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ABSTRACT 

Purpose. 
To: 1) explore how multi-level factors impact the longitudinal prevalence of depression and alcohol 
misuse among urban older adults (≥ 65 years), and 2) simulate the impact of alcohol taxation policies 
and targeted interventions that increase social connectedness among excessive drinkers, socially 
isolated and depressed older adults; both alone and in combination. 
Methods. 
An agent-based model was developed to explore the temporal co-evolution of depression and alcohol 
misuse prevalence among older adults nested in a spatial network. The model was based on Los Angeles 
and calibrated longitudinally using data from the Multi-Ethnic Study of Atherosclerosis. 
Results. 
Interventions with a social component targeting depressed and socially isolated older adults appeared 
more effective in curbing depression prevalence than those focused on excessive drinkers. Targeting had 
similar impacts on alcohol misuse, though the effects were marginal compared to those on depression. 
Alcohol taxation alone had little impact on either depression or alcohol misuse trajectories. 
Conclusions. 
Interventions that improve social connectedness may reduce the prevalence of depression among older 
adults. Targeting considerations could play an important role in determining the success of such efforts. 
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INTRODUCTION 
Countries worldwide are undergoing demographic shifts toward population ageing. It is estimated that 

the proportion of older adults will nearly double between 2015 and 2050 [1]. For example, in North 

America, by 2050, adults over 60 years are projected to comprise 27% of the population [2].  

With a prevalence around 13% [3], depression is the leading mental health issue among older adults [1]. 

Later-life depression is particularly concerning given its association with numerous adverse outcomes, 

including impaired functioning and disability, mortality, and higher rates of suicide [4-6]. Alcohol misuse 

(or excessive alcohol consumption [7]) is also an emerging public health problem among older people. In 

the United States, the proportion of older adults consuming alcohol to excess increased more than 65% 

in the last decade [8], and it is projected to double by 2020 [9].   

Importantly, depression and alcohol misuse often coexist, but few studies have investigated their 

interrelationship over time [9-12]. Longitudinal studies exploring this interrelationship report 

significantly positive associations between depression and alcohol use, and suggest that alcohol misuse 

may in turn function as a significant predictor of depression trajectories [12-15] – lending support to the 

hypothesis that depression and alcohol misuse may be mutually reinforcing. 

The dynamic relations between depression and alcohol misuse – resulting from shared risk factors, 

complex interactions, dependencies and feedback loops – may impact the potential effectiveness of 

policies seeking to curb the prevalence of these comorbid conditions. For example, the interdependent 

nature of these issues suggests that interventions aimed at reducing alcohol misuse (e.g., through 

alcohol taxation) could also impact depression prevalence. Similarly, policies or interventions aimed at 

reducing depression (such as strategies to reduce social isolation among older adults) could also affect 

alcohol use. Understanding and predicting these effects requires approaches that take into 

consideration the complex system of factors shaping patterns of interrelated conditions like depression 

and alcohol misuse.  

Agent-based models (ABMs) have emerged as important tools for providing dynamic insights into the 

mechanisms underpinning a range of health issues and the potential impact of policies intervening on 

these complex systems [16]. Agent-based modelling is a computational approach that represents agents 

(such as people, households or businesses) with diverse characteristics, and their interactions with each 

other and their environment over time [17]. Governed by a set of rules, these interactions may result in 

changes in the environment and/ or the agents themselves, through learning and adaptive processes in 



which agents’ past experiences shape their future behaviour. ABMs therefore provide an in-silico 

laboratory that can be used to explore the emergence of unanticipated population-level patterns that 

cannot be reduced to the mere sum of all individual-level interactions [17]. They are also useful in 

identifying the plausible impacts of diverse policies and intervention scenarios on multiple interrelated 

outcomes under varying conditions. Although ABMs have been used to investigate the impact of policies 

on behaviours like walking, physical activity and diet [16], their application to the study of interventions 

seeking to address mental health issues, or multiple outcomes, remains limited [18]. 

Study purpose 
In this paper we present an ABM designed to advance understanding of depression and excessive 

alcohol consumption (also referred to as ‘alcohol misuse’ within this paper) among urban older adults, 

and to explore the potential impact of alcohol taxes and interventions providing opportunities for social 

connection, on these two outcomes. We examined taxation policies because their impact is poorly 

understood in the older adult demographic [19], though their effectiveness in reducing overall alcohol 

consumption in the general population has been well established [20]. We also decided to focus on 

policies aimed at enhancing social connectedness because of the high prevalence of social isolation [20] 

and the recent policy interest in strategies to minimize loneliness among older adults [21]. Finally, 

because alcohol consumption is often a social phenomenon, the joint application of both these policies 

could have consequences that may not be easy to predict based on empirical studies of their separate 

effects. This is the context where ABM may yield the most insight. 

The objectives of this study were to: (1) explore the social and environmental mechanisms that may 

underpin the reinforcing relation between depression and alcohol misuse among urban older adults (≥ 

65 years), (2) examine the potential impact of alcohol taxation policies and targeted interventions that 

increase social connection among excessive drinkers, socially isolated and depressed older adults, both 

alone and in combination, on depression and alcohol misuse. 

With these objectives in mind, we delineated the boundary and scope of this model to create the 

simplest possible ABM capable of answering the questions of key interest to this paper. This is common 

practice within ABM where the tension between model breadth and parsimony must be navigated in a 

way that “allows effective tracing from inputs via specific mechanisms to outputs of interest” [22, p.180] 

Specifically, we limited our focus to understanding overall population-level trajectories of depression 

and alcohol misuse. 



METHODS 
The ABM included 540 agents (older adults ≥ 65 years) and the alcohol outlets in their neighbourhood. 

Each time step (i.e., each week), agents were probabilistically assigned an alcohol consumption status 

(excessive drinker or not) based on individual factors, such as their affinity for excessive consumption 

(>7 standard drinks per week [7]) and depression (CES-D ≥ 16 [23]), and also the alcohol consumption of 

their friends and cohabitants. Also considered were environmental influences, such as alcohol pricing 

and access to alcohol retailers. Agents’ depression status was determined by considering their past 

predisposition toward depression, level of social connectedness and affinity toward excessive drinking. 

Table 1 provides a summary of the data and empirical studies used to inform these model parameters. 

Although important predictors of depression and alcohol use, educational attainment and gender were 

not included in our ABM in the interest of parsimony. Moreover, their inclusion was not deemed critical 

to the central aims of this paper, which were to explore the global mechanisms underpinning the 

interrelationship between depression and alcohol misuse, and the impact of policies on population-level 

trajectories of these conditions. Future modelling efforts may wish to explore these factors in more 

detail.  

