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Abstract 

Background:  The atopic syndrome consists of heterogeneous manifestations, in which multiple associated genetic 
loci have recently been identified. It is hypothesized that immune dysregulation plays a role in the pathogenesis. In 
primary immunodeficiency diseases (PIDs), which are often monogenic immunodysregulation disorders, the atopic 
syndrome is a frequently occurring comorbidity. Based on the genetic defects in PIDs, novel gene/pathway-targeted 
therapies have been evaluated, which could be relevant in the atopic syndrome as well. Therefore, we aimed to define 
subclasses within the atopic syndrome based on the expression profiles of immune cell lineages of healthy mice.

Methods:  Overlap between known atopy-related genes as described in the Human Gene Mutation Database and 
disease-causing genes of monogenic PIDs was evaluated. Clusters of atopy-related genes were based on the overlap 
in their co-expressed genes using the gene expression profiles of immune cell lineages of healthy mice from the 
Immunological Genome Project. We analyzed pathways involved in the atopic syndrome using Ingenuity Pathway 
Analysis.

Results:  Twenty-two (5.3%) genes were overlapping between the atopy-related genes (n = 160) and PID-related 
genes (n = 278). We identified seven distinct clusters of atopy-related genes. Functional pathway analysis of all atopy-
related genes showed relevance of T helper cell-mediated pathways.

Conclusions:  This study shows a model to define clusters within the atopic syndrome based on gene expression 
profiles of immune cell lineages. Our results support the hypothesis that both genetic mechanisms and immune 
dysregulation play a role in the pathogenesis. It also opens up the possibility for novel therapeutic targets and a more 
tailored approach towards personalized medicine.
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Background
Atopy is the genetic predilection to produce specific 
immunoglobulin (Ig) E following exposure to allergens. 
This predisposition results in the development of atopic 
dermatitis (AD), food allergy (FA), asthma and allergic 
rhinitis (AR): the atopic syndrome [1]. The worldwide 
prevalence of these manifestations in children varies 
between 15–20%, 1–10%, 3–29% and 9–15%, respec-
tively, and in adults from 1–3%, 3–4%, 2–12% and 7–42%, 
respectively [2–6]. Atopic manifestations share a com-
mon mechanism involving allergen-specific IgE, which 
triggers the release of inflammatory mediators, like his-
tamine, in the skin, gastrointestinal tract, lungs and nose. 
The course of these manifestations over time is charac-
terized by the atopic march, generally starting with AD 
in infancy and followed by FA, asthma and AR later in 
childhood [7]. However, it is known that the atopic march 
not always follows the classic sequence and may occur at 
any age [8, 9]. Furthermore, not all atopic patients will 
develop the complete spectrum of atopic manifestations 
[7]. Despite its heterogeneous presentation, patients with 
atopic manifestations are mostly uniformly treated with 
topical or systemic immunosuppressive agents and/or 
antihistamines resulting in varying therapeutic responses 
as well [10–13].

Subgroups of the atopic phenotype, termed endotypes, 
are possibly responsible for the differences in disease 
manifestations and treatment responses. These endo-
types are the result of variations in physiologic, biologic, 
immunologic and/or genetic mechanisms [14]. Vari-
ous genetic loci associated with both inflammation and 
multiple atopic manifestations have been identified in 
recent years based on genome-wide association stud-
ies (GWAS), showing common genetic mechanisms 
involved in the atopic syndrome [15–24]. Nevertheless, 
the genetics of the atopic syndrome remain complicated 
for different reasons. For example, gene polymorphisms 
in different genes might cause the atopic syndrome inde-
pendent of each other, and bearing a predisposing gene 
polymorphism does not necessarily result in develop-
ment of the atopic syndrome [24]. The genetic complexity 
in the atopic syndrome possibly results in its heterogene-
ous clinical phenotype. Defining the endotypic profile 
of atopic patients in more detail contributes to deter-
mination of more homogeneous subclasses of patients. 
Subclasses are currently defined based on clinical and 
immunological characteristics, like the type of immune 
response involved [25]. However, stratification of atopic 
patients based on their genetic defect or polymorphism 
linked to their expression profile of immune cell line-
ages has not yet been investigated. This endotyping 
approach could be of interest as immune dysregulation 
may play an important role in the pathogenesis of the 

atopic syndrome. Interestingly, the atopic syndrome is a 
prevalent comorbidity in primary immunodeficiency dis-
eases (PIDs), for example in hyper IgE syndrome (HIES), 
Comèl Netherton syndrome and immunodysregulation 
polyendocrinopathy enteropathy X-linked (IPEX) syn-
drome, which suggests that the atopic syndrome could 
be caused by a genetic defect in pathways that are also 
involved in these monogenic PIDs [26, 27]. This is sup-
ported by the hypothesis of autoallergy, in which atopy 
seems to stand at the boundary between allergy and auto-
immunity, given the presence of IgE antibodies against 
self-proteins [28–30].

