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Abstract

There is a growing literature on the impact of genetic variation on outcome in traumatic brain injury (TBI). Whereas a

substantial proportion of these publications have focused on the apolipoprotein E (APOE) gene, several have explored the

influence of other polymorphisms. We undertook a systematic review of the impact of single-nucleotide polymorphisms (SNPs)

in non–apolipoprotein E (non-APOE) genes associated with patient outcomes in adult TBI). We searched EMBASE, MED-

LINE, CINAHL, and gray literature from inception to the beginning of August 2017 for studies of genetic variance in relation to

patient outcomes in adult TBI. Sixty-eight articles were deemed eligible for inclusion into the systematic review. The SNPs

described were in the following categories: neurotransmitter (NT) in 23, cytokine in nine, brain-derived neurotrophic factor

(BDNF) in 12, mitochondrial genes in three, and miscellaneous SNPs in 21. All studies were based on small patient cohorts

and suffered from potential bias. A range of SNPs associated with genes coding for monoamine NTs, BDNF, cytokines, and

mitochondrial proteins have been reported to be associated with variation in global, neuropsychiatric, and behavioral outcomes.

An analysis of the tissue, cellular, and subcellular location of the genes that harbored the SNPs studied showed that they could be

clustered into blood–brain barrier associated, neuroprotective/regulatory, and neuropsychiatric/degenerative groups. Several

small studies report that various NT, cytokine, and BDNF-related SNPs are associated with variations in global outcome at 6–12

months post-TBI. The association of these SNPs with neuropsychiatric and behavioral outcomes is less clear. A definitive
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assessment of role and effect size of genetic variation in these genes on outcome remains uncertain, but could be clarified by an

adequately powered genome-wide association study with appropriate recording of outcomes.
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Introduction

Outcome prediction in severe traumatic brain injury (TBI) can

be improved. Numerous research groups have produced prog-

nostic models in an effort to predict outcome based on acute-phase

patient demographics and clinical parameters.1–3 The International

Mission for Prognosis and Clinical Trials in Traumatic Brain Injury

(IMPACT) model is a typical (and probably the best known) exem-

plar of such a prognostic model.1–3 However, none of the available

prognostic models include genetic variation as a variable.

Current implementations of the IMPACT model can predict

outcome with an area under the receiver operating curve between

0.60 and 0.80,1,3 with partial R2 values that approach 0.35, sug-

gesting that well over half of the variance in outcome is not ac-

counted for by injury severity or type, age, or physiological or

biochemical compromise immediately post-injury. This large un-

explained outcome variance suggests that there may be other po-

tential factors that contribute to outcome.4

One key contributor in this context may be genetic variation,

which could impact outcome by modulating pre-injury reserve,

secondary injury mechanisms, neural repair, and/or the activation

of neurodegenerative processes.5 The largest body of literature

in this context focuses on the impact of genetic variations in

apolipoprotein-E (APOE) on patient outcome post-TBI and pro-

vides evidence of a potentially significant, but inconsistent, impact

of APOE polymorphisms on outcome.7,8,10,11 Whereas these rela-

tionships are interesting and relevant, they do not form the focus of

this systematic review. APOE polymorphisms will be covered in

a separate living systematic review by our group.

We chose instead, in this article, to focus on single-nucleotide

polymorphisms (SNPs) in genes other than those related to APOE,

which have also been reported to have an impact on patient out-

come. Although this body of literature is substantial and steadily

growing, it has never been subjected to rigorous review, and no

single publication provides a comprehensive summary of the

available data in this area. Thus, the goal of this article is to provide

a rigorous assessment of studies reporting the impact of non-APOE

SNPs on patient outcome post-TBI. Given the continuing accu-

mulation of new studies on this topic, this article is designed to be

a living systematic review,12 with periodic updates on the available

literature to be published as new evidence becomes available. The

question of interest for this systematic review was: What non-

APOE SNPs are associated with patient outcome post-TBI?

Methods

This review was conducted and reported in line with the Pre-

ferred Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) Statement.13 A protocol was registered on June 10,

2014 with the University of York’s International Prospective

Register of Systematic Reviews (PROSPERO) database (registration

number CRD42014013623; available at: http://www.crd.york.ac.uk/

PROSPERO/display_record.asp?ID=CRD42014013623).

This review is being prepared as a ‘‘living systematic review’’ as

part of the CENTER-TBI project (www.center-tbi.eu).14 A living

systematic review is a high-quality, up-to-date online summary of

health research that is updated as new research becomes avail-

able.12 In practice, this means that the searches will be rerun fre-

quently and any new studies incorporated into the review. We will

seek to publish regular updates. In this context, we would see this

article as part of a knowledge commons, which would provide a

basis for ongoing update of the available literature in this area,

could be revised and updated by collaboration between both current

and new contributors.

Inclusion/exclusion criteria

We included all studies of five or more adult patients (over 16

years of age) with TBI of all severities, which reported a global

functional outcome measure of any type, reported by patient ge-

notype (including mortality, Glasgow Outcome Scale [GOS],

GOS-extended [GOSE], and Disability Rating Scale [DRS]). We

also included studies that reported neuropsychological outcome.

We only included studies in the English language.

We excluded studies that included non-TBI or pediatric patients,

and those that did not report outcome data separately for the adult

TBI cohort. Studies reporting nonfunctional outcome measures, such

as histological findings at post-mortem, were also excluded. We

elected to exclude studies with less than 5 patients given that such

small patient numbers would not likely add to our review. Con-

versely, we did not restrict ourselves only to studies with a larger

number of patients because this would have excluded several of the

publications in this field. Finally, any studies reporting APOE as the

genetic association of interest were not included within this sys-

tematic review. A separate living systematic review on APOE, and its

association with patient outcome in adult TBI, is currently underway

by our group. This was conducted as a separate living systematic

review given the large volume of APOE studies available, war-

ranting a separate review dedicated to this gene in adult TBI.