Environmental factors (i.e., price of alcohol and access to retailers) are important determinants of 

drinking. The model environment was therefore designed to reflect the distribution of older adults and 

alcohol retailers in the study region. Each agent was randomly assigned a residence on a 42 x 56 toroidal 

(i.e. donut-shaped) surface, each unit representing half a mile. These dimensions were informed by the 

21 by 28-mile area of Los Angeles (LA) County inhabited by 540 older adults assessed at all exams of the 

Multi-ethnic Study of Atherosclerosis (MESA). MESA is a longitudinal cohort study investigating 

associations between lifestyle factors and cardiovascular disease across six US cities, including Los 

Angeles [24]. Participants between 45 and 84 years old were assessed at baseline (Exam 1) from 2000- 

2002 and followed-up at 1.5-2-year intervals (Exams 2 to 5). The LA site was the focus of this ABM 

because it had the largest sample of older adults with available data on depression and drinking 

patterns. These data were collected using the Center for Epidemiologic Studies Depression (CES-D) Scale 

[25] and a personal history questionnaire which sought to establish participants’ usual amount of 

alcoholic drinks consumed per week. The use of the MESA data was approved by the Institutional 

Review Board at Drexel University. 

The model environment was divided into two zones, one with a relatively high density of alcohol outlets 

(HD zone), and the other a low density (LD zone). We did not explore the impact of different types of 



alcohol outlets as this was not judged to be relevant to our main questions of interest. Supplement A1 

describes the spatial data used to inform the ABM environment. Agents in each alcohol zone were 

uniquely assigned a weekly income based on the corresponding income distribution of older adults in 

MESA (see Supplement A2 for more information on the distributions used). Other individual-level 

characteristics assigned to agents included their cohabitation status, the excessive drinking status of 

their spouse/ cohabitant (if they had one), their own predisposition toward depression and excessive 

alcohol consumption (Table 1). 

Agents were assigned social ties (i.e., to other agents within the model), representing personal networks 

comprising family members and close friends, as well as a level of closeness to each tie (i.e., a time-

invariant tie strength). Agents had an average of five social ties [26]. Given the influential role of 

environmental factors in the model, social ties were spatially constrained; the likelihood of connection 

between two agents was influenced by the geographic distance between their residences (the greater 

the distance, the less likely the existence of a connection) [27]. Supplement A3 describes the personal 

network and the basis for its creation in greater depth. Cohabitants were not represented as links in the 

spatial network, they were separately considered. 

  



TABLE 1 – Summary of model parameter values at baseline, and the data/ empirical sources informing these 

Parameter Definition and values Data and empirical foundation 

Individual attributes 
𝑤𝑤𝑖𝑖  Weekly income (USD/ week) 

𝑤𝑤𝑖𝑖 ∈ (24, 1082) 
 

Weekly income distributions informed by MESA. Values 
were drawn at random, for HD zone residents, from a 
normal distribution with mean = 215, SD = 180; and for 
LD zone residents, from a normal distribution with mean 
= 298, SD = 257. Values remain constant. 

𝑆𝑆𝑆𝑆𝑖𝑖  Cohabitation status 
Categorical ∈ [0, 1] 
(if lives with someone = 1;  
else = 0) 

Randomly assigned with proportion living with someone 
= 0.564, informed by baseline MESA data including all LA 
County residents. Values remain constant. 

𝑆𝑆𝑆𝑆𝐴𝐴𝑖𝑖  Cohabitant’s excessive alcohol 
consumption status 
Categorical ∈ [0, 1] 
(if cohabitant drinks to excess = 1;  
else = 0) 

Randomly assigned with proportion of cohabitants 
drinking to excess (>7 standard drinkers per week) = 
0.037, informed by baseline prevalence of excessive 
drinking in the MESA population (n=540). Values remain 
constant. 

𝑆𝑆(𝐴𝐴𝑖𝑖𝑖𝑖−1) Past affinity for excessive alcohol 
consumption 
𝑆𝑆(𝐴𝐴𝑖𝑖𝑖𝑖−1) ∈  [0,1] 
𝑆𝑆(𝐴𝐴𝑖𝑖𝑖𝑖−1) = 0.037 at baseline 

Baseline proportion of excessive drinking (>7 standard 
drinkers per week) in the MESA population (n=540) was 
used to initialize the model. Values updated over time. 

𝑆𝑆(𝐴𝐴𝑖𝑖𝑖𝑖) Current affinity for excessive alcohol 
consumption  
𝑆𝑆(𝐴𝐴𝑖𝑖𝑖𝑖) ∈  [0,1] 
𝑆𝑆(𝐴𝐴𝑖𝑖𝑖𝑖) = 0.037 at baseline 

Baseline proportion of excessive drinking (>7 standard 
drinkers per week) in the MESA population (n=540) was 
used to initialize the model. Values updated over time. 

𝑆𝑆(𝐷𝐷𝑖𝑖𝑖𝑖−1) Past predisposition toward 
developing depression 
𝑆𝑆(𝐷𝐷𝑖𝑖𝑖𝑖−1) ∈  [0,1] 
𝑆𝑆(𝐷𝐷𝑖𝑖𝑖𝑖−1) = 0.161 at baseline 

Baseline proportion of clinically depressed (CES-D > 16) 
older adults in the MESA population (n=540) was used to 
initialize the model. Values updated over time. 
 

𝑆𝑆(𝐷𝐷𝑖𝑖𝑖𝑖) Current predisposition toward 
developing depression 
𝑆𝑆(𝐷𝐷𝑖𝑖𝑖𝑖) ∈  [0,1] 
𝑆𝑆(𝐷𝐷𝑖𝑖𝑖𝑖) = 0.161 at baseline 

Baseline proportion of clinically depressed (CES-D > 16) 
older adults in the MESA population (n=540) was used to 
initialize the model. Values updated over time. 
 

𝑛𝑛𝑆𝑆𝑆𝑆𝑖𝑖 Number of people in agent 𝑖𝑖’s 
personal network 

Randomly assigned. Values remain constant. 

𝑆𝑆𝑞𝑞  Strength of tie between agent 𝑖𝑖 and 
any given agent 𝑞𝑞 in its personal 
network 

Drawn at random from uniform distribution ∈[0,1] 
Study by Onnela et al. [28]. Values remain constant. 

Environmental attributes 
𝐴𝐴𝑆𝑆 Price of 8 standard drinks of alcohol 

(USD), representing the lower range 
of excessive weekly alcohol 
consumption among older adults 
𝐴𝐴𝑆𝑆 = $13.44 at baseline 

Study by DiLoreto et al. [29] ] & US recommendations for 
alcohol consumption for those > 60 year [7]. Values 
remain constant 

Personal network attributes 
 Random spatial network with average 

degree of connectivity = 5 people 
Study by Lambiotte et al. [27] & Wrzus et al. [26]. 
Remains constant. 

