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Abstract

Background: Many prodromal Alzheimer’s disease trials collect two types of data: the time until clinical diagnosis of
dementia and longitudinal patient information. These data are often analysed separately, although they are strongly
associated. By combining the longitudinal and survival data into a single statistical model, joint models can account
for the dependencies between the two types of data.

Methods: We illustrate the major steps in a joint modelling approach, motivated by data from a prodromal
Alzheimer’s disease study: the LipiDiDiet trial.

Results: By using joint models we are able to disentangle baseline confounding from the intervention effect and
moreover, to investigate the association between longitudinal patient information and the time until clinical
dementia diagnosis.

Conclusions: Joint models provide a valuable tool in the statistical analysis of clinical studies with longitudinal and
survival data, such as in prodromal Alzheimer’s disease trials, and have several added values compared to separate
analyses.
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Background
Alzheimer’s disease (AD) is a neurodegenerative disor-
der characterised by a slow progressive deterioration of
cognitive capacity. The pathophysiological changes begin
long before clinical manifestations of the disorder, and the
disease spectrum spans from clinically asymptomatic to
severely impaired [1]. The terminology of prodromal AD
designates the initial mild state of cognitive impairment,
whereas the dementia state represents the subsequent
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clinically manifest severe cognitive impairment. The spe-
cific transition between prodromal AD and the clinical
diagnosis of AD dementia can be challenging [2] as AD
should not be viewed with discrete and defined clini-
cal stages, but as a multifaceted process moving along a
biological and clinical continuum [1]. Given this under-
lying continuum, the moment of receiving the dementia
diagnosis does not represent a discrete biological event.
Nonetheless, having received the dementia diagnosis does
indicate a certain level of disease progression. As such,
the event ‘AD dementia diagnosis’ has been used in many
studies that focus on risk factors, see for example: [3–5],
and has obvious impact on patient care.
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Prodromal AD trials frequently collect the time until
clinical dementia diagnosis in combination with longi-
tudinal patient information. These longitudinal patient
information include clinical biomarkers or performance
of patients in psychometric tests and can help to describe
or understand disease progression. Yet, most studies deal-
ing with longitudinal and survival (i.e., time-to-event)
data analyse the data separately, mostly by relying on
well-established statistical methods such as linear mixed
models for longitudinal data and Cox proportional haz-
ard models for survival data. However, a method that
allows the simultaneous modelling of longitudinal mea-
surements with a survival outcome is the joint model for
longitudinal and survival data, see for example: Wulfsohn
& Tsiatis (1997) [6], Henderson et al. (2000) [7], Tsiatis &
Davidian (2004) [8] and Rizopoulos (2012) [9]. By com-
bining the longitudinal and survival data into a single
statistical model, joint models can account for or infer the
dependencies between the two types of data. In certain sit-
uations, e.g., when it is of interest to study the association
between a clinical biomarker or cognitive measure over
time and the time until clinical diagnosis, a jointmodelling
approach is even required. More specifically, when it is of
interest to study the association between a survival out-
come and an endogenous time-varying covariate, such as a
biomarker or another covariate measured on patients dur-
ing the study, the traditional Cox model is not appropriate
[10, 11]. First approaches to fit joint models have focused
on the so-called two-stage methods, in which as a first
step, a model is fit to the longitudinal data, and as a second
step, the fitted longitudinal values are inserted in the Cox
model. Many authors, such as Dafni & Tsiatis (1998) [12],
Tsiatis & Davidian (2001) [13] and Sweeting & Thomp-
son (2011) [10], have shown that the two-stage method
still provides potentially biased and inefficient estimates.
In comparison, the joint model simultaneously estimates
the parameters in the longitudinal and survival parts of
the model, for example by relying on maximum likelihood
estimation.
Joint modelling is an active area in biostatistics with

numerous methodological papers (within AD research,
see for example: [14–17]) and has already been adopted in
several clinical research fields such as cancer [18, 19] and
cardiovascular disease [20, 21]. However hands-on intro-
ductions for clinicians are still limited. This paper aims
to provide an introduction into the application of joint
models, motivated by data from a prodromal AD trial: the
LipiDiDiet trial [22].
The LipiDiDiet trial is a randomised controlled trial,