Search strategy

At the beginning of August 2017, EMBASE, MEDLINE, and

CINAHL (all through National Institute for Health and Clinical

Excellence [NICE] Healthcare Databases) and Google Scholar were

searched for published studies, and conference abstracts from in-

ception to the start of August 2017 inclusive. Developed with search

experts at Monash University’s National Trauma Research Institute

(NTRI), search strategies used a combination of keywords and

MeSH terms (see Supplementary Appendix 1). Reference lists of

included studies were manually reviewed to identify relevant pub-

lications not identified by the search strategy. Wherever conference

abstracts were found, a further PubMed search was performed to

discover whether the data had subsequently been published in full.

Editor’s Note: This article is published as a Living Systematic

Review. All Living Systematic Reviews will be updated at

approximately three-six month intervals, with these updates

published as supplementary material in the online version of

the Journal of Neurotrauma.
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Study selection

Citations were downloaded into EndNote (Thomson Reuters)

and duplicates removed. Titles and abstracts were screened against

the eligibility criteria in EndNote by one author (C.A.M.), to re-

move irrelevant studies, and the remaining citations were reviewed

in full text independently by two authors (C.A.M., with either

V.F.J.N. or F.A.Z.) to assess them for eligibility. Disagreements

regarding eligibility were resolved by consensus, and referral to a

third reviewer (D.K.M.) was not required.

Data extraction

Citations and full-text files for all included studies were up-

loaded to Covidence (www.covidence.org), an online systematic

review workflow tool, to undertake quality assessment and data

extraction. Two authors (C.A.M., with either F.A.Z. or V.F.J.N.)

independently extracted data, resolving disagreements through

consensus. The following characteristics were extracted from all

studies, where available:

1. Inclusion/exclusion criteria

2. Baseline characteristics, where possible, for each geno-

type within the cohort:

a. Cohort sex composition

b. Age (mean – standard deviation [SD] if available)

c. TBI severity (wherever possible as mean Glasgow Coma

Sclae [GCS] – SD, or GCS grouped according to existing

practice as mild, moderate, or severe TBI)

3. Outcome data (see below)

4. Funding source(s)

For studies reporting global functional outcomes (e.g., GOS/

GOSE, modified Rankin, numerical rating scale [NRS], DRS, and

mortality), scores were extracted at all available time points for

each genotype. Where possible, the total numbers of patients assessed

at each time point was extracted and used to calculate the number

of patients with a ‘‘favorable’’ outcome. Categorical scales were di-

chotomized in line with previously recognized methods for defining

‘‘favorable’’ outcomes (i.e., GOS 4–5, GOSE 5–8). If the reported

data simply included author-defined favorable or unfavorable out-

comes, without a breakdown of the underlying raw categorical data,

then this was extracted instead. If ordinal data were not available, the

mean scores and SDs (or standard errors/95% confidence intervals

[CIs]) were extracted. In studies dealing with neuropsychological

scales or other outcomes (e.g., measures of fatigue), reports of sta-

tistically significant differences between genotype results (at the alpha

level selected by the study’s authors) were extracted, with a narrative

note made of nonsignificant results. In the case of no significant results

being reported, results of the study were assumed to show no positive

results, and the study was reported as negative for the SNP in question.

Risk of bias assessment

Risk of bias was assessed using the Quality In Prognostic Studies

(QuIPS) risk of bias criteria, a validated domain-based tool for quality

assessment of prognostic studies.15 QuIPS addresses six important

areas to consider when evaluating validity and bias in studies of

prognostic factors: participation, attrition, prognostic factor mea-

surement, confounding measurement and account, outcome mea-

surement, and analysis and reporting. The rating system for QuIPs is

trichotomous, with a range from low risk, medium risk and high risk

of bias. The lowest risk of bias that a study may receive in any given

category is low risk. Two authors (C.A.M., with either F.A.Z. or

V.F.J.N.) independently completed the QuIPS for each study and then

reached a final judgement on each of the six domains by consensus.

The results of this process are presented for each study, as well as

tabulated for the study overall (Supplementary Appendix 11). In line

with the guidance provided by the team who developed QuIPS, we

did not calculate a summated score for overall study quality.

Data synthesis

Many of the publications reviewed included results on outcome

association for more than one SNP, and individual cohorts were

sometimes used to explore the effect of more than one SNP in sep-

arate publications, though this was not always explicitly stated.

Consequently, the results in the text of this article primarily relates to

analysis with references to specific SNPs. The tables in the Supple-

mentary Materials tabulate individual publications under summaries

for each SNP, or class of SNPs. Where a study was used to explore

more than one SNP or class of SNP, it was cited separately in the

table that addressed results for that SNP. Studies were grouped by

gene, where multiple mutations within a gene were studied. Within

each group of genes, studies were subdivided for analysis by TBI

severity/patient characteristics, or by outcome measures. Given the

large number of heterogeneous studies with mixed patient cohorts

and varied SNPs analyzed, a meta-analysis was not performed, and

the results were synthesized narratively. Simple descriptive statistics

can be found in the summary of patient cohorts for the various SNPs

analyzed (Supplementary Appendix 4).

Results

Search results

A total of 4549 citations were identified through database sear-

ches (Fig. 1). After removing duplicates, 4429 were screened on

citation and abstract, with 4166 excluded. We obtained 263 cita-

tions in full text, of which 105 were excluded (along with 92 review

articles). Two articles were added from the reference sections of the

included articles. The reasons for exclusion included non-TBI

study populations and ineligible outcome measures (see Supple-

mentary Appendix 3).