HD: high density; LD: low density; SD: standard deviation; MESA: Multiethnic Study of Atherosclerosis; CES-D: Center for Epidemiologic Studies Depression Scale 



Model rules 
Each simulation was run for five years (260 weeks) in Netlogo v5.3.1 [30]. Each time step (i.e., each 

week), agent’s behaviour and depression state were updated based on a set of rules which consider the 

agent’s past experiences and their interactions with members of their social network. 

Drinking behaviour. Marital status and cohabitation have been positively associated with alcohol misuse 

among older adults [31-33]. A recent systematic review found a strong link between social engagement 

and alcohol use among older adults [34]. A core assumption in the model therefore, was that socialising 

predisposes to alcohol misuse. Specifically, cohabitating, particularly with a drinker [31-33], and having a 

high proportion of social connections that drink to excess, increased an agent’ risk of alcohol misuse. 

Agents’ misuse was probabilistically determined by considering seven factors spanning individual, 

environmental and social domains: 1-2) predisposition toward excessive alcohol consumption and 

depression; 3) presence or absence of cohabitants and their drinking status; 4-5) drinking status and 

strength of ties to excessive drinkers in personal network; 6) proximity to nearest alcohol outlet; and 7) 

the relative cost of alcohol, which expresses alcohol price in relation to an agent’s income. These 

parameters and the equation governing agents’ drinking are detailed in Supplement A4. 

Evolution of depression. An agent’s predisposition to developing depression at any given time was 

determined by considering time-varying individual-level and social factors. Predisposition to depression 

and affinity for alcohol misuse increased agents’ likelihood of developing depression. The combined 

influence of social factors, such as the size of their personal network and the average strength of social 

ties, simultaneously mitigated the temporal likelihood of developing depression. Supplement A4 

outlines the equations and parameters governing the evolution of depression. 

The CLD in Figure 1 depicts the interrelationships between excessive alcohol consumption and 

depression, including factors hypothesised to influence their co-evolution.  



 

FIGURE 1 – Causal loop diagram of key factors influencing assignment of excessive drinking and 
depression status. 

Model calibration 
Parameters for the relative weights of individual (𝛿𝛿), social (𝑤𝑤𝑆𝑆) and environmental (𝑤𝑤𝑤𝑤) influences on 

drinking behaviour, and the characteristics of the depression function, including the intercept (𝜑𝜑) and 

mitigating influence of social factors on depression growth (𝛾𝛾) could not be informed by empirical data. 

Thus, plausible values of these parameters were determined through calibration. In calibration, 

unknown model parameters are systematically varied over a defined range to identify values that 

maximise the model’s fit to the data [35]. Where many plausible configurations of values existed, higher 

weights were assigned to individual-level influences relative to social and environmental factors. This 

decision was based on multi-level studies which tend to show stronger and more consistent effects for 

individual-level compared to social and environmental factors [36]. To enable calibration, excessive 

alcohol consumption and depression prevalence were simulated over 5 years. These trajectories were 

then contemporaneously compared to 5-year depression and alcohol misuse prevalence trends among 

older adults residing in LA, estimated from MESA data.  



Simulated policies and interventions 
We used the calibrated model to examine the potential impact of two types of intervention scenarios – 

alcohol taxes and social connections; simulated both alone and in combination, on trends in depression 

and alcohol misuse. 

Alcohol taxes are important policy levers [19] that can reduce alcohol consumption.  The magnitude of 

imposed alcohol taxes varies widely by country and beverage type, ranging from no tax to as high as 

85% [37]. To account for this real-world variation, we simulated a range of taxes, including a set of 

extreme scenarios, representing a 50%, 80%, 100% and 400% relative increase in the baseline price of 

alcohol (𝐴𝐴𝑆𝑆).  

We also examined the impact of social connection interventions (i.e., the impact of giving individuals one 

new friend) which have shown promise in reducing depression among older adults [38]. Specifically, we 

explored the impact of social connection on the complex dynamics between depression and drinking 

behaviour. For example, while reducing social isolation may lower depression risk, increasing connection 

to excessive drinkers may promote alcohol misuse among those previously drinking in moderation. 

Moreover, these relationships may themselves be modified in complex ways by alcohol taxes. Our 

model examined social connection interventions targeting excessive drinkers, depressed older adults, 

and those who were relatively isolated - defined as having fewer than average social ties. We also 

investigated whether connecting individuals to non-excessive drinkers, rather than randomly-selected 

people (i.e., regardless of alcohol misuse status), was more effective in curbing alcohol misuse and 

depression prevalence. 

We elected to simulate policies and corresponding impacts as though they were implemented in year 2, 

rather than predicting long-term impacts beyond the model’s calibrated 5-year timeframe. In this way, 

we could compare a ‘baseline trajectory’ (i.e., the calibrated model run over 5 years) with alternate 

scenarios which represented how the observed 5-year alcohol misuse and depression prevalence trends 

might have been impacted had a given policy been implemented in year 2. Each policy was simulated 50 

times to account for random variation.  

RESULTS 

The calibrated model demonstrated a good fit to 5-year depression and alcohol misuse prevalence 

trends estimated from MESA. The mean squared errors between the simulated output and prevalence 



rates estimated using the data were ≤ 0.06 for both depression and excessive alcohol consumption 

trajectories (Figure 2).  

 

FIGURE 2 – Fit between the model simulated output and depression and excessive alcohol consumption trajectories estimated 
using MESA data from older adults residing in Los Angeles County. In (A) and (C) the black lines represent the trends in 
depression and excessive alcohol consumption prevalence estimated using the MESA data, respectively. The ABM simulated 
output is depicted in red. (B) and (D) depict the squared error between the data and the ABM simulated output over time, for 
depression and excessive alcohol consumption trajectories, respectively. The mean squared error (MSE) was 0.06 for 
depression and 0.05 for excessive alcohol consumption. 

 

 

 

 

 



The results of the alcohol tax scenarios indicate that taxation reduced alcohol consumption although the 

effect was small and only clearly apparent for the most extreme tax. No significant impact on the 

prevalence of depression was observed for any of the tax scenarios (Figure 3A-B).  

The social connection interventions, which afforded agents’ one additional friend, decreased depression 

prevalence. Of the three targeted approaches, actions directed at relatively isolated older adults 

appeared most effective (one percent reduction), followed by interventions targeting those with 

depression (Figure 3C). These two interventions were both more effective in decreasing overall 

depression prevalence than efforts targeting excessive drinkers. Interestingly, the impact of the social 

connection interventions on depression was unaffected when agents who were excessive drinkers were 

excluded as potential new social ties. Moreover, social connection interventions did not impact alcohol 

misuse (Figure 3D), even when relatively isolated individuals or excessive drinkers were connected to 

another person independent of drinking status. 

