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Editor’s Note

The power of big science, large consortia, and
machine learning to create breakthroughs in
disease management has been most promi-
There have been tremendous advances during the last
decade in methods for large-scale, high-throughput data
generation and in novel computational approaches to
analyze these datasets. These advances have had a
profound impact on biomedical research and clinical
medicine. The field of genomics is rapidly developing
toward single-cell analysis, and major advances in
proteomics and metabolomics have been made in recent
years. The developments on wearables and electronic
health records are poised to change clinical trial design.
This rise of ‘big data’ holds the promise to transform not
only research progress, but also clinical decision making
towards precision medicine. To have a true impact, it
requires integrative and multi-disciplinary approaches that
blend experimental, clinical and computational expertise
across multiple institutions. Cancer research has been at
the forefront of the progress in such large-scale initiatives,
so-called ‘big science,’ with an emphasis on precision
medicine, and various other areas are quickly catching up.
Nephrology is arguably lagging behind, and hence these
are exciting times to start (or redirect) a research career to
leverage these developments in nephrology. In this review,
we summarize advances in big data generation,
computational analysis, and big science initiatives, with a
special focus on applications to nephrology.
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n the past decade, tremendous progress has been made
I in technological developments in the areas of large-scale
molecular data generation and computational analysis.

These advancements have led to an era of “big data,” which
in turn is fueling “precision medicine.” This approach already
has improved diagnosis, risk assessment, and treatment of
multiple diseases, most notably in oncology, an area in which
such information already is used in clinical practice.1 This era
offers the opportunity to develop novel diagnostic and thera-
peutic tools for kidney disease patients, as patients with the
same diagnosis following biopsy often present different symp-
toms and tremendous variability in disease progression and
response to therapy. They therefore represent a perfect patient
population for application of precision medicine.2

Nephrology lags behind other areas in big data analyses,
for various reasons. First, kidney damage is highly multifac-
torial, has complex and overlapping clinical phenotypes and
morphologies, is often diagnosed late, and progresses
chronically. Second, although biopsies are routinely taken, the
amount of material and the conservation conditions (e.g.,
paraffin-embedding) limit the molecular profiling that can be
done. Also, the kidney is an intricate organ with multiple
specialized cell populations that have complex physiology.
nently applied to the field of oncology. The
same tools can be applied to nephrology, and
the Editors believe these will be important for
our readership. Thus, over the next several
months, Kidney International will feature in-
depth reviews on big science, artificial intelli-
gence, and machine learning. This review, the
first in this series, provides a broad overview of
the field to introduce our readership to the
concepts and frameworks of big science in
nephrology.
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Thus, extrapolation of bulk omics data from kidney tissue to
specific (patho-)physiological processes is difficult. Third, the
case of big data arguably is clearer in other areas, such as
oncology, for which it has already proven valuable in the clinic
and a relatively established technology (genetic sequencing)
profiles the (often few) driving events of the disease. In
contrast, big data efforts for kidney diseases such as proteome-
driven urinary biomarkers have hardly changed clinical
practice so far. Finally, and largely because of the reasons just
cited, kidney disease does not get the same level of funding as
other pathologies, especially in proportion to its prevalence.
The level of funding is related to the relatively low awareness
of the public and funding agencies, and the limited number
of public–private partnerships.3 Given that all these reasons
are intertwined and affect one another, we believe that a
successful big data project can break this vicious cycle.

In this review, we discuss various methods and strate-
gies that involve generation and computational mining of
big data that might transform diagnosis, prognosis, and
treatment in nephrology (Figure 1). We also present the
related concept of “big science,” the joint effort of large
consortia to generate big data to help reach a common
goal, and discuss how this can have a profound impact in
nephrology.

ADVANCES IN DATA GENERATION
Recent technological advances allow us to generate tremen-
dous amounts of data, in particular “omics” data.2,4–6 We
summarize some areas that we think might be of particular
interest for nephrology (Table 17–32; Figure 2).

Genomics
Multiple technologies can measure the genome and its al-
terations. First applications in nephrology consisted of
Figure 1 | Overview of data generation and analysis for nephrology
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hypothesis-driven candidate gene studies, such as angio-
tensinogen, although results were not replicable.33 The
development of relatively inexpensive genotype arrays and the
availability of samples in biobanks allowed performance of
genome-wide association studies in many patients, providing
important insights into risk factors and the pathogenesis of
multiple kidney diseases.33–36 Technological developments
have enabled sequencing of the protein-coding regions
(exons), roughly 1% of the genome (whole-exome
sequencing [WES]), and even whole-genome sequencing
(WGS).