Patient and study demographics

We included 68 publications, reporting on the outcome impact

of SNPs in over 10,000 patients.16–29 It is difficult to be certain of

the actual number of individual patients included in these studies,

given that many originated from a small number of centers that

published several articles on different SNPs in possibly identical, or

at least overlapping, patient populations. Thus, the number of pa-

tients quoted across all of the studies is likely to be inflated sec-

ondary to counting individual patients more than once across the

various studies described. The true number of unique individual

patients studied across all of the included articles is likely sub-

stantially smaller. These 68 publications that described the out-

come impact of various SNPs, including 23 on neurotransmitter

(NT) SNPs,16–36,74,75 nine on cytokine SNPs.37–45 12 on brain-

derived neurotrophic factor (BDNF) SNPs,46–53,76–79 and three

articles on mitochondrial polymorphisms and patient outcome.54–55

A further 21 studies reported on varied miscellaneous SNPs that did

not fall into any of the previous groupings.57–73,80–83

Study design varied. Fifty-four publications described prospective

cohort studies16,17,19–24,26–31,34,35,37,38,40–44,46–53,55,57–64,66–69,71,73–80,83

Fourteen studies were retrospective cohort studies on banked DNA

samples18,25,32,33,36,39,45,54,56,65,70,72,82,83 Study location also varied

PATIENT-ORIENTED OUTCOMES IN TBI 3
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significantly, with the most commonly reported country of origin

being the United States (n = 43). Twenty-six studies included fewer

than 100 patients17,19,24,26,27,32,35,37,40,42–44,47,50–53,57,67–69,71,74,76,78,80

Seven studies were published conference abstracts.25,44,62,66,74,76,78

The diversity and number of studies make it difficult to provide

summary tables in the body of the article, and all of these data are

therefore provided as Supplementary Materials. A summary of all

study design and patient characteristics can be seen in Supplemen-

tary Appendix 4. Brief descriptions of the various SNPs detailed

below can be seen in Supplementary Appendix 2.

Global patient outcome

The relationship between various non-APOE SNPs and global/

general patient outcome is described in the subsections below. A

tabulated summary of all SNPs as they related to various measures

of global/general patient outcome can be seen in Supplementary

Appendix 5. A synthesis of these results (to the extent that was

practicable) is provided later in this section.

Neurotransmitter single-nucleotide polymorphisms. Four

studies on NTs assessed the association between various SNPs and

general patient outcome as assessed by GOS24 or GOSE,18,19,75

although the SNP analyzed, TBI severity of the cohort, and out-

come used varied between studies. The first study failed to find an

association between the catechol-O-methyltransferase (COMT)

valine (Val) to methionine (Met) SNP and GOSE at 1 or 2 years

post-injury in mainly severe TBI patients.18 The second study as-

sessed the same COMT mutation and found that Met allele carriers

(i.e., Met/Met, Met/Val, or Val/Met) displayed better GOSE at

6 months in mild TBI patients (odds ratio [OR], 2.87; 95% CI,

1.20–6.86).19 The third study evaluated the dopamine receptor D2

(DRD2)/ANKK1 SNPs, finding the ANKK1 rs1800497 heterozy-

gotes to be associated with GOS at 6 months post-injury in severe

TBI patients.24 This study failed to document any association be-

tween DRD2 SNPs and outcome. The final study again evaluated

various NT SNPs (ANKK1 rs116046/rs493801, DRD2 rs6277, and

COMT rs4680), in addition to various others.75 This study used

complex statistical modeling and found an association between all

of the above NT SNPs with patient outcome as assessed by GOSE

at 3 to 6 months post-injury.

Cytokine single-nucleotide polymorphisms. Eight studies

reported cytokine SNPs and their association with general patient

outcome across the spectrum of TBI severity.37,38,40,41,42–45 Four

studies addressed various interleukin (IL)-1 SNPs.37,38,40,41 Two of

these studies reported on the impact of IL-1A SNPs,37,38 with one

study documenting worse outcome for IL-1ra-889 allele carriers37

and the other study failing to document an association between the

SNP and outcome.38 One study documented an association between

the IL-1B-3953 SNP and poor GOS.40 Finally, the last IL-1 study

found a weak association between IL-1 receptor antagonist (IL-

1RN) SNP and worse outcomes.41

Three studies addressed the IL-6-174 SNP, with contradictory

conclusions regarding its outcome impact. One study failed

FIG. 1. PRISMA flowchart. ApoE, apolipoprotein E; SNP, single-nucleotide polymorphism; TBI, traumatic brain injury.
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to document any association between the IL-6-174 SNP and

6-month mortality.43 The remaining two studies reported signifi-

cant, but inconsistent, associations between the IL-6 polymor-

phisms and general patient outcome. One study documented better

GOS in homozygote G allele carriers,42 whereas the other study

documented better outcomes with C-allele carriers (homozygotes

or heterozygotes).44

Finally, one study assessed the tumor necrosis factor alpha

(TNFA)-308 SNP. The results of this analysis displayed worse

GOS at 6 months for the TNF-308*2+ carriers (OR, 1.63; 95% CI,

1.14–2.34).45

Brain-derived neurotrophic factor single-nucleotide poly-
morphisms. Three studies, in severe TBI patients, addressed

the association between BDNF SNPs and global patient out-

come.48,77,79 The first study failed to document any association

between BDNF rs6265 or rs71244 SNPs and mortality within the

first 7 days post-TBI. However, BNDF rs6265 V homozygotes and

rs71244 T homozygotes displayed higher survival at 1 year.48

Further, Failla and colleagues48 developed a genetic risk score

(GRS) based on the presence of ‘‘risk’’ BDNF SNPs, which, when

included in a multi-variate Cox model (after adjusting for other

admission patient characteristics and complication profiles), dis-

played a positive association with survival at both 1 week and 1

year in older patients, with the opposite trend observed in younger

patients. For further details regarding this GRS and Cox modeling,

we refer the reader to the parent article.48

The second study evaluated the interactions of CSF BDNF levels

and BDNF GRS (rs6265, rs7124442) in modifying global out-

comes.79 CSF BDNF levels were associated with time until death

( p = 0.042; hazard ratio [HR] = 10.973). BDNF-GRS and serum

BDNF interactions were predictive of mortality through multi-

variate modeling ( p = 0.047; HR = 0.987).

The final study evaluated the interaction of CSF cortisol levels

with BDNF GRS (rs6265, rs7124442) in modifying global out-

come, as assessed by GOS at 6 months post-injury.77 It was found

that models including both CSF cortisol and BDNF GRS predicted

mortality in younger patients (age, <48 years; p = 0.004). This study

demonstrated some definitive links between CSF BDNF levels and

mortality, though the associated risk of mortality appeared to be

mediated by CSF cortisol, at least in part.