The combined impact of the most extreme tax policy with any social connection intervention (Figure 4A-

B) did not appear to impact the prevalence of depression and alcohol misuse beyond levels observed 

from the simulated implementation of each intervention alone (Figure 4B vs 3B). Similar results were 

observed in analyses restricted to relatively isolated individuals (Figure 4C). However, there was some 

evidence that the combined strategy had a slightly smaller impact on reducing the prevalence of alcohol 

misuse among relatively isolated older adults, than the general population (Figure 4D compared to 

Figure 4B). 



 

FIGURE 3 – The impact of raising alcohol taxes, in year 2, by 50%, 80%, 100% and 400% on (A) overall depression and (B) alcohol 
misuse prevalence, and the impact of variously targeted social connection interventions, implemented in year 2, on (C) overall 
depression and (D) alcohol misuse prevalence. 

 

FIGURE 4 – The impact of combining variously targeted social connection interventions with the most extreme alcohol tax, in 
year 2, on (A) overall depression and (B) overall alcohol misuse prevalence; and (C) depression and (D) alcohol misuse 
prevalence among relatively isolated older adults. 



DISCUSSION 
The calibrated model successfully reproduced depression and alcohol misuse prevalence trends 

observed among older adults in LA. The ABMs empirical grounding and the observed alignment between 

the model’s simulated output and the data, lends support to the mechanisms underpinning the model. 

Namely, the notion that depression and alcohol misuse could be interrelated and that individual, social 

and environmental factors plausibly influence their co-evolution. The simulated scenarios aligned with 

expectations: the impact of alcohol taxes was greatest on levels of alcohol misuse, while social 

interventions were more effective at decreasing depression prevalence [19, 38]. These findings also 

suggest that changes to alcohol pricing and social connectedness represent promising approaches to 

address depression and alcohol misuse among older adults. 

The weights assigned to individual, social and environmental factors played an important role in the 

dynamics between depression and alcohol misuse, and in turn, on the estimated prevalence trends for 

drinking behaviour and depression in the model. Yet the real-world values of these parameters remain 

unknown. Empirical observations and calibration techniques suggested that the parameter values (e.g., 

the weight of influence of depression on the likelihood of alcohol misuse and vice versa) that best fit the 

data were quite small. This finding supports the hypothesis that depression and alcohol misuse could be 

interrelated but that the feedback effect may be slight.  

The simulated alcohol taxes exhibited an inverse dose-response relationship with alcohol misuse; the 

higher the taxes, the lower the levels of alcohol misuse observed – a finding consistent with the 

empirical literature [39]. A systematic review by Elder et al. estimates that a 3-10% decrease in 

population-level alcohol consumption may be expected for every 10% increase in alcohol cost [19]. We 

are unaware of any studies that evaluate alcohol price elasticity for older adults [19], and as such, it 

remains unclear to what extent the impacts reported by Elder et al. can be generalised to older 

demographics. In our simulations, alcohol misuse among older adults was less sensitive to changes in 

alcohol pricing than those of Elder et al. [19]. However, we caution that our model was not designed to 

estimate price elasticity, but to qualitatively contrast the plausible effects of various interventions.  

Nevertheless, an important insight was that taxation did not significantly influence depression 

prevalence, despite the empirically-informed relation between depression and alcohol misuse built into 

our model.  

To date, few studies have examined the effects of increasing social connectedness on depression among 

older people [38]. Dickens et al. [38] report that some 40% of the 32 studies considered depression as 



an outcome in their systematic review of interventions addressing social isolation among older adults. 

Of these, only four reported statistically significant impacts on depression. Our ABM’s findings generally 

align with this literature. Specifically, the simulated social interventions, which variously connected at-

risk subgroups of older adults with one other person, appeared effective in decreasing depression 

prevalence both overall and among relatively isolated individuals. Interestingly, targeting played an 

important role in determining the relative effectiveness of these interventions on depression outcomes. 

Namely, social interventions targeting relatively isolated and depressed individuals appeared more 

effective, than those targeting excessive drinkers. One possible explanation for this is the relatively low 

prevalence of alcohol misuse among agents, resulting in the targeting of a much smaller population 

subset compared to the depressed and socially isolated groups. Analogously, intervention scenarios in 

which older adults were connected to non-excessive drinkers did not appear to be more effective in 

reducing the prevalence of depression than scenarios in which connections were random. This finding 

may also be explained by the relatively low prevalence of alcohol misuse. Specifically, social 

interventions which created ties between agents independent of drinking status tended to connect 

agents to non-excessive drinkers simply because of their high prevalence. 

In contrast, none of the social interventions affected alcohol misuse. This finding is surprising as the 

social interventions tested directly influenced at least two factors - personal network degree and the 

proportion of excessive drinkers in an agent’s network - implicated in the causal path between alcohol 

misuse and depression (as per the CLD in Figure 1). The observation that these interventions did not 

shift population levels of alcohol misuse, despite modest changes to depression prevalence, may reflect 

the relatively weak feedback mechanism found to be underpinning the co-evolution of these two 

outcomes. Furthermore, the fact that social interventions combined with the most extreme alcohol tax 

policy appeared no greater than any one of these implemented alone, could also be explained by this 

relatively weak feedback process.  

Our model has a number of strengths, primarily, its dynamic exploration of the interrelationship 

between two outcomes, a focus which has been called for in public health [17, 40]. In addition, with its 

focus on depression and alcohol misuse among older adults, the model affords numerous insights into 

the mechanisms underpinning the co-evolution of two pressing public health issues, as well as the social 

and environmental factors that may influence their temporal development. Further model strengths 

include its empirical foundations and the data-driven characterization of the environment and the 

agents embedded within it. The model could therefore be used to simulate the potential effectiveness 



of a range of realistic intervention scenarios on the population-level burden of these comorbid 

conditions. By limiting reference to a specific time frame for which data was available, the model also 

allowed a direct comparison between a baseline trajectory (which was well calibrated to these data) and 

the potential impact of simulated interventions.  

The findings of this study ought to be considered with some limitations in mind. As with all ABMs, 

simplifying assumptions were made during model development. We assumed that alcohol misuse could 

be directly transmitted among individuals in the same personal network, but that depression was only 

indirectly transmitted through drinking behaviour. Gender, education and alcohol retailer type (i.e., on- 

versus off-premise outlets) were not considered in the model. Another assumption was that personal 

networks remain static. As such, the influence of temporal changes to cohabitation and the potential 

impact of discordant alcohol use and depression states on the maintenance of and/or damage to social 

ties could not be explored.  The need to calibrate the weight parameters in the model represents 

another limitation. While the estimated values of these parameters suggest that depression and alcohol 

misuse may be weakly interrelated, we cannot be certain that this finding reflects the true nature of 

these causal relations. More data and empirical research are required to clarify these issues.  

