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Since its introduction in the 1990s, liposomal amphotericin B (LAmB) continues to be an important agent for the treatment of 
invasive fungal diseases caused by a wide variety of yeasts and molds. This liposomal formulation was developed to improve the 
tolerability of intravenous amphotericin B, while optimizing its clinical efficacy. Since then, numerous clinical studies have been 
conducted, collecting a comprehensive body of evidence on its efficacy, safety, and tolerability in the preclinical and clinical setting. 
Nevertheless, insights into the pharmacokinetics and pharmacodynamics of LAmB continue to evolve and can be utilized to develop 
strategies that optimize efficacy while maintaining the compound’s safety. In this article, we review the clinical pharmacokinetics, 
pharmacodynamics, safety, and efficacy of LAmB in a wide variety of patient populations and in different indications, and provide 
an assessment of areas with a need for further clinical research.
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The polyene class of antifungal agents remains an important option 
for the prevention and treatment of invasive fungal diseases, based 
on its broad spectrum; concentration-dependent fungicidal phar-
macodynamics; potent, dose-dependent activity in a large num-
ber of animal models; and well-documented clinical efficacy. For 
decades, deoxycholate amphotericin B (DAmB) has been the cor-
nerstone for the management of life-threatening fungal infections. 
However, its clinical utility is hampered by dose-dependent renal 
toxicity and infusion-associated reactions, thereby limiting thera-
peutic efficacy. The development of novel, less toxic, lipid-based 
polyene formulations in the late 1980s and early 1990s may be con-
sidered a breakthrough in antifungal chemotherapy, particularly 
for patients with invasive aspergillosis and mucormycosis.

This document reviews the clinical pharmacology of liposo-
mal amphotericin B (LAmB; AmBisome®), a small, unilamel-
lar, liposomal formulation of amphotericin B (AmB). For the 
purpose of this paper, the term LAmB refers exclusively to 
AmBisome. Emphasis is placed on the pharmacokinetics (PK), 
pharmacodynamics (PD), safety, and efficacy of this compound 

relative to those of DAmB, providing scientific evidence for 
improved safety and tolerability and assessing efficacy in the 
management of invasive fungal diseases.

CLINICAL PHARMACOKINETICS

LAmB, in the form of AmBisome, consists of small, unilamellar 
vesicles of 60–80 nm in size, which are composed of hydrogenated 
soy phosphatidylcholine and distearoyl phosphatidylglycerol, 
stabilized by cholesterol and combined with AmB in a 2:0.8:1:0.4 
molar ratio (Table 1) [1-6]. After intravenous administration, the 
liposomal carrier stays physicochemically intact for prolonged 
periods of time, providing an extended residence time of AmB 
in the central blood compartment (Figure 1) [7]. In preclinical 
studies, throughout all animal species, much higher peak plasma 
concentration (Cmax) and area under the plasma concentration–
time curve (AUC) values were achieved relative to equal doses of 
DAmB [8]. Distribution studies in rats with 4-[(14)C]cholester-
ol-LAmB demonstrate that the dominant route of elimination is 
fecal, presumably via biliary excretion; the liver, spleen, and lungs 
presented with the highest levels of radioactivity, and levels in the 
kidney were 15% of those in the liver and lungs [9].

The first systematic clinical PK data were obtained in 36 
persistently febrile neutropenic adult patients who received 
LAmB as empirical antifungal therapy in a Phase I/II, sequen-
tial, dose-escalation trial. Following doses of 1.0, 2.5, 5.0, and 
7.5 mg/kg LAmB, the mean AUCs on the first day of treatment 
increased disproportionally (32, 71, 294, and 534  µg . h/mL,  
respectively), while the mean plasma clearance tended to 
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Table 1.  Pharmacokinetic and Pharmacodynamic Properties of Liposomal Amphotericin B

Property LAmB

Formulation Small, unilamellar liposomes consisting of HSPC/CHOL/DSPG in a 2:1:0.8 
molar ratio and AmB in a 9:1 lipid:drug molar ratio

Protein binding, % Not applicable

Mean Cmax, mg/La 58

Mean AUC0–24h, mg/Lxha 713

Mean Vd, L/kga 0.22

Mean CLt, L/h/kga 0.017

Dose linearity Up to 10 mg/kg/day in adults

Substrate/inhibitor of Cytochrome P450 No

Metabolism Not metabolized

Elimination Unchanged in feces and urine (<10% over 7 days)

Dosage adjustment in renal impairment No adjustment needed for concerns of accumulation

Dosage adjustment in hepatic impairment No adjustment needed for concerns of accumulation

Pharmacodynamics in vitro (by time-kill and PAFE) Concentration-dependent fungicidal activity, prolonged PAFEs against 
Candida species

Pharmacodynamics in vivo (parameter best associated with 
efficacy in animal models of invasive fungal diseases)

Cmax/MIC

Abbreviations: AmB, amphotericin B; AUC0–24h, area under the time–concentration curve from 0 to 24 hours; CHOL, cholesterol; CLt, total clearance; Cmax, peak plasma concentration; DSPG, 
distearoyl phosphatidylglycerol; HSPC, hydrogenated soy phosphatidylcholine; LAmB, liposomal amphotericin B; MIC, minimal inhibitory concentration; PAFE, post-antifungal effect; Vd, 
volume of distribution.
aValues after a 5 mg/kg dose. Data compiled from Walsh et al, 1998 [1]; Walsh et al, 2001 [2]; Bekersky et al, 2001 [3]; Bekersky et al, 2002 [4]; Bekersky et al, 2002 [5]; Stone et al, 2016 [6]. 

Figure 1.  Disposition of liposomal amphotericin B after intravenous administration. 
Reproduced with permission from Groll and Walsh [7]. After IV administration, ampho-
tericin B distributes from the central compartment (labeled as 1), predominantly to 
organ sites rich in mononuclear phagocytic cells (labeled as 2) and, to a lesser extent, 
other tissue sites, including the kidney, the lung, and the brain. There is slow redistri-
bution from these tissues into the central blood compartment (1) and slow elimination 
in an unchanged form into bile and urine. Note that this is a schematic to visualize 
the compound’s distribution, and that it does not represent the description of a math-
ematical pharmacokinetic model. Abbreviations: IV, intravenous; k, rate constants that 
depict the distribution of amphotericin B between the different compartments. 

decrease at the higher doses (from 39 and 51 µg . h/mL with 1.0 
and 2.5 mg/kg/day, respectively, to 21 and 25 µg . h/mL with 5.0 
and 7.5 mg/kg/day, respectively) [1]. Further dose escalation, to 
10, 12.5, and 15 mg/kg/day LAmB in a subsequent Phase I/II 
trial in patients with invasive mold infections, however, revealed 

dose-related, non-linear, saturation-like PK: the mean AUC and 
Cmax values reached maximum values following the administra-
tion of 10 mg/kg/day and declined at 12.5 and 15 mg/kg/day 
[2]. Overall, LAmB was well tolerated, without dose-limiting 
adverse effects, across the investigated dose range.

To further understand the disposition of the compound, the 
PK, excretion, and mass balance of LAmB (2 mg/kg) and DAmB 
(0.6  mg/kg) were investigated in healthy volunteers. Both for-
mulations had triphasic plasma profiles with long mean termi-
nal half-lives (152 ± 116 h vs 127 ± 30 h, respectively); however, 
plasma concentrations were disproportionally higher after the 
administration of LAmB (mean Cmax, 22.9 ± 10 vs 1.4 ± 0.2 µg/
mL, respectively). The central compartment volume of LAmB 
was close to the plasma volume, and the volume of distribu-
tion at steady state was smaller than that of DAmB. Total clear-
ances were similar, but renal and fecal clearances of LAmB were 
10-fold lower than those of DAmB. Two-thirds of DAmB was 
excreted unchanged in the urine (20.6%) and feces (42.5%), 
with >90% accounted for in mass balance calculations at 1 week,  
suggesting that metabolism plays no major role in elimination. By 
contrast, <10% of LAmB was excreted unchanged. No metabolites 
were observed by high-performance liquid chromatography or 
mass spectrometry [4, 5]. Protein-binding studies of both formula-
tions revealed lower exposures to both unbound and non-liposo-
mal drug following LAmB, with most of AmB in plasma remaining 
liposome associated (97% at 4  h, 55% at 168  h). Although the 
administration of LAmB resulted in markedly reduced total uri-
nary and fecal recoveries of AmB, urinary and fecal clearances 
based on an unbound compound were similar for both formula-
tions. The urinary clearance of the unbound drug was equal to the 
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glomerular filtration rate, and tubular transit rates were <16% of 
the urinary excretion rate, suggesting that the net filtration of an 
unbound drug is the mechanism of renal clearance for both LAmB 
and DAmB in humans [4]. Indeed, the lower exposure to unbound 
and non-liposomal drug, as observed for LAmB, may be key for the 
explanation of the lower toxicity of the compound, as differences in 
both the dissociation of free AmB from its carrier and the degree of 
aggregation of free amphotericin molecules have been proposed to 
account for the selectivity of lipid formulations of AmB and their 
kidney-sparing properties [10].