WGS and WES are comprehensive technologies that
inform us about substitutions, deletions, insertions, duplica-
tions, copy number changes, inversions, and translocations,
providing a fairly complete view of the genome and its al-
terations. Currently, the information provided by WGS has
outpaced our ability to interpret genetic variation, which may
explain why genome sequencing is not widely used in clinical
medicine in general and nephrology in particular. In addition,
genetic alterations, especially those not in the coding regions,
are hard to characterize functionally. Hence, genome
sequencing typically provides only limited insight into func-
tioning and disease.

Prenatal testing, diagnosis of Mendelian disorders, and
cancer are the areas in which WGS and WES strategies have
been introduced effectively in clinical practice.37 Pediatric
nephrology, which often confronts patients and practitioners
with trying to understand the genetic causes of end-stage
renal disease, probably has the most applications within
nephrology for WGS and WES.38 However, there are also
compelling reasons for a thorough genetic workup in adult
nephrology,39 as inherited kidney disease accounts for
approximately 10% of end-stage renal disease in adults. For
.
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Table 1 | Selected technologies to generate large datasets with relevance for nephrology

Name Definition
Examples in

nephrology (reference)]

Genome-wide association
studies (GWAS)

Observational study of genome-wide set of genetic variants in different
individuals; aims to see if any variant is associated with a trait, such as disease

7,8

Whole-exome
sequencing (WES)

Sequencing of the protein coding DNA (exons) (roughly 1% of the human
genome)

9

Whole-genome sequencing (WGS) Sequencing of the entire DNA —

Genetic perturbation screening Forward screening: maps specific genetic perturbations to a phenotype of
interest. Genetic perturbations are mostly performed by large small,
interfering RNA or short hairpin RNA libraries or by CRISPR/Cas9 combined
with gRNA libraries.

10

Microarray Multiplex lab—on a chip, can be used for DNA or protein, for example. DNA-
microarrays are a collection of microscopic DNA spots (probes) attached to a
solid surface that hybridize a cDNA or cRNA. Hybridization is usually detected
with a fluorophore or chemiluminescent substrate.

11

12

13

Bulk RNA-seq Pooled RNA-seq from a bulk of cells; is obtained from synthesis of DNA from
RNA, and subsequent DNA sequencing

14

Single cell-RNA-seq Sequencing of RNA from single cells, mostly performed from sorted single cells
or with Microfluidics and barcoding of single cells (e.g., DropSeq, 10x
chromium).

15,16,17

Targeted proteomics A defined set of proteins (and/or their modification) is quantified in kidney
tissue or body fluids using mass spectrometry, antibodies, or aptamers. It can
be applied to tissues and biofluids, and to very small sample amounts.

18–21

Untargeted proteomics In a discovery approach, proteins (and/or their modification) are identified and
quantified using mass spectrometry based on stochastic frequency. It can be
applied to tissues and biofluids but requires relatively large amount of
material.

18,22–24

MALDI-IMS Matrix-assisted laser desorption ionization (MALDI) - imaging mass
spectrometry (IMS) allows us to obtain from a sample, typically a tissue,
spatial information on the distribution of multiple molecules.

25

Untargeted metabolomics Identification and quantification of metabolites using nuclear magnetic
resonance or mass spectrometry

26

Targeted metabolomics Targeted, mass spectrometry based quantification of metabolites 27,28

Imaging Process of forming images, such as electron, light, and immunofluorescence
microscopy, ultrasound, computer tomography, magnetic resonance
imaging

29

High-throughput screening Test compounds at large scale and study their effect on phenotype to screen
potential treatment candidates.

30

Wearables An item that can be worn and tracks information such as heart rate, physical
activity, blood pressure

Reviewed in31

Electronic health records Longitudinal electronic collection of health information of patients or cohorts 32

CRISPR, clustered regularly interspaced short palindromic repeats.
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example, 2 common genetic variants of the APOL1 gene have
been attributed to the highly increased end-stage renal disease
risk in individuals of sub-Saharan African descent.40,41

Transcriptomics
The development of microarrays, and later RNA sequencing
(RNA-seq) has made transcriptomics (the measurement of all
RNA transcripts42) widely accessible.43,44 RNA-seq is
currently the leading technology that allows, in contrast to
microarrays, coverage, in principle, of the whole genome of
any organism. This rapid development, along with decreasing
costs of sequencing, has led to an immense growth of data
and paved the way for profound discoveries in bio-
medicine.45

The high level of coverage (transcriptome-wide), at rela-
tively low cost and moderate complexity (with well-
established workflows for data generation and analysis), is
the major advantage of transcriptomics technologies. One
1328
major weakness is that not every mRNA leads to expression of
the corresponding protein; thus, measured mRNA expression
might not correspond to functional effect. However, mea-
surement of non-coding RNA can also be interpreted as a
strength, as various lines of evidence suggest that non-coding
RNA is important in homeostasis and disease.