Conclusions and future directions 
This model suggests that depression and alcohol misuse are interrelated though the strength of the 

feedback interactions between them may not be strong. The ABM also suggests that alcohol misuse 

patterns among older adults may be relatively insensitive to changes in alcohol pricing. Moreover, social 

interventions targeting relatively isolated and depressed older adults to increase their social 

connectedness may be effective in reducing the prevalence of depression overall and among relatively 

isolated individuals. 

Several important questions remain, highlighting the need for future research on older adults. First, data 

collection enabling empirical research of longitudinal associations between alcohol misuse and 

depression among older adults is required to enhance the precision of weight parameters in the model 

and the outcomes of simulated policy scenarios. Second, studies evaluating the impact of alcohol taxes 

and alcohol outlet density on drinking patterns among older adults, by gender, and across the 

socioeconomic spectrum, are also needed to gauge the potential effectiveness of prospective policies on 

alcohol misuse. Third, a dynamic exploration of social connections among older adults, including factors 

driving the formation and erosion of personal ties, and their influence on depression and alcohol misuse 



is required. A deeper knowledge of such mechanisms would enable a richer exploration of the 

interrelationship between alcohol misuse and depression in this population.  
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Supplement A1: Alcohol retail stores and drinking venue (or outlet) density distribution 
To develop the ABM, we needed to initialize a simulation environment that represented, in an abstract sense, the 

distribution of 540 older adults in MESA and the alcohol environment in which they lived, in Los Angeles at Exam 1. 

Given the absence of geospatial data relating to the number and location of alcohol outlets surrounding each 

participant’s home, we used available data, linked to each participant, characterizing the density of alcohol outlets 

within a five-mile radial-buffer of their residence. We then used Kriging (a spatial interpolation method) to generate a 

raster surface of alcohol outlet density for the study region. For simplicity, the raster surface was divided into two zones; 

a high and a low alcohol retail outlet density zone (as depicted below). The average weekly income distribution of 

participants residing in each of these two zones was uniquely represented in the model. This was done to capture 

empirically established [1] disparities in alcohol outlet densities across socioeconomic strata. 

 

To ensure that the raster surface created using only data from older adults in MESA provided a good representation of 

the alcohol outlet density for the study region, we compared it to a raster surface generated using data from all MESA 

participants residing in LA County at Exam 1. The two raster surfaces aligned well suggesting that the MESA data 

restricted to older adult residents (≥ 65 year old), provided a good representation of the alcohol environment of the 

study region at Exam 1. 

The square mile ratio of high to low density (density < 2.899 per square mile) areas was 1:1.6. This ratio and the above 

geographic boundaries were then used to represent, in an abstract sense, the high and low density alcohol outlet 

density distributions within the ABM. The ABM was set up as a 56 x 42 torus with each square unit = ½ mile wide. The 

high density zone in the ABM environment was colored in red and comprised 907 units. Given that each unit = ½ mile 

wide, and therefore covers an area of 1/4 mi2, 907 units = 226.75 mi2 (i.e., 907/4). This area approximates the HD zone 

in the map. Overall, the HD : LD ratio in the ABM environment was made to be consistent with the data i.e., 1:1.6. 

 

2
1

 m
ile

s 

17 miles 

2.3 miles 

HD zone LD zone 

HD zone:  

[21*2.3 + (17*21/2)] =226.8 mi2  

and  

LD zone:  

[21*28.3 – (HD zone)] =367.5mi2 

28.3 miles 

Kriging area dimensions: 28.3 x 21mi or 594 square miles.  

 



 

 

ALCOHOL RETAIL OUTLET DENSITIES BY ZONE 

Given the absence of geospatial data relating to the number and location of alcohol outlets by density zone, the number 

of alcohol outlets represented in the model was estimated by randomly sampling from two distributions of alcohol 

outlet counts (one for each zone). These distributions were approximated by converting the alcohol outlet density 

distributions to alcohol outlet count distributions as described below. 

FOR THE HIGH DENSITY ZONE 

 

 

 

 

 

 

 

 

 

 

 

 

 
   

N Valid 191 

Missing 0 

Mean 4.11 

Std. Deviation 0.812 

Minimum 2.90 

Maximum 6.49 
 

 
 

  

Descriptive statistics of the 

distribution of alcohol outlet 

densities within a 5 mile radius of 

MESA participants residing in the 

high density alcohol outlet zone 

In the context of the HD zone in the ABM (where 1 unit = 1/4 mi2)  

µD=4.11 outlets per mi2 

So, µ no. of outlets = 4.11 mi2 * HD unit area (mi) / 4  

                                   = 4.11 * 907 / 4 = 932 outlets 

       σ no. of outlets = 0.812 mi2 * 226.75 

                                   = 184 outlets 

             Min outlets = 2.90 mi2 * 226.75 

                                   = 658 outlets 

             Max outlets = 6.49 mi2 * 226.75 

                                   = 1472 outlets 

Alcohol outlet density within 5 miles of residence 



 

 

FOR THE LOW DENSITY ZONE 

 
 
 
 
 
 
 
 
 
 

 

 

 

 
   

N Valid 349 

Missing 0 

Mean 2.24 

Std. Deviation 0.499 

Minimum 0.675 

Maximum 2.89 
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In the context of the LD zone in the ABM (where 1 unit = 1/4 mi2)  

µD=2.24 outlets per mi2 

So, µ no. of outlets = 2.24 mi2 * LD unit area (mi) / 4  

                                   = 2.24 * 1445 / 4 = 809 outlets 

       σ no. of outlets = 0.499 mi2 * 361 

                                   = 180 outlets 

             Min outlets = 0.675 mi2 * 361 

                                   = 244 outlets 

             Max outlets = 2.89 mi2 * 361 

                                   = 1044 outlets 

Descriptive statistics of the 

distribution of alcohol outlet 

densities within a 5 mile radius of 

MESA participants residing in the 

low density alcohol outlet zone 

Alcohol outlet density within 5 miles of residence 



Supplement A2: Income distribution of residents in the high and low alcohol outlet density 

zones, based on Exam 1 MESA data for LA County 
Income as a continuous measure based on midpoint of selected category was considered. Per person weekly incomes in 

US dollars (USD) were calculated assuming a two person household (supported by MESA data).  