with the objective of assessing the effect of medical nutri-
tion (Souvenaid) on cognitive functioning in patients
with prodromal AD. The active component of Souve-
naid is Fortasyn Connect, a specific nutrient combina-
tion designed to address nutritional requirements in the

presence of AD pathology [23]. In the paper on the LipiDi-
Diet trial’s main results, longitudinally measured variables
of cognition and time to dementia diagnosis were analysed
separately. In the LipiDiDiet trial the effect on the longi-
tudinally measured primary endpoint related to cognition
did not reach significance in the primary model, while in
secondary models significance was reached. In addition,
benefits were seen on longitudinal measures of cognition
and function, and brain atrophy measures, which were
secondary outcome measures in the trial [22]. A worsen-
ing of cognition is among the criteria for AD dementia
diagnosis [24]. One could hypothesise that an interven-
tion that is effective in decreasing or preventing cognitive
decline would also prevent or delay the clinical diagno-
sis. In this paper we show how we can use joint models to
optimally utilise the relationship between the longitudinal
information and the event times in order to gain under-
standing into the process of how an intervention affects
disease progression. In doing so, the application of joint
models reveals relevant information about the strength
and the type of the associations between the longitudinal
measures of cognition and the risk of an event. Moreover,
we investigate the effect of differences in baseline charac-
teristics on study outcome. Using a joint model, we can
disentangle baseline confounding from the intervention
effect. Throughout the analysis of the data at hand, we
aim to introduce and illustrate the major steps in a joint
modelling approach for the non-statistical reader.

Methods
LipiDiDiet trial
The LipiDiDiet trial is a 24-month randomised, con-
trolled, double-blind, multi-centre trial, performed at 11
study sites across different countries. The goal of the
LipiDiDiet trial was to investigate the effects of Fortasyn
Connect on cognition and related measures in prodro-
mal AD patients. For this purpose, several longitudinal
measures of cognitive functioning were recorded. In this
paper we include two of them: the Clinical Dementia Rat-
ing sum of boxes (CDR-SB) and memory domain from a
neuropsychological test battery (NTB memory domain).
The CDR-SB score reflects global clinical impression

and ranges from a score of 0 to 18, with a higher score
indicating a worse status. It is obtained through a semi-
structured interview of patients and informants, summing
scores of cognitive functioning on each of the following
domain box scores: memory, orientation, judgement and
problem solving, community affairs, home and hobbies,
and personal care.
NTB memory domain is a composite z-score based

on Consortium to Establish a Registry for AD (CERAD)
10-word list learning immediate recall, CERAD 10-word
delayed recall, and CERAD 10-word recognition. A higher
z-score indicates a better memory.
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Individual patients’ scores were measured at baseline,
where randomisation to either the test or control group
took place, as well as around months 12 and 24 with
an additional visit around 6 months for NTB memory
domain. At each visit it was recorded whether patients
had received the diagnosis of dementia. Progression to
dementia was diagnosed according to criteria defined by
DSM-IV, the National Institute of Neurological and Com-
municative Disorders and Stroke, and the AD and Related
Disorders Association criteria for AD.
In this article, we focus on AD dementia as a spe-

cific form of dementia. The study sample consisted
of 311 patients (modified intention-to-treat popula-
tion in the LipiDiDiet main paper [22]), of whom 57
(36%) patients in the control group and 62 (41%) in
the test group had received the AD dementia diagno-
sis. The median follow-up times were respectively 1.96
years in the control, and 1.94 years in the test group.
Despite the randomisation procedure, a statistically sig-
nificant difference between the intervention groups was
found in baseline Mini–Mental State Examination (base-
line MMSE, p=0.039, two-sided t-test), reflecting base-
line cognitive performance. The higher baseline MMSE
score in the control group denotes better performance
and suggests a lower risk of receiving the dementia
diagnosis in this group at baseline. Figure 1 displays
the histograms of baseline MMSE scores in the test
and control group. For further information regarding
the LipiDidiet trial, including information on the ran-
domisation procedure, we refer to the LipiDiDiet main
paper [22].