Many studies using transcriptomics in nephrology have
improved our knowledge of disease initiation, progression,
and potential novel biomarkers and treatments too numerous
to mention in the limited space here. As a hallmark study,
Tuttle et al. and Woroniecka et al. analyzed microarrays of 95
microdissected (tubular and glomerular fraction) human
kidney samples.12,46 They observed lower expression of key
enzymes and regulators of fatty acid oxidation in the tubular
fraction and demonstrated that restoring it genetically or
pharmacologically protected mice from interstitial kidney
fibrosis.11 Although clinical proof is still missing, this study
suggests that correcting fatty acid oxidation might be a
Kidney International (2019) 95, 1326–1337



Figure 2 | The most common omics technologies and
the information they provide regarding molecular processes.
scRNA, single-cell RNA; SNP, single-nucleotide polymorphism;
Transc., transcription; WES, whole-exome sequencing; WGS,
whole-genome sequencing.
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strategy to prevent kidney fibrosis and chronic kidney disease
(CKD).

Transcriptomics can be linked to genetic data in so-called
expression-quantitative trait loci, which uncover how alter-
ations on the genome affect expression of genes and thereby
provide insight on the effect of genetic variation. Recent
studies identified lysosomal beta A mannosidase (MANBA) as
a potential target in CKD47 and identified many genes
involved in nephrotic syndrome.48 Another expression-
quantitative trait loci study separating glomeruli and tubules
identified disabled-2 (DAB2), an adaptor in the transforming
growth factor (TGF)-b pathway, as a key protein in CKD.49

Single-cell transcriptomics
Techniques for high-throughput single-cell RNA sequencing
(scRNA-seq) are under rapid development (summarized in
Table 250,51), allowing us to interrogate individual cells with
unprecedented resolution.5,50,52 In addition, the emerging
field of spatial transcriptomics53,54 enables measurement of
RNA directly in tissues with spatial resolution. Plate-based
methods can offer full-length coverage.55 Other protocols
sacrifice full-length coverage to increase throughput by bar-
coding of libraries and thus multiplexing of the amplifica-
tion.56 Recently, droplet-based microfluidic platforms have
been developed that allow the encapsulation of cells together
Table 2 | Features of major single-cell RNA methods

Method Smart-seq (v1/v2) Cell-seq (v1/v2)

Cell isolation Plate-sort or C1 fluidigm (v1) Plate-sort or C1 fluidigm
UMI No Yes
Full length Yes No
cDNA amplification PCR IVT
Profiling capacity
(number of cells)

Low Low

Table is based on references.50,51

IVT, in vitro transcription; MARS-seq, massively parallel single-cell RNA sequencing; PCR, p
single-cell tagged reverse transcription; UMI, unique molecular identifier (short nucleoti
from amplified ones).
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with barcoded DNA oligonucleotides and cell lysis buffer.
These technologies enable a tremendously high throughput at
reduced cost per cell. Every scRNA-seq technology has ad-
vantages and disadvantages, including throughput, costs, and
coverage of the transcriptome.50,51

The strength of scRNA seq is clearly that it enables mea-
surement of mRNA expression in individual cells. The current
level of knowledge regarding the transcriptional landscape in
kidney homeostasis and disease is primarily derived from
profiling of whole or microdissected tissue using microarrays
or RNA-seq. These studies are important but limited, as they
describe only an average gene expression across the tremen-
dous heterogeneity of kidney cell types.

One major limitation of scRNA-seq is that no current
method allows measurement of the entire transcriptome in
individual cells. Further, the quality of the scRNA-seq data
relies heavily on various factors, including the tissue dissoci-
ation protocol. Validation is hence critical and can be ach-
ieved by such methods as immunostaining and/or spatial
transcriptomics.

Various groups have already started to use scRNA-seq
with mouse and human kidneys to identify novel cell pop-
ulations, critical cell–cell interaction pathways, and potential
therapeutic targets. Analysis of scRNA-seq data from 57,979
murine kidney cells demonstrated that Mendelian disease
genes show cell-specificity, for example, podocyte-specific
expression of various homologs of genes associated with
monogenic inheritance of proteinuria in humans.15 In
addition, the authors reported a new transitional cell type in
the collecting duct of adult mice that generates a spectrum of
cell types, and revealed that Notch signaling might be crit-
ically involved in the collecting duct cell plasticity that drives
metabolic acidosis in CKD.15 Another recent study used
scRNA-seq to characterize the mouse glomerulus, identi-
fying novel marker genes for glomerular cell types, and a
new subset of endothelial cells.16 In humans, scRNA-seq
data have been used to identify cell type–specific
markers,57 find novel segment-specific proinflammatory
responses in kidney allograft rejection58 and lupus,59 and
compare kidney organoids and kidney.60

