attached to the liposomes membrane. In contrast, at 42 ˚C 

the liposomes membrane is in the “liquid state” making possible for L-tyr to cross the lipid bilayer 

and interact with the entrapped TYR. The enzymatic kinetics, which have been normalized to the 

highest absorbance reading, were conducted until a reaction end point was reached for at least 

three days. The results suggest ~40% of TYR encapsulation (Figure 1d). It is worth noticing that 

no difference in TYR kinetics was observed when the enzymatic reaction was conducted for the 

free TYR at different temperatures (Figure S3, Supporting Information).  

3.2.2. Optimization of Microreactors Assembly. As an advanced microreactor able to deplete L-tyr 

in the intra-tumor environment, we chose a multicompartment carrier composed by intact 

liposomes entrapped within a protective polymeric shell. We,36,45 and others,46–48 have reported 

the assembly of such a multicompartment carrier based on the layer-by-layer (LbL) technique. The 

LbL technique entails the alternating deposition of interacting compounds (e.g., polymers and 

liposomes) onto a (sacrificial) core. Those microreactors have been mainly assembled by 

employing silica particles as a (sacrificial) core template and either biodegradable disulfide 

crosslinked poly(methacrylate)36,45 or polydopamine35,46–50 as the constituents of the carrier shell. 

In contrast, herein, with the aim to obtain microreactors that are able to conduct their function for 

an extended period of time, we employ a non-degradable polymer pair. To construct the carrier 

shell we make use of poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) 

which interact by electrostatics (Schematic 2).32 Additionally, since our goal is to fabricate an 

extracellularly active microreactor, to minimize or even eliminate the microreactors uptake by 
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melanoma cells, we assembled microreactors without removing the core template. With that in 

mind, we chose as a core micron-sized biocompatible poly(D,L-lactide-co-glycolide) (PLGA) 

microspheres fabricated by a double emulsion process.41 The as-prepared PLGA microspheres 

displayed a size ranging from 1 to 9 µm in diameter with the highest amount of microspheres 

exhibiting a diameter between 3 to 6 µm. As shown by scanning electron microscopy (SEM) 

images (Figure S4, Supporting Information) the microspheres display a uniform, smooth structure 

without the presence of large pores. Next, we assembled the microreactors by depositing alternate 

layers of PAH, PSS and LTYR. The combination of PSS and PAH was chosen to assemble the 

polymeric shell since this polymer pair is widely known to yield non-aggregated and structurally 

stable particles and capsules.51,52 Additionally, the non-degradable nature of this polymer pair will 

render microreactors with good structural integrity for prolonged time periods. 

To optimize the microreactors assembly, we first characterized the adsorption of LTYR onto PLGA 

microspheres. To render a positively charged surface that allows for LTYR immobilization, the 

PLGA microspheres were first coated by a PAH layer. We first established the amount of PAH 

needed to revert the charge of the PLGA microspheres. We monitored the ζ-potentials of the 

microspheres upon incubation with different PAH concentrations for different time intervals. As 

expected, the higher the PAH concentration, the higher the ζ-potentials until saturation was 

reached for a 40 mg mL-1 PAH solution (Figure 2a). An additional increase in PAH concentration 

did not translate into a notable increase in ζ-potential. Following on, after LTYR deposition, we 

optimized the LbL growth for a polymeric shell constituted by PAH and PSS. PSS and PAH were 

chosen due to prior history in yielding non-aggregated and structurally stable particles and 

capsules.51,52 We monitored the ζ-potential of the microspheres as a function of both the number 

of PAH and PSS layers and their concentrations (Figure 2b). Upon deposition of a PAH precursor 
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layer, the ζ-potential of the PLGA microspheres increased by ~85 mV. We attribute this sharp 

increase in ζ-potential to the porous nature of the PLGA microspheres. When LTYR were adsorbed, 

a ~60 mV decrease in ζ-potential was observed due to the overall negative charge of LTYR. Next, 