Mitochondrial single-nucleotide polymorphisms coding for
mitochondrial proteins. Three studies documented the associ-

ation between mitochondrial SNPs, coding for mitochondrial pro-

teins, and patient outcome.54–56 These studies included SNPs both

in mitochondrial DNA (mtDNA) and in nuclear SNPs coding for

mitochondrial proteins. The first study assessed a B-cell lymphoma

2 (BCL2) SNP and found that variant allele carriers (i.e., variant/

variant or wild-type/variant) displayed worse 3-month GOS, in

mainly mild TBI patients.56 The second study assessed various

mtDNA haplotypes, and found that haplotypes H, J, T, and U were

all associated with worse 6-month outcomes in mild-to-moderate

TBI patients.54 The last study evaluated various mtDNA SNPs as

they related to 3-, 6-, and 12-month GOS and DRS. This study

found the mtDNA 10398 G carriers to have lower DRS at 6 and 12

months post-TBI ( p < 0.02).55

Miscellaneous single-nucleotide polymorphisms. Ten

studies explored the outcome impact of miscellaneous SNPs (which

did not fit into the previously mentioned categories) across the

spectrum of TBI severity.58–61,63–65,68,70,80,81 The SNPs studied were

related to genes coding for p53,68 angiotensin-converting enzyme

(ACE),58 neuroglobulin,63 adenosine triphosphate (ATP) binding

cassette,59,61 aquaporin (AQP)-4,64 aromatase rs2470144/rs4646/

rs2470152,65 poly adenosine diphosphate-ribose polymerase-1

(PARP-1) rs3219119/rs3219090,70 mannose binding lectin-2

(MBL2)/ficolin-2 (FCN2; rs1800451, rs1800450, rs5050737,

rs7096206; rs3124953, rs17514136, rs17549193, and rs7851696),80

and calcineurin (PPP3CC; rs2443504, rs2461491, rs2469749, and

rs10108011).81

Several SNPs were found to be associated with variations in a

range of outcomes: p53 arginine homozygotes were found to have a

worse GOS at intensive care unit (ICU) discharge;68 three ACE-

related SNPs (C minor allele carriers for rs4461142, C minor allele

carriers for rs7221780, and T minor allele carriers for rs8066276)58

were associated with worse 6-month GOS; neuroglobulin rs3783988

C allele carriers were associated with poor GOS at 3/6/12/24

months63; ATP binding cassette C3435T C allele carriers were as-

sociated with worse 6-month GOS61; AQP-4 rs3763043 T homo-

zygotes were associated with worse GOS at 6 months64; aromatase

rs2470144 A allele carriers were associated with worse outcome at 6

months;65 PARP-1 rs3219090 A allele/rs3219119 T allele carriers

were associated with poor GOS at 6 months70; and calcineurin

PPP3CC rs2443504 AA carriers had increased risk of mortality at 12

months.81 Finally, no association with global outcome was observed

for SNPs in MBL2 or FCN2.80

‘‘Other’’ outcomes: Neuropsychiatric, behavioral,
miscellaneous

The multiple studies that contributed to this section of the review

were varied in terms of SNPs addressed, the endpoints used, and the

sample sizes in individual studies. The following description of the

results of the review reflects this heterogeneity, which makes

summary difficult; we have therefore classified these primarily by

the target group in which the SNPs occurred.

Neurotransmitter single-nucleotide polymorphisms. Twenty-

one studies documented the association between SNPs in a range

of NT genes and neuropsychiatric/behavioral outcome post-

TBI.16,17,19–36,74 The full spectrum of TBI severity was described in

the included studies. The NT based SNPs described included:

ANKK1 TAQ1a,74 COMT,16,17,19,20 monoamine oxidase type A

(MAO-A),21 DRD2/ANKK1,22–28 vesicular monoamine trans-

porter type 2 (VMAT2),29 combination of monoamine SNPs

(COMT/DRD2/ANKK1/VMAT),30 5-HTTLPR,31,32 glutamic acid

decarboxylase (GAD),33 vesicular glutamate transporter type 1

(VGLUT1),34 and GRIN2A.35,36 Full details of various neuropsy-

chiatric and behavioral outcomes related to SNPs in NT genes can be

seen in Supplementary Appendix 6.

Four studies focused on COMT SNPs and their association with

neuropsychiatric/behavioral outcome.16,17,19,20 The mutation

evaluated in every study was the Val-158-Met SNP. Conflicting

results were observed regarding the impact of this polymorphism

on outcome. One study documented Val/Val homozygotes to have

worse perseverance post-TBI,16 a second (in contrast) reported

worse post-traumatic behavior and cognition in Met allele carri-

ers,17 whereas a third study documented no difference in attention/

cognitive performance on both univariate and multi-variate re-

gression.18 Finally, a fourth study documented improved nonverbal

processing skills in Met allele carriers.20

Eight studies documented the association between various

DRD2/ANKK1 SNPs and neuropsychiatric/behavioral outcomes.

PATIENT-ORIENTED OUTCOMES IN TBI 5



The DRD2 SNPs and the linked behavioral effects were: rs686 A

allele carriers had less aggression,22 C95T T allele carriers were

found to have improved California Verbal Learning Test -II

(CVLT-II) scores at 6 months,23 and the rs2724838 SNP was asso-

ciated with worse depression at 12 month post-injury.24 In addition,

DRD2 rs6279 C-homozygotes displayed improved cognition at

6 months; and executive function ( p = 0.013), attention ( p = 0.006),

and language fluency at 6 months ( p = 0.003).24 Similarly, the

ANKK1 SNPs and associated outcomes were: ANKK1 A2 allele

carriers had worse depression and behavioral issues,17 ANKK1

rs1800497 homozygotes had worse cognition17,74 and executive

functioning at 6 months post injury ( p = 0.048),24 and ANKK1/

TAQ1A T allele carriers were found to have worse CVLT scores in

four studies.25–28

Mutations in VMAT2 were documented in two studies.29,30 The

first study found the rs363226 SNP to be associated with worse

cognition at 6 months post-injury ( p = 0.006).29 The second study

evaluated a panel of monoamine-based SNPs (COMT/DRD2/

ANKK1/VMAT), finding independent associations between:

ANKK1 rs1800497, COMT rs4680, DRD2 rs6279, and VMAT

rs363226 with cognition at 6 months post-injury.30

Polymorphisms in the serotonin transporter gene were assessed

in two studies; both failed to demonstrate a statistically significant

association between these SNPs of the 5-HTTLPR region and de-

pression post-TBI.31,32

Finally, SNPs related to glutamate neurotransmission were

evaluated in three studies.34–36 One study addressed polymor-

phisms associated with the VGLUT1 gene, and found that G allele

carriers had longer recovery times post-concussion.24 Two studies

addressed SNPs in the GRIN2A gene associated with N-methyl D-

aspartate receptor subunits.35,36 One study found L homozygotes to

have a 6 times increased chance of prolonged recovery from their

concussive symptoms ( p = 0.043).35 The second study documented

the rs968301 GRIN2A SNP to be associated with a statistically

significant decrease in intelligence post-TBI ( p = 0.025).