FOR RESIDENTS IN LOW DENSITY ZONE 

               Annual 

                  Household  

                  income (USD)                  

 Weekly income  

 (USD per person) 
Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid 2500  24.04 12 3.4 3.5 3.5 

6500  62.50 26 7.4 7.5 11.0 

10000  96.15 35 10.0 10.1 21.2 

14000  134.62 57 16.3 16.5 37.7 

18000  173.08 32 9.2 9.3 47.0 

22500  216.35 33 9.5 9.6 56.5 

27500  264.42 26 7.4 7.5 64.1 

32500  312.50 24 6.9 7.0 71.0 

37500  360.58 16 4.6 4.6 75.7 

45000  432.69 26 7.4 7.5 83.2 

62500  600.96 25 7.2 7.2 90.4 

87500  841.35 20 5.7 5.8 96.2 

112500  1081.73 13 3.7 3.8 100.0 

Total  345 98.9 100.0  

Missing System  4 1.1   

Total  349 100.0   

 
  

Annual household income was converted to weekly per 

person income from the distribution on the left as follows: 

µ weekly personal income = (µ household income/ 52)/ 2 

                                                = (31030.43/ 52)/2 

                                                = 298 USD/ wk 

 σ weekly personal income = (σ household income/ 52)/ 2 

                                                 = (26752.44/ 52)/2 

                                                 = 257 USD/ wk 

           



FOR RESIDENTS IN HIGH DENSITY ZONE 

  
                  Annual  

                  Household 

                  income 

                  (USD) 

 Weekly  

 income 

 (USD per 

 person) Frequency Percent Valid Percent 

Cumulative 

Percent 

Valid 2500  24.04 8 4.2 4.3 4.3 

6500  62.50 8 4.2 4.3 8.6 

10000  96.15 32 16.8 17.3 25.9 

14000  134.62 37 19.4 20.0 45.9 

18000  173.08 27 14.1 14.6 60.5 

22500  216.35 23 12.0 12.4 73.0 

27500  264.42 10 5.2 5.4 78.4 

32500  312.50 14 7.3 7.6 85.9 

37500  360.58 8 4.2 4.3 90.3 

45000  432.69 9 4.7 4.9 95.1 

62500  600.96 4 2.1 2.2 97.3 

87500  841.35 1 .5 .5 97.8 

112500  1081.73 4 2.1 2.2 100.0 

Total  185 96.9 100.0  

Missing System  6 3.1   

Total  191 100.0   

 

Annual household income was converted to weekly per 

person income from the distribution on the left as follows: 

µ weekly personal income = (µ household income/ 52)/ 2 

                                                = (22356.76/ 52)/2 

                                                = 215 USD/ wk 

 σ weekly personal income = (σ household income/ 52)/ 2 

                                                 = (18722.15/ 52)/2 

                                                 = 180 USD/ wk 

           



Supplement A3: Social Network formation & associated assumptions 

Agents in the model are connected through spatially-constrained networks. These networks are important 

because social connections, particularly social isolation, are important determinants of depression. Drinking 

behaviors too may be spread through social influence. The spatially-constrained personal networks within the 

ABM were informed by a number of important characteristics of real-world networks observed among older 

adults, including spatial extent, network degree and strength of ties. Each of these attributes is described 

below. 

• Personal networks “describes a subnetwork of closer, personal relationships in the global network such as 

family members, friends, and other close confidants” will form the focus of modeling efforts. The decision 

to represent this type of network within the ABM environment, as opposed to a broader social network, is 

grounded in the idea that personal networks function as resources, enabling “exchange of support among 

closer network members” [1, p.54]. 

• To create a spatially-constrained network topology, agents are randomly distributed in space and the 

probability that any pair of agents is connected (or that they are members of the same personal network) 

is a function of the distance between them. Specifically, the greater the distance between any given pair of 

agents, the less likely it is that they are connected. This spatial conditioning of network connections is in 

keeping with empirical research [2] characterizing the spatial separation of users of a mobile phone 

network in Belgium. Within their study, Lambiotte et al. [2] investigated the probability 𝑝(𝐶𝑖𝑗) that any two 

members 𝑖 and 𝑗 of the same phone network, separated by a given distance 𝑑 (with a spatial resolution of 

5km), are connected (as evidenced by an exchange of at least six calls/ texts within a six month period). 

The authors conclude that the probability of connection 𝑝(𝐶) is well approximated by: 
 

𝑝(𝐶𝑖𝑗) ∝
1

𝑑2
 

 

This approximation was used to inform the probability that agent 𝑖 is connected to any given agent in its 

neighborhood 𝑁𝑖. That is, the probability that agent 𝑗 - geographically separated from agent 𝑖 by 

distance 𝑑 - is a member of agent 𝑖’s personal network is given by: 

∀𝑗 ∈ 𝑁𝑖 , 𝑝(𝐶𝑗) =

1

𝑑𝑗
2

 ∑
1

𝑑𝑞
2𝑞∈𝑆𝑛𝑖 

 

An assumption intrinsic to this process is that spatial separation plays an analogous role in determining the 

likelihood of personal network connections as it does on social network connections, the latter being the 

focus of Lambiotte et al.’s paper [2]. Assumed also is the fact that the social/ personal networks of older 

people are spatially comparable to those of the general population. 

• Average friendship network size (or degree of connectivity) of any given agent’s friend network is informed 

by Wrzus et al.’s [1] meta-analysis. Within this review, including 277 studies, the average personal network 

size for people aged 65 years was found to be around 5 people. No significant differences were observed 

between geographically disparate networks within this review. The assumption is that the 594 mi2 

environment represented within the ABM is large enough to capture any given agents entire friendship 

network (i.e., all 5 people live within the studied area). 

• The strength of a given social connection  𝑆𝑖𝑞 is randomly assigned such that 𝑆𝑖𝑞 ∈ (0, 1]. This random 

assignment is in keeping with research conducted by Onnela et al. [3] who found the strength of ties - 



quantified as the number of calls or texts between members of a phone network - to be independent of 

distance. Within the ABM, tie strength will be assumed to be symmetrical. That is, the strength of 

influence exerted by agent 𝑖 on agent 𝑗 is the same as that exerted by agent 𝑗 on agent 𝑖. This process 

assumes that Onnela et al’s work [3] exploring tie strength within the context of a mobile phone network is 

generalizable to the older population and that symmetry with respect to tie strength approximates the 

nature of real-world relations. 
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Supplement A4: Model Rules 

Drinking behavior 
A given agent’s drinking status (or decision to either drink excessively, or not) is probabilistically determined 

using a drinking rule. In keeping with the literature, this probability 𝑝(𝐴𝑖𝑡) may be expressed as a function of the 

combined influence of seven determinants spanning individual, social and environmental domains. Specifically, 

the likelihood that agent 𝑖 drinks excessively at any given time 𝑡 is shaped by: 1) an affinity for excessive alcohol 

consumption - characterized by a first-order autoregressive process - wherein an agent’s affinity for excessive 

alcohol use in the preceding time step 𝑝(𝐴𝑖𝑡−1) serves as a predictor of current affinity; 2) their current 

predisposition toward developing depression 𝑝(𝐷𝑖𝑡); 3) the drinking status and strength of ties to drinkers 

within their personal network 𝑓(𝑛𝐴𝐷𝑆𝑛𝑖 , 𝑆𝐴𝑖); 4) cohabitation status and the alcohol consumption status of the 

cohabitant/ spouse 𝑓(𝑆𝑝𝑖, 𝑆𝑝𝐴𝑖); 5) the time taken to access their nearest alcohol retailer 𝑝(𝑊𝑡𝑖𝑛𝑟); and 6) the 

relative cost of alcohol 𝑓(𝐴𝑝,𝑤𝑖): 

∀𝑖 ∈ 𝑃 ,        

𝑝(𝐴𝑖𝑡) = 𝑓( 𝑓(𝑝(𝐴𝑖𝑡−1)) +  𝑓(𝑝(𝐷𝑖𝑡)) + 𝑓(𝑛𝐴𝐷𝑆𝑛𝑖 , 𝑆𝐴𝑖) + 𝑓(𝑆𝑝𝑖, 𝑆𝑝𝐴𝑖)  + 𝑓(𝑊𝑡𝑖𝑛𝑟) +  𝑓(𝐴𝑝,𝑤𝑖)) 

Each of the components comprising this function is described below. The depression component is described 

in a separate section entitled ‘Depression Rule’. 