4 mg mL-1 concentrations of both PAH and PSS were employed to assemble the shell of the 

multicompartment carrier. The ζ-potential of the microspheres alternated between +5 mV and -60 

mV when PAH and PSS formed the outer layer, respectively (Figure 2bi). Such a switch in the 

sign of the ζ-potential are distinctive of the LbL formation of multilayers on colloids and suggest 

a step-wise layer growth of PAH and PSS.53  We next aimed to obtain ζ-potential measurements 

closer to the values that are usually obtained for PAH and PSS (~+30 mV and ~-20 mV for PAH 

and PSS as outermost layer, respectively).54 Thus, we assessed the ζ-potential of the coated-PLGA 

microspheres for different PAH and PSS concentrations. We first decreased the PSS concentration 

to 1 mg mL-1 while maintaining the PAH concentration constant (4 mg mL-1). This resulted in a ζ-

potential alternating between ~+2-3 mV and ~-40 mV for PAH and PSS as the outer layer, 

respectively (Figure 2bii). Next, to achieve a higher ζ-potential upon PAH deposition, we increased 

the PAH concentration to 8 mg mL-1. The results show ζ-potential measurements ranging from 

~+30 mV to ~-30 mV, which are values closer to the ones reported in literature,54 thus promoting 

a good surface coverage (Figure 2biii).

Next, to maximize the number of liposomal compartments and consequently the quantity of 

entrapped TYR, we identified the upper limit of liposome multi-layering onto PAH-coated PLGA 

microspheres. We monitored the adsorption of fluorescently labelled LTYR (LF
TYR) onto PAH-

coated PLGA microspheres by flow cytometry. Figure 3 shows fluorescence intensity (FI) 

readings for PAH and LF
TYR deposition onto PLGA microspheres. The readings are normalized to 

the first LF
TYR deposition step (nFI), which was set to 100% and assigned as a single liposome 
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layer. After the first LF
TYR deposition step, to allow for the adsorption of a second LF

TYR layer, the 

deposition of a separation polymer layer is required. To reverse the charge of the coated 

microspheres, positively charged PAH was adsorbed. This PAH separation layer between LF
TYR 

supported the addition of three extra LF
TYR deposition steps. While the second deposition step 

allowed for the adsorption of ~2.5 LF
TYR layers, the third and fourth liposome deposition steps 

supported the addition of almost 3 and ~1.2 LF
TYR layers, respectively. After four liposome 

deposition steps, any additional exposure of the colloids to LF
TYR promoted aggregation of the 

coated microspheres. The stability of LF
TYR during subsequent carrier shell assembly was also 

investigated for the four different scenarios (i.e., one, two, three and four LF
TYR deposition steps). 

The FI readings, which have been normalized to the first LF
TYR deposition step, show no notable 

loss in nFI during subsequent PAH/PSS layering for any of the tested conditions (Figure 4a i-iv). 

The microreactors assembled with different LF
TYR deposition steps were visualized using 

differential interference contrast (DIC) and fluorescence microscopy to corroborate and analyze 

their appearance and structural integrity (Figure 4b). Fluorescence microscopy images showed that 

the LF
TYR were homogeneously distributed around the PLGA microspheres as shown by the 

homogeneous fluorescence signal. They also confirmed the presence of additional LF
TYR layers for 

microreactors assembled by increasing number of liposome deposition steps, as shown by the 

increasing fluorescence intensity signal. The microscopy images also demonstrated that, while 

microreactors prepared by one, two or three LF
TYR deposition steps where intact and non-

agglomerated, the microspheres aggregated for microreactors with four LF
TYR-deposition steps 

(Figure S5, Supporting Information, shows enlarged microscopy images). Hence, only 

microspheres loaded with three LF
TYR deposition steps (MR3LTYR) where considered for the next 

experiments.
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Despite the encouraging results, the flow cytometry data together with the fluorescence 

microscopy images, only proved the presence of fluorescently labelled lipids linked to the 

microspheres. Only the combination with quartz crystal microbalance with dissipation monitoring 

(QCM-D) measurements will verify the presence of structurally intact LTYR (Figure 5). In good 

agreement with the data attained by flow cytometry on PLGA microspheres, the adsorption of 