Pharmacokinetics in Adult Hematology Patients

In a risk-stratified, randomized, Phase II trial including 53 
allogeneic hematopoietic stem cell transplantation (HSCT) 
patients (19 on caspofungin, 17 on LAmB, and 17 on the com-
bination of caspofungin and LAmB), the population PK were 
best described by a linear, 2-compartment model with inter-
individual variability in clearance, the central volume of dis-
tribution (V1), intercompartmental clearance, the peripheral 
volume of distribution (V2), and a proportional error model. 
A mixture model was used, allowing for the separate identifi-
cation of clearance based on 2 distinct subpopulations (those 
with identical PK on Days 1 and 4 and those with different PKs 
between Days 1 and 4). The clearance differed by a factor of 
3 between the subgroups: this helped to explain a substantial 
amount of interindividual variability. Clearance in this mixture 
model was 0.637 L/h, with a V1 of 18.6 L and V2 of 49.2 L. The 
authors hypothesized a saturable elimination pathway, with the 
impact of the disease status on clearance or differences in par-
enteral nutrition as possible explanations for the observed vari-
ability [11]. In the previously mentioned dose-escalation Phase 
I/II clinical trial that included mostly hematological patients, 
population PK analysis, using the mixed-effect computer pro-
gram NONlinear Mixed Effects Modeling (NONMEM) and 
a 2-compartment structural model, identified infection and 
bone marrow transplantation as relevant covariates for clear-
ance. However, the final model tended to underestimate the 
higher concentration values, indicating that other unidentified 
covariates might play a role [2].

Pharmacokinetics in Pediatric Hematology Patients

The PK of LAmB in pediatric patients beyond the neonatal 
period were investigated in a formal, Phase II, dose-escala-
tion trial investigating doses of 2.5, 5, 7.5, and 10 mg/kg in 40 
immunocompromised patients. The disposition of LAmB in 
pediatric patients was not substantially different from that in 
adults. The AUC values on Day 1 increased from 54.7 ± 32.9 to 
430 ± 566 µg . h/mL in patients receiving 2.5 and 10.0 mg/kg/day, 
respectively [12]. In a population PK analysis, the data were best 
described by a 2-compartment model incorporating weight and 
an exponential decay function describing the volume of distri-
bution. Out of 3 pediatric patients, 1 appeared to demonstrate a 

time-dependent change in PK that was not explained by weight, 
maturity, or clinical factors [13]. In a different population PK 
analysis of 39 pediatric patients, the plasma concentration–time 
data were similarly described by a 2-compartment PK model, 
and weight was the only remaining covariate for clearance and 
volume of distribution. Typical values for clearance, V1, and V2 
were 0.44 L/h, 3.12 L, and 18 L, respectively [14].

Pharmacokinetics in Intensive Care Unit Patients

Few PK studies of LAmB have included patients admitted to an 
intensive care unit. In a study including 10 critically ill patients 
who received the compound at 2.8–3.0  mg/kg/day, there was 
substantial variability in exposure. The median half-life for 
elimination from plasma was 1.65 hours (range 1.25–5.22) in 
the distribution phase, and the median terminal elimination 
half-life was 13.05 hours (range 8.7–41.4). The apparent vol-
ume of distribution of LAmB (median 0.42 L/kg) was relatively 
small. No correlations between dose and serum Cmax or between 
dose and exposure were observed in any of the dose groups 
[15]. These data are in agreement with previous results docu-
menting the considerable intra- and inter-subject variability [1, 
2, 12]. Potential factors of impact on the disposition of LAmB 
in this special population may include differences in underly-
ing diseases, different degrees of inflammation, changes in the 
composition of blood and plasma, concomitantly administered 
parenteral solutions, and fundamental changes in body compo-
sition and water content [15].

Use in Patients with Renal Impairment, Hepatic Impairment, and 
Extracorporeal Membrane Oxygenation 

Data on the PK of LAmB in patient groups with impaired 
renal function or those treated with hemodialysis or perito-
neal dialysis are extremely limited. According to the prescrib-
ing information and summary of product information [16, 17], 
dose adjustment is not required in patients with renal failure. 
However, little information is available on how renal failure 
impacts the PK of LAmB. A single patient receiving hemodi-
alysis was included in the previously mentioned study in crit-
ically ill patients, and a few case reports suggest that LAmB is 
not removed by renal replacement therapy [15]. However, this 
finding needs to be confirmed in a larger cohort of patients and 
in different forms of renal replacement therapies.

Similar to renal impairment, it is not clear whether changes 
in hepatic function affect the clearance of LAmB, despite 
hepatic side effects having been reported in the literature and 
being listed in the prescribing information [16–18]. A cumu-
lative rise in AmB plasma concentrations has been observed 
in cases of acute liver transplant failure, and failure of the liver, 
as a major component of the reticuloendothelial system, may 
cause changes in the disposition of the compound; however, 
the clinical relevance of this has not been well studied up to 
this point [19].
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More PK investigation is also needed in those who are treated 
with extracorporeal membrane oxygenation. Potential adsorp-
tion to the extracorporeal membrane oxygenation tubing can be 
expected because of the lipophilic nature of AmB.

PHARMACODYNAMIC CONSIDERATIONS

In time–kill studies, AmB displays concentration-dependent 
fungicidal activity against susceptible yeasts and molds, and pro-
longed post-antifungal effects for a duration of up to 12 hours  
have been demonstrated against these organisms [6, 20]. In neu-
tropenic PK/PD mouse models of disseminated candidiasis and 
pulmonary aspergillosis, the ratio of Cmax to minimal inhibitory 
concentration (Cmax/MIC) was the parameter that provided the 
best correlation with outcome, as measured by the residual fun-
gal burden in tissue (Table 1) [21, 22]. These laboratory findings 
indicate that large doses will be the most effective and that the 
achievement of optimal peak concentrations is important.

While several preclinical studies have been conducted to es-
tablish PK/PD indices for LAmB, no clinical studies have been 
carried out or designed to establish the relationship between the 
antifungal effect of the compound and its PK profile in humans. 
A  population PK study in 39 pediatric patients with cancer 
included 9 patients with proven fungal infections who were 
treated with LAmB. Of the 9 patients, 8 demonstrated a clinical 
response (complete or partial), and the ratio of peak concen-
tration at steady state (Cmax,ss) to MIC (Cmax,ss/MIC) was signifi-
cantly higher in those achieving a complete response, compared 
with those achieving a partial response (P = .021). However, this 
study was not designed to detect a correlation between the re-
sponse and the ratio of the AUC at steady state (AUCss) and the 
MIC (AUCss/MIC) [14].

SAFETY AND TOLERABILITY

Key Findings of Preclinical Investigations

The preclinical safety of LAmB has been demonstrated in sev-
eral models of invasive fungal diseases in both normal and 
immunocompromised animals [8, 10, 23–28]. In all animal 
models, LAmB was less nephrotoxic than DAmB. However, a 
slight rise in serum transaminases appeared to occur with pro-
longed administration [24, 29–34]. Of note, there has been no 
experimental evidence for an impaired bacterial blood clear-
ance capacity of the mononuclear phagocytic system after pro-
longed treatment at clinically relevant doses [35].