Methodology for the standard joint model
As the name suggests, a joint model for longitudinal
and survival data consists of a longitudinal sub-model
and a survival sub-model. The longitudinal sub-model
is typically a mixed effects model aiming to describe
the shapes of the patient-specific longitudinal profiles.
For continuous longitudinal data, linear mixed models
can take into account that repeated measurements from
the same patient may be more correlated than mea-
surements from other patients, by including not only
fixed effects but also patient-specific random effects.
For background information on mixed models, we refer
to Verbeke & Molenberghs (1997) [25] and Fitzmaurice
et al. (2008) [26].
In order to formulate our longitudinal sub-model for

the longitudinal trajectories, as a first step we investi-
gated the observed longitudinal profiles for six randomly
selected patients. Figures 2 and 3 show the longitudinal
profiles for respectively their CDR-SB and NTB memory
domain observations; these figures show that there is a
lot of variation between patients. Therefore, we allowed
each patient to have its own trajectory, by incorporat-
ing patient-specific intercepts and slopes. For the average
CDR-SB and NTB memory domain trajectories we used
linear effects of time (β1) but more complicated functions
of time such as quadratic or higher order polynomials,
e.g., using splines, are also possible [27]. We also tried tra-
jectory functions for CDR-SB and NTB memory domain
using quadratic time effects, but these were found to give
similar results (results not shown). To model the effect
of Fortasyn Connect, we included both a main effect of
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Fig. 1 Histograms of Mini-Mental State Examination at baseline for the test and control group. The test group contains more values at the lower end
of the histogram
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Fig. 2 Observed longitudinal profiles for CDR-SB for six randomly selected patients. A higher CDR-SB score indicates a worsening of a patient’s status

the intervention (β2) and an interaction of intervention by
time (β3) in order to allow the trajectories of the interven-
tion groups to be different over time. This is necessary,
because the intervention is expected to have a gradual
effect, possibly resulting in CDR-SB and NTB-memory

domain levels for the test group that are worsening more
slowly. Further, we included and intercept (β0) and main
effects for baseline MMSE (β4) and site (β5). This resulted in
the following longitudinal sub-model for theCDR-SB observa-
tions, and similarly defined for NTB memory domain
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Fig. 3 Observed longitudinal profiles for NTB memory domain for six randomly selected patients. A lower NTB memory domain score indicates a
worsening of a patient’s status
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CDRi(t) = ˜CDRi(t) + εi(t),
˜CDRi(t)=β0 + β1t + β2fortasyni+ β3fortasyni × t

+ β4bmmsei + β5sitei + bi0 + bi1t,

where CDRi(t) are the observed values of CDR-SB for
patient i at actual time points t, and the time points
at which measurements take place may vary between
patients. Further bi0 and bi1 denote respectively the
patient-specific intercept and slope. The longitudinal pro-
file of observed values CDRi(t) is broken down in a tra-
jectory function ˜CDRi(t) and a random error term εi(t),
which is assumed to be normally distributed. The trajec-
tory function is assumed to describe the true but unob-
served trajectory of the longitudinal marker, and as will be
seen later, is used in the survival sub-model ‘joining’ the
two sub-models. The main effect of the intervention, β2,
denotes the difference between the intervention groups
at baseline, while the interaction effect β3, describes the
intervention effect over time.
A common choice for the survival sub-model is a Cox

model, which is used to model the hazard of experiencing
the event, i.e., in this case receiving the dementia diag-
nosis. For background information on Cox models, see
Cox (1972) [28], Klein & Moeschberger (1997) [29] and
Therneau & Grambsch (2013) [30]. In case the propor-
tional hazard assumption of the Cox model is violated,
alternative modelling frameworks for the survival sub-
model exist, such as the accelerated failure time model
[31]. In this paper we formulated our joint model using
a Cox model. Additionally, we fitted a joint model using
an accelerated failure time model which gave similar find-
ings (results not shown). In the Cox model we included
the intervention as a time-independent effect, and the
estimated true trajectory of the longitudinal marker as a
time-varying effect. Since there can be variation across
sites in how early a patient is diagnosed, we also cor-
rected for site in the survival sub-model. The hazard λi(t)
of dementia diagnosis at time t for patient i is therefore
modeled using the following survival sub-model,