PAH precursor polymer layer onto gold sensors was corroborated by assessing the change of 

frequency (Δf) of -6.55  0.25 Hz. This positively charged surface allowed for the adsorption of 

negatively charged LTYR as shown by the Δf of -111.71  22.01 Hz. The change in dissipation 

(D) of 30.90 × 106  9.32 × 106, suggests the deposition of intact liposomes rather than a 

supported lipid bilayer.55 Next, a PAH separation layer, as confirmed by a f of -18.38  6.50 Hz, 

was adsorbed to allow for the deposition of additional LTYR. The successful deposition of intact 

liposomes was also confirmed by the large f and D (of –71.86  1.00 Hz and 28.66 × 106  0.91 

× 106 for f and D, respectively). After addition of the second PAH separation layer (f of –

18.21  2.54 Hz) a third deposition step of intact LTYR was successfully adsorbed as shown by a 

f of –123.25  19.21 Hz and a D of 29.56 × 106  1.78 × 106, which again are in the envisioned 

range for the incorporation of intact liposomes. The adsorption of PAH and PSS to assemble the 

microreactors shell was corroborated without rupture or rearrangement of the underlying 

liposomes as shown by the film growth (PAH, f of –29.72  8.92 Hz and D of 6.84 × 106  2.30 

× 106; PSS, f of –25.46  3.24 Hz and D of 9.73 × 106  6.43 × 106).

3.3. Microreactors Functionality. 3.3.1. Kinetics of the Enzymatic Reaction. To evaluate the 

MR3LTYR’s potential as an intra-tumor microreactor for the depletion of L-tyr, we incubated 

MR3LTYR at 37 ℃ in a DMEM solution without the addition of extra L-tyr. The kinetics of the 

enzymatic conversion of L-tyr by MR3LTYR were normalized to the highest absorbance reading 
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(nAbsorbance). The kinetics of MR3LTYR at 37 ℃ were compared to the kinetics of MR3LTYR at 

RT, same amounts of TYR enzyme in its free form (as determined by a calibration curve), empty 

microreactors (MR3L) and DMEM only. Enzymatic conversion was only observed for MR3LTYR 

and free TYR, where the absorbance measurements steadily increased for the first hours levelling 

off after one day of reaction (Figure 6a). While, for both MR3LTYR at 37 ℃ and free TYR (at 37 ℃ 

and RT), the enzymatic processes took place at a similar rate, the results were different for 

MR3LTYR at RT. In agreement with the results of Figure 1d, which demonstrated that ~40% of 

TYR was encapsulated inside LTYR, the nAbsorbance readings for MR3LTYR at RT are ~40% lower 

than for MR3LTYR at 37 ℃. This result again demonstrates that at RT (temperature < Tm), L-tyr 

can only react with the TYR enzyme associated with the liposomes surface. All in all, these results 

confirm the preserved activity of the microreactors and that ~40% of the enzyme is entrapped 

within intact liposomes.

3.3.2. Repeated Enzymatic Conversion. We,35,36,45 and others,56 have previously demonstrated that 

microreactors based on a polymer carrier shell encapsulating liposomes are able to handle 

successive enzymatic reactions within their liposomal subunits. This is a crucial aspect, since it is 

expected that, once administered into the body, the microreactors will able to convert molecules 

in a continuous and sustained manner. Enzymes are not only challenging and costly to obtain in a 

highly-purified form suitable for human use but it is also advantageous for patients’ compliance 

to minimize the amount of doses to be administered. As such, to confirm that the TYR enzyme 

within MR3LTYR could be reused, we repeated the enzymatic conversion by exchanging the 

melanin product by fresh DMEM over multiple rounds. The results, which were normalized to the 

absorbance reading at 475 nm monitored after the initial reaction at 37 ℃, showed that the 

enzymatic conversion was reduced by 10%, 50% and 60% between each subsequent cycle, 

Page 22 of 53

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



23

respectively (Figure 6bi). Nonetheless, it was still possible to measure enzymatic activity even 

after four cycles of enzymatic reaction. This shows MR3LTYR to be a robust platform able to 

conduct several reaction cycles, even after being exposed to spinning and resuspension treatment 

for multiple rounds. Figure 6bii shows that, although slightly aggregated, MR3LTYR preserve their 

structural integrity after the four rounds of spinning/resuspension.