Several gene-targeted and/or pathway-targeted treat-
ment strategies for PIDs have recently been under clinical 
evaluation, which could be of clinical benefit in the atopic 
syndrome as well. Identification of genetic pathways for 
these targeted and personalized treatment modalities is 
therefore essential.

We hypothesize that subclasses within the atopic syn-
drome exist based on genes that act in the same molec-
ular pathway. Additionally, genetic defects in pathways 
that cause PID might also be involved in the atopic 
syndrome.

Therefore, the aim of this study is to define subclasses 
within the atopic syndrome via molecular clustering of 
atopy-related genes based on their expression profiles 
of immune cell lineages. We first evaluated the overlap 
between atopy-related genes and monogenic PID genes. 
Secondly, we clustered the atopy-related genes based on 
their expression profile of immune cell lineages of healthy 
mice. Finally, we analyzed the pathways in which the 
atopy-related genes are involved.

Methods
Data collection and content: overlap atopy/PID genes
We obtained a complete list of all mutated genes 
responsible for atopic manifestations by performing a 
comprehensive search in the Human Gene Mutation 
Database (HGMD, HGMD® Professional, https​://porta​
l.bioba​se-inter​natio​nal.com) up to August 21th 2018 
[31]. Genes were searched using the phenotype terms 
“atopy”, “increased IgE”, “atopic dermatitis”, “eczema”, 
“food allergy”, “allergy”, “asthma” and “allergic rhini-
tis”. Atopy-related genes and the number of mutations 
per gene were extracted. Additionally, disease-causing 
genes of monogenic PIDs were obtained from the phe-
notypic classification for PIDs of the International Union 
of Immunological Societies (IUIS) [32]. We performed 
a cross check on atopy-related mutations in PID genes 
using HGMD. Overlapping genes between both the 
HGMD and PID lists were identified to select atopy-
related with a defect in the same gene as a PID.

https://portal.biobase-international.com
https://portal.biobase-international.com
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Clustering and visualization of atopy‑related genes
The atopy-related genes were clustered to identify 
more homogeneous subclasses of the atopic syn-
drome. Clusters were made based on their gene expres-
sion profiles of immune cell lineages. Therefore, gene 
expression data from the Immunological Genome Pro-
ject (ImmGen, http://www.immge​n.org) was down-
loaded from the Genome Expression Omnibus (GEO) 
database accession number GSE15907 and GSE37448. 
The ImmGen datasets comprise the gene expression of 
a large amount of immune cell lineages (both hemat-
opoietic and mesenchymal), that were grouped into 
12 cell-populations. Currently, there is limited data 
on the gene expression signatures of human immune 
cell types. Therefore, immune cell lineages of healthy 
mice were used, which might give insights in atopic 
processes also applicable in human. All atopy-related 
genes selected via the HGMD query were searched in 
the ImmGen dataset. The top 40 co-expressed genes 
in mice were extracted per atopy-related gene. These 
genes are of biological interest as co-expressed genes 
are controlled by the same transcriptional regulatory 
program, functionally related, or members of the same 
pathway or protein complex as our atopy-related genes 
of interest [33]. We overlaid the co-expressed genes 
to identify genes that occurred in the top 40 lists of 
multiple atopy-related genes. Based on the overlap in 
co-expressed genes, indicating the degree of similar 
expression of atopy-related genes, the atopy-related 
genes were clustered in an unsupervised manner. 
Accordingly, it is likely that the clustered atopy-related 
genes act in the same molecular pathway. The clusters 
were visualized by constructing a correlation network 
plot using the “qgraph” package in RStudio version 
3.4.1 [34]. The lines between the genes were weighted 
and only correlations with a minimum correlation 
coefficient of 0.65, indicating a strong (positive) rela-
tionship, were visualized. If the top 40 list of an atopy-
related gene did not contain a single overlapping gene, 
this atopy-related gene was labeled as an unclustered 
“bin” gene.