Clinical Safety in Early Cohort Studies and Large, Randomized Trials

The initial multicenter, compassionate use trial conducted in 
Europe included 133 courses of treatment with LAmB (mean 
maximal dosage 2.1  mg/kg/day; range 0.45–5.0  mg/kg; mean 
duration of treatment 21  days) in mostly adult patients with 
invasive fungal diseases refractory or intolerant to DAmB.  
In this trial, the safety analysis showed increases in serum 

creatinine from normal levels at baseline in 15% of patients; 
however, 17 of 50 patients (34%) with initially elevated cre-
atinine levels had a return to normal at the end of treatment. 
Hypokalemia was noted in 18% of patients and infusion-related 
toxicity was noted in <1% [36]. The combined safety analyses 
of similar trials in bone marrow and solid organ transplant 
patients (n  =  187) revealed a frequency of infusion-related 
side effects of 4% and increases in serum creatinine in 31% of 
patients. Therapy with LAmB had to be discontinued due to 
adverse events (AEs) in 3% of cases [37].

In a systematic, Phase I/II, open-label, sequential dose-esca-
lation trial conducted at the US National Cancer Institute in 36 
persistently febrile neutropenic adults who received 1.0, 2.5, 5.0, 
or 7.5 mg/kg/day of LAmB for a mean duration of 9.2 ± 0.8 days, 
infusion-related side effects occurred in 15 of 331 infusions (5%), 
and only 2 patients (5%) required premedication. Serum creat-
inine, potassium, and magnesium levels were not significantly 
changed from baseline in any of the dose cohorts, and there was 
no net increase in serum transaminase levels [1]. A subsequent 
Phase I/II, sequential, dose-escalation cohort trial explored the 
maximum tolerated dose of LAmB. A total of 44 patients with 
probable or proven invasive mold infections received LAmB at 
7.5, 10, 12.5, or 15 mg/kg/day. The number of infusions ranged 
from 1 to 83, with a median duration of 11 days. The maximum 
tolerated dose was at least 15 mg/kg/day. Infusion-related reac-
tions (IRRs) of fever occurred in 8/44 patients (18%), and chills 
and rigors occurred in 5/44 patients (11%). Serum creatinine 
increased 2 times above baseline in 32% of patients, but this 
increase was not dose related. Hepatotoxicity developed in 1 
patient. Overall, the most common AEs included fever (48%), 
an increased creatinine level (46%), hypokalemia (39%), chills 
(32%), and abdominal pain (25%). A total of 9 patients (20%) 
discontinued the study drug due to a possibly related AE. There 
was no obvious correlation between the AEs and doses [2].

A combined analysis of 2 parallel, prospective, open-label, 
randomized, multicenter comparisons of LAmB (1 or 3 mg/
kg/day; 1669 and 1762 doses, respectively) and DAmB (1 mg/
kg/day; 1146 doses) as empirical antifungal therapies in 338 
persistently febrile neutropenic adults and children showed 
fewer severe, drug-related AEs with LAmB. Irrespective of 
the dose, there was significantly reduced hypokalemia in 
patients treated with LAmB, and nephrotoxicity (defined as 
a 100% or more increase in serum creatinine from baseline) 
occurred significantly less often with LAmB (11% overall, 
10% in the 1 mg/kg group, and 12% in the 3 mg/kg group), 
compared with DAmB (24%; Table 2) [38]. In a second, large-
scale (N = 687), randomized, double-blind, multicenter trial 
evaluating the safety and tolerability of LAmB (3.0  mg/kg/
day; mean duration of therapy, 10.8  ±  8.9  days) compared 
with DAmB (0.6  mg/kg/day; mean duration of therapy, 
10.3 ± 8.9 days), significantly fewer patients receiving LAmB 
had infusion-related fever (17% vs 44%, respectively), chills or 
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Table 2.  Summary of Pivotal Randomized, Clinical Trials Demonstrating Efficacy and Safety of Liposomal Amphotericin B in Treatment and Prevention of 
Invasive Fungal Diseases

Study/Design Endpoints of Efficacy Main Results

Proven or probable invasive aspergillosis

Open-label, randomized, multicenter trial  
comparing the efficacy of 2 doses of LAmB  
(1 and 4 mg/kg/day) for the treatment of 
proven or probable invasive aspergillosis in 
120 neutropenic patients [39].

Complete/partial responses and stable  
disease at end of therapy in patients 
receiving ≥1 dose; overall mortality at 
2 months after start of therapy.

Response rates were 64% in the 41 eligible LAmB 1 mg/kg/day  
recipients and 48% in the 46 eligible LAmB 4 mg/kg/day recip-
ients; overall, mortality was 42% and 49% in the 2 cohorts, 
respectively. The rate of patients with AEs was slightly higher in 
the LAmB 4 mg/kg/day cohort.

Double-blind, randomized, multicenter trial in  
201 patients with proven or probable  
invasive mold infection, comparing LAmB as 
first-line therapy at either 3 or 10 mg/kg/day 
for 14 days, followed by 3 mg/kg/day [40].

Complete or partial response at the  
end of study drug treatment in patients 
receiving ≥1 dose. Overall mortality at 
12 weeks after start of therapy.

A complete or partial response was achieved in 50% and 46% of 
patients in the 3 and 10 mg/kg/day groups, respectively. Mortality 
at 12 weeks was 28% and 41% in the 3 and 10 mg/kg/day arms, 
respectively. The rates of nephrotoxicity and hypokalemia were 
significantly higher in the high-dose group.

Invasive Candida infections   

Double-blind, randomized, multicenter,  
non-inferiority trial comparing the efficacy of 
LAmB (3 mg/kg/day) and micafungin  
(100 mg/day) as first-line treatment of  
candidemia and invasive candidiasis in  
531 patients [41].

Clinical (complete or partial resolution  
of symptoms) and mycological  
(eradication or presumed eradication) 
response at the end of treatment in the 
per protocol analysis.

Treatment success was observed for 170 patients (89.5%) treated 
with LAmB and 181 patients (89.6%) treated with micafungin. 
Efficacy was independent of the Candida species, site of  
infection, neutropenic status, APACHE II score, and catheter 
removal/replacement. Fewer treatment-related AEs and  
discontinuations were observed with micafungin.

Cryptococcal meningoencephalitis   

Double-blind, randomized, multicenter trial  
comparing efficacy and safety of LAmB at  
either 3 or 6 mg/kg/day to DAmB at  
0.7 mg/kg/day in 267 patients with AIDS  
and acute cryptococcal meningitis [42].

Mycological success (conversion of  
cerebrospinal fluid culture results) at  
Week 2 (14 ± 4 days), protocol-defined 
therapeutic success at Week 10, and 
survival at Week 10 among the  
modified intent-to-treat population.

Efficacy was similar among all 3 treatment groups; overall mortality 
at 10 weeks was 11.6%, with no significant differences among 
treatment groups. Infusion-related reactions were significantly 
less frequent in LAmB-treated patients and fewer patients  
receiving the 3 mg/kg/day dose of LAmB developed a doubling  
of the serum creatinine value.

Disseminated histoplasmosis   

Double-blind, randomized, multicenter trial  
comparing LAmB at 3 mg/kg/day with  
DAmB at 0.7 mg/kg/day for 2 weeks in 81 
patients with AIDS and moderate-to-severe 
disseminated histoplasmosis [43].

Clinical success, conversion of baseline 
blood cultures to negative, survival  
during induction therapy, and acute  
toxicities that necessitated  
discontinuation of treatment.

Clinical success was achieved in 45/51 patients (88%) receiving 
LAmB and 14/22 patients (64%) treated with DAmB (P = .014). 
Culture conversion rates were similar. Fewer patients receiving 
LAmB died during induction (P = .04). Infusion-related side effects 
and nephrotoxicity were less frequent in patients treated with 
LAmB (25% vs 63% and 9% vs 37%; P = .002 and P = .003, 
respectively).

Empirical therapy in patients with  
fever and neutropenia

  

Combined analysis of 2 randomized,  
multicenter trials comparing LAmB at  
1 or 3 mg/kg/day with DAmB at  
1 mg/kg/day in a total of 338 adult and 
pediatric patients with fever and neutropenia 
who were not responding to broad-spectrum 
antibacterial treatment [38].

Clinical success, defined by a minimum  
of 3 consecutive days with fever  
<38°C, continuing to study end  
(recovery of neutrophils to 0.5 × 109/L). 
Addition of systemic antifungals,  
development of systemic fungal  
infection, and persistent fever to  
study end were considered treatment 
failures.

Similar success rates in patients treated with LAmB (58% and 64%) 
and DAmB (49%), but fewer drug-related adverse effects and 
severe drug-related adverse effects with LAmB (P < .01).  
Nephrotoxicity, defined as doubling of the serum creatinine value 
from baseline, was less frequent in the LAmB arms versus DAmB 
(0% and 3%, respectively, vs 23%), as was hypokalemia (P < .01).