3.4. Microreactors Interaction with Melanoma Cells. Biocompatibility of microreactors 

consisting of a polymeric shell entrapping thousands of liposomes has been previously reported 

by several research groups including ours in several cell lines.35,36,45,48,57  Since, in order to deplete 

L-tyr from the intra-tumor environment, MR3LTYR will have to avoid cell internalization, we 

assessed the interaction of pristine MR3L in terms of cell viability (CV) and cell internalization 

by the mouse melanoma cell line B16-F10 and macrophage RAW 264.7 cell lines. The mouse 

macrophage RAW 264.7 cell line was chosen due to the relevance of macrophages as the first 

defense line of the human body against invading microorganisms. Macrophages will be also 

circulating in the blood vessels at the melanoma tumor site.

3.4.1. Microreactors Biocompatibility. We first evaluated the CV of both B16-F10 and RAW 

264.7 cells exposed to empty MR3L at two different microreactors-to-cell ratios (50:1 and 100:1) 

for up to five days. The CV readings, which were normalized to untreated cells (nCV), showed 

that no significant decrease in nCV for B16-F10 for neither 50:1 or 100:1 microreactors-to-cell 

ratios at all the studied time-points (Figure S6a, Supporting Information). In contrast, a significant 

decrease in nCV was observed when RAW 264.7 cells were exposed to a 100:1 microreactors-to-

cell ratio for all the studied time-points (Figure S6b, Supporting Information). Thus, to avoid any 

potential cytotoxicity, we decided to conduct the following experiments employing a 50:1 

microreactors-to-cell ratio. 
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3.4.2. Microreactors Association with Melanoma Cells. The assembly of microreactors with 

demonstrated activity in a test tube has impressively advanced and, in recent years, many examples 

of progressive functionality have been reported as recently reviewed.21–23,58 However, it has been 

only recently that the interaction of such microreactors with cells has started to be explored. A first 

approach was reported by Hammond and co-workers by co-culturing microbeads and insulin-

secreting pancreatic β-cells to enhance the cells function and survival.59 Further progress in the 

field has been conducted by Städler and co-workers by illustrating the ability of extracellular 

microreactors to remove reactive oxygen species in the presence of damaged hepatocytes46 or 

neuroblastoma cells.60 

We assessed the integration of MR3LTYR into melanoma cells by confocal laser scanning 

microscopy (CLSM) (Figure 7). In order to image the microreactors, fluorescently labelled PAH 

(PAHF) was used for the MR3LTYR assembly (MR3LTYR-PAHF). The MR3LTYR-PAHF were then 

incubated with B16-F10 melanoma cells for up to five days. After the different incubation times, 

the cells were fixed, their actin filaments stained and imaged by CLSM. As expected, due to their 

large size (~5-6 µm in diameter), the MR3LTYR-PAHF (green fluorescence signal) were not 

internalized by the melanoma cells (red fluorescence signal) (Figure 7b). Importantly, and as 

previously shown by the CV assays, healthy looking melanoma cells could be observed at all the 

studied time-points. We also assessed the integrity of the liposomal compartments at different 

time-points for the whole five-day period. To this end, the microreactors were fabricated 

employing LF
TYR yielding MR3LF

TYR. After the different incubation times, the cells were stained, 

fixed and visualized by CLSM. Upon incubating MR3LF
TYR for one to three days, homogeneously 

distributed green fluorescence signal along the microreactors shell could be observed (Figure 7c). 

Those results potentially indicate a relatively stable liposome membrane protecting the entrapped 
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enzyme. In contrast, after four and five days of incubation, the green fluorescence signal was 

distributed throughout the microreactors. This suggests either the leakage of the fluorescent lipid 

form LF
TYR or LF

TYR fusion or rearrangement.61 Since liposomes integrity is a central factor for the 

microreactors performance, MR3LF
TYR functionality in the presence of melanoma cells will be 

assessed for up to three days. 