To visualize the gene expression profiles of the clus-
ters, a heat map of the gene expression per cell lineage 
was constructed. Therefore, gene expression data were 
imported into Omniviz software version 6.1.13.0. Using 
Omniviz, the geometric mean of each probeset was cal-
culated and transcriptomic data was log2 transformed 
to normalize the data. Changes in gene expression were 
constituted by deviations from the geometric mean to 
visualize whether genes of immune cell lineages were 
higher or lower expressed. These deviations are visual-
ized in a heat map by a gradient from red (high expres-
sion) to blue (low expression) and ordered per cluster.

Functional pathway analysis
We validated whether the extracted genes from HGMD 
were atopy-related through analysis of the pathways con-
taining these atopy-related genes. As the separate clusters 
included small numbers of genes, all clustered atopy-
related genes from HGMD with and without unclus-
tered “bin” genes were analyzed using Ingenuity Pathway 
Analysis (IPA, Qiagen©) software [35]. The most impor-
tant pathways, in which the atopy-related genes were 
involved, were extracted from IPA. The pathways were 
ranked according to their p value (-log transformed) and 
the ratio of the atopy-related genes found in each path-
way over the total number of molecules in that pathway, 
indicating the significance of the association between the 
atopy-related genes and the identified pathways. The p 
value was calculated using a Fisher’s exact test to deter-
mine the probability that the association between the 
atopy-related genes and the pathways is explained by a 
random chance alone. A –log (p value) equal to or greater 
than 1.3, corresponding to a p value of 0.05, was consid-
ered statistically significant.

Results
Content of data
The search in HGMD on atopic manifestations retrieved 
159 atopy-related genes known in human (Additional 
file  1: Table  S1). Based on the overview of the IUIS, 
278 disease-causing genes of monogenic PIDs were 
obtained  [36]. During the cross-check on atopy-related 
mutations in PID genes, TRAF3IP2 was identified of 
which mutations were described that might result in 
an eczema phenotype. This gene did not appear in the 
search results of HGMD and was therefore added to 
the list of atopy-related genes, resulting in a total of 160 
genes for further analysis. The top three genes with the 
highest number of atopy-related mutations included 
STAT3 (n = 107), FLG (n = 62) and DOCK8 (n = 45). 
Other genes had six or less atopy-related mutations per 
gene (Additional file  1: Table  S1). Twenty-two (5.3%) 
genes of the atopy (n = 160) and PID (n = 278) lists were 
overlapping, including ARPC1B, BTK, CASP8, CFTR, 
CTLA4, DOCK8, ICOS, IL10, IL12B, IL12RB1, IL17F, 
IL21, IL21R, IL7R, ITK, ORAI1, PGM3, SPINK5, STAT3, 
TNFRSF13B, TRAF3IP2 and TYK2 (Fig. 1 and Additional 
file 1: Table S1).

Clustering of genes
Fifteen (9.4%) of the 160 atopy-related genes were 
not expressed in the mouse immune system, of which 
immune cell lineages were used in the ImmGen dataset, 
and were therefore excluded from further analysis. As 
some genes had multiple transcripts and appeared more 
than once in the gene expression dataset, the complete 

http://www.immgen.org
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list for clustering resulted in 153 probes. Eleven clusters 
were identified, of which seven clusters included five 
or more genes (clusters A, C, D, F, H, J and K), and 37 
non-correlated genes remained as “bin” (Figs.  2 and 3, 
Additional file  1: Table  S1). Based on the gene expres-
sion profiles, we identified one pair of anti-correlated 
clusters (clusters D and F), i.e. opposite expression pro-
files between clusters D and F (Fig. 3). The 22 overlapping 
genes between the atopy-related genes and monogenic 
PID genes were localized in two of the seven atopy-
related gene clusters, including cluster F (n = 8) and clus-
ter D (n = 3) (Additional file 1: Table S1).

Functional pathway analysis
Functional pathway analysis in IPA of the atopy-related 
genes both with and without taking unclustered “bin” 
genes into account resulted in T helper (Th) cell-medi-
ated pathways. Based on all atopy-related genes (n = 160), 
this included the specific pathways “T helper cell differ-
entiation”, “Th1 and Th2 activation pathway”, and “Th2 
pathway”, in which respectively 22, 28 and 24 atopy-
related genes were involved (Additional file 2: Table S2a 
and S2b). Additionally, pathway analysis of the clustered 
atopy-related genes only (n = 108) resulted in the spe-
cific pathways “Th1 and Th2 activation pathway” (n = 22 
genes), “T-helper cell differentiation” (n = 16 genes), and 

“Th2 pathway” (n = 19 genes) (Additional file 2: Table S2c 
and S2d).

