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The improved safety profile and antifungal efficacy of liposomal amphotericin B (LAmB) compared to conventional amphotericin B 
deoxycholate (DAmB) is due to several factors including, its chemical composition, rigorous manufacturing standards, and ability 
to target and transit through the fungal cell wall. Numerous preclinical studies have shown that LAmB administered intravenously 
distributes to tissues frequently infected by fungi at levels above the minimum inhibitory concentration (MIC) for many fungi. These 
concentrations can be maintained from one day to a few weeks, depending upon the tissue. Tissue accumulation is dose-dependent 
with drug clearance occurring most rapidly from the brain and slowest from the liver and spleen. LAmB localizes in lung epithelial 
lining fluid, within liver and splenic macrophages and in kidney distal tubules. LAmB has been used successfully in therapeutic and 
prophylactic animal models to treat many different fungal pathogens, significantly increasing survival and reducing tissue fungal 
burden.
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Amphotericin B (AmB) was introduced into clinical practice in 
1959, and for more than 6 decades has remained an important 
life-saving drug for a wide range of endemic and opportunis-
tic fungal diseases. Yet, the formidable nephrotoxicity of AmB, 
which became a larger clinical problem in the 1980s and 1990s 
with the global increase in the immunocompromised patient 
population and the rise in invasive fungal diseases, created a dire 
medical need for safer but equally effective treatment alterna-
tives. This medical need eventually fueled the development of 
a new class of azole antifungals, the triazoles, and echinocandin 
antifungal agents, which have now largely replaced conventional 
amphotericin B deoxycholate (DAmB) as the preferred frontline 
therapy for common invasive fungal infections (IFIs) [1, 2].

However, these treatment alternatives to AmB have their own 
limitations. Triazole antifungals are predisposed to potentially 
serious pharmacokinetic (PK) drug interactions and hepato-
toxicity. Voriconazole also carries the risk of visual hallucina-
tions, solar hypersensitivity, and, in some instances, cutaneous 

malignancies. Fluconazole has an excellent safety profile but 
a limited antifungal spectrum. Similarly, echinocandins are 
primarily useful for the treatment of invasive candidiasis and 
must be administered intravenously. Perhaps most ominous is 
the emergence of resistance to triazoles and echinocandins in 
Candida spp. [3–7] and Aspergillus spp. [8], raising concerns 
about the future viability of these antifungal classes.

In hindsight, it was fortunate that an alternative strategy 
was pursued by several investigators to reduce the toxicity of 
AmB [9, 10], by considering alternate formulations of AmB to 
improve its therapeutic index. These research efforts ultimately 
led to the development and clinical introduction of 3 lipid for-
mulations of AmB during the 1990s—liposomal amphotericin 
B (LAmB; AmBisome®), amphotericin B lipid complex (ABLC; 
Abelcet®), and amphotericin B colloidal dispersion (ABCD; 
Amphotec®). For the purpose of this article, the term “LAmB” 
refers exclusively to “AmBisome®.” All 3 formulations were 
approved based on their improved safety profile and demon-
strated efficacy for IFIs, specifically in the salvage setting in 
patients who failed or were intolerant to conventional DAmB 
[9, 11–15]. In randomized, controlled clinical trials, LAmB was 
proven to be an effective agent for empirical antifungal therapy 
in persistently febrile neutropenic patients [16], cryptococcal 
meningitis [17], invasive aspergillosis [18], invasive candidiasis 
[19], and visceral leishmaniasis [20] and emerged as the most 
widely studied and prescribed lipid formulation of AmB.
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Reformulation of AmB into a liposome carrier alters the PK 
and pharmacodynamic (PD) characteristics of AmB in ways that 
were probably not fully appreciated when LAmB was introduced 
more than 25 years ago [21]. This has led to persistent questions 
on how LAmB should be optimally dosed and whether its per-
sistent antifungal effects in tissues may allow for less frequent 
dosing. Similarly, the field of antifungal PK/PD evaluation has 
matured over the past 2 decades with the development of rel-
evant animal infection models and PK/PD modeling that have 
provided a clearer picture of how tissue PK characteristics of 
LAmB are important for understanding its antifungal efficacy 
and optimal dosing. In this article, we review the pharmacology 
and preclinical PK/PD of LAmB over the past 25 years and dis-
cuss how these preclinical data can improve dosing in the future.

HOW DOES THE LIPOSOME ALTER THE MECHANISM 
OF AMB ANTIFUNGAL ACTIVITY?

Several mechanisms have been proposed to explain the antifun-
gal activity of AmB. The most widely cited mechanism is that 
through interaction with ergosterol in the fungal cell membrane, 
AmB molecules self-assemble as 4–12 subunit oligomers to form 
small (approximately 1  nm) membrane-permeabilizing ion 
channels that allow leakage of K+, Mg++, and organic substrates 
[22–24]. This mechanism would account for the rapid, concentra-
tion-dependent fungicidal activity of AmB and the still relatively 
low rates of resistance over the past 6 decades. Sokol-Anderson 
and colleagues demonstrated that AmB also has auto-oxidative 
properties that result in the generation of superoxide, hydrogen 
peroxide, and hydroxyl radicals that oxidize lipid membranes and 
lipoprotein receptors, impairing cell membrane function [25].

More recent studies suggest that the interaction of AmB with 
ergosterol, irrespective of pore formation, may be sufficient to 
produce fungicidal activity [26, 27]. AmB can adsorb to and 
sequester cell membrane ergosterol, causing destabilization of 
the cell membrane, or can aggregate around ergosterol at the 
cell membrane surface to act as a sponge that extracts ergosterol 
from the cell membrane [28].