3.5. Microreactors Activity to Inhibit Melanoma Cells Proliferation. To evaluate the potential 

of the as-prepared microreactors towards melanoma treatment, we next examined the ability of 

MR3LTYR in inhibiting B16-F10 melanoma cell growth in culture. We incubated B16-F10 

melanoma cells with MR3LTYR and free TYR and monitored the nCV after 1, 2 and 3 days, 

respectively (Figure 8). When incubating the cells with same units of TYR as encapsulated within 

the MR3LTYR but in its free form, only a ~20% decrease in nCV was observed for the three time-

points. However, the results were different for cells incubated with MR3LTYR. While only ~10% 

decrease in nCV was observed after 1 day; 2 and 3 days of incubation decreased the nCV by ~35 

and ~50%, respectively. The different results obtained for the free TYR and TYR within MR3LTYR 

could be explained by the fast degradation of the TYR enzyme by proteases of the cell medium. 

This highlights the importance of an encapsulation platform to protect the enzyme, which is an 

important fact for our envisioned application, since proteases are implicated in tumor progression, 

angiogenesis, invasion and metastasis.39,62 The decrease in nCV when employing microreactors 

suggest that MR3LTYR, by means of their semipermeable nature, are able to deplete L-tyr. Next, 

we also evaluated the effect of both free TYR and MR3LTYR on the nCV of RAW 264.7 (a model 

non-L-tyr-dependent cell line). Figure 8b shows a significant decrease in nCV upon incubating 

both the free TYR and MR3LTYR with RAW 264.7 cells for all three time-points. However, this 

decrease in nCV was lower (~20% decrease in nCV for the all the time-points) as compared to the 
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decrease in nCV for B16-F10 cells (~35% and ~50% decrease for two and three days incubation 

time, respectively). Although in recent years many examples of microreactors conducting 

enzymatic reactions in the presence of cells have been published by us35,36,45 and others,46,48,60,63,64 

this is the first report where the depletion/conversion of a substrate into a product by an enzymatic 

microreactor is translated into anti-tumor properties. 

3.6. Dynamic Intra-tumor Environment. Shear stress can influence important parameters such 

as the biocompatibility65 or cell interaction66 of a given carrier however, evaluating the effect of 

shear stress when characterizing a novel delivery system is often omitted. This fact could partly 

explain the deficient translation from in vitro static studies to in vivo models.67 Cancer cells also 

sense shear stress forces created by both the blood flow from the neighboring vascular 

microenvironment (with values ranging from 0.5 to 30.0 dyn cm-2) as well as the interstitial flow 

(with values as low as 0.1 dyn cm-2).68,69 However, studies about the impact of shear stress on the 

carriers interaction with cancer cells remain scarce.70 Herein, to better resemble the physiological 

environment that the microreactors will encounter in the tumor site, the ability of MR3LTYR to 

prevent melanoma cells progression through L-tyr depletion was studied under the effect of two 

physiologically relevant shear stresses (τ = 0.5 dyn cm-2 (τ0.5) and τ = 20.0 dyn cm-2 (τ20)). We 

compared the results to the previously reported static conditions (τ0). As such, we assessed the 

nCV of B16-F10 melanoma cells upon incubation with MR3LTYR and free TYR by means of a 

microfluidic setup (Figure 9a). Both τ0.5 and τ20 were applied over the micro-channels. Figure 

9b shows nCV readings upon incubation of MR3LTYR at τ0.5 for one, two and three days (Figure 

9 shows only the most relevant statistics, complete list of statistics can be found in Figure S7, 

Supporting Information). As controls, cells only, free TYR and empty MR3L were considered. As 

expected,66 neither τ0.5 nor τ20 did have a detrimental effect on nCV (Figure S8, Supporting 
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Information). While, at τ0.5, the free TYR did not produce a significant decrease in nCV, at τ20 a 

~10% decrease in nCV was observed for free TYR at all the studied time points (Figure 9b and c). 