Discussion
This is the first study that describes clusters in the clini-
cally heterogeneous phenotype of the atopic syndrome 
based on gene expression profiles of immune cell lineages 
of healthy mice. The overlap between atopy-related genes 
(n = 160) and monogenic PID genes (n = 278) was limited 
to 22 (5.3%) genes. We identified seven distinct clusters 
within the atopic syndrome based on the expression pro-
files of atopy-related genes. Functional pathway analysis 
of all known atopy-related genes resulted in identifica-
tion of Th cell-mediated processes underlying the atopic 
syndrome.

The atopic syndrome is a prevalent comorbidity in a 
number of PIDs, suggesting that the atopic syndrome can 
be a symptom of PIDs and that immune dysregulation 
plays a role in the pathogenesis. Interestingly, the number 
of overlapping genes in this study was limited (5.3%) and 
did not belong to one PID category according to the IUIS 
phenotypic classification or immunologic component 
[32]. Nonetheless, the overlapping genes were bundled 
in just two of the seven atopy-related gene clusters (clus-
ter D and F), which suggests that these endotypes of the 
atopic syndrome are associated with the predisposition 
to develop a PID. However, atopy-related mutations in 

Fig. 1  Venn diagram illustrating the overlap of the disease causing genes of monogenic primary immunodeficiency diseases and the atopy-related 
genes identified in the Human Gene Mutation Database
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Fig. 2  Genetic correlation network plot of atopy-related gene clusters. The line width between the atopy-related genes indicate the overlay in 
the top 40 co-expressed gene lists per atopy-related gene and is proportional to the strength of correlation within the clusters. Only those with 
correlation coefficients > 0.65 are visualized

(See figure on next page.)
Fig. 3  Heat map representing the atopy-related gene expression across the immune cell lineage of healthy mice ordered according to the 
identified clusters within the atopic syndrome. Data on the expression of atopy-related genes across the immune cell lineages was constructed 
using the Omniviz software, in which changes in gene expression were visualized by a gradient from red (high expression) to blue (low expression). 
Genes were alphabetically ordered according to the identified genetic cluster. Thirty-seven non-correlated genes remained as “bin”. Abbreviations: B, 
B lymphocyte; IL, innate lymphocyte; act T, activated T lymphocyte; αβ T, αβ T lymphocyte; DC, dendritic cell; Γδ T, Γδ T lymphocyte, GC, granulocyte; 
MΦ, macrophage; MC, mast cell; Mo, monocyte; SC, stem cell
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these genes might differ from the disease-causing muta-
tions of the PIDs.

Current literature reports nine PIDs to be possibly 
related to the atopic syndrome, including autosomal 
dominant HIES (AD-HIES; STAT3), autosomal reces-
sive HIES (AR-HIES; DOCK8), Comèl Netherton syn-
drome (SPINK5), hypogammaglobulinemia, selective 
IgA deficiency (SIgAD), IgM deficiency, IPEX (FOXP3), 
chronic granulomatous disease (CGD; CYBA, CYBB, 
NCF1, NCF2 and NCF4), and phospholipase C gamma 
2 (PLCG2) gene associated antibody deficiency and 
immune dysregulation (PLAID; PLCG2), and 28 addi-
tional genetic PID conditions [27, 37]. Only eight genes 
(STAT3, DOCK8, SPINK5, FLG, ARPC1B, PGM3, 
ERBIN and TYK2) were extracted from HGMD using 
the atopic phenotype search. Furthermore, only two 
of the 22 overlapping atopy-related and PID-related 
genes identified in this study were reported in literature 
to be involved in PIDs and the atopic syndrome [27]. 
The discrepancy between literature and HGMD could 
firstly be explained by the recent expansion of novel 
mutations derived from next generation sequencing 
(NGS). Secondly, the atopic manifestations in PIDs, as 
described in literature, might be an occasional finding 
and not related to the disease causing genes of PIDs. 
Thirdly, the heterogeneous course and presentation of 
the atopic syndrome may make it difficult to associate 
genetic mutations with atopic manifestations. Moreo-
ver, the infectious symptoms in PIDs might be a more 
prominent clinical feature than the atopic manifesta-
tions, which therefore could have resulted in a registra-
tion bias.