The mechanism of action of LAmB depends on the presence 
of AmB in the liposome bilayer, the chemical composition of 
the liposome, its binding affinity for fungal cell walls [29], and 
its ability to transit intact through the cell wall and bind with 
ergosterol in the fungal cell membrane [30]. The lipids of LAmB 
include hydrogenated soy phosphatidylcholine with a gel-to- 
liquid crystalline phase transition temperature above 37°C [31], 
thus ensuring the stability of the liposomes when injected intra-
venously with minimal release of AmB into the circulation [32]. 
Distearoyl phosphatidylglycerol, another important liposome 
component, is similar in length to that of the hydrophobic 
region of AmB, with a net negative charge that allows the for-
mation of an ion pair with the positively charged amino group 
of AmB [29]. The cholesterol in the liposome bilayer binds 
with AmB [33], enabling AmB to remain associated with the 

liposome rather than causing toxicity, which would follow if 
AmB were to be released from the liposome and instead bound 
to the cholesterol in mammalian cell membranes.

The chemical composition of LAmB, which is consistent as 
a result of its stringently regulated manufacturing conditions, 
results in AmB binding to the cell wall of yeasts and molds, both 
in vitro [34, 35] and in vivo [35–37], as demonstrated in studies 
that used fluorescent- and gold-labeled liposomes. Initially, it 
was hypothesized that following cell wall binding, AmB would 
be released from the liposome bilayer because of the 10-fold 
higher affinity of AmB for ergosterol in the fungal cell mem-
brane compared with cholesterol in the liposomes. This would 
lead to the breakdown of liposomes at the outer portion of the 
cell wall and transit of free AmB through the cell wall to inter-
act with ergosterol in the cell membrane. However, recent stud-
ies with Candida albicans and Cryptococcus neoformans, using 
cryofixation techniques with electron microscopy, have shown 
that the liposomes do not break down following binding to the 
fungal cell wall, but instead transit intact through the fungal cell 

Figure 1. Transmission electron microscopy images of Candida albicans SC5314 
incubated with 12  µg/mL liposomal amphotericin B showing intact liposomes in 
the outer (A, C, and D) and inner (A, B, C, and E) cell wall and at the cell membrane 
(F), indicated by arrows. The granular particles in the cytoplasm are ribosomes, not 
liposomes. The bars represent 100 nm. Reproduced with permission from Walker L 
et al. MBio 2018; 9:e02383–17 [30].
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wall (Figure 1), provided the fungus is not ergosterol deficient 
(Figure 2) [30]. These observations are important because they 
provide valuable insight into the viscoelastic properties of fun-
gal cell walls. Since the diameter of the liposomes is 60–80 nm 
and the porosity of the cell wall has been estimated to be only 
about 5.8 nm, these results suggest that there is rapid cell wall 
remodeling that allows liposomes to move intact through the 
cell wall to ergosterol in the cell membrane, where it then 
releases AmB.

Other lipid formulations of AmB have similar or different 
chemical compositions compared with LAmB, but these formu-
lations exhibit different PK/PD characteristics and toxicity pro-
files [38, 39]. Consequently, the data presented with respect to 
LAmB cannot be extrapolated to other lipid formulations; this 
is true even if the formulation has the same lipid components 
as LAmB. The reason why the data cannot be extrapolated is 
the importance of controlling how the liposomes are assembled 

during manufacturing, since this is critical for ensuring the 
reduced toxicity and efficacy of the formulation. For example, 
when LAmB was compared with Anfogen (Genpharma, S.A., 
Argentina; a lipid formulation that has a chemical composition 
that is similar to that of LAmB but manufactured under different 
conditions), physical and biological testing demonstrated that 
LAmB batches had more consistent sizes than those of Anfogen. 
In addition, based on in vivo 50% lethal dose testing, Anfogen 
was at least 5-fold more toxic than LAmB and approximately 
10-fold more toxic based on a red blood cell K+ release toxicity 
assay [38]. In a murine pulmonary aspergillosis model, LAmB 
treatment resulted in markedly better reduction of lung fungal 
burden compared with Anfogen, when administered at doses of 
7.5 mg/kg and 15 mg/kg. Anfogen was also significantly more 
nephrotoxic than LAmB, with elevated levels of blood urea nitro-
gen and serum creatinine (Table 1) and extensive renal tubular 
necrosis seen on histological examination of tissue samples.

Figure 2. Liposomes with no incorporated amphotericin B (A–C) and an erg3-1 mutant (D) and erg11 mutant (E) of Candida albicans with liposomal amphotericin B both 
showing a deficiency in entering the inner cell wall layer. The bars represent 100 nm. Reproduced with permission from Walker L et al. MBio 2018; 9:e02383–17 [30].
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HOW DOES INCORPORATION OF AMB IN THE 
LIPOSOME ALTER ITS TOXICITY?

Infusion-related Toxicities

Clinical use of AmB is often associated with severe infusion-re-
lated toxicities that can result in termination of treatment. These 
toxicities include fever, rigors, headache, arthralgia, nausea, vom-
iting, and hypotension and may be experienced by more than two-
thirds of patients during the 2–6 hours of DAmB infusion [16, 
40]. Because of the high frequency of infusion-related reactions, a 
standard practice in many institutions is to provide premedication 
drugs (ibuprofen, acetaminophen, antihistamines, hydrocorti-
sone, or meperidine), as needed to ameliorate reactions. Although 
it is common protocol in hospitals to use acetaminophen and 
diphenhydramine, the rationale for the latter medication is not 
based on the known tumor necrosis factor-alpha (TNF-α) release 
that is associated with DAmB administration. While there are 
studies that clearly demonstrate the benefits of hydrocortisone 
(intravenous [IV] administration 1  mg/kg up to 50  mg IV) in 
preventing the infusion-related toxicity of DAmB, continued use 
of this strategy may result in adrenal insufficiency and chronic 
immunosuppression. A  pooled analysis of premedication strat-
egies has not identified a clinical benefit for routine antipyretic, 
anti-inflammatory, or antihistamine premedication [41].

Studies have been conducted to help elucidate the mecha-
nism that underlies the infusion-related toxicities. AmB acti-
vates Toll-like receptor 2 (TLR2) microbial pattern recognition 
receptors through CD14-associated lipid rafts in mononuclear 
cells, which results in release of proinflammatory cytokines 
including TNF-α, interleukin (IL)-1β, IL-6, IL-8, and prosta-
glandin E2 [42, 43]. The onset of symptoms after infusion cor-
relates with a rise in serum TNF-α, IL-1RA, and IL-6 [44]. It 
is unclear whether the infusion time of DAmB affects the fre-
quency or severity of reactions, with some studies reporting 
higher rates of reactions with shorter infusions of 45 minutes 
vs 2-hours [45], while other studies have found no difference 
between 1- and 4-hour infusions [46, 47].