The higher values of nCV for free TYR at both τ0.5 and τ20 as compared to τ0, can be expected 

by the fact that the volume of medium in the microfluidic system (6 mL) is higher than the 

medium added in each well during static conditions (200 µL). Importantly, this fact does not 

affect the MR3LTYR since they remain associated with the cells due to their large size. In contrast, 

free TYR has been highly diluted in the microfluidic set up, thus reducing its ability to deplete L-

tyr. Interestingly, no significant differences in the decrease in nCV can be observed when 

incubating MR3LTYR at τ0.5 and τ20 as compared to τ0. This results are of utmost interest since, 

as previously stated, the volume of medium in the microfluidic system is ~30 times higher than 

the medium added in each well during static conditions. Thus, although the L-tyr concentration is 

the same for dynamic and for static conditions, the total L-tyr amount is ~30 times higher for 

dynamic conditions. Therefore, those results highlight the enormous potential of MR3LTYR to 

deplete L-tyr even at very high amounts, which is translated in a significant reduction in nCV for 

melanoma cells.

Finally, to verify that the MR3LTYR microreactors were not internalized by cells and also, as an 

attempt to assess their integrity after the shear stress conditions, we assembled microreactors 

employing either PAHF to create MR3LTYR-PAHF or LF
TYR yielding MR3LF

TYR, respectively. After 

incubation of MR3LTYR-PAHF for three days at either τ0.5 or τ20, the cells were stained, fixed and 

visualized by CLSM. Figure 10 a and b depict healthy looking melanoma cells after the shear 

stress conditions and upon being in contact with MR3LTYR. When incubating MR3LF
TYR at either 

τ0.5 or τ20 for 3 days, the green fluorescence signal arising from LF
TYR was distributed throughout 
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the microreactor indicating a potential leakage of the fluorescent lipid of fusion and rearrangement 

among the different LF
TYR (Figure 10c). 

4. CONCLUSION

To sum up, we have shown that liposome-containing microreactors are able to conduct enzymatic 

conversions in the presence of cells and under the effect of shear stresses resembling the dynamic 

environment of the tumour site. The depletion of the amino acid L-tyrosine by the microreactors 

inhibits melanoma cell growth in vitro. The results, therefore, represent an important step in the 

microreactors field since we have moved on from model enzymes to a medically relevant condition, 

i.e., slowing down melanoma progression. Further developments will include the assembly of 

microreactors with stabilized liposomes that can perform for extended periods of time (i.e., more 

than three days) and also with higher enzyme encapsulation efficiencies. Such stabilization could 

be performed either by coating the liposomes with polymer layers or by replacing them by 

polymersomes. Additionally, this multicompartment carrier will allow for the combination of 

enzyme therapy together with the co-encapsulation of small anti-tumour compounds to be loaded 

either in the liposomes or in the PLGA core.

Although many challenges still remain to be addressed, and the field of microreactors in 

biomedicine is still in its infancy, these highly advanced microreactors with multiple compartments 

may propose an alternative for future biomedical technologies.  
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FIGURES

Scheme 1. Schematic illustration of the microreactors assembly. The assembly starts by a 

poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere (i) coated by a poly(allylamine 

hydrochloride) (PAH) polymer precursor layer (ii) that allows for the deposition of tyrosinase 

(TYR)-loaded liposomes (LTYR). To allow for the deposition of another LTYR layer, a PAH 

separation layer is needed (iii). After a maximum of three LTYR deposition steps, the polymer 

carrier shell is constructed by the alternating deposition of poly(styrenesulfonic acid) (PSS) and 

PAH (iv). The assembly is terminated by a PSS layer and microreactors loaded with the TYR 

enzyme are obtained. a) The substrate L-tyrosine (L-tyr) is able to permeate through the liposomes 

membrane, interact with the encapsulated TYR enzyme and be converted into melanin by means 

of several intermediate products. b) The potential of the as-prepared microreactors to inhibit 

melanoma cells progression is evaluated in a microfluidic set up under the influence of intra-tumor 

shear stress. 
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Figure 1. Enzyme encapsulation within liposomes. a) Liposomes encapsulating different amounts 

of tyrosinase (TYR) are destroyed by adding Triton X and the experimental concentration of TYR 

is assessed by a bicinchoninic acid (BCA) assay. The encapsulation efficiency (EE) of the 

liposomes encapsulating the highest TYR amount is calculated. b) The diameter and polydispersity 