λi(t) = λ0(t) exp{γ1fortasyni + γ2sitei + α ˜CDRi(t)},

where the parameter α links the longitudinal process, i.e.,
the trajectory function ˜CDRi(t), or similarly ˜NTBi(t), to
the survival process. More specifically, the quantity exp(α)
denotes the hazard ratio at time t for a one-unit increase
in the trajectory of the longitudinal marker at the same
time point. Further, λ0(t) is the baseline hazard and γ1
denotes a direct effect on the survival outcome. To gain a
better understanding of how the intervention affects the
risk of receiving the dementia diagnosis, and to explain
what we mean by a ‘direct effect’, we distinguish three
types of coefficients. These are schematically illustrated
in Fig. 4. β describes the intervention effect on the lon-
gitudinal marker. As indicated before, there are two types
of β ’s here; β2 denoting the difference in the longitudi-
nal outcome between the intervention groups at baseline,
and β3 describing the intervention effect on the longitu-
dinal outcome over time. Secondly, since the parameter
α measures the effect of the longitudinal process on the
survival outcome, together, β3 and α, quantify the time-
varying intervention effect on the risk of receiving the
dementia diagnosis manifesting through the longitudinal
marker. The third type of parameter involving the inter-
vention is γ1 and is directly related to the risk of receiving
the dementia diagnosis. Within the joint model we can
therefore distinguish the direct process (Fig. 4, bottom
arm), capturing the direct effect on the survival outcome,
and the indirect process (Fig. 4, upper arm), in which the
coefficients quantify the indirect intervention effect on
the survival outcome through the longitudinal marker.
As is the case for the Cox model, the intervention effect

in the joint model is the hazard ratio of the test versus the
control group. In particular, the total intervention effect
is the hazard ratio between two generic patients, i in the
test group (fortasyni = 1) and i′ in the control group
(fortasyni′ = 0) who do not further differ concerning
other covariates. In the joint model, this hazard ratio is
a combination of the indirect and direct process. For our

Fig. 4 Schematic representation of a joint model. β2 and β3 denote the constant respectively time-varying indirect intervention effect on the
longitudinal marker, α is the effect of the longitudinal marker on the survival outcome and γ1 is the direct effect on the survival outcome
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formulated joint model the hazard ratio for the total inter-
vention effect denotes exp{γ1 + α(β2 + β3 × t)}, with
the first part (i.e., γ1), for the direct process and the latter
(time-varying) for the indirect process.

Methodology for investigating the baseline confounding
The two processes of the joint model differ in how they
handle the aspect of time. The indirect process can model
how an intervention effect varies over time by modelling
the intervention effect in the mixed model as a diver-
gence of trajectories. In the direct process however, we are
dealing with the proportional hazard assumption of the
Cox regression model meaning that the direct effect on
the survival outcome is assumed to be constant over the
whole period. This arm is therefore likely to capture the
effects already present right at the start of the intervention
period. In a situation such as this one, where the effect
of the intervention on the survival outcome - manifesting
through the longitudinal marker - is expected to increase
gradually over time, but an effect of any possible base-
line confounding on the survival outcome is expected to
be immediate, the baseline confounding will for a large
extent end up in the direct arm of the model. This is a very
appealing property of the joint model that makes it a very
effective tool to investigate and control for the effect of
potential baseline confounding.
MMSE, found to be significantly different at baseline, is

noted to be an important predictor for outcome parame-
ters [22]. This suggests that, before the start of the inter-
vention, the test group might on average have been more
likely to receive the dementia diagnosis than the control
group due to an imbalance of baseline characteristics. This
hampers the interpretability of the results as post base-
line outcomes are a combination of the intervention effect
and the effect of differences already present at baseline.
To investigate this, we examined whether the lower base-
line MMSE scores in the test group were related to higher
risks of receiving the dementia diagnosis at the start of
the trial, therefore possibly counteracting the intervention
effect. This required fitting an additional joint model in
which we corrected for the effect of the baseline MMSE
score on dementia diagnosis by including its value in the
survival sub-model, given by

λi(t) = λ0(t) exp{γ1fortasyni + γ2bmmsei + γ3sitei

+ α ˜CDRi(t)}.
We will illustrate how the coefficients of this extended
joint model can be an effective tool to investigate and con-
trol for the effect of potential baseline confounding using
the CDR-SB data from the LipiDiDiet trial.
Naturally, apart from being a useful property in investi-

gating possible baseline confounding, the combination of
an immediate (direct) and a progressive (indirect) effect

helps us to understand the process by which the interven-
tion affects the risk of dementia diagnosis.