Encapsulation of AmB inside a liposome markedly reduces 
acute infusion-related toxicities [16, 48–50], confirmed by 

significantly lower rates of TNF-α, IL-1RA, and IL-6 libera-
tion into the serum of patients who were administered LAmB 
vs DAmB or other lipid formulations [44]. Reduced immune 
activation has been linked to a reduction in TLR2 activation 
and proinflammatory cytokine elaboration by mononuclear 
cells by LAmB [51]. Notably, a reduced proinflammatory cyto-
kine response may also reduce the risk of developing renal 
impairment during LAmB treatment [52]. This mechanism 
of increased nephrotoxicity may be related to DAmB-induced 
release of locally produced TNF-α in the renal parenchyma that 
would lead to increased afferent arteriolar vasoconstriction, 
decreased renal blood flow, and increased serum creatinine [53].

Similar to other particulate drug delivery systems, LAmB 
can be associated with a unique type 1 hypersensitivity reac-
tion termed “complement activation-related pseudoallergy” 
(CARPA) [54]. This reaction results from activation of comple-
ment through both classic and alternative pathways, giving rise 
to C3a and C5a anaphylatoxins that trigger mast cell and basophil 
secretory responses. LAmB-triggered CARPA typically presents 
with a triad of symptoms known as severe acute infusion-related 
reactions (IRRs) including: (1) chest pain, dyspnea, hypoxia; 
(2) abdominal, flank, or leg pain; and (3) flushing and urticaria 
[49, 55]. Unlike classic AmB IRRs that develop over 2–6 hours, 
CARPA develops within the first 5 minutes of the first infusion 
and spontaneously resolves when the drug is stopped. In addition 
to discontinuing infusion, patients also appear to respond to IV 
administration of diphenhydramine, consistent with the mecha-
nism of this reaction. The reaction may be milder or absent with 
repeated exposure; however, in some patients, the reaction may be 
sufficiently severe that further treatment should be avoided. The 
IRRs to ABLC are typically TNF-α driven and not the CARPA 
pattern. Consistent with this observation, current evidence sug-
gests that patients who develop a CARPA  reaction during LAmB 
treatment can be safely switched to ABLC [56].

Nephrotoxicity

Nephrotoxicity during DAmB therapy occurs through 2 mech-
anisms [57]. The first involves direct constriction of the renal 

Table 1. Blood Urea Nitrogen and Blood Creatinine Levels for Groups of Mice Infected With Aspergillus fumigatus and Treated 3 Times With the Indicated 
Doses of Liposomal Amphotericin B, Anfogen, and Control

Measurement Treatment Group

Concentration (mg/dL) in Samples From Mice Receiving 3 Doses of:

Control (D5W) 3 mg/kg 5 mg/kg 7.5 mg/kg 15 mg/kg

Blood urea nitrogen Control (D5W) 12.80 ± 1.50 … … … …

Anfogen … 14.00 ± 1.30 22.20 ± 6.73 78.20a ± 8.09 …

LAmB … 12.60 ± 0.81 13.60 ± 1.03 12.00 ± 0.45 17.20 ± 0.92

Creatinine Control (D5W) 0.34 ± 0.02 … … … …

Anfogen … 0.36 ± 0.02 0.42 ± 0.02 0.64a ± 0.05 …

LAmB … 0.34 ± 0.02 0.38 ± 0.02 0.36 ± 0.02 0.38 ± 0.02

Reproduced with Permission from Olson JA et al. Antimicrob Agents Chemother 2008; 52:259–68 [38]. Data are presented as means ± standard errors.

Abbreviations: D5W, dextrose 5% in water; LAmB, liposomal amphotericin B.
aP = .008 vs D5W; Mann–Whitney test.
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arterioles, resulting in reduced renal perfusion and a drop in 
glomerular filtration rate (GFR) [58]. Patients with pre-existing 
decreased intravascular volume, hyponatremia, hypokalemia, 
and congestive heart failure are more likely to experience marked 
declines in GFR during AmB infusions. Tubuloglomerular 
feedback (TGF), a normal physiological response that causes 
afferent arteriolar vasoconstriction as a result of increased sol-
ute concentrations (especially a decreased Na+/K+ ratio) in the 
distal tubule, is also activated during AmB therapy, contributing 
to reduced GFR [59]. The signaling mediators of TGF at the 
afferent arteriole are thought to include calcium channels, TNF-
α, and cyclic AMP. The practice of administering 500–1000 mL 
of normal saline in adults or 3 mEq/kg in children, referred to as 
“sodium loading,” immediately before and after AmB adminis-
tration can reduce renal arteriolar vasoconstriction by increas-
ing the solute concentration, especially the Na+/K+ ratio, and 
blunt TGF to maintain the GFR and restore electrolyte homeo-
stasis [60]. In cases of myocardial dysfunction, the saline load 
can be infused over the course of 24 hours.

AmB can also cause direct damage to the distal tubular mem-
branes of the kidney, presumably through its binding to choles-
terol and formation of pores [61]. Pore formation reduces the 
ability of the tubular membrane to resorb electrolytes, resulting 
in loss of potassium and bicarbonate. As a result, hypokalemia 
and hypomagnesemia are frequently observed during DAmB 
treatment even before a decrease in GFR and an increase in 
serum creatinine are evident. The tubular toxicity of DAmB is 
most commonly evident as hypokalemia, and occurs in most 
patients who receive DAmB [61]. In approximately 5% of 
patients treated with DAmB for cryptococcal meningitis (at 
doses of 0.7–1.0 mg/kg/day), potassium supplementation, often 
as high as 80–120 mEq/day, is frequently required to reduce the 
risk of severe hypokalemia (<2.5  mmol/L) [62]. Distal tubu-
lar dysfunction also results in impaired resorption of magne-
sium [63], which complicates the ability to maintain potassium 
homeostasis. Magnesium deficiency allows excessive secretion 
of potassium through maxi-K channels in the distal tubules and 
collecting duct cells, thereby exacerbating hypokalemia until 
magnesium stores are replenished [64].