(PDI) of liposomes encapsulating different amounts of TYR is determined by dynamic light 
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scattering measurements. c) Zeta ()-potential measurements of liposomes loaded with increasing 

amounts of TYR. d) Normalized absorbance (nAbsorbance) readings measuring the conversion of 

L-tyrosine (L-tyr) into melanin by TYR encapsulated within liposomes at two different 

temperatures.  
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Scheme 2. Schematic illustration of tyrosinase (TYR)-loaded microreactors including the 

chemical structures of the relevant compounds. Micron-sized poly(D,L-lactide-co-glycolide) 

(PLGA) microspheres are first coated with poly(allylamine hydrochloride) (PAH) to render a 

positively charged surface that allows for the deposition of TYR-loaded liposomes (LTYR). To 

allow for the deposition of a second and a third LTYR layers, a separation PAH layer is needed. 

Following on, the carrier shell is assembled by the subsequent adsorption of poly(styrene 

sulfonate) (PSS) and PAH polymer layers which interact by electrostatics.
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Figure 2. Characterization of the microreactors assembly. a) Zeta ()-potential measurements 

measured after incubating poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres with increasing 

amounts of poly(allylamine hydrochloride) (PAH) over time. b) -potential of the PLGA 

microspheres measured after the different polymer and tyrosinase-loaded liposomes (LTYR) coating 

steps. Different concentrations of PAH and poly(styrenesulfonic acid) (PSS) are employed.
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Figure 3. Build-up of tyrosinase (TYR)-loaded liposomes (LTYR) onto poly(D,L-lactic-co-glycolic 

acid) (PLGA) microspheres. Normalized fluorescence intensity (nFI) readings monitored after the 

addition of fluorescently labelled LTYR (LF
TYR) onto poly(allylamine hydrochloride) (PAH)-coated 

PLGA microspheres. In between each LF
TYR deposition step, a PAH separation layer is required. 

The results have been normalized to the first LF
TYR deposition step.
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Figure 4. Microreactors characterization. a) Normalized fluorescence intensity (nFI) readings due 

to the tyrosinase (TYR)-loaded fluorescently labelled liposomes (LF
TYR) measured after each 

deposition step for microreactors containing one (i), two (ii), three (iii) and four (iv) LF
TYR 

deposition steps. The FI has been normalized (nFI) to the FI reading after the first LF
TYR deposition 

step. b) Differential interference contrast (DIC) (left) and fluorescence (right) microscopy images 

of microreactors containing one (i), two (ii), three (iii) and four (iv) LF
TYR deposition steps.
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Figure 5. Microreactors characterization by quartz crystal microbalance with dissipation 

monitoring (QCM-D). Change in frequency (Δf) (a) and dissipation (ΔD) (b) of a QCM-D crystal 

after each deposition step.
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Figure 6. Microreactors functionality. The substrate L-tyrosine (L-tyr) is able to permeate through 

the polymer shell and the liposomes membrane to interact with the tyrosinase (TYR) enzyme and 

be converted, by means of several intermediate products, into melanin. a) Enzymatic reaction 

kinetics of microreactors entrapping three layers of TYR-loaded liposomes (LTYR) (MR3LTYR) at 

both 37 ℃ and at room temperature (RT), empty microreactors (MR3L) and free TYR incubated 

in a Dulbecco´s Modified Eagle´s Medium (DMEM) solution containing L-tyr. A solution of 

DMEM only is added as a control. The product is measured by monitoring the absorbance of 

melanin dissolution products at 475 nm. The absorbance readings are normalized to the highest 

absorbance reading (nAbsorbance). b) i) nAbsorbance readings of the enzymatic reaction of 

MR3LTYR for four subsequent rounds. As control, MR3L are considered. The absorbance readings 

have been normalized to the absorbance measurement after the first cycle. ii) Differential 

interference contrast (DIC) microscopy images of MR3LTYR after the four reaction cycles.
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Figure 7. Microreactors integration within melanoma cells. Confocal laser scanning microscopy 