1) The contribution of network influences on an agent’s affinity for excessive drinking is determined both by 

the proportion of drinkers in agent 𝑖′s personal network as well as the relative strength of the connections 

between agent 𝑖 and drinking members of their personal network.  

𝑓(𝑛𝐴𝐷𝑆𝑛𝑖 , 𝑆𝐴𝑖) = (
𝑛𝐴𝐷𝑆𝑛𝑖
𝑛𝑆𝑛𝑖

) .(
∑  𝑆𝐴𝑖𝐴𝑖∈𝑆𝑛𝑖 

 ∑  𝑆𝑞𝑞∈𝑆𝑛𝑖 
) 

𝑛𝐴𝐷𝑆𝑛𝑖  = number of drinkers in agent 𝑖’s personal network, where 𝑛𝐴𝐷𝑆𝑛𝑖 is a positive integer 

𝑛𝑆𝑛𝑖 = number of people in agent 𝑖’s personal network, where 𝑛𝑆𝑛𝑖 > 0 

𝑆𝐴𝑖 = strength of tie between agent 𝑖 and agents with excessive alcohol consumption in 𝑖’s personal network  

𝑆𝑞 = strength of tie between agent 𝑖 and any given agent 𝑞 in its personal network 

2) The presence or absence of a spouse or cohabitant, as well as their alcohol consumption behavior, is 

considered in the alcohol decision rule. This is in keeping with research reporting a positive association 

between marital status and cohabitation, and excessive alcohol consumption in certain contexts [1-3]. An 

agent’s likelihood of drinking to excess is represented by the below equation. Keeping all other factors 

influencing drinking behavior constant, this equation expresses that, in the model, an agent with a 

cohabitant/ spouse who drinks is more likely to consume alcohol to excess, than one with a cohabitant/ 

spouse who does not drink, and one living alone (in descending order of likelihood). 

𝑓(𝑆𝑝𝑖, 𝑆𝑝𝐴𝑖) =  
(𝑆𝑝𝑖 + 𝑆𝑝𝐴𝑖)

2
 

𝑆𝑝𝑖 = agent 𝑖’s cohabitation status (if lives with someone =1; else =0) 

𝑆𝑝𝐴𝑖  = agent 𝑖’s cohabitant’s alcohol status (if cohabitant drinks to excess =1; else =0) 



3) The proximity to alcohol retail outlets, characterized by travel time, represents an important environmental 

determinant of alcohol consumption. Within the model, the probability 𝑝(𝑊𝑡𝑖𝑛𝑟) of accessing the nearest 

alcohol retailer to purchase alcohol is expressed using a simplified version of Huff’s (1964) model (cited in 

[4]) which assumes that the probability of walking to the nearest retailer decays exponentially with 

increasing distance:  

𝑝(𝑊𝑡𝑖𝑛𝑟) = (
𝑒

1
𝑊𝑡𝑖𝑛𝑟

∑ 𝑒
1

𝑊𝑡𝑖𝑛𝑟𝑟∈𝑅𝑖 

) 

𝑊𝑡𝑖𝑛𝑟 = agent 𝑖’s walk time to nearest alcohol retailer 𝑟 (calculated by dividing the distance between agent 𝑖 

and the nearest alcohol retailer by it’s walking speed), where 𝑊𝑡𝑖𝑛𝑟 ∈ ℝ
+. 

Huff’s model has been used in other ABM studies, including the model developed by Huang & Levinson [4] 

where its purpose was to characterize the probability that a customer chooses to shop at a specific retailer, 

given a number of alternatives. In the context of Huang & Levinson’s model [4], this choice was based on a 

retailer’s attractiveness, which was operationalized as a function of the distance between the customer and 

the retailer and other unobservable factors. For simplicity, in the context of our model, only the distance 

between agent and alcohol retail outlets was used as a determinant of outlet selection. The minimum 

walking time, which reflects a situation in which an agent and an alcohol outlet are co-located, is sat at 5 

minutes. That is, in the case of co-location, a minimum distance between agent and outlet is assumed to be 

0.25 miles (or half the length of cell in Netlogo). The corresponding walking time therefore is calculated as 

this distance divided by the average walking speed of agents (i.e., 0.25mi / 2.98mi/hr = 0.0839 hrs ~ 5 min). 

4) The influence of alcohol cost on the likelihood of excessive alcohol consumption is considered uniquely for 

each agent and expressed as a relative cost. That is, the weekly alcohol cost of an excessive drinker (i.e., 

someone drinking > 7 standard drinks per week according to US recommendations for those >60 years old) 

is represented as a fraction of total weekly income: 

𝑓(𝐴𝑝,𝑤𝑖) =  (1 −
𝐴𝑝

𝑤𝑖
) 

𝑤𝑖 = weekly income of agent 𝑖 expressed in USD/hr 

𝐴𝑝 = price of 8 standard drinks of alcohol (USD) = USD13.44 

According to DiLoreto et al. [5], the average price per ounce (or 28.3g) of alcohol is $3.36. Given that 1 US 

standard drink = 14g of pure alcohol, 1 ounce = approx. 2 standard drinks. The price per standard drink 

according to this study therefore is $1.68, which equates to a total cost of at least $13.44 pw for an older 

adult consuming 8 standard drinks (i.e., drinking excessively according to US recommendations for those  

> 60 years old).  

  



On the whole, in the context of a social drinking culture, the probability 𝑝(𝐴𝑖𝑡)  that any given agent 𝑖  engages 

in excessive alcohol consumption, at any given time 𝑡, is influenced by the aforementioned factors and 

calculated using the equation featured below. This probability is used to determine the excessive alcohol 

consumption status 𝐴𝑖𝑡 of each agent within the model (i.e., as either drinking excessively or not drinking 

excessively). The greater the probability 𝑝(𝐴𝑖𝑡), the more likely a given agent is to be assigned excessive drinking 

status. The proportion of agents drinking excessively is tracked throughout the life of the simulation.  