Double-blind, randomized, multicenter trial to 
compare LAmB at 3 mg/kg/day with DAmB 
at 0.6 mg/kg/day in a total of 687 adult and  
pediatric patients with fever and  
neutropenia who were not responding to 
broad-spectrum antibacterial treatment [44].

Composite of 5 criteria: survival for  
7 days after initiation of the study drug; 
resolution of fever during the period of 
neutropenia; successful treatment of  
any baseline fungal infection; the  
absence of breakthrough fungal  
infections during administration of the 
study drug or within 7 days after the  
end of treatment; and absence of 
premature discontinuation of the study 
drug because of toxicity or lack of 
efficacy.

The composite rates of successful treatment were similar (50% 
for LAmB and 49% for DAmB), as were survival rates (93% and 
90%, respectively), resolution of fever (58% and 58%,  
respectively), and premature discontinuation of the study drug 
(14% and 19%, respectively). Fewer proved breakthrough fungal 
infections were observed in the LAmB group (3.2% vs 7.8%, 
respectively; P = .009). LAmB was associated with significantly 
fewer infusion-related reactions and fewer patients developed a 
serum creatinine level 2 times the upper limit of normal (19% vs 
34%, respectively; P < .001).

Primary antifungal prophylaxis   

Open-label, randomized, single-center trial of  
low-dose LAmB (50 mg every other day) 
versus no systemic antifungal therapy as 
antifungal prophylaxis in 219 neutropenic 
episodes in 132 patients with hematological 
malignancies and expected neutropenia for 
10 days [45].

Failure of antifungal prophylaxis,  
defined as occurrence of proven or 
probable invasive fungal diseases  
under prophylactic study treatment. 
Pneumonia without identification of 
a causative organism, mortality from 
any cause, and mortality related to 
invasive fungal disease were secondary 
endpoints.

In the first episode of each patient, the incidences of proven or  
probable invasive fungal diseases were 6.7% in LAmB-treated 
patients (5/75) and 35% in the control patients (20/57; P = .001). 
Invasive aspergillosis occurred less frequently in patients  
receiving LAmB (P = .0057). Pneumonia occurred in 6 vs 28 
neutropenic episodes (P < .001), and there was no difference in 
overall and fungal-related mortality.
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rigors (18% vs 54%, respectively), or other reactions, includ-
ing hypotension, hypertension, and hypoxia. Nephrotoxicity 
(defined as a serum creatinine concentration twice the upper 
limit of normal) was significantly less frequent among patients 
treated with LAmB (19%) than among those treated with 
DAmB (34%) [44]. In 2 additional large, multinational, ran-
domized, non-inferiority trials of empirical antifungal ther-
apy with voriconazole and caspofungin in persistently febrile 
neutropenic patients, which used LAmB as reference agent, 
the safety profile of the compound was confirmed, extending 
the safety database in this indication to many more than 1000 
treated patients [48, 49].

Clinical Safety in Pediatric Patients

Systematic safety data in pediatric patients beyond the neo-
natal period were obtained in a formal Phase II, sequential, 
dose-escalation trial investigating doses of 2.5, 5.0, 7.5,  and 
10  mg/kg in 40 immunocompromised children and adoles-
cents enrolled to receive empirical antifungal therapy for the 
treatment of documented invasive fungal diseases. There were 
9 AE-related discontinuations, 4 of which were related to infu-
sions. Infusion-related side effects occurred for 63 of 565 infu-
sions (11%), with 5 patients experiencing acute IRRs (7.5 and 
10 mg/kg dose levels). Serum creatinine levels increased from 
0.45 ± 0.04 mg/dL to 0.63 ± 0.06 mg/dL in the overall popula-
tion (P = .003), with significant increases in the dose cohorts 
receiving 5.0 and 10  mg/kg/day. At the higher dose level of 
10 mg/kg, there was a trend toward greater hypokalemia and 
vomiting [12]. Systematic safety data are further reported in 
204 pediatric patients (median age, 7  years) with fever and 
neutropenia enrolled in the aforementioned randomized, 
open-label, multicenter trial comparing DAmB at 1 mg/kg/
day (n = 63) to LAmB at 1 mg/kg/day (n = 70) or 3 mg/kg/day 
(n  =  71). In total, 29% of patients receiving LAmB at 1 mg/

kg/day, 39% of patients receiving LAmB at 3 mg/kg/day, and 
54% of patients receiving DAmB experienced AEs (P =  .01); 
nephrotoxicity (defined as a 100% or more increase in serum 
creatinine from baseline) was noted in 8%, 11%, and 21% 
of patients, respectively (not significant) [38]. Hypokalemia 
(<2.5 mmol/L) occurred in 10%, 11%, and 26% of patients, 
respectively (P = .02); increases in serum transaminase levels 
(≥110 U/L) occurred in 17%, 23%, and 17%, respectively (not 
significant); and increases in serum bilirubin (≥35  µmol/L) 
occurred in 11%, 12%, and 10% of patients, respectively [38]. 
LAmB was well tolerated and effective in cohorts of immu-
nocompromised children requiring antifungal therapy for 
proven or suspected infections, including patients with bone 
marrow transplants for primary immunodeficiencies [50], 
patients with cancer [51, 52], and critically ill patients [53]. 
In a Phase IV analysis of 141 courses of LAmB, administered 
for a mean of 17  days at a mean maximum dose of 2.5 mg/
kg for various indications in pediatric patients with cancer 
and HSCT, there was a low rate of AEs (4%) necessitating dis-
continuation. Mean aspartate aminotransferase, alanine ami-
notransferase, alkaline phosphatase, and blood urea nitrogen 
values were higher at the end of treatment (P = .01), but bil-
irubin and creatinine values were not different from those at 
baseline [54].

There were 24 very low birth-weight neonates (mean birth 
weight 847 ± 244 g; mean gestational age 26 weeks) with sys-
temic candidiasis who were treated in a prospective study of 
LAmB at 2.5–7 mg/kg/day. The mean duration of therapy was 
21 days; the cumulative dose was 94 mg/kg. No major adverse 
effects were recorded. There was 1 infant who developed ele-
vated bilirubin and hepatic transaminase levels during therapy 
[55]. Further prospective [56, 57] and retrospective [58, 59] 
cohort studies attest to the safety of LAmB in infants with very 
low birth weights.

Study/Design Endpoints of Efficacy Main Results

Double-blind, randomized, placebo-controlled  
trial of LAmB (2.5 mL of a 5 mg/mL solution) 
versus placebo inhalation twice a week in  
271 adult patients with hematological dis-
ease with expected neutropenia for 10 days,  
studied during 407 neutropenic episodes 
[46].

Occurrence of proven or probable  
invasive pulmonary aspergillosis,  
according to the European  
Organization for Research and the  
Treatment of Cancer/Mycoses Study 
Group definitions. Other endpoints were 
overall mortality and fungal infection- 
related mortality.

There were 18/132 patients in the placebo group versus 6/139 
patients in the LAmB group who developed invasive pulmonary 
aspergillosis (odds ratio 0.26, 95% confidence interval 0.09–0.72; 
P = .005). There was no difference in overall and infection-related 
mortality rates. More patients in the LAmB group versus the  
placebo group discontinued the inhalation therapy for at least  
1 week (45% vs 30%, respectively; P = .01).

Double-blind, randomized, multicenter trial to 
compare prophylactic LAmB at 5 mg/kg  
intravenously or placebo twice weekly in a  
2:1 random allocation during remission-in-
duction treatment in 355 adult patients 
undergoing remission induction therapy for 
acute lymphoblastic leukemia [47].

Development of proven or probable  
invasive fungal diseases. Secondary 
endpoints included those focused on 
the safety and tolerability of prophylactic 
LAmB.

Rates of proven and probable invasive fungal diseases were 7.9% 
(18/228) in the LAmB group and 11.7% (13/111) in the placebo 
group (P = .24). Overall mortality rates were similar between the 
groups: 7.2% (17/237) for LAmB and 6.8% (8/118) for placebo. 
There were no differences in premature, treatment-related discon-
tinuations. Hypokalemia and creatinine increase were significantly 
more frequent with LAmB (P < .001).

Please note the differences in disease definitions and outcome assessment across clinical trials.
Abbreviations: AE, adverse event; AIDS, acquired immunodeficiency syndrome; APACHE, Acute Physiology and Chronic Health Evaluation; DAmB, deoxycholate amphotericin B; LAmB, 
liposomal amphotericin B.