(CLSM) images of melanoma B16-F10 cells only at different time intervals (a). b) CLSM images 

of B16-F10 cells co-cultured with microreactors at different time points. The microreactors are 

encapsulating three layers of tyrosinase (TYR)-loaded liposomes (LTYR) and have been assembled 

with fluorescently labelled poly(allylamine hydrochloride) (PAHF) to render MR3LTYR-PAHF. c) 

CLSM images of B16-F10 cells co-cultured with microreactors at different time intervals. The 
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microreactors have been assembled employing fluorescently labelled LTYR (LF
TYR) to render 

MR3LF
TYR. Phalloidin-TRITC (red signal) was used to stain the actin filaments of the cells. The 

green fluorescence signal arises either from PAHF or from LF
TYR. 
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Figure 8. Microreactors activity in vitro. a) In the presence of cells, the substrate L-tyrosine (L-

tyr) is able to permeate through the polymer shell and the liposomes membrane to interact with the 

tyrosinase (TYR) enzyme and be converted, by means of several intermediate products, into 

melanin. b) Normalized cell viability (nCV) readings of melanoma B16-F10 (left side) and RAW 

264.7 (right side) cells exposed to free TYR enzyme and microreactors for different time intervals. 

The microreactors have been assembled by encapsulating three layers of TYR-loaded liposomes 

(LTYR) to render MR3LTYR.
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Figure 9. Microreactors activity in a microfluidics set up. a) In the presence of cells and upon 

applying shear stress, the substrate L-tyrosine (L-tyr) is able to permeate both through the polymer 

shell and the liposomes membrane to interact with the tyrosinase (TYR) enzyme and be converted, 

by means of several intermediate products, into melanin. b) Normalized cell viability (nCV) 

readings of melanoma B16-F10 cells exposed to microreactors in static conditions (τ0) and 

exposed to both free TYR and microreactors at shear stress conditions (τ = 0.5 dyn cm-2, τ0.5) for 
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different time intervals. The microreactors are encapsulating three layers of TYR-loaded 

liposomes (LTYR) to render MR3LTYR. c)  nCV readings of melanoma B16-F10 cells exposed to 

MR3LTYR at τ0 and to free TYR and MR3LTYR at shear stress conditions (τ = 20 dyn cm-2, τ20) 

for different time intervals. 
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Figure 10. Microreactors integration in a microfluidics set up. Confocal laser scanning microscopy 

(CLSM) images of melanoma B16-F10 cells only (a) and co-cultured with: b) MR3LTYR-PAHF 

microreactors consisting of carriers encapsulating three layers of tyrosinase (TYR)-loaded 

liposomes (LTYR) and assembled with fluorescently labelled poly(allylamine hydrochloride) 

(PAHF) or c) MR3LF
TYR microreactors consisting of carriers encapsulating fluorescently labelled 

LTYR (LF
TYR) for different time intervals under the effect of two intra-tumour mimicking shear 

stresses (τ = 0.5 dyn cm-2 (τ0.5) and τ = 20 dyn cm-2 (τ20)). Phalloidin-TRITC (red signal) was 

used to stain the actin filaments of the cells while the green fluorescence signal results from either 

fluorescently-labelled PAHF or LF
TYR. 
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Supporting Information. Mechanism of enzymatic conversion of L-tyrosine into melanin by the 
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of L-tyrosine into melanin by the enzyme tyrosinase at different temperatures, determination of the 

encapsulation efficiency of the tyrosinase enzyme within the liposomes, characterization of 

poly(D,L-lactide-co-glycolide) microspheres, cell viability of empty microreactors at two different 

microreactors-to-cell ratios (50:1 and 100:1) for B16-F10 melanoma and RAW 264.7 cells, cell 

viability of B16-F10 melanoma cells exposed to free tyrosinase enzyme in static and shear stress 

conditions and cell viability of  B16-F10 melanoma cells exposed to empty microreactors under 

shear stress conditions. ζ-potential measurements of the whole assembly.
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