Compared with conventional DAmB, LAmB treatment has 
been associated with significantly lower rates of nephrotoxic-
ity in preclinical animal models [65–67]. The reasons for the 
reduced nephrotoxicity of the liposomal formulation may 
include the preferential distribution of liposomes in organs 
rich in reticuloendothelial cells [53] and because AmB remains 
locked inside liposomes that do not undergo glomerular filtra-
tion due to the size of the particles [44]. However, free or read-
ily diffusible AmB released from liposomes can still cause distal 
tubular damage, resulting in hypokalemia and decreased GFR, 
especially when LAmB is administered at higher than approved 
doses (>5 mg/kg/day) for prolonged periods (ie, >2 weeks) [18, 
68, 69].

In several animal models, LAmB was less nephrotoxic than 
DAmB, although there was a slight rise in serum transaminases 
with prolonged administration [10, 65–67, 70–72]. Multiple-
dose exposure studies in uninfected rats and beagle dogs in 
doses up to 20 mg/kg/day and 16 mg/kg/day, respectively, for 30 
consecutive days revealed that LAmB had the same toxic effects 
as DAmB. Toxicity was linearly related to dosage, but appeared 
at much higher plasma exposures compared with those of 
DAmB [67, 71, 72].

In long-term exposure studies in rats given up to 12 mg/kg/day 
LAmB for 91 days, with a 30-day recovery period, chemical and 
histopathologic changes demonstrated that the kidneys and liver 
were the target organs for chronic toxicity. Nephrotoxicity was 
moderate (urea nitrogen ≤51  mg/dL; creatinine unchanged), 
and most toxic changes occurred early, stabilized by the end of 
dosing, and reversed during recovery with no delayed toxici-
ties [66]. Much higher concentrations of LAmB were required 
to produce the deleterious effects on neutrophil function seen 
with DAmB [73]. Moreover, there is no experimental evidence 
to support impaired bacterial blood clearance by the mononu-
clear phagocytic cells after prolonged treatment with LAmB at 
clinically relevant doses [74].

HOW DOES THE LIPOSOME FORMULATION 
MODULATE THE IMMUNOLOGICAL ACTIVITY 
OF AMB?

It is reasonable to assume that some degree of AmB efficacy in 
vivo may be attributed to the ability of AmB to elicit a proin-
flammatory state in mononuclear and polymorphonuclear 
(PMN) leukocytes via CD14 and TLR2 signaling [42]. In neu-
trophils and macrophages, AmB enhances phagocytosis and the 
oxidative mechanisms of killing Aspergillus conidia [51].

Lipid formulations of AmB also display immunomodulatory 
activities for neutrophils, mononuclear cells, and pulmonary 
alveolar macrophages when incubated in vitro with medi-
cally important fungi. DAmB and ABLC additively augment 
the fungicidal activity of pulmonary alveolar macrophages 
against the conidia of Aspergillus fumigatus. DAmB, ABLC, 
and LAmB display similarly additive effects with polymorpho-
nuclear leukocytes in damaging the hyphae of A.  fumigatus 
[75]. When DAmB, ABLC, LAmB, and ABCD were studied in 
parallel against A. fumigatus and Fusarium solani with human 
neutrophils or mononuclear cells, the higher concentrations 
of the AmB lipid formulations elicited greater phagocyte-in-
duced hyphal damage of both fungi than the lower concentra-
tions [76]. At the same time, superoxide production was not 
affected by the lipid formulations, suggesting that enhanced 
nonoxidative mechanisms may contribute to the augmented 
hyphal damage.

Enhanced PMN leukocyte oxidative reactions may result in 
greater damage to host tissues in the absence of complementary 
nonoxidative mechanisms because products of oxidative stress 
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impede phagocytic-dependent clearance of inflammatory prod-
ucts [77] and because excess production of reactive oxygen inter-
mediates can adversely affect the ability of the host to oppose 
inflammatory pathology [78]. Consequently, the proinflamma-
tory properties of AmB may be detrimental in fungal diseases 
with a component of inflammatory pathology. Balloy and col-
leagues demonstrated that although AmB reduced mortality in 
a chemotherapy (neutropenic) mouse model of invasive pulmo-
nary aspergillosis, the antifungal drug had no discernable effect 
on mortality vs vehicle alone (control) in corticosteroid-im-
munosuppressed mice where disease pathology was driven by 
inflammation [79]. Using a model of Aspergillus pneumonia 
in T cell–depleted allogeneic transplanted, non-neutropenic 
mice, Bellocchio and colleagues observed 100% mortality and 
only a modest reduction in lung fungal burden following treat-
ment with DAmB [51]. By contrast, treatment with LAmB at 
higher doses resulted in 100% mouse survival, with a significant 
accompanying reduction in lung fungal burden. The difference 
in antifungal activity and animal survival was attributed to the 
specific effects of the liposome, which attenuated the proinflam-
matory effects of AmB by diverting TLR2 signaling in neutro-
phils to TLR4 and by enhancing the nonoxidative mechanisms 
of neutrophil antifungal killing [51].

The immunomodulatory effects of liposomes in neutrophils 
were subsequently confirmed using LAmB as well as the empty 
(non-drug–containing) liposome [80]. In a corticosteroid-im-
munosuppressed mouse model, pretreatment with empty lipo-
somes improved lung fungal clearance and animal survival 
following intranasal inoculation with A. fumigatus. The protec-
tive effect of the empty liposomes approached that of the 10 mg/
kg/day LAmB dose and was significantly greater than the 1 mg/
kg/day dose of DAmB. When neutrophils were collected and 
tested ex vivo for their ability to kill A. fumigatus hyphae, cells 
from animals treated with LAmB or empty liposomes exhibited 
a significantly greater ability to damage fungal hyphae com-
pared with animals administered saline or DAmB [81].