Methodology for investigating the association between
the longitudinal and survival process
Another aspect of the process by which the intervention
affects the timing of dementia diagnosis is determined by
the type of the association between the longitudinal and
the survival process. The joint model defined in the pre-
vious section is the standard joint model and assumes
that the value of the longitudinal outcome at any time t
is related to the risk of an event at the same time point.
However, the underlying relationship between the two
processes could have a more complex nature. Examples of
longitudinal characteristics possibly related to dementia
diagnosis, are the current value, the stability at the cur-
rent moment, the history of the longitudinal profile up
to now or combinations of these characteristics [9]. For
demonstration purposes we compared joint models that
vary with respect to the type of association that is assumed
between the longitudinal data i.e, NTB memory domain,
and the survival process i.e., timing of dementia diagnosis.
We investigated whether, given the current value of NTB
memory domain, the rate of change (i.e., the slope) con-
tains any additional information on the risk of receiving a
dementia diagnosis. More specifically, the slope indicates
by how much the NTB memory domain for a particular
patient is increasing or decreasing at a specific time point.
This required fitting a joint model in which we included
the slope of NTB memory domain as an additional term
in the survival sub-model, given by

λi(t) = λ0(t) exp{γ1fortasyni + γ2bmmsei + γ3sitei

+ α1 ˜NTBi(t) + α2slopei(t)},
where the slope of NTB memory domain is obtained by
taking the derivative of the trajectory function, consisting
of the fixed and random effects, that is,

slopei(t) = d
dt

˜NTBi(t) = β1 + β3fortasyni + bi1.

The parameter α1 has the same interpretation as the
parameter α before, and the parameter α2 measures
the association between the slope of the NTB memory
domain trajectory and the risk of an event at the same
time point, holding ˜NTBi(t) constant. Using this joint
model, two patients with the same level of NTB memory
domain at the current moment do not necessarily have
to be at equal risk of receiving the dementia diagnosis.
For example, if one patient’s NTBmemory domain level is
decreasing very rapidly while another patient’s NTBmem-
ory domain level is remaining constant, it might be more
realistic to assume that the first patient has a higher risk of
receiving the dementia diagnosis than the latter - although
they have the same value at the current moment.
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A similarity between this joint model and the stan-
dard joint model, is that the risk of an event at the
current moment is related to characteristics of the tra-
jectory at that same time point only. However, the risk
of receiving the dementia diagnosis may not depend
solely on the level of NTB memory domain or its rate
of change at the current moment, but it might also be
related to the history of the NTB memory domain levels.
That is, two patients with the same characteristics at
the current moment are not necessarily at the same
risk of receiving a dementia diagnosis if their history of
NTB memory domain levels were very different. One
approach to take the history of NTB memory domain lev-
els into account is by summarising its cumulative effect
i.e., the area under the curve (AUC). The area under the
curve indicates the cumulative effect of NTB memory
domain values for a particular patient up to the current
time point. We also investigated this type of associa-
tion by fitting a joint model with the following survival
sub-model

λi(t) = λ0(t) exp{γ1fortasyni + γ2bmmsei + γ3sitei

+ α3AUCi(t)},
where α3 measures how strongly the risk of an event at
time t is related to the cumulative effect of NTB memory
domain for patient i by time point t. A possible limita-
tion of this joint model is that it gives all past values of
NTB memory domain the same weight in terms of their
impact on the risk of receiving the dementia diagnosis
at the current time point. This may not always be a rea-
sonable assumption. As an alternative, a weight function
can be used that places different weights at different time
points, for example to give more weight to more recent
values of the longitudinal marker. For information on how
to use this weight function we refer to [9].
Figure 5 gives a graphical representation of different

ways of modelling the association, respectively using the
current value, the current value plus the rate of change and
the cumulative effect of the longitudinal trajectory.
All the statistical analyses in this paper were performed

with statistical software package R, using R-package JM
[32]. The package uses maximum likelihood for the
parameter estimation and assumes right-censoring. The
R code to fit the joint models can be found in the web
appendix (Additional file 1).