As these pioneering studies illustrate, scRNA-seq from
kidney tissue in homeostasis and disease will help illuminate
the complex renal (patho-)physiology, identify novel cell
populations, and develop novel therapeutics.5,50,52 In
STRT MARS-seq SCRB-seq DropSeq 10x genomics In drops

C1 (fluidigm) Plate sort Microfluidics�
Yes (v2) Yes Yes Yes Yes Yes

No No No No No No
PCR IVT PCR PCR PCR IVT
Low Medium High High High High

olymerase chain reaction; SCRB-seq, single-cell RNA barcoding and sequencing; STRT,
de sequence that tags individual mRNA molecules to distinguish original molecules
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Table 3 | Selected computational concepts and nephrology-specific resources

Methods Definition Examples in nephrology (reference)

Dimensionality reduction Reduction of variables (e.g., genes) to be considered,
using methods such as PCA or t-SNE

Ubiquitous when analyzing
omics data (e.g.15)

Pathway analysis Estimation of activity of pathways from omics data; can
be seen as a “biology-driven” dimensionality reduction

Also broadly used (e.g.11,91,92)

Deep learning Subset of machine learning methods built in a
hierarchical manner to automatically select features

93

Resources Definition

Nephroseq94 (www.nephroseq.org) Integrative platform with genetic, gene expression, and clinical data
in nephrology

NephQTL48 (http://nephqtl.org/) Database of cis-eQTLs of the glomerular and tubulointerstitial tissues
of the kidney found in 187 participants in the NEPTUNE cohort

Human kidney eQTL (http://18.217.22.69/eqtl) eQTL database of microdissected healthy human kidney glomeruli
and tubuli

Mouse kidney single-cell atlas15 (http://18.217.22.69/sc) Gene expression in w70,000 individually sequenced cells from
healthy mouse kidneys

A single-cell transcriptome atlas of the mouse glomerulus16

(https://shiny.mdc-berlin.de/mgsca/)
Gene expression from w3000 single-cell transcriptomes from wild-
type mouse glomeruli

For a detailed lists of tools and resources, see, for example, reference.6

eQTL, expression-quantitative trait loci; NEPTUNE, Nephrotic Syndrome STudy Network; PCA, principal component analysis; t-SNE, t-distributed stochastic neighbor
embedding.
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addition, scRNA-seq provides information that can be used to
reanalyze bulk transcriptomic data. For example, the signa-
tures of specific cell types from scRNA-seq can be used to
estimate the contribution of those cell types from bulk RNA
samples.61 Given the currently high cost of scRNA-seq, a
hybrid approach, with a few samples profiled with scRNA-seq
and many more with bulk RNA-seq, can be a practical
strategy.5

Genome-wide genetic perturbation screens
Systematic high-throughput genetic perturbation technolo-
gies can help tremendously in illuminating gene function and
Transcriptomics

Proteomics

...

Samples

G
en

es

Statistics

Data

Signature
extraction

Prior
knowledge

Figure 3 | Computational strategies to apply statistics and machine
signatures can facilitate subsequent analyses.

1330
epigenetic regulation and identifying novel therapeutic tar-
gets. They allow us to determine whether particular genes are
responsible for a certain cellular phenotype. The most com-
mon methods are RNA interference (RNAi) and clustered
regularly interspaced short palindromic repeats (CRISPR)/
Cas9. In particular, RNAi using short hairpin RNAs allows
high-throughput repression at the transcriptional level,
thereby reducing gene expression. In contrast, CRISPR/Cas9
edits the genome to truly knockout or modify genes. Of note,
novel techniques also allow utilization of CRISPR/Cas9
outside of gene editing to activate or inhibit expression of
genes.62
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The power of these technologies is that they allow a sys-
tematic, genome-wide investigation of the function of genes.
In particular, CRISPR/Cas9-based tools have rapidly devel-
oped recently to perform genetic editing at high
throughput.63 A limitation of RNAi is that it results in only
incomplete knockdown of transcription and indicates high
off-target activity, resulting in a low signal-to-noise ratio.64 A
potential limitation of CRISPR-based screenings is that
double-strand breaks generated by the Cas9 nuclease produce
gene-independent DNA damage phenotypes and thus false
positives.65,66 Further, set up of CRIPR/Cas9 screenings is
challenging, including, for example, establishment of a re-
porter for the phenotype of interest and the culturing and
sorting of several hundred million cells.

As an example of a perturbation screen in nephrology, a
library of 80,000 short hairpin RNAs targeting roughly 16,000
human genes was used to identify genes whose suppression
improves survival of kidney epithelium in in vitro models of
oxygen and glucose deprivation.10 Pharmacologic inhibition
of NK1R, the product of the TACR1 gene, one of the hits from
Kidney International (2019) 95, 1326–1337
the screen, was protective in a mouse model of renal
ischemia.10 This example illustrates that unbiased screenings
can provide novel therapeutic candidates.