These observations, in conjunction with results from other 
studies that have demonstrated that LAmB exerts additive 
activity with host immune cells against a variety of medically 
important fungi [75, 76, 81] and has potent anti-inflammatory 
and immunomodulatory activity [82–85], suggest that lipo-
somes are not an inert carrier of AmB. Liposomes change how 
AmB interacts with the host immune system and, in preclinical 
models, engender more favorable antifungal effector mecha-
nisms in the setting of excessive PMN-mediated damage to the 
lung.

HOW DOES THE LIPOSOME FORMULATION ALTER 
THE IN VITRO PHARMACODYNAMICS OF AMB?

In Vitro Susceptibility Testing

In vitro broth microdilution reference methods have been 
standardized for susceptibility testing of AmB against yeast 

and molds by the Clinical Laboratory Standards Institute 
(CLSI) [86, 87] and the European Committee on Antimicrobial 
Susceptibility Testing (EUCAST) [88, 89]. In general, AmB 
minimum inhibitory concentrations (MICs) determined using 
reference methods produce comparable results, although essen-
tial agreement is lower for Mucorales [90]. The CLSI has also 
developed standardized protocols for susceptibility testing of 
yeast by disk diffusion [87]. There are also several commercially 
available testing methods (eg, Sensititre YeastOne, VITEK 2, 
and Etest) that produce MICs in good agreement with reference 
methods.

Susceptibility testing with reference or commercial methods 
is always performed with analytical-grade AmB typically dis-
solved in dimethyl sulfoxide and not the commercial LAmB 
formulation. Direct testing of LAmB often results in MICs that 
are higher than those observed when MIC trays are prepared 
with analytical-grade powder [91–95].

Interpretation of AmB MIC data remains problematic because 
it is still unclear if current testing methods can reliably distin-
guish between susceptible and resistant isolates. Broth microdi-
lution testing methods, in particular, often generate MICs that 
fall within a narrow range of dilutions (0.25–1.0 mg/L) that may 
be within the accepted error range of MICs tested for quality 
control strains [96]. Moreover, AmB-resistant strains are often 
not included in routine susceptibility testing for quality con-
trol. Finally, evidence concerning the correlation between AmB 
MICs and clinical outcome is inconsistent. A number of stud-
ies have found no correlation between AmB susceptibility and 
the clinical outcome of IFIs [97–102], while some studies have 
noted some correlation [103, 104].

The strongest evidence of in vitro, in vivo, and clinical cor-
relation between AmB MICs and increased risk of treatment 
failure is with the intrinsically-resistant Aspergillus terreus spe-
cies [105–107]. However, due to problems encountered with the 
broth media, resulting in narrowing of the MIC range, there are 
no validated CLSI interpretive breakpoints. Currently, the CLSI 
has not endorsed AmB susceptibility breakpoints, whereas 
EUCAST has proposed breakpoints of MIC ≤1  mg/L suscep-
tible, >1 mg/L resistant for Candida spp. and a MIC ≤1 mg/L 
susceptible, >1 mg/L resistant for A. fumigatus and Aspergillus 
niger. Other molds known to have high in vitro AmB MICs that 
correlate with in vivo and clinical resistance include Fusarium 
spp., Pseudallescheria spp., and Lomentospora prolificans 
[108–110].

The in vitro, in vivo, and clinical resistance to AmB therapy 
has correlated more strongly with the minimum lethal concen-
tration (MLC) or minimum fungicidal concentration (MFC) 
for several organisms, including Candida parapsilosis [111], 
Candida glabrata [112], and Trichosporon beigelii. The strongest 
predictors for microbiologic failure for candidemia in the study 
by Nguyen et  al were 48-hour MLC (P  <  .001) and 24-hour 
MLC (P  =  .03) [112]. Trichosporon beigelii, which is resistant 
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to the fungicidal effect of AmB in vitro and in vivo, emerged 
as a frequent cause of breakthrough fungemia in persistently 
neutropenic patients prior to the common use of fluconazole 
for antifungal prophylaxis [113]. Despite the low AmB MICs 
of <0.5 mg/mL, T. beigelii infections in persistently neutrope-
nic rabbits were resistant to AmB and a multilamellar liposomal 
formulation of AmB [114], while triazoles were highly active in 
brain tissue and are now the preferred treatment for infections 
caused by this AmB-resistant pathogen.

Antifungal Activity in Biofilms

Fungal biofilms are resistant to varying degrees to both AmB 
and triazole antifungals. Extracellular (1→3)-β-D-glucans that 
make up a large part of the biofilm matrix directly bind and 
sequester AmB [115]. AmB MICs are 4- to 8-fold higher when 
the drug is tested in vitro against Candida spp. or Aspergillus 
spp. grown in biofilm vs planktonic conditions [116–118]. 
However, LAmB and ABLC largely retain antifungal activity 
against biofilm-embedded organisms, suggesting that the lip-
ids may shield AmB from sequestration by the glucans of the 
biofilm matrix, and thus have better in vitro activity than AmB 
against biofilm-embedded fungi. In an in vitro model that sim-
ulated in vivo catheter lock therapy [119], 4 hours of LAmB 
exposure at a concentration of only 0.2  mg/mL reduced the 
metabolic activity of C. albicans, C. glabrata, and C. parapsilo-
sis by at least 75% in 12-hour-old biofilms. In comparison, the 
same yeasts in 5-day-old biofilms were similarly susceptible to 
LAmB but only at 1.0 mg/mL.

In an in vivo study in rabbits with indwelling catheters con-
taining 3-day-old C. albicans biofilms, LAmB at 10 mg/mL was 
locked in the catheter for 8 hours each day for 7 days [120]. At 
the end of the study, the liposome-treated catheters were free of 
biofilms and all catheter cultures were negative, while control 
catheters had many biofilm patches and all catheter segments 
yielded positive cultures for yeast.

Given the frequency of Candida infections in patients with 
urinary catheters, topical application of LAmB has also been 
examined in a preclinical model of ascending C. albicans uri-
nary tract infection [121]. Administration of 200  μg LAmB 
transurethrally (drug lavage) every day for 5  days starting 24 
hours post-yeast challenge reduced the yeast to undetectable 
levels in the bladder compared with the untreated mice that had 
about 1000 colony-forming units per gram in the bladder.