Table 2.  Continued
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Rare Adverse Events

Cases of substernal chest discomfort, respiratory distress, and 
sharp flank pain have been documented during or following 
infusions of LAmB [60, 61]. These acute IRRs occurred alone or 
in combination with 1 of 3 symptom complexes: (1) chest pain, 
dyspnea, and hypoxia; (2) severe abdomen, flank, or leg pain; 
and (3) flushing and urticaria. Most events occurred within the 
first 5 minutes of infusion and were relieved by the discontin-
uation of the infusion, plus the administration of intravenous 
diphenhydramine. The mechanisms of these events are thought 
to be related to liposomal activation of the complement cascade, 
leading to a release of anaphylatoxins (C3a and C5a). This is in 
contrast to the more common IRRs of DAmB that are mediated 
by tumor necrosis factor-α and may be blunted by the adminis-
tration of acetaminophen, hydrocortisone, or meperidine [62].

Increases in serum bilirubin, alkaline phosphatase, and 
serum transaminases have been observed with LAmB. However, 
the relative odds ratios of liver injury and acute liver failure in 
the US Food and Drug Administration (FDA) Adverse Event 
Reporting System for AmB products are similar to those 
reported for antifungal azoles and echinocandins [63, 64]. Cases 
of clinical pancreatitis [2, 65] and pseudo-hyperphosphatemia 
[66] have been reported in association with LAmB.

We should use caution in the accurate ordering of the dosage 
of DAmB and in meticulous adherence to the recommended in-
fusion time for DAmB. A dispensing and administration error 
that caused DAmB to be given instead of LAmB has been re-
ported, and was ultimately fatal [67].

EFFICACY AGAINST DOCUMENTED OR PRESUMED 
FUNGAL DISEASES

Key Findings of Preclinical Investigations

The principal antifungal efficacy of LAmB has been demon-
strated in several models of invasive fungal diseases in both 
normal and immunocompromised animals, and these have 
been reviewed in detail elsewhere [8, 10, 23, 25–27, 68, 69]. In 
mice systemically challenged with AmB-susceptible Candida 
species, LAmB was more effective than DAmB when LAmB 
was increased up to 5 mg/kg and higher [29, 70, 71]. LAmB was 
also effective in mice with cryptococcal meningitis, especially at 
higher doses [70], and conferred improved survival and tissue 
clearance in persistently neutropenic rabbits with invasive pul-
monary aspergillosis, compared with DAmB [24].

Efficacy Against Invasive Fungal Diseases in Early Cohort Studies and 
Large, Randomized Trials

The first efficacy data in patients with documented or pre-
sumed invasive fungal diseases that were not responding or 
being intolerant to DAmB were reported from 3 larger studies 
performed in Europe; the most common underlying conditions 
were malignancy and solid organ or bone marrow transplan-
tation [72–74]. At doses ranging from 0.5 to 5.0  mg/kg/day, 

the overall response rates were approximately 60% [72, 74]. 
Response rates in evaluable patients with documented or pre-
sumed infections due to Candida species were 84% [74], and 
those in patients with documented or presumed Aspergillus 
infections ranged from 58% to 77% [72–74]. Treatment with 
LAmB at a dose of 3 mg/kg/day was found to be effective and 
well tolerated against acquired immune deficiency syndrome 
(AIDS)-associated cryptococcosis in an open, non-compara-
tive study [75]. At 4 mg/kg/day, it was equally effective but less 
nephrotoxic than DAmB (0.7 mg/kg/day) in a small, random-
ized, comparative trial [76]. This latter study also demonstrated 
more rapid clearing of cerebrospinal fluid by LAmB, relative 
to DAmB.

For the past 2 decades, LAmB at least 5 mg/kg/day has been 
considered a standard option for the first-line treatment of 
mucormycosis, although larger systematic studies are lacking 
[77–80]. Clinical trials and experience also demonstrated high 
efficacy and low toxicity in immunocompetent or immuno-
compromised adult and pediatric patients with leishmaniasis 
[81–87]. The higher dose of LAmB, of ≥5 mg/kg/day, for the 
treatment of mucormycosis, compared with that for invasive 
pulmonary aspergillosis at 3  mg/kg/day, is pharmacodynami-
cally compatible with the higher MICs of the Mucorales, versus 
those of Aspergillus species [88].

There are 5 larger, randomized clinical trials that have been 
conducted to assess the efficacy of LAmB against documented 
proven or probable invasive fungal diseases (Table 2) [39–43].

Induction therapy with LAmB at 3 mg/kg/day achieved bet-
ter response rates and survival than DAmB (0.7 mg/kg/day) 
and was better tolerated in a randomized, double-blind, mul-
ticenter trial in 81 patients with AIDS and disseminated histo-
plasmosis [43]. In another study in patients with AIDS, LAmB 
was compared with DAmB for the treatment of acute cryp-
tococcal meningoencephalitis in a multicenter, double-blind 
study. Patients were randomized (1:1:1) to receive DAmB at 
0.7  mg/kg/day (n  =  87), LAmB at 3  mg/kg/day (n  =  86), or 
LAmB at 6  mg/kg/day (n  =  94). IRRs were less frequent in 
patients receiving LAmB, and fewer patients receiving LAmB 
at 3 mg/kg/day developed nephrotoxicity. Treatment efficacy 
and overall mortality at 10 weeks were similar among the 3 
treatment cohorts [42].

A double-blind, randomized, multicenter, non-inferior-
ity study compared micafungin (100  mg/day) with LAmB 
(3 mg/kg/day) as the first-line treatment of candidemia and 
invasive candidiasis in 531 patients. Both treatments were 
equally effective, and the results were the basis for regulatory 
approval for the first-line treatment of invasive candidiasis 
with LAmB in countries of the European Union. IRR rates 
and increases in serum creatinine were lower with mica-
fungin, but there was no significant difference in the rate of 
study participants that discontinued the study drug prema-
turely due to AEs [41].
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A randomized, multicenter trial coordinated by the European 
Organisation for Research and Treatment of Cancer (EORTC) 
compared the efficacy of 2 doses of LAmB for the treatment of 
proven or probable invasive aspergillosis in neutropenic patients. 
A  total of 120 patients were randomized to receive either 1 or 
4 mg/kg/day of LAmB; 87 patients were available for evaluation. 
The median durations of treatment in the cohorts were 18 and 
19 days, respectively. Renal toxicity occurred in 1/41 patients (2%) 
receiving 1 mg/kg/day and in 5/46 patients (11%) treated with 
4  mg/kg/day; only 1 patient’s treatment (4  mg/kg/day cohort) 
was permanently discontinued. Overall, LAmB was effective in 
50–60% of patients [39]. Finally, in a double-blind, comparative 
trial, which had a similar study design as the pivotal Phase III trial 
comparing voriconazole to DAmB [89], patients with proven or 
probable invasive mold infection were randomized to receive 
LAmB at either 3 or 10 mg/kg/day for 14 days, followed by 3 mg/
kg/day. The primary endpoint of a complete or partial response 
at the end of the study drug treatment was favorable. Of the 201 
patients with confirmed invasive mold infections, 107 received 
the 3  mg/kg/day dose and 94 received 10  mg/kg/day. Invasive 
aspergillosis accounted for 97% of the cases. Hematological 
malignancies were present in 93% of patients, and 73% of patients 
were neutropenic at baseline. A favorable response was achieved 
in 50% and 46% of patients in the 3 and 10 mg/kg groups, respec-
tively (difference 4%, 95% confidence interval [CI] -10% to 18%; 
P > .05); the respective survival rates at 12 weeks were 72% and 
59% (difference 13%, 95% CI -0.2% to 26%; P > .05). Significantly 
higher rates of nephrotoxicity and hypokalemia were seen in the 
high-dose group (10 mg/kg/day) [40]. Thus, although a dose of 
3 mg/kg/day of LAmB appeared to have a similar efficacy in the 
primary treatment of invasive aspergillosis as voriconazole, a 
dose escalation to 10 mg/kg/day for 14 days was more toxic, but 
no more effective. Based on the data in this trial, the first-line 
treatment of invasive aspergillosis was included in the label of the 
compound in the European Union, at a dose of 3 mg/kg/day.