Proteomics and metabolomics
Proteomics. Mass-spectrometry (MS)-based, antibody-

based, or aptamer-based technologies are used to quantify
protein expression. Protein modifications, protein–protein, or
protein–small molecule interactions can be quantified. Data
acquired using MS are usually untargeted, meaning that sig-
nals are picked up stochastically and typically do not cover the
entire proteome. Targeted proteomics, in contrast, provide
acquisition and quantification of sets of predefined peptides
with high reliability.

Recent ultrasensitive methods can acquire proteomics
from very small, sub-biopsy samples and are useful for
investigating tissue heterogeneity and the mechanisms driving
disease. Coupling antibodies and MS via mass cytometry,67

even a single-cell resolution of dozens of proteomic markers
can be measured. Complex posttranslational modification
1331
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analyses, including that of the phosphoproteome and the
degradome, have been applied only recently to kidney68 and
will likely generate major insights.

Matrix-assisted laser desorption/ionization imaging MS
allows us to obtain spatially resolved information on proteins
and other analytes directly from tissues.25,69 Similarly, mass
cytometry can be applied to tissues.70,71 These technologies
provide a much richer profiling than standard immuno-
histochemistry methods and can have a profound impact
on understanding pathology.

Compared with transcriptomics, proteomics has 3 major
advantages. First, transcript numbers only partially explain
the abundance of proteins, particularly in very dynamic sys-
tems. Second, posttranslational modifications of proteins can
be analyzed that indicate their activation, and interactions
among proteins, or of proteins with small molecules, DNA,
and RNA, can only be measured using proteomics. Third, the
proteome also captures microenvironmental alterations that
can occur independently of the transcriptome.

Proteomics has several limitations. Despite great advances,
proteomics does not provide genome-wide coverage.
Large-scale proteomics has a bias toward high-abundance
proteins, and targeted strategies should be used to quantify
low-abundance proteins in small samples. The role of non-
coding RNAs can be assessed only using transcriptomics. The
incompleteness of acquisition, even when peptides from every
protein are observed, poses a challenge for statistical analysis.

Applications of proteomics in nephrology include analyses
of biopsies to better characterize and reclassify amyloidosis and
fibrillar glomerulopathy and obtain novel biomarkers.72–74

Proteomic methods also unraveled the identity of the
phospholipase A2 receptor (PLA2R) antigen in membranous
nephropathy.75 Proteomics has also been used for mechanistic
studies. For instance, proteomics of renal biopsies from
patients who had diabetic nephropathy revealed a change of
pyruvate kinase M2 that may lead to a mechanistic under-
standing of potential protective signatures in diabetes.76

First applications of deep proteomics include detailed char-
acterization of human and mouse podocytes77 that led to the
discovery of FARP1, a previously unrecognized podocyte-
specific protein with a potential role in proteinuric kidney
disease.77 An ongoing area of research focuses on post-
translational protein modifications in glomerular tissue. In
particular, large-scale phosphoproteomes,78 integrated with
genomic information, can be used to predict clinically rele-
vant phosphorylation sites. Although very informative,
phosphoproteome experiments typically require significant
amounts of material and are more labor intensive.

Analyses of biofluids, such as urine or serum, require
specialized high-throughput setups, owing to the challenging
nature of the samples and the high dynamic range of the
molecules, but already have yielded first signatures that might
be able to predict CKD progression in individual patients.2

For instance, delayed graft function was successfully pre-
dicted using a targeted urinary protein assay for 167 pro-
teins.79,80 Exosome compartments are an alternative source of
1332
rich information.81 Urinary epidermal growth factor protein
was associated with progression of CKD as an independent
predictor.13 Predictive protein signatures in the plasma are
emerging as biomarkers as well.82,83

Metabolomics. The metabolome, that is, the entity of
metabolites and small molecules, is particularly informative
because it is commonly considered to be a readout for protein
function and thereby a rather suitable source for biomarkers.
Compared with proteomic information, metabolomic data
from body fluids and tissues are much easier to acquire.
Common tools include MS, and with lower resolution, nu-
clear magnetic resonance.

A general strength of metabolomics data is their associa-
tion with the phenotype. Generally, metabolomics enables
robust acquisition of small molecules that enable rather
high throughput. Another advantage is the transferability of
molecules between species, as many metabolites are
conserved. In addition, both technical approaches have their
own strengths: MS-based approaches are generally more
sensitive (detection of femto- or attomolar concentrations),
and nuclear magnetic resonance–based approaches can be
more robustly quantified.