We found a low number of mutations in most atopy-
related genes in human (six or less mutations in 157 of 
the 160 genes), suggesting that other phenomena con-
tribute to the disease such as post-translational modifi-
cations. Alternatively, various genes that interact with 
environmental factors might be involved in the atopic 
syndrome, in which each gene contributes only to a small 
amount of the overall disease risk [38]. Furthermore, 
the differences between the clusters could indicate that 
immune regulation plays a role in the atopic syndrome 
next to underlying genetic mechanisms.

Strikingly, two of the identified clusters (D and F) have 
a completely opposite expression profile, both in lym-
phoid and myeloid cell lineages. An explanation for this 
phenomenon may be that both clusters share the same 
upstream regulator. Depending on a gain or loss of func-
tion mutation in this enhancer, the gene expression pro-
file can be influenced by an agonist or antagonist of this 
regulator. By performing a functional pathway analy-
sis of the atopy-related genes in only clusters D and F, 
we would explore the functional significance of these 

clusters. The analysis resulted in the pathways “T helper 
cell differentiation”, “TREM1 signaling” and “Th1 and 
Th2 activation pathway”, which is completely correspond-
ing with the pathways involved in all atopy-related genes 
(data not shown). Therefore, we could unfortunately not 
differentiate between the functional significance of all 
atopy-related genes and those included in clusters D and 
F.

The identified Th cell-mediated pathway supports the 
hypothesis that changes in the immune system under-
lie and could be involved in the pathogenesis of atopy. 
In AD it has been previously described that acute skin 
lesions are characterized by Th2 cell infiltration with 
a shift towards predominantly Th1 cells in the chronic 
phase [39–41]. In addition, asthma was reported as a Th2 
cell-mediated diseases driven by allergen exposure [42]. 
Moreover, patients with FA and AR are characterized by 
allergen-specific Th2 cell-mediated responses showing 
that the obtained Th cell-pathways involved in the atopic 
syndrome are in agreement with these of the individual 
atopic manifestations [43–45]. In most of our identified 
clusters (except clusters F, G, H, I and J) the atopy-related 
genes do not show increased expression in T lympho-
cytes (Fig. 3). Therefore, genes in these clusters might be 
expressed in immunologic cells that co-interact with T 
lymphocytes, including Th cells, or in cells that are pro-
genitors of Th cells.

This study has some limitations. Firstly, we might have 
missed gene expression profiles of barrier cells  as we 
could not include terms concerning the skin barrier in 
the phenotype search  in HGMD. However, by using the 
terms “atopic dermatitis” and “eczema” we have identi-
fied important barrier genes, like COL6A5, FLG (sub-
types), FLG2, and KLK7. Secondly, some discrepancies 
were found in the HGMD database. The genes from 
the atopic phenotype search did not completely overlap 
with the results from the search on atopy-related muta-
tions per gene. Therefore, we identified atopic pheno-
types per gene on the results of both searches. Thirdly, we 
clustered genes based on their expression profiles in the 
ImmGen dataset, which uses characterized immune cells 
of healthy mice. The gene expression profiles of immune 
cell lineages in healthy mice may not be identical to these 
in (atopic) human. This explains why we could not clus-
ter all human atopy-related genes including FLG, which 
is an important atopy-related gene based on the number 
of atopy-related mutations (n = 62). Furthermore, the 
data from mice cannot directly be applied for subgroup-
ing of the atopic syndrome in human. Therefore, large 
cohorts of patients with the atopy phenotype should 
be sequenced using NGS to investigate whether atopy 
clusters could be generated based on the gene expres-
sion profiles of immune cell lineages of atopic human. 
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Identification of clusters of atopy-related genes by NGS 
potentially opens novel ways to select eligible patients 
for pharmaceutical studies and could predict therapeutic 
responses.

Conclusions
This study shows a model, using data of healthy mice, 
to define clusters of the atopic syndrome based on gene 
expression profiles of immune cell lineages. We identi-
fied seven distinct clusters within the atopic syndrome 
in which Th cell-mediated pathways were most often 
involved. This supports the hypothesis that both genetic 
mechanisms and immune dysregulation have a role in 
the pathogenesis the atopic syndrome. It also opens up 
the possibility for identification of novel therapeutic tar-
gets towards a more tailored approach and personalized 
medicine.
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