Cytokine single-nucleotide polymorphisms. Two studies

documented the association between cytokine based SNPs and

‘‘other’’ patient outcomes.39,41 One study assessed SNPs in the IL-

1B gene and found the rs1143634 CT genotype to be associated

with post-traumatic epilepsy (PTE; OR, 2.85; p = 0.005).39 The

second study assessed the IL-1RN*2 SNP and found that the car-

riers displayed increased risks of poor outcomes (OR, 0.375; 95%

CI, 0.155–0.901; p = 0.028) and hemorrhagic events.41 Full details

on these studies and the outcomes studied can be observed in

Supplementary Appendix 7.

Brain-derived neurotrophic factor single-nucleotide
polymorphisms. Nine studies documented the association be-

tween BDNF-based SNPs and neuropsychiatric/behavioral out-

comes.46,47,49–53,76,78 Six studies evaluated the BDNF Val-66-Met

SNP as it related to these various outcomes.46,47,49–52,76,78 One

study assessed the relation of BDNF SNPs at rs71 24442 to

cognitive outcome.53 Full details can be seen in Supplementary

Appendix 8.

BDNF Val-66-Met SNPs displayed varied and inconsistent ef-

fects across the studies identified. The BDNF Val-66-Met SNP was

found to have the following documented associations post-TBI:

Met allele carriers showed improved Wechsler Adult Intelligence

Scale (WAIS) scores ( p < 0.01),46 Met allele carriers displayed

improved executive functioning,49 Met allele carriers had reduced

treatment response to citalopram for depression post-TBI,50 and

Met allele carriers had both worse reaction times ( p = 0.0003)51 and

memory ( p = 0.05) at 6 months post-TBI.52 Further, one study

found Met carriers were also found to have worse capacity in all

domains of neurocognitive functioning, except visuospatial.77,79

Finally, one study failed to document any difference in BDNF Val-

66-Met SNP status and emergence from vegetative state at 3, 6, or

12 months post-injury.47

One study evaluated various SNPs of the BDNF gene, finding

the rs7124442 CC homozygotes to display the largest decline in

intelligence (as assessed by intelligence quotient [IQ]).53

Miscellaneous single-nucleotide polymorphisms. Ten

studies documented the relationship between various SNPs and

nonglobal patient outcomes (i.e., neuropsychiatric, behavioral, and

other).57,60,66,67,69,71–73,82,83 The targets for these polymorphisms

included: ACE,57 various oxytocin SNPs,66 PERIOD3,67 ATP

binding cassette,60 nitric oxide synthase-3 (NOS3),69 alpha synuclein

(SNCA),71 kidney and brain expressed protein (KIBRA),72 BMX,73

methyenetetrahydrofolate reductase (MTHFR),82 and adenosine A1

receptor.83 Full details can be found in Supplementary Appendix 9.

A full explanation of all abbreviations used in the other appendices

can be found in Supplementary Appendix 10.

Synthesis of data

The substantial variation that we encountered in study design,

outcome metrics and timing, and SNPs targeted made it impossible

to undertake a meta-analysis of these data. The details of individual

studies are provided in the Supplementary Material that has been

cited throughout the Results section. However, Table 1 provides a

summary of those studies that examined the impact of target

polymorphisms on global outcome. Similarly, whereas Appendix 2

in the Supplementary Materials provides a brief description of

background biology, Figure 2 provides a more accessible summary

of the cellular and subcellular location of the different genetic

targets addressed by these candidate gene studies, in order to pro-

vide a pathophysiological context for the processes that these

polymorphisms might be influencing.

Risk of bias

In general, risk of bias was variable in all domains for most

studies. Given the observational nature of all studies, methodo-

logical weaknesses were frequent. These most commonly involved

failure to address potential confounders in patient selection or

analysis, and selective outcome reporting. Only one of the 68 as-

sociation analyses that we reviewed had low risk of bias in all of the

areas assessed, and 14 studies had one or more fields within the

QuIPS assessment graded as ‘‘high’’ risk of bias, with this most

commonly attributed to either study attrition or issues surrounding

confounding. A tabulated summary of the QuIPS grading can be

seen in Supplementary Appendix 11.

Discussion

This review summarizes the current literature on the impact of

SNPs in non-APOE genes on patient outcomes post-TBI. In-

tegrating these results is a complex task because of the diversity of

biology addressed in these articles. Further, the scientific and

clinical inferences that can be drawn from these data are limited by

the small sample sizes in most studies, biases identified, and lack of

6 ZEILER ET AL.
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uniformity in reporting populations and outcomes. The following

discussion provides an overview of our findings, and subsequently

explores the reliability and relevance of any inferences that emerge

from our analysis.

First, many studies have explored the impact of SNPs in

neurotransmitter-related genes. The majority of these focused on

genetic variations associated with various aspects of monoamine NT

metabolism and transport,16–36,74,75 with COMT/DRD2/ANKK1

mutations being the most commonly reported, and the majority of

outcomes focused on neuropsychiatric and behavioral assessments.

Given that monoamine NT are believed to play significant roles in a

variety of neuropsychiatric and neurodegenerative conditions, it is

unsurprising that these NTs may be involved in psychiatric, behav-

ioral, and cognitive sequelae of TBI.84 The current literature is based

on small patient numbers and provides conflicting evidence for these

SNPs.