Metabolomics analysis also has limitations. In general, it is
not as advanced as the other omics methods. Metabolite
extraction for MS is per se incomplete—sample preparation
needs to be adjusted to the needs of the analysis, and
analytical aspects need to be considered. Untargeted MS-
based metabolomics approaches rely on high-resolution MS,
advanced algorithms, and comprehensive standards and
spectral databases that are still evolving. In contrast, targeted
metabolomics, although accurate, usually covers only a
limited number of analytes. Nuclear magnetic resonance–
based metabolomics has less sensitivity compared with MS-
based methods. Overall, metabolomics datasets are highly
influenced by many factors, including genotype, lifestyle,
circadian rhythm, the small molecules the patient is exposed
to (exposome), drugs, diet, and most notably, the micro-
biome. All these potential confounding factors make the
analysis challenging, and the role of these cues in renal disease
and physiology are just starting to be elucidated.84,85

Given the central function of the kidney in human meta-
bolism, including filtering toxins and reabsorbing nutrients, it
is not surprising that several metabolites are associated with a
decline in renal function; these metabolites provide an ever-
increasing arena in which to find novel predictors of renal
decline and disease progression.86,87 In addition, very recent
integrative studies have linked metabolomic profiles to vari-
ants in genomic information, suggesting tight associations (m
genome-wide association studies), for example, between
lysine abundance in urine and variants in solute carrier
transporters.27 Urinary glycine and histidine concentrations,
for instance, were also found to correspond to outcomes in
the Framingham offspring cohort.28 Whereas metabolites are
commonly regarded as the output of protein activity, they can
also modulate biological systems and thereby drive pheno-
types.88 This activity is particularly important in the kidney
Kidney International (2019) 95, 1326–1337
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where, for example, metabolite receptors for succinate and
alpha-ketoglutarate are chief modulators of nephron
function.89,90

COMPUTATIONAL TOOLS AND METHODS
The scope and complexity of these data require adequate infrastructure
to handle and process them, and analytical tools to mine them. We
briefly summarize some concepts in this area (Table 36,11,15,48,91–94).

Extracting information from omics data
To extract the information, each data type requires specific analytic
methods to process and normalize it. Once normalized, various
methods, such as principal component analysis or t-distributed
stochastic neighbor embedding, help make visualization of large
datasets easier and identify underlying patterns.

A common aim of computational methodologies is to compress
the data into fewer variables to filter noise and increase statistical
power, which are both important because omics datasets often have a
larger number of measured variables than samples (Figure 3). This
compression can be done in a purely data-driven manner,95 although
the resulting features might not be easily interpretable. Therefore,
the data are often subject to a functional analysis, with the aim of
grouping the observed values into biological processes or areas, such
as cellular pathways and networks.96–98 Many methods have been
developed, particularly within oncology, but in many cases, they are
transferable to nephrology. As with cancer, kidney pathologies are
often characterized by the deregulation of signaling, gene regulatory
processes, and metabolic processes, and largely involve the same
pathways (transforming growth factor, epidermal growth factor,
Wnt/Notch, Hedgehog, etc.). An important difference is that somatic
mutations do not drive kidney diseases (with some exceptions, such
as cystic kidney disease99).

The deregulation typically has a subtler origin and is less strongly
manifested, resulting in less-distorted phenotypes. This subtlety
makes analysis of the phenotypes more challenging, and combining
multiple omics in particular can provide an integrated view on
signaling, regulatory, and metabolic mechanisms within the cell, all
of which can be deregulated in CKD. The integration of multiple
omics is challenging and under active development.100–102

Statistics and machine learning
Once big data have been adequately processed, and potentially
compressed into fewer and more easily interpretable features such as
pathways, they are typically analyzed to identify differences across
samples (e.g., comparing CKD patients with healthy patients), or to
predict a phenotype of interest (e.g., estimated glomerular filtration
rate). Statistical models such as analysis of variance or linear
regression models are standard yet suitable tools for these tasks.
Alternatively, more complex computational methods can be applied,
often from machine learning. Although the line between statistical
models and machine learning can be blurry, typically the former are
more suitable to learn about underlying processes (e.g., to determine
if a given gene affects blood pressure), whereas the latter focus on
prediction (e.g., provide an expected blood pressure level as accu-
rately as possible103; Figure 3).