Results
Note that results in this paper can to some extent differ
from results in the LipiDiDiet main paper [22], since dif-
ferent types of models are used. In the main paper, mixed
models were used that included the outcome baseline
value as a covariate, according to a prespecified statisti-
cal analysis plan. In the results presented below, the mixed

Fig. 5 Graphical representation of different ways of modelling the
association between the longitudinal and survival process. The
different graphs respectively denote the current value (a), the current
value plus the rate of change (b) and the cumulative effect (i.e., the
AUC) of the longitudinal trajectory (c)

model approach is part of the joint models and in this
mixed model approach, the outcome baseline values are
included in the longitudinal trajectory. Modelling out-
come baseline values as part of the trajectory is preferred
in the joint model context as it maximises the amount
of information that is used to estimate the association
between the longitudinal data and the survival data.

Results of the standard joint model
Parameter estimates, standard errors, and associated
p-values for the standard joint model are presented in
Tables 1 and 2a, respectively for CDR-SB and NTB mem-
ory domain. Not surprisingly, from the longitudinal sub-
models we observe that the CDR-SB and NTB memory
domain scores significantly worsen over time, reflected
by an increase of on average 0.61 (95% CI: 0.52-0.70) per
year for CDR-SB and a decrease of on average 0.10 (95%
CI: 0.04-0.16) per year for NTB memory domain. For the
CDR-SB score, however, we see that there is significantly
less worsening over time in the test group than in the con-
trol group, with the average increase being 0.23 (95% CI:
0.10-0.37) per year less in the test group compared to the
control group.
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Table 1 Results for the standard joint model for CDR-SB

a) Without baseline MMSE b) With baseline MMSE

Coefficient (SE) p Value Coefficient (SE) p Value

Longitudinal sub-model:

Time β1 0.609 (0.047) 0.000 0.605 (0.047) 0.000

Fortasyn β2 0.071 (0.077) 0.361 0.077 (0.077) 0.321

Time× Fortasyn β3 -0.233 (0.069) 0.001 -0.234 (0.069) 0.001

Bmmse β4 -0.122 (0.015) 0.000 -0.110 (0.016) 0.000

Log Hazard (SE) p Value Log Hazard (SE) p Value

Survival sub-model:

Fortasyn γ1 0.394 (0.204) 0.053 0.125 (0.210) 0.553

Ass. α 0.701 (0.077) 0.000 0.664 (0.083) 0.000

Bmmse γ2 - - -0.228 (0.050) 0.000

Further, we observe that both scores have strong asso-
ciations with the risk of receiving the dementia diagnosis.
In particular, a unit increase in CDR-SB corresponds to
a exp(α) = 2.0-fold increase (95% CI: 1.7-2.3), and a 0.2
unit decrease in NTB memory domain corresponds to
a exp(−α × 0.2) = 1.3-fold increase (95% CI: 1.2-1.4) in
the risk of receiving the dementia diagnosis. Thus, as
expected, high values for CDR-SB and low values for NTB
memory domain are associated with higher risks of receiv-
ing the dementia diagnosis. Note that the association for
NTB memory domain (z-score) is reported per 0.2-unit
increase, instead of per 1 unit, since the former denotes a
more realistic increase.

Results investigating the baseline confounding
We notice from the results in Table 1a that the coefficients
β3 and α, which together quantify the indirect interven-
tion effect, are both significant. These results suggest

that the intervention decreases the risk of receiving the
dementia diagnosis through its effect on CDR-SB. Simul-
taneously, not surprisingly given the baseline imbalance,
we observe a nearly significant direct effect with the test
group being exp(γ1)=1.5-fold more likely to receive the
dementia diagnosis than the control group. As explained
above, the direct effect measures a constant effect over
time, due to the proportional hazard assumption of the
survival sub-model, and is therefore likely to capture pos-
sible effects of the baseline confounding. The significant
direct effect in favour of the control group is therefore an
indication of baseline confounding, also supported by the
baseline difference in MMSE.
Comparing the results for γ1 of the model with

(Table 1b) versus the model without baseline MMSE cor-
rection (Table 1a), we observe that by correcting for base-
line MMSE in the survival sub-model, the direct effect
shrinks. This is also illustrated in Fig. 6 where the effects

Table 2 Results for the different types of joint models for NTB memory domain

a) Current value b) Current value plus slope c) Cumulative effect

Coefficient (SE) p Value Coefficient (SE) p Value Coefficient (SE) p Value

Longitudinal sub-model:

