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Cadmium detection in aqueous medium is an important step in attempt to avoid 
human exposure to the extremely toxic metal. It is believed that one of the significant 
qualitative detection processes of cadmium(II) can be performed using a biosensor 
with the help of small peptides as the biological material. The current issue is that 
proper peptides to capture cadmium(II) are still unknown, since there is not enough 
information about the interaction between the metal ion and most of the small 
peptides in literature. Quantum mechanics methods, such as Density Functional 
Theory (DFT), can be employed to understand the electronic interaction between 
cadmium(II) and the peptides. Minnesota 06 functional (M06) in combination with 
Default 2 triple zeta plus polarization (Def2TZVP) basis set was denoted as the best 
method among those, which were employed in this research to describe properties 
of several cadmium complexes, such as Cd-S bond length and S-Cd-S bond angle. 
For this purpose, data on cadmium(II) benzenthiolato was extracted from 
Cambridge Structural Database (CSD) and compared to the computed data on the 
same molecule achieved theoretically using Becke Three Parameter Hybrid 
Functional in combination with Double zeta split-valence plus polarization basis set 
(B3LYP/DGDZVP) and M06/Def2TZVP. The results from the second method 
yielded 2.66% of errors for Cd-S bond lengths and 2.87% of errors for S-Cd-S bond 
angles, while in the presence of DGDZVP basis set in combination with B3LYP the 
errors rose up to 5.17% in Cd-S bond lengths and 4.90% in S-Cd-S bond angles. 
Cadmium(II) complexes with the small peptides, such as dipeptide, tripeptide and 
tetrapeptide were optimized employing M06/Def2TZVP and Polarizable 
Continuum Method (PCM) to determine the peptide length effect on the Cd-S
binding energy. Cd-S binding energy in the tripeptide, if compared with the 
dipeptide and the tetrapeptide, was bigger as much as 12.62 kJ and 5.82 kJ 
respectively. Therefore, Cd-S binding energy of different tripeptide sequences were 
screened by fixing cysteine in the terminals and changing the middle amino acid to 
each one of the twenty essential amino acids. The optimization was performed in 
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vacuum using B3LYP/DGDZVP and M06/Def2TZVP methods. The procedures 
were repeated using PCM, in which water was chosen as the solvent, to investigate 
dielectric effect of water molecules on the Cd-S moiety. Cd-S binding energy of 
Cysteine-Proline-Cysteine (CPC) is the highest, if compared to the other observed 
nineteen tripeptides with the binding energies of 285.98 kJ in the presence of PCM 
using M06/Def2TZVP. The computed bond lengths between the metal ion and the 
sulfur atoms, using M06/Def2TZVP, are between 2.353 Å to 2.476 Å in vacuum, 
and 2.434 Å to 2.451 Å with PCM. Thus, CPC peptide could serve as biological 
material in the cadmium(II) biosensor application. 
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SHAHO MOHAMMED ABDALLA 

Mei 2017 

Pengerusi : Profesor Mohd Basyaruddin Bin Abdul Rahman, PhD
Fakulti : Sains 

Pengesanan logam kadmium dalam medium akueus adalah satu langkah penting 
dalam usaha untuk mengelakkan pendedahan logam yang sangat toksik kepada 
manusia. Penderia bio merupakan salah satu teknik pengesanan kualitatif bagi 
kadmium(II) boleh dilakukan dengan menggunakan peptida pendek sebagai bahan 
biologi. Walaubagaimanpun maklumat berkaitan peptida yang sesuai untuk 
mengesan kadmium(II) masih tidak diketahui, kerana tidak ada maklumat yang 
cukup tentang interaksi antara ion logam dan peptida kecil dalam rujukan ilmiah. 
Kaedah Kuantum Mekanik (QM), seperti Teori Fungsi Ketumpatan (DFT) boleh 
digunakan untuk memahami interaksi elektronik di antara kadmium(II) dan peptida. 
Pemfungsian Minnesota 06 (M06) dengan kombinasi set asas  Lalai 2 Ganda Tiga 
Zeta Tambah Polarisasi (Def2TZVP) didapati merupakan kaedah terbaik dalam 
kajian ini untuk menggambarkan sifat-sifat kompleks kadmium, seperti panjang 
ikatan Cd-S dan sudut ikatan S-Cd-S. Untuk tujuan ini, data mengenai kadmium(II) 
benzentiolato daripada Pangkalan Data Struktur Cambridge (CSD) telah digunakan 
dan dibandingkan dengan perkiraan data pada molekul yang sama secara teori 
menggunakan Pemfungsian Hibrid Tiga Parameter Becke dengan kombinasi set 
asas Ganda Dua Zeta Belah-Valens Tambah Polarisasi (B3LYP/DGDZVP) dan 
M06/Def2TZVP. Keputusan daripada kaedah kedua memberikan ralat sebanyak 
2.66% bagi panjang ikatan Cd-S dan 2.87% bagi sudut ikatan S-Cd-S, manakala 
dengan menggunakan set asas DGDZVP dengan kombinasi B3LYP pula ralat 
didapati telah meningkat sehingga 5.17% bagi panjang ikatan Cd-S dan 4.90% bagi 
sudut ikatan S-Cd-S. Kompleks Kadmium(II) dengan peptida kecil, seperti 
dipeptida, tripeptida dan tetrapeptida telah dioptimumkan menggunakan 
M06/Def2TZVP dan Kaedah Pengkutuban Berterusan (PCM) untuk menentukan 
kesan panjang ikatan peptida terhadap tenaga ikatan Cd-S. Tenaga pengikatan logam 
bagi tripeptida, jika dibandingkan dengan dipeptida dan tetrapeptida didapati lebih 
besar  sehingga 12.62 kJ dan 5.82 kJ, masing-masing. Oleh itu, tenaga pengikatan 
logam Cd-S bagi tripeptida yang berbeza telah disaring dengan menetapkan sistina 
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pada kedua-dua terminal dan menukar asid amino tengah bagi tengah dengan 19 asid 
amino penting. Prosedur tersebut diulang menggunakan PCM, di mana air telah 
dipilih sebagai pelarut, untuk mengkaji kesan dieletrik molekul air pada moieti Cd-
S. Tenaga pengikatan Cd-S bagi Sistina-Prolina-Sistina (CPC) adalah yang tertinggi 
jika dibandingkan dengan 19 tripeptida lain dengan tenaga ikatan 285.98 kJ dalam 
PCM dengan menggunakan M06/Def2TZVP. Pengiraan panjang ikatan di antara ion 
logam dan atom-atom sulfur menggunakan M06/Def2TZVP memberikan nilai di 
antara 2.353 Å hingga 2.476 Å dalam vakum, dan 2.434 Å hingga 2.451 Å dalam 
PCM. Justeru, peptida CPC boleh dijadikan sebagai bahan biologi dalam aplikasi 
penderia bio kadmium(II). 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