∀𝑖 ∈ 𝑃 ,  

𝑝(𝐴𝑖𝑡) = 𝑥

(

 
 
𝑝(𝐴𝑖𝑡−1) + 𝛿𝑝(𝐷𝑖𝑡) + 𝑤𝑆 ((

𝑛𝐴𝐷𝑆𝑛𝑖
𝑛𝑆𝑛𝑖

) . (
∑  𝑆𝐴𝑖𝐴𝑖∈𝑆𝑛𝑖 

 ∑  𝑆𝑞𝑞∈𝑆𝑛𝑖 
) +

(𝑆𝑝𝑖 + 𝑆𝑝𝐴𝑖)

2
)

+ 𝑤𝐸

(

 (
𝑒

1
𝑊𝑡𝑖𝑛𝑟

∑ 𝑒
1

𝑊𝑡𝑖𝑛𝑟𝑟∈𝑅𝑖 

) + (1 −
𝐴𝑝

𝑤𝑖
)

)

 

)

 
 

 

Where 𝑥 normalizes the function such that it is expressed as a probability with 𝑝(𝐴𝑖𝑡) ∈  [0,1]: 

𝑥 =
𝛿.𝑤𝑆.𝑤𝐸

𝑤𝑆.𝑤𝐸. (𝛿 + 1) +  𝛿(2𝑤𝐸 + 2𝑤𝑆)
 

 

𝑝(𝐴𝑖𝑡−1) = agent 𝑖’s past affinity for excessive alcohol consumption, where 𝑝(𝐴𝑖𝑡−1) ∈ [0,1]  

𝑝(𝐷𝑖𝑡) = agent 𝑖’s current predisposition toward developing depression, where𝑝(𝐷𝑖𝑡) ∈ [0,1]   

𝑛𝐴𝐷𝑆𝑛𝑖  = number of drinkers in agent 𝑖’s personal network, where 𝑛𝐴𝐷𝑆𝑛𝑖 is a positive integer 

𝑛𝑆𝑛𝑖 = number of people in agent 𝑖’s personal network, where 𝑛𝑆𝑛𝑖 > 0 

𝑆𝐴𝑖  = strength of tie between agent 𝑖 and agent’s with excessive alcohol consumption in 𝑖’s personal network  

𝑆𝑖𝑞  = strength of tie between agent 𝑖 and any given agent 𝑞 in its personal network 

𝑆𝑝𝑖  = agent 𝑖’s cohabitation status (if lives with someone =1; else =0) 

𝑆𝑝𝐴𝑖  = agent 𝑖’s cohabitant’s alcohol status (if cohabitant drinks to excess =1; else =0) 

𝑊𝑡𝑖𝑛𝑟 = agent 𝑖’s walk time to nearest alcohol retailer 𝑟 (calculated by dividing the distance between agent 𝑖 and 

the nearest alcohol retailer by it’s walking speed), where 𝑊𝑡𝑖𝑛𝑟 ≥ 0.0839  (as explained at the end of page 9) 

𝐴𝑝 = price of 8 standard drinks of alcohol (USD) = $13.44 

𝑤𝑖 = weekly income of agent 𝑖 expressed in USD/hr 

 

Calibrated parameters: 

𝛿 = weight of influence of depression on excessive alcohol consumption likelihood, where 𝛿 ∈ ℝ+ 

𝑤𝑆 = weight of social influence on excessive alcohol consumption likelihood, where 𝑤𝑆 ∈ ℝ+ 

𝑤𝐸 = weight of environmental influence on excessive alcohol consumption likelihood, where 𝑤𝐸 ∈ ℝ+ 



Evolution of depression 
The temporal nature and shape of depression prevalence trajectories in the face of time-varying alcohol use 

patterns among older adults is poorly understood. Given this empirical gap, the trajectory representing an older 

adult’s predisposition for developing depression within the ABM was modelled as a sigmoid curve. That is, a 

trajectory wherein the likelihood of developing depression is initially stable/ slowly increasing, then undergoes a 

phase of rapid growth which gradually decreases as the probability of depression approaches the asymptote 

(i.e., at 𝑝(𝐷𝑖𝑡) = 1). 

The functional form corresponding to the assumed depression trajectory is represented by: 

∀𝑖 ∈ 𝑃 ,       𝑝(𝐷𝑖𝑡) = (1 + 𝜑𝑒
−𝑝(𝐴𝑖𝑡)𝑝(𝐷𝑖𝑡−1)𝑡

 𝜆 )
−1

 

Where,  

An agent with no personal connections has 𝜆 = 1 

An agent with a personal network has  𝜆 = 𝛾(𝑛𝑆𝑛𝑖 + 𝑠�̅�) 

Definition of terms: 

𝑝(𝐷𝑖𝑡) = agent 𝑖’s current predisposition toward being depressed, where 𝑝(𝐷𝑖𝑡) ∈ [0, 1] 

𝑝(𝐷𝑖𝑡−1) = agent 𝑖’s past predisposition for being depressed, where 𝑝(𝐷𝑖𝑡−1) ∈ [0, 1] 

𝑝(𝐴𝑖𝑡) = agent 𝑖’s current affinity for excessive alcohol consumption, where 𝑝(𝐴𝑖𝑡) ∈ [0, 1] 

𝜆 = depression rate dampening term, where 𝜆 ≥ 𝟏   

𝑛𝑆𝑛𝑖 = number of people in agent 𝑖’s personal network, where 𝑛𝑆𝑛𝑖 > 0 

𝑠�̅�  = mean tie strength to members of own personal network 

𝑡 = time (weeks) 

 

Calibrated parameters: 

𝛾 = weight that determines the extent to which personal networks dampen depression growth, where 𝛾 ∈ ℝ+ 

𝜑 = determines the y-axis intercept of the 𝑝(𝐷𝑖𝑡) growth function. 

 

NOTE: 𝜑 determines the y-axis intercept i.e., the greater the value, the smaller the 𝑝(𝐷𝑖𝑡) intercept. 

Variables 𝑝(𝐴𝑖𝑡), 𝑝(𝐷𝑖𝑡−1), 𝑛𝑆𝑛𝑖 and 𝑠�̅�  collectively govern the 𝑝(𝐷𝑖𝑡) growth rate.  That is, the greater the 

values of 𝑝(𝐴𝑖𝑡) and 𝑝(𝐷𝑖𝑡−1), the higher the growth rate. Variables 𝑛𝑆𝑛𝑖, 𝑠�̅�and 𝛾 are growth scaling terms; the 

greater the value of these terms, the longer it takes for 𝑝(𝐷𝑖𝑡) to reach its maximum value (i.e, the slower the 

rate of growth). 
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