Time β1 -0.101 (0.030) 0.001 -0.128 (0.030) 0.000 -0.092 (0.029) 0.002

Fortasyn β2 0.042 (0.082) 0.617 0.039 (0.083) 0.640 0.042 (0.083) 0.610

Time× Fortasyn β3 0.052 (0.043) 0.219 0.049 (0.043) 0.254 0.054 (0.042) 0.192

Bmmse β4 0.160 (0.021) 0.000 0.159 (0.021) 0.000 0.158 (0.021) 0.000

Log Hazard (SE) p Value Log Hazard (SE) p Value Log Hazard (SE) p Value

Survival sub-model:

Fortasyn γ1 0.154 (0.203) 0.449 0.513 (0.387) 0.185 0.112 (0.198) 0.573

Ass. α1 -1.214 (0.174) 0.000 -1.162 (0.341) 0.001 - -

Ass. slope α2 - - -6.792 (1.854) 0.000 - -

Ass. AUC α3 - - - - -0.671 (0.118) 0.000

Bmmse γ2 -0.098 (0.057) 0.085 -0.156 (0.088) 0.078 -0.163 (0.055) 0.003
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Fig. 6 Separate effects as estimated by the joint model for CDR-SB. The separate components exp(γ1) (direct effect; dashed line), exp(α × β2)

(indirect constant effect; solid line) and exp(α × β3 × t) (indirect time-varying effect; dot dashed line), that together form the hazard ratio for the
total intervention effect as estimated from the joint model for CDR-SB, plotted as separate effects in a without and in b with correction for baseline
MMSE in the survival sub-model

of the coefficients for the separate components of the joint
models are displayed over time. Comparing the effects
of exp(γ1) (the dashed lines) for 6a versus 6b shows that
including the baseline MMSE correction, made the esti-
mate for the direct effect shift towards a hazard ratio of
1, meaning no difference. Table 1 and Fig. 6 also show
that the estimates for the indirect effect components (β2,
β3 and α) are hardly affected by the in - or exclusion - of
baseline MMSE in the survival sub-model. Based on these
results, we hypothesise that the baseline confounding in
MMSE is indeed directly related to dementia diagnosis
and that it masks the total intervention effect, being a
combination of the indirect and direct processes. The lat-
ter is graphically illustrated in Fig. 7, in which the total
intervention effect from the joint model - that is, the com-
bination of the separate components of Fig. 6 - is displayed
as a solid line.
Figure 7 also shows the hazard ratios for the interven-

tion effect on dementia diagnosis as estimated from a
separately run Cox model (dashed lines). We observe that
by using a joint model, and more specifically by incor-
porating the increasing intervention effect on the longi-
tudinal marker, we can model an increasing intervention
effect over time on the risk of dementia diagnosis. While
by using the (standard) Cox model, with the underlying
proportional hazard assumption, the intervention effect is
assumed to be constant over time from baseline onward.

Results for the association between the longitudinal and
survival process
Table 2 presents the results of joint models using the cur-
rent value plus slope (b), and the cumulative effect (c) of
the NTB memory domain trajectory for the link between
the two processes. From the two types of joint models we
observe similar results on the longitudinal process. From
the association parameters, we observe that, as expected,
decreasing trajectories and small cumulative values for
NTB memory domain are associated with higher risks of
receiving the dementia diagnosis. Both the rate of increase
and the cumulative effect are strongly associated with the
risk for dementia diagnosis. For example, if a patient’s
NTB memory domain score decreases by 0.2 units faster
per year, or 1/60 units faster per month, then the risk of
dementia diagnosis is associated with a exp(−α2 × 0.2) =
3.9-fold (95% 1.9-8.0) increase in the hazard. In the same
way, if the cumulative effect of the history of the NTB
memorydomain levels (i.e., AUC) decreases with one unit,
then this corresponds to a exp(−α) = 2.0-fold increase
(95% CI: 1.6-2.5) in the risk of dementia diagnosis.
We compared the two alternative types of joint mod-

els with the standard joint model based on measures for
the model fit (information criteria AIC and BIC). Both
measures indicated that the joint model using the current
value plus slope is the best fitting joint model, suggesting
that inclusion of the slope of the NTB memory domain
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Fig. 7 Total intervention effect as estimated by the joint model for CDR-SB. The total intervention effect on the hazard of dementia diagnosis as
estimated from the joint model (solid line) and Cox model (dashed line) for CDR-SB, in a without and in b with correction for baseline MMSE in the
survival sub-model. Corresponding 95% percentile confidence bands (light grey corresponding to the joint model and dark grey corresponding to
the Cox model) were based on 2500 bootstrap samples

trajectory improves the fit of the model compared to the
standard joint model. The model using a cumulative effect
was not found to have a better fit to the data than the
standard joint model.