Treatment of Leishmaniasis

Visceral leishmaniasis (kala-azar) is a debilitating and 
life-threatening infection of the monocyte-macrophage system. 
Building upon the PK properties of LAmB to distribute widely 
into tissue macrophages (particularly of the liver and spleen) 
and the previously documented safety and tolerability of high 
dosages [2, 23, 33, 35], Sundar and colleagues, in a randomized, 
clinical trial, successfully treated visceral leishmaniasis with a 
single dose of LAmB at 10 mg/kg IV, versus DAmB at 1 mg/
kg IV, administered every other day for 29 days [90]. The study 
demonstrated similar cure rates of 95.7% (95% CI 93.4–97.9) 
with LAmB and 96.3% (95% CI 92.6–99.9) with DAmB.

Optimizing Treatment of Cryptococcal Meningoencephalitis

Early, open, non-comparative [75] and randomized, compara-
tive [76] clinical studies in a limited numbers of patients with 

AIDS have demonstrated the efficacy of single-agent treatment 
with LAmB at 3 and 4  mg/kg/day, respectively, against cryp-
tococcal meningoencephalitis. In a multicenter, double-blind, 
randomized clinical trial in 267 patients receiving either DAmB 
at 0.7  mg/kg/day, LAmB at 3  mg/kg/day, or LAmB at 6  mg/
kg/day, treatment efficacy and overall mortality were similar. 
IRRs were less frequent in patients receiving LAmB, and fewer 
patients receiving LAmB at 3 mg/kg/day developed nephrotox-
icity [42]. Of interest, the pharmacodynamic bridging of data 
generated in a murine model of cryptococcal meningoenceph-
alitis, assessing dose regimens of LAmB alone or in combina-
tion with flucytosine, suggested that a clinical dosage of LAmB 
at 3 mg/kg/day resulted in submaximal antifungal efficacy. By 
contrast, regimens of LAmB at 6 mg/kg/day alone and of LAmB 
at 3  mg/kg/day plus flucytosine at 50 or 100  mg/kg/day all 
resulted in near-maximal antifungal activity [91].

More recent experimental work on short courses of LAmB 
induction therapy (ie, administration for less than the usual  
2 weeks) in murine and rabbit models of cryptococcal meningo
encephalitis revealed that, in mice, the pharmacodynamics of a 
single dose of 20 mg/kg were the same as of the 20 mg/kg/day 
dose administered for 2 weeks, suggesting that abbreviating the 
induction regimens of LAmB could be a possible therapeutic 
approach [92]. Indeed, in a Phase II, non-inferiority trial con-
ducted in sub-Saharan Africa in adults with AIDS-associated 
cryptococcal meningoencephalitis who were randomized to 
LAmB at 10 mg/kg on Day 1 (single dose), LAmB at 10 mg/kg 
on Day 1 and 5 mg/kg on Day 3 (2 doses), LAmB at 10 mg/kg 
on Day 1 and 5 mg/kg on Days 3 and 7 (3 doses), or standard 
14-day LAmB at 3 mg/kg/day (control), given with fluconazole 
at 1200 mg/day for 14 days, the mean rates of clearance of cere-
brospinal fluid cryptococcal infection (early fungicidal activity) 
in all the short-course arms were non-inferior to the control 
at the predefined non-inferiority margin [93]. Induction based 
on short-course LAmB is currently being investigated in an 
open-label, Phase III, randomized, non-inferiority trial. Here, 
induction therapy with a single dose of LAmB (10  mg/kg), 
given with 14 days of fluconazole (1200 mg/day) plus flucyto-
sine (100  mg/kg/day), was compared with the current World 
Health Organization–recommended treatment regimen of 
7 days of amphotericin B deoxycholate (1 mg/kg/day) plus flu-
cytosine (100  mg/kg/day), followed by 7  days of fluconazole 
(1200 mg/day) [94].

Exploration of Combination Therapy of Invasive Fungal Diseases in the 
Salvage Setting

Combination therapy of LAmB, predominantly with caspo-
fungin as the second agent, has also been explored, particularly 
as an option to improve the poor outcome of invasive asper-
gillosis. In small, retrospective cohort studies including ≤30 
patients with hematological malignancies, overall response 
rates in the salvage settings of possible, probable, and proven 
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invasive aspergillosis were between 42% [95] and 60% [96]. 
In another observational study in patients with hematological 
malignancies that included mostly (81%) cases with probable 
and proven invasive aspergillosis, the overall response rate in 
the 84 patients who received the combination was 73% [97]. 
Data from randomized trials are limited: in an open pilot 
study, 30 patients with proven or probable invasive aspergillo-
sis received either LAmB at the standard dosage (3 mg/kg/day) 
plus caspofungin at the standard dosage (50 mg/day) or mono-
therapy with high-dose LAmB (10 mg/kg/day). At the end of 
treatment, there were significantly more partial or complete 
responses (P = .028) in the combination group (10/15 patients; 
67%) compared with the high-dose monotherapy group (4/15 
patients; 27%). Survival rates at 12 weeks after inclusion were 
100% and 80%, respectively [98]. The safety and PK of the 
combination of LAmB and caspofungin were investigated in a 
risk-stratified, randomized, multicenter, Phase II clinical trial 
in 55 adult allogeneic HSCT recipients with granulocytopenia 
and refractory fever. The patients received either caspofungin 
(50 mg/day; Day 1, 70 mg), LAmB (3 mg/kg/day), or a com-
bination of both until defervescence and granulocyte recovery. 
All 3 regimens were well tolerated. Premature study drug dis-
continuations due to grade 3/4 AEs occurred in 1/18, 2/20, and 
0/17 patients, respectively. AEs not leading to study drug dis-
continuations were frequent, but similar across cohorts, except 
for a higher frequency of hypokalemia with the combination 
therapy (P  <  .05). Drug exposures were similar for patients 
receiving combination therapy and those randomized to mono-
therapy. There was no apparent difference in the occurrence of 
proven/probable invasive fungal diseases and survival through 
Day 14 after the end of therapy. Thus, combination therapy in 
immunocompromised, allogeneic HSCT recipients was as safe 
as monotherapy and had a similar plasma PK, lending support 
for further investigations of the combination in patients with 
invasive fungal diseases [99].

EMPIRICAL THERAPY IN PERSISTENTLY 
NEUTROPENIC PATIENTS

LAmB has been studied extensively as an empirical, antifungal 
therapy in persistently febrile neutropenic patients. The com-
bined analysis of 2 parallel, prospective, open-label, random-
ized, multicenter comparisons of LAmB (1 or 3 mg/kg/day) and 
DAmB (1 mg/kg/day) provided evidence for at least equivalent 
efficacy, but significantly fewer drug-related AEs with LAmB 
(Table 2) [38]. A third large, randomized, double-blind, multi
center comparison of LAmB (3.0  mg/kg/day) with DAmB 
(0.6 mg/kg/day) showed similar composite rates of successful 
treatment, but fewer proven breakthrough fungal infections 
among patients treated with LAmB (11 patients [3.2%] vs 27 
patients [7.8%]; P  =  .009). IRRs and nephrotoxicity occurred 
significantly less often among patients treated with LAmB 
[44]. In another randomized, double-blind, multicenter study, 

similar efficacy but better tolerability of LAmB (3 or 5 mg/kg/
day) was demonstrated in comparison to AmB lipid complex 
(5 mg/kg/day) [100]. Subsequently conducted large-scale clini-
cal trials with new antifungal compounds, such as voriconazole 
and caspofungin, have confirmed the efficacy and clinical 
usefulness of LAmB in this setting [48, 49]. Based on these 
well-designed and carefully conducted clinical trials, LAmB is 
approved by both the FDA and the European Medicines Agency 
for empirical antifungal therapy for presumed fungal infections 
in febrile, neutropenic patients.