Second, cytokine-related SNPs represent a small proportion

of the available literature, with only nine studies that have as-

sessed an association with patient outcomes.37–45 The poly-

morphisms addressed in these studies included the following

cytokines: IL-1a, IL-1b, IL-1RN, IL-6, and TNFA, with most

studies documenting the association between these SNPs and

global patient outcome. Given the documented association be-

tween serum,85 cerebrospinal fluid,86 and cerebral microdialysis87

cytokine profiles and patient outcome, the relationship between

various cytokine SNPs and outcome is a logical extension.

Changes in cytokine expression, and thus inflammatory response,

in TBI represents a plausible mechanism by which such SNPs

could affect outcomes in TBI.

Third, BDNF-related studies mainly focused on neuropsychiatric/

neurobehavioral outcomes associated with various SNPs.46–53,76–79

Given that BDNF is involved in neuronal survival and axonal

signaling/regeneration post-injury, the potential role of various

BDNF SNPs is interesting.88 Varying mutations in the genes that

encode BDNF could modulate the pathophysiology of neuronal/

axonal injury and repair, and hence affect the incidence and se-

verity of late cognitive, psychological, and psychiatric sequelae.

This mechanistic framework explains the results of several studies,

FIG. 2. Diagrammatic representation of tissue, cellular, and subcellular location of non-APOE target in candidate gene studies. The
box at top right depicts a variety of neurochemical synapses and locates the target gene products in pre-synaptic sites, post-synaptic
sites, or synaptic cleft. The vessel at bottom left shows interactions with astrocytes, microglia, and egressing neutrophils and
lymphocytes. The star-bursts represent sites of inflammatory injury. A = astrocyte, ADP = adenosine diphosphate, ATP = adenosine
triphosphate, GABA = gamma aminobutyric acid, M = microglia, MBL = mannose binding lectin, mt = mitochondria, N = neuron,
O2 = oxygen, S = synapse, and SNP = single-nucleotide polymorphism. Diagram depicts a theoretical framework for the interaction of
various SNPs identified within the review. Diagram depicts neuronal, microglial, astrocytic, synaptic, endothelial, leukocyte, mi-
tochondrial, nuclear, and cytosolic areas impacted by various SNPs. *Note: SNPs that are italicized could not be slotted into the
diagram, but are listed secondary to their identification within the systematic review. APOE, apolipoprotein E.
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which show that various neuropsychiatric/behavioral tests were

related to BDNF SNP status.

Fourth, mitochondrial polymorphisms were assessed in only

three studies.54–56 All of these documented associations between

various mitochondrial mutations and global patient outcome at 6–12

months post-injury. These findings are not unexpected, given that

mitochondrial function is crucial in maintenance of metabolism and

intracellular homeostasis.89 However, with only three studies to date

assessing mitochondrial SNPs or haplotypes, it is difficult to con-

clusively define the role of these SNPs on patient outcome.

Fifth, other individual SNPs were described in relation to a range

of patient outcomes. Whereas these did not group into any of the

SNP categories described above, it appears that these SNPs tend to

populate some interesting potential ‘‘functional clusters’’ of genes.

First, a cluster of SNPs related to neurovascular and blood–brain

barrier (BBB) function were described. These included: ACE,57,58

ATP binding cassette,59–61 NOS, and AQP.64 The ACE and NOS

SNPs may play a role in vascular caliber and pre-capillary regu-

lation of cerebral blood flow, whereas the ATP binding cassette

protein and AQP are involved in solute transport59 and water ho-

meostasis64 across the BBB. These functional links provides a

framework through which genetic variation in the function of these

proteins could impact survival and neuropsychiatric/behavioral

function post-TBI.

A second class of SNPs involved neuroprotective/regulatory

proteins: p53,68 calcineurin,62,83 neuroglobin,63 aromatase,65 and

PARP.70 All of these have recognized functions in central nervous

system function, injury, and repair. p53 is involved in cell-cycle

regulation,90 whereas calcineurin is involved in immune regula-

tion.91 Aromatase regulates sex steroid hormone levels, and could

modulate the tissue effects of estradiol, which is believed to

possess neuroprotective properties.92 Neuroglobin is believed to

be protective in states of hypoxia,93 whereas PARP is believed

involved in the regulation of energy stores.94 Altered function

within these domains of regulation/neuroprotection could be ex-

pected to impact global and neuropsychiatric/behavioral outcome

post-TBI.

Finally, the last cluster of miscellaneous SNPs were those

specific to neuropsychiatric/degenerative states. These SNPs were

related to: KIBRA72 (involved in hippocampal functioning),

PERIOD67 (involved in circadian rhythm functionality), and

SNCA71 (known to play a function in synucleopathic degenera-

tive processes). These proteins are believed to have effects in

neuropsychiatric, sleep, and neurodegenerative conditions and

could be expected to modulate psychiatric and behavioral out-

come post-TBI.

Despite these interesting ‘‘clusters’’ of SNPs within the mis-

cellaneous group of the review, the number of studies in these

clusters were small with only preliminary results described.

It is worth noting that the vast majority of SNPs identified in

association studies occur in noncoding regions of the genome,

where their effect on phenotype cannot be explained by a direct

effect on protein translation as is the case in common Mende-

lian diseases. The effects of these noncoding alleles is through

more subtle mechanisms involving regulation of gene expression

through multiple mechanisms involving RNA splicing, tran-

scription factor binding, DNA methylation, and microRNA re-

cruitment.95 For a minority of the polymorphisms listed above,

such allele differences have been associated with the expression

of cognate proteins in humans. Failla and colleagues studied

BDNF in patients with TBI and explored the effect of the rs6265

Met-allele and rs7124442 C-allele, both of which have been as-

sociated with reduced BDNF signaling.48,79 They found that

genetic variance in BDNF demonstrated interactions with both age

and serum BDNF levels in predicting outcome. Diamond and col-

leagues examined polymorphisms in the IL-1b gene in TBI, and

displayed that the rs1143634 CT allele was associated with lower

serum IL-1b, higher CSF/serum IL-1b ratios, and an increased risk of

post-traumatic epilepsy,39 whereas other studies have linked differ-

ent SNPs to the development of post-traumatic epilepsy.33,82,83,96

These narratives tie genetic polymorphisms into outcome effects

through clear mechanistic effects. However, many polymorphisms

that are associated with outcome in this context have not been studied

for a mechanistic link in humans

Limitations

The studies reviewed in this article address the impact of SNPs in

genes other than APOE, and many provide evidence of association

between cognate SNPs and outcome in TBI. The functional roles of

these proteins, and their demonstrated role in non-TBI diseases,

provides a plausible framework through which they might impact

outcome in TBI. However, despite these interesting results, im-

portant limitations need to be highlighted.