Discussion
Scientists within the (prodromal) AD research field have
much to gain from joint models for longitudinal and
survival data. When estimating the time until clinical
dementia diagnosis, while accounting for the effect of a
longitudinal biomarker or cognitive measure, joint models
can not only provide estimates for their association, but
they can also further investigate the type of association.
This paper aimed to provide an introduction into the

application of joint models with special interest in the
relationship between the longitudinal information and the
event times, using data from a prodromal AD trial. First
of all, we reanalysed the data, combining the longitudinal
data on cognitive functioning with the survival data on
dementia diagnosis in order to account for their depen-
dencies. Both longitudinal outcomes, CDR-SB and NTB
memory domain, were strongly associated with the risk
of dementia diagnosis. For CDR-SB we observed a statis-
tically significant intervention effect on the longitudinal
trajectory. Secondly, for NTB memory domain we inves-
tigated the type of association between the longitudinal
profiles and the risk of dementia diagnosis. Specifically, we
investigated three association types: the current value, the
current value in combination with the rate of increase and

the cumulative effect. We concluded that it was the cur-
rent value in combination with the rate of increase of the
longitudinal trajectory, that best captures the association
with dementia diagnosis.
Additionally, this paper demonstrated the added value

of a typical characteristic of joint models, namely the com-
bination of the direct and indirect processes, both with
different possibilities in modelling the effect of time. The
joint model suggested an increased hazard ratio for the
test versus the control group at the beginning of the trial.
Given that there was no intervention before or at baseline,
this increased hazard ratio was hypothesised to be caused
by an imbalance between the intervention groups in char-
acteristics at baseline. The groups were found to have a
statistically significant imbalance at baseline in MMSE.
MMSE is known to reflect cognitive performance and
having an imbalance in MMSE between the intervention
groups at baseline suggested that the groups - despite the
randomisation process - might have on average differed
in where they were in the disease continuum at baseline.
Including baseline MMSE in the joint model markedly
decreased the hazard ratio at the beginning of the trial,
which fits into the hypothesis that the increased hazard
ratio at the beginning of the trial was caused by baseline
imbalance.
The imbalance between the intervention groups in

characteristics at baseline might have been composed
of several factors for which baseline MMSE was only a
proxy. However, including the baseline MMSE in the joint
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models provided a tool to disentangle baseline confound-
ing from the intervention effect.
Further, this paper illustrated another positive feature

of joint models which is to model intervention effects on
the hazard ratio that are changing over time. In the stan-
dard Cox models, the intervention effect is assumed to be
constant during the entire follow-up, an assumption that
is often not biologically meaningful. Using a joint model,
it is possible to model a time-varying intervention effect
on the survival outcome by incorporating a time-varying
intervention effect on the longitudinal marker. In this pro-
dromal AD trial, the joint model revealed an indication of
an increasing intervention effect over time, suggesting a
decreased hazard ratio for the test group at the end of the
24-month trial.
Using time to dementia diagnosis as an outcome mea-

sure within the limited time-frame of a clinical trial has
practical issues which complicate its use. First, a large part
of the diagnoses cluster around the study visits when cog-
nitive testing is performed and progression to dementia is
thus detected. As a consequence, a part of the observed
event times is interval-censored, although the statistical
software used for the analyses, did not cover this type
of censoring. Another aspect is that, the diagnosis repre-
sents a single time point when the disease is thought of as
a process moving along a continuum. Time to dementia
diagnosis provided therefore only a rough measure of dis-
ease progression. However, using the information on time
to dementia diagnosis was found to have an added value,
by applying a statistical approach that combines every
patient’s moment of diagnosis with his or her longitudinal
trajectory.

Conclusion
Joint models provide a valuable tool in the statistical anal-
ysis of clinical studies with longitudinal and survival data,
such as in prodromal Alzheimer’s disease trials, and have
several added values compared to separate analyses.

Additional file

Additional file 1: R code to fit joint models. (PDF 35 kb)
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