HOW DOES THE LIPOSOME FORMULATION ALTER 
THE IN VIVO PK/PD OF AMB?

Pharmacokinetics

AmB PK vary depending on the animal species. In general, after 
IV administration, AmB is primarily bound to lipoproteins, 
albumin, and erythrocytes [122]. Because of its limited solubil-
ity, free drug concentrations of AmB are limited to less than 
1 mg/L [122]. Peak serum concentrations of AmB are achieved 

during the first hour, then rapidly fall to a plateau phase with 
levels of 0.2–0.5  mg/L in serum for approximately 24 hours, 
followed by a more prolonged terminal elimination phase that 
lasts several days [67]. This terminal elimination phase most 
likely represents the slow release of AmB from tissues.

In animal models, the highest concentrations of AmB 
are found in the liver, spleen, lung, and kidneys [123]. 
Concentrations of AmB in uninflamed meninges are 30- to 
50-fold lower than concurrent serum levels [123], with minimal 
concentrations in the cerebrospinal fluid (0.002–0.010  mg/L) 
[124]. However, higher concentrations are detected in the brain 
parenchyma with persistent antifungal effects [125, 126]. The 
concentrations of AmB in brain tissue after administration of 
LAmB exceed those after administration of DAmB in experi-
mental Candida meningoencephalitis [126]. With DAmB, con-
centrations in peritoneal, pleural, and joint fluids are less than 
50% of concurrent serum levels [123]. Lung tissue concentra-
tions are approximately 8-fold higher for DAmB and 4-fold 
lower for LAmB than concomitant serum concentrations, with 
5-fold higher penetration of LAmB into the epithelial lining 
fluid (ELF) compared with DAmB and similar levels in the pul-
monary alveolar macrophages [127]. AmB given intravenously 
does not penetrate the uninflamed eye but may be detected in 
the aqueous and vitreous humor when inflammation is present, 
with significantly higher levels of LAmB vs DAmB in both com-
partments [128].

The stability of LAmB after IV injection and the small size 
of the particles, along with targeting of LAmB to fungal cell 
walls, combine to facilitate penetration of the liposomes into 
many different tissues as mentioned above. This penetration has 
been reported in both uninfected and infected animal models 
and results in localization of the liposomes at sites of fungal 
infection in the lungs, liver, spleen, kidneys, and brain [129] 
(Table 2). Since the liposomes are less than 100 nm in size, they 
will initially bypass uptake by the macrophages in the reticulo-
endothelial system (RES) tissues. Over the next 24 hours, the 
circulating liposomes will be slowly taken up by the macro-
phages and can be found in highest concentrations in the liver 
and spleen. The delay in their removal by the RES leads to their 
distribution into the non-RES tissues of the lungs and kidneys, 
where they localize in the ELF and alveolar macrophages of the 
lungs [127], the distal tubules of the kidneys, and macrophages 
of the liver and spleen [139], with some minimal distribution 
into the brain. There is a nonlinear increase in drug concentra-
tion as the dose of LAmB is increased, and this is particularly 
important when the drug is given on a daily basis for a few days 
to several weeks to treat fungal infections. Overall, the relative 
concentration of LAmB in animal tissues, from highest to low-
est, is liver = spleen >> kidneys > lungs > brain, and the levels 
achieved in the tissues are above the MIC for most fungi (Table 
2). Based on preclinical studies, clearance of LAmB from these 
different organs varies from about 1 day for the brain, a few days 
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Table 2. Tissue Concentrations of Amphotericin B Following Single or Multiple Doses of Intravenous Liposomal Amphotericin B in Infected Animals 

Animal 
Species Infection Model

Time of Analysis 
Post-treatment 

(Hours)

Liposomal  
Amphotericin  
Dose, mg/kg  
(# Doses = ×) Tissue

Amphotericin B Tissue Concentration  
(µg/g Tissue) Reference

Single-dose treatment

Mouse Systemic 
 candidiasis

4, 12, 24, 48 4 hours 12 hours 24 hours 48 hours van Etten et al 
(1995) [130]7 (1 ×) Liver 64.6 85.2 97.8 82.3

 Spleen 122 118 140 134

Kidney 2.7 3.0 4.0 4

Lung BLQ 1.4 7.1 6.2

Mouse Pulmonary 
 aspergillosis

4, 48   4 hours

0.96

17.6

48 hours

0.23

12.7

Takemoto et al 
(2006) [37]1 (1 ×) Lung

10 (1 ×)  

Mouse Pulmonary 
 aspergillosis

24   24 hours Lewis et al 
(2007) [131]5 (1 ×) Lung 3.3

10 (1 ×)  15.6

Mouse Visceral 
 leishmaniasis

168   168 hours

0.26

6.79

Gershovich et al 
(2010) [132] 
Wasan et al 
(2009) [133]

2 (1 ×) Liver

 Spleen

Multiple-dose treatment

Mouse Systemic 
 candidiasis

24, 336   24 hours

356

700

14.5

5.9

336 hours

170

243

7.8

BLQ

van Etten et al 
(1995) [130]7 (5 ×) Liver

 Spleen

Kidney

Lung

Mouse Pulmonary 
 aspergillosis

72   72 hours Lewis et al 
(2007) [131]5 (3 ×) Lung 8.2

10 (3 ×)  13.0

Mouse Pulmonary 
 aspergillosis

24   24 hours

96.6

268

14.5

14.7

Olson et al 
(2006) [134]15 (3 ×) Liver

 Spleen

Kidney

Lung

Mouse Pulmonary 
mucormycosis

24, 72, 120                 24 hours          72 hours            120 hours

                   1.4                     1.0                        3.7

                   5.5                      9.6                        7.0

Lewis et al 
(2010) [135]5 (5 ×) Lung

10 (5 ×)  

Mouse Disseminated 
mucormycosis

24   24 hours

5.8

10.4

BLQ

BLQ

Ibrahim et al 
(2008) [136]7.5 (2 ×) Kidney

15 (2 ×)  