First, given that our systematic review was conducted on all

non-APOE SNPs in all degrees of TBI severity, the overall re-

sults are difficult to synthesize into a single unifying conceptual

scheme. Further, the number of patients included in each indi-

vidual study varied, with most studies reporting on fewer than

200 patients. The poor statistical power inherent in these small

sample sizes not only reduces the confidence in the effect sizes

reported, but is also likely to bias toward the finding of positive

results.97 This lack of statistical power is further compounded by

(the often unrecognized) multiple testing in some patient popu-

lations, and may also account for some studies that showed no

association between studied SNPs and outcome. Conversely, it is

likely that many small negative studies simply did not reach

publication, and the resulting publication bias means that our

summary of the published literature may not accurately represent

the research undertaken in this context.

Second, many of these studies originated from centers with a

particular focus in this research area, with many articles studying

different SNPs on the overlapping patient cohorts. Consequently,

despite interesting results described in these articles, it may be

difficult to generalize these findings to other regions within the

world where certain genetic patterns may not be present or similarly

represented within their populations.

Third, we purposefully avoided including studies looking at

APOE genotype and outcomes in adult TBI. Thus, at the current

time, we cannot make direct comments regarding the association,

or added predictive power over existing models, of APOE geno-

typing on patient outcome in adult TBI. Given the comprehensive

literature body on APOE in adult TBI, our group decided to exclude

this from the above living systematic review on non-APOE SNPs to

avoid a hasty overview of APOE in an already large overview of

TBI genetics. We are currently in the process of completing a

separate and distinct living systematic review on APOE in adult

TBI, which will address the potential added benefit in outcome

modeling.

Fourth, many studies failed to account for various confounding

factors known to impact outcome in TBI. In particular, many failed

to adequately account for injury severity at presentation, using one

of the well-recognized risk adjustment schemes such as IM-

PACT.1,3 The absence of such risk adjustment makes it difficult to
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parse out nongenetic drivers of outcome variation and more spe-

cifically study the effect of genetic variation on TBI outcome.

Secondary brain injury events and disease course can also modify

outcome significantly (especially in more severe TBI), and the

absence of characterization of such events does not allow us to

correct for such covariates, or indeed use them as intermediate

outcomes in mediation analyses.98 Similarly, the neuropsychiatric/

neurocognitive assessment tools implemented varied significantly

between studies. This limits our ability to treat similar outcomes,

such as depression, as common phenotypic endpoints for meta-

analysis across studies. Finally, given the significant heterogeneity

between studies, including those addressing the same SNP, we were

unable to conduct a meta-analysis.

Fifth, we chose to use the QuIPS tool to assess bias in the studies

we reviewed, as a more specific tool for a study of the prognostic

impact of genotype on outcome, rather than other risk of bias as-

sessment tools, such as the RTI Item Bank99 (designed to assess

bias and precision in observational studies), the Cochrane Risk of

Bias tool100 for intervention studies, and the QUADAS-2 (Quality

Assessment of Diagnostic Accuracy Studies) tool101 for diagnostic

studies. When assessed against QuIPS, all but one of the 68 asso-

ciations reviewed had at least moderate risk of bias in one or more

of the QuIPS categories, and 14 had a high risk of bias in one or

more categories.

Sixth, whereas we did seek data on age and gender in our ab-

straction of studies, the results in these studies, with few exceptions,

did not account for the impact of these variables on genetic asso-

ciations. In any case, studies were rarely powered adequately to

undertake such an analysis. We also considered exploring the im-

pact of ethnic variance on associations, but discarded this option,

because an initial assessment of the literature showed that these

data were largely unavailable. This is an important omission, given

that ethnic background is clearly a likely driver of differences in

this context.102

It is worth emphasizing that our inclusion/exclusion criteria

were strict in that studies with less than 5 patients were excluded.

Although this sample size threshold would be very small for genetic

association studies, we selected this because we wished to be as

inclusive as possible in finding relevant data that might contribute to

a potential meta-analysis. In the event, study heterogeneity made

such a meta-analysis impossible. However, even with this low

threshold, studies highlighting individual case reports or small case

series on interesting SNPs as they relate to patient outcomes were

not included or discussed in this review, even if they had suggested

potential to impact outcome. An example of this would be mutations

in the voltage gated calcium channel—CACNA1A—which have

been shown to be related to epilepsy and disease-related edema in

many studies,103,104 and associated with cerebral edema after mild

TBI.105 This mutation, and potentially others, may prove important

as future larger, prospective studies provide additional information.

Seventh, this living systematic review only focused on non-

APOE polymorphisms and their association with clinically relevant

outcomes in adult TBI. Thus, comments on the link between var-

ious SNPs and post-mortem histological changes cannot be made

within this review. The scope of the systematic review was large in

any case, and we needed to restrict the field to make it manageable,

and this was one of the a priori restrictions set in the literature

search. We elected not to include post-mortem findings because it

would have required consideration of an entirely new set of out-

comes (pathological and histological findings), which would have

taken up a great deal of space in an already long article. Whereas all

of the studies we encountered for this living systematic review were

based on convenience samples, this is particularly the case in post-

mortem studies, and though these provide clear insights into TBI

biology, defining their quantitative relationship to the wider TBI

population is not easy. Thus, a main limitation of this living sys-

tematic review is that this link with histological outcomes was not

explored, though we acknowledge that this is something of im-

portance and deserves attention during future renditions of this

living systematic review.

Finally, the results of the studies in this review speak broadly to

the role of host response in modifying disease course and outcome

in TBI. It is highly unlikely that any individual gene functions in

isolation in this context, and most of the networks that we discuss

represent the interaction of several proteins. Consequently, in ad-

dition to examining the impact of individual genes on outcome, it

may also be important to find ways of identifying the integrated

impact of networks of genes that affect common pathways.106

Table 1 provides an overview of the various SNPs and their impact

on global outcomes measures in TBI.