Exciting advances have been made recently in machine learning
thanks to so-called deep learning techniques. These methods can
automatically derive informative features from many types of raw
data, a task that otherwise requires domain expertise, leading to
major performance improvements across many fields, from speech
Kidney International (2019) 95, 1326–1337
recognition to reconstruction of brain circuits and sentiment anal-
ysis.104 Deep learning techniques are increasingly applied to
biomedical data, from image processing to genomic data analysis.105

For example, when trained with 120,000 images, benign nevi can be
distinguished from malignant melanoma with the accuracy of an
experienced dermatologist.106 Similarly, such methods might
outperform pathologists’ fibrosis scores from histological renal bi-
opsy images.93 Deep learning has also been applied to EHRs for
solving problems such as extraction of information from EHRs,
prediction of disease outcome, and de-identification.107 In
nephrology, the analysis of images and EHRs will probably benefit
most from application of these approaches. Omics data analysis will
likely benefit as well, once enough high-quality data are generated.
Many deep learning methods exist already or are under active
development. Most of them are based on artificial neural networks—
sets of interconnected nodes (neurons), arranged in layers. A
prominent technique is convolutional neural networks,105 built with
multiple layers of neurons that share parameters and are connected
to only a few neurons in the previous layer. Recurrent neural net-
works are designed to model sequentially ordered data such as time
series.107 Although deep learning is a very powerful technology, no
single method is universally applicable, and conventional approaches
are relevant and have advantages, particularly when data are
scarce.105

The results of computational analysis can be only as good as the
data used. Big data, in particular clinical data, often have biases and
can be misinterpreted.108 In addition, large studies and subsequent
computational analyses typically find the most prominent alterations
in the data. However, they are less suitable for finding infrequent yet
potentially critical events. For this, more-focused and knowledge-
driven strategies, in particular mechanistic models, should be used
to complement statistical and machine learning approaches.6

Technical infrastructures for big science
In addition to the challenge of finding adequate analytical methods
for large and detailed datasets, they also pose challenges in terms of
infrastructure. The huge amount of data imposes considerable cost
and logistic requirements. Multiple databases have been developed
for omics data, typically focused on one type of data (tran-
scriptomics, proteomics, etc.). Most are general purpose, whereas a
few are specific for nephrology,109 such as Nephroseq.94

A fundamental need in storing clinical data is to make them
accessible to those performing the analysis and, at the same time,
guarantee patients’ privacy. A particularly challenging issue in this
regard is the identification of patients based on genomic or other
molecular data.110,111 Initiatives such as the Global Alliance for
Genomics and Health (GA4GH) are actively working to solve these
issues. For example, they are establishing services that allow data to
be queried only for specific information, such as the presence of a
particular allele.112 For larger systematic analysis, cryptographic
techniques are being developed.113 Alternatively, so-called virtuali-
zation technologies allow scientists to submit their analytical tools to
be run remotely on a server, enabling analysis to be performed
without having to share the actual data (“the algorithm goes to the
data, instead of the data to the algorithm”).114
BIG SCIENCE PROJECTS
Large consortia in biomedicine
The amount of data required to perform analyses such as
those described earlier can rarely be generated by one center
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alone. This is due to not only high cost, but also accessibility
to enough patients—the richer the characterization desired,
the larger the number of patients needed to have enough
statistical power. To overcome this issue, consortia are built
that share standard operational procedures. In oncology, such
initiatives have already been running for a number of years,
demonstrating the possibility of generating invaluable re-
sources for the research and clinical community, largely co-
ordinated under the umbrella of the International Cancer
Genomic Consortium (ICGC).115 For example, The Cancer
Genome Atlas (TCGA) has recently concluded the charac-
terization of 11,000 tumors of 33 types,116 including copy
number alterations, mutations, transcriptomics, and for a
subset, proteomics through the Clinical Proteomic Tumor
Analysis Consortium (CPTAC). This initiative has yielded a
large number of insights and a formidable resource for
oncologists.

Even larger national initiatives are starting to generate
molecular and clinical data for massive cohorts. The UK
Biobank recruited half a million people from all over the UK,
from whom various measurements are taken, including gen-
otyping, and biofluids are collected for future analyses.117 The
characterization will continue, partially in subgroups of pa-
tients; for example, 100,000 of the participants are undergo-
ing imaging of major organs. This colossal resource can be
used by researchers from around the globe and should help to
shed light on multiple health issues. Similar efforts are
ramping up in various places, from relatively small countries
with homogenous populations, such as Finland (Finngen)
and Denmark (Danish National Biobank), to the United
States, with the “All of Us” initiative that aims to sign up one
million participants118 by 2022.

Towards big science in nephrology
In nephrology, several consortia gathering human kidney
tissue biopsy biobanks have been initiated to perform this
collaborative research.119 Various initiatives that aim for a
comprehensive characterization of kidney biopsies for
different CKD subtypes have been launched, including
NEPTUNE (Nephrotic Syndrome STudy Network), ERCB
(European Renal cDNA Bank), EURenOmics, C-PROBE
(Clinical Phenotyping and Resource Biobank), PKU-IgAN,
and more recently, TRIDENT (for diabetic nephropathy),
CureGN (for glomerulopathies), and the NIDDK (National
Institute of Diabetes and Digestive and Kidney Diseases)
Kidney Precision Medicine Project (KPMP).