7.5 (2 ×) Brain

15 (2 ×)  

Mouse Visceral 
 leishmaniasis

72, 1032, 2472             72 hours         1032 hours          2472 hours Gangneux et al 
(1996) [137]0.8 (6 ×) Liver                   33.9                   3.0                      ND

5 (6 ×)               210                  55.9                       2.9

50 (6 ×)              2575                  808                     215

0.8 (6 ×) Spleen              23.8                   5.5                     0.53

5 (6 ×)                98.8                 28.7                     4.3

50 (6 ×)                 929                  124                     101

0.8 (6 ×) Lung               ND                   ND                       ND

5 (6 ×)              
                                                                   1.6                    ND                       ND

50 (6 ×)               35.9                  5.0                      1.6

Rat Systemic 
 aspergillosis

24   24 hours Wasan et al
(2007) [138]5 (4 ×) Liver 110

 Spleen 17.5

Kidney 1.1

Lung 2.6

Heart 0.6

Brain 0.7

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/article-abstract/68/Supplem

ent_4/S244/5482451 by Erasm
us U

niversity R
otterdam

 user on 17 July 2019



S252 • cid 2019:68 (Suppl 4) • Adler-Moore et al

for the lungs, to several weeks for the kidneys, spleen, and liver 
[129].

To characterize single-dose plasma PK with tissue disposi-
tion of LAmB, investigators used healthy rabbits and admin-
istered LAmB IV at 0.5, 1.0, 2.5, 5, or 10 mg/kg or DAmB IV 
at 0.5, 1.0, or 1.5  mg/kg [65]. After a single 1  mg/kg dose of 
LAmB, the mean maximum concentration in serum (Cmax) 
was 26  ±  2.4  µg/mL and the mean area under the curve to 
infinity (AUC) was 60  ±  16  µg.h/mL, while a similar dose of 
DAmB achieved a significantly lower Cmax (4.7  ±  0.2  µg/mL) 
and a lower AUC (30.6  ±  2.2  µg.h/mL). Dose escalation of 
LAmB to 10 mg/kg resulted in a disproportionately higher Cmax 
(287 ± 14 µg/mL) and AUC (2223 ± 246 µg.h/mL), suggesting 
saturable elimination after a single dose. Whereas 2 of the 4 
rabbits that received 1.5 mg/kg of DAmB died of acute cardiac 
toxicity, LAmB was administered without such toxicity at up to 
10 mg/kg. After chronic dosing with LAmB at 5.0 mg/kg/day 
or DAmB at 1.0 mg/kg/day for 28 days, LAmB achieved peak 
levels of 122.8 ± 5.8 µg/mL and trough levels of 34.9 ± 1.8 µg/
mL, while DAmB reached a peak of only 1.76  ±  0.11  µg/mL 
and a trough of 0.46 ± 0.04 µg/mL. Significant accumulations 
of AmB in the reticuloendothelial organs were observed, with 
239  ±  39  µg/g in the liver after chronic dosing with LAmB, 
which was 7 times higher than the level in the liver of rabbits 
given chronic dosing with DAmB (33 ± 6 µg/g). However, accu-
mulation in the kidneys remained 14-fold lower for LAmB 
vs DAmB (0.87  ±  0.61  µg/g vs 12.7  +  4.6  µg/g, respectively). 
During chronic dosing, nephrotoxicity occurred in only 1 in 4 
animals treated with LAmB, while it occurred in all 4 animals 
that received DAmB.

Pharmacodynamics

In vivo, DAmB displays concentration-dependent PD that 
correlate with the ratio of total peak serum drug concentra-
tions/MIC ratio for Candida [140] and Aspergillus [141] or 
AUC/MIC [93, 94]. In general, activity is maximized when 
the Cmax/MIC ratio surpasses 2 or when an AUC/MIC ratio, 
measured by bioassay, is greater than 10–50 depending on the 
organ investigated [94]. Al-Nakeeb and colleagues reported 
that in a murine model of invasive aspergillosis, near-maximal 

antifungal activity with DAmB was reached at an AUC/MIC 
of 13.6, which is well within clinically achievable exposures 
and typical MICs reported in human aspergillosis (AUC/MIC, 
50) [142]. In the same model, near-maximal effects with LAmB 
dosing were observed with an AUC/MIC of 167, which was 
similar to mean AUC/MIC exposures (186 ± 96.2) predicted 
in 80 kg patients who received a 3 mg/kg/day dose of LAmB.

Given the significantly reduced toxicity of LAmB and the 
fact that the drug remains bioactive at antifungal inhibitory 
concentrations for more than 1 day in most tissues, investiga-
tors have used different animal models to study its prophylactic 
use. A single IV prophylactic dose of LAmB at 5, 10, or 20 mg/
kg resulted in significantly prolonged survival when mice were 
subsequently challenged with C.  albicans [143], Histoplasma 
capsulatum [143], or A.  fumigatus [144] with reduced fungal 
burden in the kidneys, spleens, or lungs, respectively.

The efficacy of LAmB administered as a therapeutic drug has 
also been demonstrated in several models of IFIs in both nor-
mal and immunocompromised animals [9, 29, 145–149]. In the 
studies that examined different doses of LAmB from 1 mg/kg to 
as high as 30 mg/kg, given daily or every other day, doses that 
ranged from 5 to 15 mg/kg were found to be significantly more 
effective compared with controls when used to treat pulmonary 
aspergillosis [38, 135, 150, 151], systemic cryptococcosis [152, 
153], systemic candidiasis [154, 155], pulmonary blastomycosis 
[156], pulmonary paracoccidioidomycosis [157], and the para-
site infection visceral leishmaniasis [137] (Table 3).

The lung is an important site of IFIs because many fungi enter 
the host via the respiratory tract and spread locally and/or enter 
the bloodstream and disseminate to other organs. In preclin-
ical single- and multidose distribution studies using equimo-
lar doses of 1 mg/kg of AmB in uninfected mice and rats, lung 
levels achieved by LAmB were lower than those obtained by 
DAmB. However, after multiple dosing of LAmB at safely toler-
ated 5-fold higher doses, drug accumulation in the lung clearly 
exceeded that achieved by 1 mg/kg of DAmB [10].