ANTIFUNGAL PROPHYLAXIS IN HIGH-RISK PATIENT 
POPULATIONS

Randomized Trials of Antifungal Prophylaxis in Hematological Patients

There are 2 completed randomized, double-blind, placebo-con-
trolled studies of LAmB (1  mg/kg/day and 2  mg/kg 3 times 
weekly) as a prophylaxis against invasive fungal diseases in 
patients undergoing chemotherapy or bone marrow transplan-
tation for hematological malignancies. In both studies, there 
was no evidence for a reduction in the incidence of proven fun-
gal infections and no difference in overall survival [101, 102]. 
However, in a large, randomized, open-label, single-center,  
placebo-controlled trial, low-dose LAmB (50  mg every other 
day) led to a significant reduction in invasive fungal diseases, 
from 35.1% to 6.7% (P = .001), in patients with hematological 
malignancies and prolonged neutropenia (>10 days) following 
intensive chemotherapy, with a low rate (2.8%) of discontin-
uations due to treatment-related AEs [45]. In a prospective, 
open-label, randomized comparison with the combination of 
fluconazole plus itraconazole, LAmB (3 mg/kg 3 times weekly) 
had similar efficacy when administered as an antifungal pro-
phylaxis during induction chemotherapy for patients with acute 
myeloid leukemia (AML) and myelodysplastic syndrome, but 
was associated with higher rates of increased serum bilirubin 
and creatinine levels [103]. In a non-comparative cohort study 
in 51 pediatric and adolescent allogeneic HSCT recipients who 
received LAmB at 3 mg/kg/day during the first 100 days, the 
compound was reportedly well tolerated and no invasive fungal 
diseases occurred [104].

Reduced-frequency Dosing Schemes for Antifungal Prophylaxis in 
Hematological Patients

A different approach to prophylaxis is the administration of 
higher dosages of LAmB in extended intervals to achieve the 
same cumulative dose. A recent study included 48 adults receiv-
ing induction chemotherapy for AML, who received a dose 
of 15 mg/kg on Day 1, which was repeated in 5 patients after 
15  days of persistent neutropenia. Proven invasive fungal dis-
ease was diagnosed in 4 patients (8.3%). Hypokalemia grade 
3 was reported in 6 patients (12.5%); no other grade 3/4 AEs 
were reported. Mild, infusion-related AEs were seen in 6/53 
(11.3%) total infusions, which resulted in permanent drug 
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discontinuation in 1 patient [105]. In an open-label, multicenter, 
prospective pilot study, 29 adult patients receiving chemother-
apy for acute leukemia (AL) or myeloablative, allogeneic HSCT 
received weekly 10 mg/kg infusions of LAmB (4 weeks for AL and 
8 weeks for HSCT). There were no discontinuations of treatment 
due to drug-related AEs in patients with AL, but 6 HSCT patients 
had treatment-limiting AEs, potentially due to the high vulner-
ability of HSCT patients to treatment-related AEs. Enrollment 
was discontinued in the HSCT group, as recommended by the 
independent data review committee, in accordance with the 
study protocol [106]. Similarly, the once-weekly administration 
of 7.5 mg/kg of LAmB in 21 adult patients receiving high-dose 
prednisone (2  mg/kg/day) for acute graft-versus-host disease 
therapy after reduced-intensity, conditioning, allogeneic HSCT 
was associated with a 33% discontinuation rate owing to study 
drug–related AEs [107]. The safety and feasibility of an inter-
mittent high dose (group A; 10  mg/kg on Day 1, 5  mg/kg on 
Days 3 and 6) and a daily standard dose (group B; 3 mg/kg/day 
for 14 days) of LAmB for the empirical treatment of persistent 
febrile neutropenia were explored in an open, randomized pilot 
study including 30 patients. Infusion-related adverse drug events 
occurred more frequently in group A, and creatinine levels were 
similar in the 2 regimens; hypokalemia tended to be less severe in 
group A. No patient discontinued the study drug due to toxicity. 
Composite success was identical for each regimen; 3/15 patients 
in group B and none in group A developed invasive fungal dis-
eases. The results of this pilot study suggest that a short, inter-
mittent, high-dose course of 10/5/5 mg/kg on Days 1, 3, and 6 
may be as safe and effective as a standard 14-day course of 3 mg/
kg/day [108]. Finally, a large, double-blind, placebo-controlled 
trial in patients undergoing remission-induction chemotherapy 
for newly diagnosed acute lymphoblastic leukemia investigated 
the efficacy of prophylactic LAmB given twice weekly at a dose 
of 5 mg/kg [47]. Out of 228 patients receiving LAmB, 18 (7.9%) 
experienced a proven/probable invasive fungal disease, com-
pared with 13/111 patients (11.7%) receiving the placebo, which 
was statistically not significant. The most common drug-related 
AEs were hypokalemia and increased creatinine, in 35.0% and 
9.3% of the patients receiving LAmB, respectively (Table 2).

In 14 pediatric allogeneic HSCT recipients, LAmB, given once 
weekly at 10 mg/kg, was well tolerated and resulted in measur-
able AmB plasma concentrations 7 days post-dose, suggesting 
that once-weekly dosing may provide useful protection against 
fungal infections in patients who tolerate this form of admin-
istration [109]. In a prospective cohort study, the safety and 
efficacy of prophylactic LAmB at 2.5 mg/kg twice weekly were 
investigated in 46 pediatric patients at high risk for developing 
invasive fungal diseases. LAmB was discontinued in 4 patients 
because of acute allergic reactions. Median values for creatinine 
and liver enzymes at the end of treatment did not differ sig-
nificantly from those at baseline. Hypokalemia (<3.0 mmol/L) 
occurred with 13.5% of the prophylactic episodes, but was 

usually mild and always reversible. No proven/probable inva-
sive fungal disease occurred in patients receiving LAmB pro-
phylaxis [110]. In very low birth-weight, premature infants, the 
once-weekly administration of LAmB at 5 mg/kg/day has been 
studied as Candida prophylaxis in a prospective, randomized, 
open-label, placebo-controlled pilot study of 40 patients. There 
was 1 patient in the placebo cohort who developed candidiasis, 
and there were no differences between groups in the incidences 
of AEs in this population or in the mortality rates [57].

Data on Antifungal Prophylaxis in Liver Transplant Recipients

Liver transplantation may be associated with a high risk of 
invasive fungal diseases [111]. An early, randomized, placebo-
controlled study of LAmB in liver transplant recipients demon-
strated a statistically significant decrease in the incidence of 
proven fungal infections at 30 days [112]. Similarly, in a prospec-
tive, historically controlled, cohort study in high-risk liver trans-
plant recipients, such as those with acute liver failure, assisted 
ventilation >7 days, re-transplantation, re-laparotomy, antibac-
terial therapy >14 days, transfusion requirements >20 units of 
red blood cells, and/or biliary leakage, prophylaxis with LAmB 
(1 mg/kg/day for 7–10 days) was well tolerated and associated 
with decreased infection rates and improved survival [113]. In a 
further study that aimed to assess the effects of 14 days of anti-
fungal prophylaxis in reducing proven, invasive fungal diseases, 
eligible subjects were randomized to LAmB (2  mg/kg/day) 
or fluconazole (400  mg/day) and were followed for 100  days 
post-transplantation. The study was designed to enroll 300 sub-
jects, but was closed early due to insufficient enrollment. A total 
of 71 subjects were enrolled and randomized, and two-thirds 
of subjects completed 14 days of study therapy. There were 10 
subjects who developed proven or probable invasive fungal 
diseases with Candida species (n  =  9) and Cryptococcus neo-
formans (n = 1); rates were similar in the 2 treatment arms and 
were lower than previously reported for subjects not receiving 
prophylaxis [114]. Finally, the safety and tolerability of high-
dose LAmB (10  mg/kg weekly) for antifungal prophylaxis in 
liver transplantation were assessed in a prospective, Phase II, 
non-comparative trial. LAmB was administered weekly until 
hospital discharge, for a minimum of 2 weeks, with a follow-up 
of 180 days. Overall, 66/76 enrolled patients (86.8%) completed 
the prophylaxis and 10 discontinued the study protocol (6 for 
infusion-related AEs, 4 for suspected invasive fungal disease). 
The diagnosis of invasive candidiasis was confirmed in only 
2/4 patients with suspected invasive fungal diseases. Thus, the 
administration of high-dose, weekly LAmB may be a safe pro-
phylactic strategy for high-risk liver transplant recipients [115].

INHALATIONAL PROPHYLAXIS WITH LIPOSOMAL 
AMPHOTERICIN B

Aerosolized delivery is an attractive option for the prevention 
of pulmonary mold infections, promising minimal systemic 
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exposure and high local drug exposure, which are important, 
as the effects of AmB in the lungs are dose and concentration 
dependent [24, 116]. Preclinical in vitro and animal data pro-
vide compelling evidence for the accumulation of LAmB within 
the lung epithelial lining fluid and pulmonary alveolar macro-
phages for prolonged periods of time after both the systemic and 
inhalational administration of LAmB [117–119]. Furthermore, 
animal data have demonstrated proof of principle for the pre-
ventive and therapeutic efficacy of inhalational administration 
of the compound [118, 120–123].