Such a detailed exploration and synthesis of how polymorphisms

in individual genes result in an integrated effect on outcome is

beyond the scope of this review. However, it is possible to draw

some broad conclusions about the mechanisms of outcome impact

of the genetic variation discussed in this review (see Fig. 1). Ge-

netic variation could affect TBI outcome by modulating critical

components of injury response, vascular biology, or inflammation

cascades, affecting molecules that govern repair and recovery (such

as BDNF), or result in differences in pre-injury traits (such as re-

silience or cognition), with such ‘‘adverse alleles’’ only be ex-

pressed if cognitive reserve is challenged by injury. For example,

polymorphisms in ANKK1 may modulate response latency after

mild TBI and poorer performance on the CVLT-II and nonverbal

processing speed.

The limitations that we discuss above may also, to some extent,

account for some of the interstudy inconsistencies that we ob-

served, given that variations in injury severity, timing of outcome

assessment, and assessment tools used could result in legitimate,

but varying inferences in analyses that address the impact of a given

polymorphism.

Considerations for future studies in adult traumatic
brain injury

It is important to point out that any genetic study, regardless of

whether it addresses candidate genes or uses a GWAS approach,

needs to take account of the fundamentals of good genetic epide-

miology. A detailed discussion is beyond the scope of this article

(readers are referred to some excellent reviews107–110), but a few

points are worth highlighting. For example, the results from GWAS

studies are increasingly only perceived to be robust when the results

in a Stage 1 (or Discovery) cohort are replicated in a Stage 2 (or

Replication) cohort. Most current GWAS studies will address

several hundred thousand (typically 500,000–1,000,000) SNPs.

The risks from multiple comparison penalizes any statistical sig-

nificance that is observed, meaning that in Discovery cohorts, for

example, p values <5 · 10–8 need to be achieved to demonstrate

robust effects. This, in turn, mandates large sample sizes (see be-

low). Several other confounders in such studies (e.g., such as racial

differences in allelic frequency) are mentioned above, in the

Limitations section.

Notwithstanding these limitations in the literature that we re-

viewed, we believe that the genetic variations explored in these

studies have a plausible role in affecting outcome after TBI. If
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confirmed, the insights obtained could be used to refine outcome

prediction models, identify new therapeutic targets, and potentially

stratify patients for precision medicine approaches with new

agents. However, addressing these aspirations requires both addi-

tional studies and new approaches to analysis. There is a strong case

to move from candidate gene studies to genome wide association

studies (GWAS) in order to obtain a more complete, unbiased, and

integrated understanding of the effect of genetic variation on dis-

ease course and outcome in TBI. GWAS studies exploring the

impact of genotype on outcome are relatively uncommon, given

that most such studies compare cases and controls to determine the

impact of genetic variation on disease incidence, rather than out-

come. However, the principles used in case control studies111 can

be extended to outcome studies, and application of these principles

suggest that sample sizes required to reach the conventional

p < 5 · 10–8 threshold will depend on various factors. The first of

these is the frequency of the outcome of interest. Data from a

20,000-patient trial112 suggest that we should expect unfavorable

outcome rates of around 45% in moderate-to-severe TBI and

around 30% across the entire TBI severity range. Other factors

include the risk allele frequency (which ranges from 0.05 to 0.5)

and the effect size of possessing this risk allele.

Data from the papers examined in this review suggest a wide

range of effect sizes, but past experience from other diseases sug-

gests that likely effect sizes for the impact of genetic variation on

outcome in complex diseases are likely to show ORs in the range of

1.2–1.5. Given the heterogeneity in TBI at presentation, these ef-

fects are unlikely to be demonstrable in sample sizes less than

2000–4000 patients in a single severity category (assuming, e.g.,

45% unfavorable outcomes in moderate-to-severe TBI), and ro-

bustly powered studies to detect small effect sizes may require

sample sizes of about 10,000 (see Fig. 3). Simulations were done

using simple logistic regression under additive genetic association

assumption. The range of effect sizes reflect typical ORs observed

in first rounds of genetic association studies for complex diseases,

such as in the original Wellcome Trust Case-Control Consortium

study (WTCCC).113 With *50% more cases (unfavorable out-

come) and *100% more controls (favorable outcome) than in the

original WTCCC study, the figure illustrates that studies of this size

should be well powered in this target OR range). The power of these

samples to detect associations is not uniform, but will vary de-

pending on the outcome being interrogated. Such studies are only

possible through international collaborative efforts. Further, even

with such large sample sizes, the parsing of genetic effects on

outcome will require that we account for other covariates that

modulate outcome, characterized (as a minimum) by recording the

variables that contribute to common risk adjustment schemes such

as IMPACT.1,3 More detailed stratification of samples (e.g., by age

and sex) or the need to account in a more detailed fashion for

preinjury comorbidities (e.g., depression) will make greater de-

mands on sample size, but could provide greater robustness and/or

refinement of inferences regarding genotype-phenotype associa-

tions. With the hope of the widespread adoption of GWAS tech-

niques, outlined above, future renditions of this living systematic

review on non-APOE SNPs in adult TBI will be able to apply meta-

analytic techniques, providing powered statistical support for the

associations outlined in the current version of this review.

Conclusion

Although the size and quality of past studies prevent rigorous

inferences, the available data are consistent with the scientifically

plausible conclusion that various NT-, cytokine-, and BDNF-based

SNPs may be associated with patient global outcome at 6–12

months post-TBI. The association between NT, cytokine, and BDNF

SNPs with neuropsychiatric and behavioral outcomes at 6–12

months post-TBI is less clear, with conflicting results for similar

SNPs across various studies. These results suggest an important role

for variations in host response in modulating disease course and

outcome post-TBI. However, definitive conclusions in this regard

will require adequately powered and better designed GWAS studies,

which account for nongenetic covariates that drive outcome, and

examine the role of network function in TBI. Such studies are un-

derway and will yield new data over the next few years. This living

systematic review will be revised and updated as new evidence be-

comes available from these and other studies.
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