Differences in lung distribution between DAmB and LAmB 
were examined in a lethal rabbit model of primary pulmo-
nary aspergillosis that reproduced the persistent levels of pro-
found granulocytopenia and the histopathologic features of 

Animal 
Species Infection Model

Time of Analysis 
Post-treatment 

(Hours)

Liposomal  
Amphotericin  
Dose, mg/kg  
(# Doses = ×) Tissue

Amphotericin B Tissue Concentration  
(µg/g Tissue) Reference

Rabbit Central nervous 
system  

candidiasis

0.5   0.5 hours Groll et al (2000) 
[126]5 (7 ×) Brain 1.84

 Cerebro-
spinal fluid

BLQ

Adapted from Adler-Moore JP et al. J Liposome Res 2017; 27:195–209, a Publication of Taylor & Francis Ltd (www.tandfonline.com) [129]

Abbreviations: BLQ, below the limits of quantification; ND, not determined.

Table 2. Continued
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bronchopneumonia, vascular invasion, and hemorrhagic infarc-
tion encountered in patients. Twenty-four hours after intra-
tracheal A.  fumigatus inoculation, groups of 5–18 profoundly 
granulocytopenic rabbits received LAmB at 1, 5, or 10 mg/kg/
day, DAmB at 1 mg/kg/day, or normal saline for up to 10 days 
[150]. Surviving animals were euthanized 24 hours after the 
last dose was administered. Treatment with any dose of LAmB 
conferred significantly increased survival compared with treat-
ment with the maximum tolerated dose of DAmB (1  mg/kg/
day) and untreated controls. At 5 and 10 mg/kg/day, LAmB was 
more effective in reducing the number of viable organisms in 
the lung and in decreasing tissue injury. While animals treated 
with DAmB developed marked azotemia, as assessed by mean 
serum creatinine values at baseline and at end of treatment or 
death, the mean creatinine level remained normal in animals 
treated with 1 or 5 mg/kg of LAmB. However, at 10 mg/kg/day, 
significant increases in the mean serum creatinine occurred but 
without significant impact on survival. Thus, LAmB was sig-
nificantly more effective and safer than DAmB for treatment of 
pulmonary aspergillosis in a rabbit model that mimicked the 
PK and PD in patients very closely.

A study was undertaken in healthy rabbits to compare the 
compartmentalized intrapulmonary PK of different AmB for-
mulations including LAmB, DAmB, ABCD, and ABLC. This 
study showed strikingly different patterns among the differ-
ent formulations at therapeutic dosages [127]. Cohorts of 3 to 
7 catheterized rabbits received 1  mg/kg/day DAmB or 5  mg/
kg/day of an AmB lipid formulation once daily for 8  days. 
Following serial plasma sampling, rabbits were euthanized 24 
hours after the last dose, and ELF, pulmonary alveolar macro-
phages (PAM), and lung tissue were obtained. Mean (± stan-
dard deviation) AmB concentrations in lung tissue and PAM 
were highest in ABLC-treated animals, exceeding concurrent 
plasma levels by 70 fold and 375 fold, respectively. By compar-
ison, drug concentrations in ELF were much lower than those 
achieved in lung tissue and PAM. Among the different cohorts, 
the highest ELF concentrations were found in LAmB-treated 
animals (2.28  ±  1.43  µg/mL) vs 0.44  ±  0.13, 0.68  ±  0.27, and 
0.90 ± 0.28 μg/mL for DAmB, ABCD, and ABLC, respectively. 
In these experiments, only LAmB achieved an exposure that 
exceeded the proposed in vitro susceptibility breakpoints for 
AmB in all 3 compartments of the lung (Table 4).

The central nervous system (CNS) is also an important tar-
get of IFIs [169, 170]. LAmB efficacy for several CNS animal 
infections has been demonstrated, including mucormycosis 
[136, 171], coccidioidal meningitis [162], cryptococcal menin-
gitis [163], CNS aspergillosis [172], and Candida meningoen-
cephalitis [126]. The CNS distribution and antifungal efficacy of 
LAmB were compared with other commercially available AmB 
formulations in a rabbit model of hematogenous C.  albicans 
meningoencephalitis. Treatment with DAmB (1  mg/kg/day) 
or LAmB (5 mg/kg/day) yielded the highest Cmax, AUC0–24, and T
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time above the MIC (Ttau > MIC) and led to complete eradica-
tion of C. albicans from brain tissue. By comparison, ABCD and 
ABLC (5 mg/kg/day each) were only partially effective. There 
was a strong correlation of Cmax, AUC0–24, Cmax/MIC, AUC0–24/
MIC, and Ttau/MIC with clearance of C.  albicans from brain 
tissue (P < .0002). Thus, there were strong concentration- and 
time-dependent correlations between plasma exposure and 
antifungal efficacy, indicating a potential advantage of LAmB 
for the treatment of CNS infections [126].

SUMMARY

The combination of LAmB’s unique chemical composition, 
rigorous manufacturing standards, and ability to target to and 
transit through fungal cell walls contribute to the improved 
safety profile and antifungal efficacy of this formulation com-
pared with conventional DAmB. Based on results from numer-
ous preclinical studies, LAmB given intravenously distributes to 
tissues most frequently infected by fungi, including the lungs, 
kidneys, liver, spleen, and brain, at drug levels that can be sus-
tained above the MIC for 1 day to up to a few weeks depending 
on the tissue. Tissue accumulation and clearance with single or 
multiple IV administration is similar in uninfected and infected 
animals, with tissue accumulation being dose dependent and 
clearance fastest from the brain and slowest from the liver and 
spleen. In the lungs, the drug is primarily localized in the ELF; 
in the liver and spleen, it is mainly present in macrophages; 
and in the kidneys, it localizes to the distal tubules. It has been 
used successfully in both therapeutic and prophylactic animal 
models to treat yeast, mold, and endemic fungal pathogens, sig-
nificantly increasing survival and reducing the residual fungal 
burden in target organs.
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