The clinical use of aerosolized LAmB is investigational and is 
not licensed for this usage by any major regulatory agency. At 
present, clinical data on the use of inhalational LAmB are lim-
ited. PK investigations on the intrapulmonary disposition of the 
compound in the lung tissue after inhalational administration 
have demonstrated therapeutic drug exposure in the epithelial 
lining fluid for prolonged periods of time [124].

In an observational study performed in 2 centers, 104 con-
secutive lung transplant recipients received inhalational pro-
phylaxis with LAmB (25 mg, 3 times weekly, starting from Day 
1 post-transplant to Day +60; 25 mg once weekly from Day +60 
to Day +180; and once every 2 weeks thereafter). Outcomes 
were compared with 49 historical controls who had received 
inhalational prophylaxis with DAmB. After a minimum of 
12 months of follow-up, Aspergillus infections were observed in 
7.7% of those receiving LAmB, as compared to 10.2% in the his-
torical control cohort. The rate of discontinuations due to AEs 
were similar in both cohorts (2.9% vs 4.1%, respectively) [124].

In a randomized, placebo-controlled trial of patients with 
hematological disease with expected neutropenia for ≥10 days, 
patients were randomized to receive inhaled LAmB or a pla-
cebo inhalation twice weekly, until neutrophil counts increased 
to >300 cells/mm3. In subsequent neutropenic episodes, the 
assigned treatment was restarted. The primary endpoint was 
the occurrence of invasive pulmonary aspergillosis, according 
to the European Organization for Research and Treatment of 
Cancer/Invasive Fungal Infections Cooperative Group and the 
National Institute of Allergy and Infectious Diseases Mycoses 
Study Group definitions. A  total of 271 patients were studied 
during 407 neutropenic episodes. According to the intent-to-
treat analysis, 18/132 patients in the placebo group developed 
invasive pulmonary aspergillosis, versus 6/139 patients in the 
LAmB group (odds ratio 0.26, 95% CI 0.09–0.72; P = .005; Table 
2). A  detailed safety analysis showed similar proportions of 
patients with >20% post-nebulization declines in forced expira-
tory volume in 1 second or forced vital capacity. Coughing was 
reported significantly more often in LAmB patients (P < .0001). 
No differences were observed when baseline and post-nebuli-
zation serum levels of renal function and hepatic enzymes were 
compared [46]. The positive effect of LAmB inhalation as the 
standard prophylaxis for the prevention of invasive aspergillosis 
in patients with AML was later confirmed in an observational 

study [125]. These studies show that the prophylactic inhalation 
of LAmB is feasible and may significantly reduce the incidence 
of invasive pulmonary aspergillosis in patients at high risk. 
In the context of an increasing prevalence of azole-resistant 
A. fumigatus in parts of the world, future studies are needed to 
confirm these promising data.

SUMMARY AND PROSPECTS FOR FUTURE 
DEVELOPMENT

AmB is the only systemic antifungal polyene available for the 
prevention and treatment of invasive fungal diseases. AmB has 
a broad spectrum of antifungal activity and a fungicidal mode 
of action. AmB is not metabolized by the liver, is devoid of rel-
evant drug-drug interactions, and is only slowly eliminated, 
with tissue disposition accounting for most of its distribution. 
Due to these properties, AmB is an essential part of the antifun-
gal armamentarium, particularly for severely ill patients with 
life-threatening invasive fungal diseases and complex under-
lying diseases and in the setting of emerging triazole and echi-
nocandin resistance. However, the clinical utility of AmB has 
been limited by the high frequency of IRRs and dose-limiting 
nephrotoxicity of the formulation with deoxycholate.

LAmB has been in clinical use for more than 2 decades. The 
disposition, safety, and antifungal efficacy of this formulation 
have been studied in an array of clinically relevant animal mod-
els of invasive fungal diseases. The cumulative preclinical data 
demonstrate that, in comparison to DAmB, LAmB can be given 
at much higher doses, resulting in enhanced plasma exposure 
and increased drug disposition in the lungs and the central 
nervous system, equal or improved antifungal efficacy, reduced 
nephrotoxicity, and the absence of relevant new toxicities.

Consistent with these preclinical data, results of clinical trials 
document the improved safety and tolerability profile of LAmB, 
compared with DAmB. In 2 large, randomized, clinical trials in 
cancer patients with fever and neutropenia at risk for invasive 
fungal diseases, fewer IRRs, less nephrotoxicity, and fewer drug 
discontinuations due to toxicity were documented in patients 
receiving LAmB. Significantly fewer IRRs and less nephrotox-
icity have also been observed in a large, randomized compari-
son of LAmB with AmB lipid complex, supporting the superior 
safety profile of LAmB among the currently available AmB 
formulations. In addition, data from prospective, random-
ized, clinical trials in patients with candidemia, cryptococcal 
meningoencephalitis, and invasive aspergillosis, which together 
account for the vast majority of human invasive opportunistic 
fungal diseases, suggest that LAmB provides better antifungal 
efficacy against invasive aspergillosis, compared with DAmB, 
and comparable efficacy against invasive aspergillosis, candi-
demia, and cryptococcal meningoencephalitis, compared with 
other antifungal therapies approved for these indications.

Given the limitations of DAmB, there are few remaining 
indications for its use. These include the treatment of neonatal 
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Figure 2.  Areas for further clinical investigations of liposomal amphotericin B.

candidiasis, as well as its use in developing countries for the 
treatment of mucormycosis, other mold infections, and cryp-
tococcal meningitis. Thus, LAmB has become the polyene of 
choice in most situations where treatment with AmB is clini-
cally indicated. Dosages approved by the FDA and/or in mem-
ber states of the European Medicines Agency for adults and 
children 1 month and older range from 1 to 3 mg/kg/day for 
empirical antifungal therapy in febrile neutropenic patients and 
from 3 to 6 mg/kg/day for therapy of invasive diseases, to be 
administered over 2 hours. Treatment according to the label 
should be started with the full target dose under clinical moni-
toring; premedication is only needed in patients with prior IRRs. 
In patients with renal dysfunction, dose reduction is generally 
not required unless there is evidence of relevant, drug-induced 
nephrotoxicity during treatment. Case reports have confirmed 
that LAmB is not significantly removed in patients undergo-
ing dialysis [15]. Enhanced pulmonary accumulation has been 
reported in a patient with acute liver failure; however, the clini-
cal significance of such an accumulation is unclear [19]. Formal 
and population-based PK studies indicate that the disposition 
of LAmB in pediatric patients beyond the neonatal period is not 
substantially different from that in adults, and that weight is a 
covariate that determines the clearance and volume of distribu-
tion [12–14]. Although PK data in this population are lacking, 
a considerable number of neonates, including very low birth-
weight infants (<1500 g), have safely received LAmB at doses of 
up to 7 mg/kg over prolonged periods of time [55, 56, 58, 126].

Important areas of uncertainty remain that warrant fur-
ther research of LAmB. These include, but are not limited to, 
approaches to: (1) optimize the methodology, standardization, 
and validation of AmB susceptibility testing across different 

fungal species; (2) develop a better understanding of the PK 
variability in patients and the PK and PD relationships in com-
mon and rare fungal diseases, with the aim of treatment opti-
mization; (3) characterize the population PK of the compound 
in targeted populations of critically ill patients and neonates; 
(4) understand the PK and PD relationships in neonatal inva-
sive candidiasis; (5) develop novel dosing schedules that build 
upon the long residence time of LAmB in the blood and tissues 
(based upon a solid, preclinical, experimental PK/PD founda-
tion); and (6) investigate the PK and PD of inhalational appli-
cations as antifungal prophylaxis and therapy in patients with 
chronic pulmonary fungal diseases and following lung trans-
plantation (Figure 2). The research agenda listed here reflects 
the perceived importance and potential of LAmB in the over-
all control of invasive fungal diseases, which continue to be a 
challenge, due to increasing numbers of susceptible patients, 
emerging resistance to other antifungal agents, and the limited 
availability of effective antifungal compounds. Combining pre-
clinical and clinical data and using the full power of quantitative 
systems of pharmacology, we will be able to design optimized 
regimens. These regimens can subsequently be tested in pro-
spectively validated studies, with the ultimate goal of further 
improving the treatment of patients with life-threatening, inva-
sive, fungal diseases.
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