These large biobanks can be profiled to obtain novel in-
sights. For example, analysis of human and mouse glomerular
transcriptomics revealed activation of the Jak-STAT pathway
in diabetic nephropathy,120,121 leading to a phase 2 clinical
trial testing the Jak1/Jak2 inhibitor baricitinib in type 2 di-
abetics with diabetic kidney disease, with promising pre-
liminary results.46 In another study, leveraging biopsies of the
aforementioned ERCB, C-PROBE, NEPTUNE, and PKU-
IgAN consortia, analysis of transcriptomics data led to the
identification of urinary epidermal growth factor as an
1334
independent risk predictor of CKD progression.13 Many
studies have been performed on ad hoc cohorts, including an
omics characterization, in particular transcriptomics. Schena
and colleagues91 recently assembled 19 studies with micro-
arrays on microdissections from biopsies from patients with
various kidney diseases. Important limitations to integrate
post hoc in these studies are batch effects and other con-
founding factors. When we analyzed 5 such studies, we had to
perform a very stringent normalization, discarding many
genes, to be able to robustly combine them.92

Coordinated efforts across multiple centers can overcome
these problems, such as the aforementioned KPMP initiative,
which has just started to try to develop a rich molecular
characterization using cutting-edge technologies of kidney
biopsies. This initiative is similar to the TCGA consortium in
oncology that was started over a decade earlier. When
completed, KPMP will be a major resource in developing
precision nephrology (Figure 2).

Crowdsourcing and citizen science
The analysis of such complex data requires a broad set of
expertise unlikely to be present in a single group. Although
the aforementioned initiatives involve multiple analytical
groups, they are not able to involve the whole relevant
community, and are even less able to include contributors
from outside the community. To maximize the number of
scientists that can contribute to solving a complex project,
crowdsourcing is becoming increasingly popular. Here, the
help of large communities is used to solve problems posed by
an organization.122,123

Contributions can range from sharing of medical infor-
mation by participants to supporting development of a
resource124 (such as Wikipedia), to involvement in collabo-
rative competitions called challenges. The latter is an effective
strategy to identify the most effective algorithms and best
practices to solve computational problems, ranging from
determination of a protein structure to prognosis for disease
development.122

CONCLUSION
The advent of new technologies creates exciting opportunities
for nephrology. In this review, we have focused on molecular-
based technologies. Imaging technologies are also rapidly
evolving, including novel high-resolution ultrasound contrast
methods to assess the renal vasculature, and high-
performance computer tomography and high-resolution
magnetic resonance imaging.125,126 Although they cannot
replace biopsies, they give novel insights into what is occur-
ring in the kidney during disease progression.

Another stream of large-scale data is becoming rapidly
available from the continuous monitoring of patients using
wearables, leveraging our increased connectivity.127 These
technologies hold strong potential in nephrology to measure
physical activity and parameters related to diabetes and car-
diovascular status, including blood pressure, blood glucose,
peripheral oxygen saturation (SpO2), and electrocardiogram
Kidney International (2019) 95, 1326–1337
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results. Some CKD-related parameters may be available soon,
such as the level of potassium in sweat.128,129 These param-
eters may enable detection of patients at risk31 and may be
used to inform treatment and prognosis, and guide clinical
trials.130 Important challenges remain to be addressed,
ranging from accuracy to the lack of an adequate regulatory
framework.130,131

A vast amount of information is routinely stored for CKD
patients in the form of EHRs.132 The prevalence of CKD, the
room for improvement in its detection and management, and
the fact that it is largely defined by laboratory data, make
CKD ideal for leveraging EHRs.133 The recent development of
devices for cloud-based monitoring facilitates remote partic-
ipation and enhanced monitoring, paving the way for big data
in the context of clinical trials.134 Major hurdles need to be
overcome: data structures are complex and difficult to link to
other biomedical resources. Data are also hard to use (e.g.,
contain errors and missing information), require appropriate
reporting,135 and suffer from the biases of retrospective
cohorts.136

The kidney field is lagging somewhat behind many other
areas in terms of big data usage (Figure 4), in research and
especially in diagnostic and treatment decision-making.
However, this lag also represents a chance for researchers to
begin to work in (or redirect to) the area of nephrology for
their career and have a tremendous impact on the field.

Any larger data acquisition endeavor will face current big
data problems that include not only infrastructure but also
ethical issues. This challenge holds for all kinds of data, in
particular EHRs, for which regulating access, sharing, and the
balance of commercial value versus open data is important.
However, these considerations are not specific to nephrology,
and maybe our lag can be turned to the good. To quote
Alexander Pope: “Be not the first by whom the new are tried,
nor yet the last to lay the old aside.”137
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