Cadmium lies at the end of the second row of transition metals in the periodic table. 
Since it has filled ‘d’ shell orbitals, it has a variety of coordination systems such as 
three coordination numbers (Matzapetakis et al., 2002), four coordination numbers 
(Shindo & Brown, 1965), and six coordination numbers (Barrie et al., 1993). 
Cadmium(II) is the most abundant oxidation state of cadmium ions in nature, 
although cadmium(I) oxidation state is recorded by dissolving cadmium in a mixture 
of cadmium chloride and aluminum chloride (Holleman et al., 1985). Cadmium is 
widely used by people due to its applicability, for instance, in industry as Ni-Cd 
batteries and coloring agents, and in agriculture as phosphate fertilizers (McLaughlin 
& Singh, 1999). In addition, semiconductor cadmium chalcogenide nanocrystals 
(CdS, CdSe, and CdTe) have recently emerged as attractive materials for biological 
probes, since they have unique photo-physical characteristics (Derfus et al., 2004). 
Consequently, the number of sources of cadmium(II) exposure continues to increase 
around human, and the high level of cadmium(II) contamination in soil and crops 
has become a cause for concern, since it severely affects human health in case of 
overdose exposure.  
 
 
Cadmium is ranked the seventh in the list of hazardous substances and environmental 
pollutants among 785 different chemicals (The ATSDR 2015 Substance Priority 
List, 2015). It is also classified by International Agency for Research on Cancer 
(IARC) as a human carcinogen causing tumors of lungs, prostate, injection site, and 
other tissues (Waalkes, 2003). Chronically it affects kidneys and damages their 
function (Lars Järup et al., 1998). Human absorbs cadmium either by ingestion or 
inhalation. However, an average non-smoker German citizen has a daily intake of 
30 – 35 μg cadmium; 95% of this intake comes from food and drinks, but this range 
increases in the case of smoking (Godt et al., 2006). It enables us to draw a 
conclusion, that cadmium(II) detection in aqueous medium is a crucial step to avoid 
its toxicity toward human since human gets the toxic metal ion significantly from 
drinks. As it is suggested by scholars, one of the significant detection processes of 
cadmium(II) could be done by using biosensor with the help of peptides as the 
biological material. Cadmium(II) can be detected by several other methods as well, 
for instance, Graphite furnace-atomic absorption spectrometry (GFAAS) (Ashraf, 
2012) and inductively coupled plasma mass spectrometry (ICP-MS) (A. Sigel et al., 
2013). However, biosensor detection technique is cheaper and faster in comparison 
with the previous methods, if a qualitative detection process is required.  
 
 
Biosensor is composed mainly of three parts: a receptor, a transducer and a digital 
monitor. The one, which is dwelled upon in this research is the receptor. The receptor 
can be enzymes or nucleic acids or antibodies (Chambers et al., 2002), or short 
peptides, used as the chelating agent to capture the substrates (Pavan & Berti, 2012). 
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However, proper biological materials to capture cadmium(II) are still under 
investigation. Steps in pursuit of such a chemical can give a significant result in 
serving the biosensor technology for detection of cadmium(II). In order to find a 
proper chemical for this purpose, a survey by the natural biological systems 
containing cadmium(II) can direct scientists toward prediction of a general structure 
to capture cadmium(II). Subsequently, computational chemistry methods can be 
employed to derive and predict the potential length and sequence of the detected 
structure from the natural systems theoretically. 
 
 
Most of cadmium(II) in the living organs is bound to a small cysteine-rich, metal-
binding protein called Metallothionein (MT) (Nordberg, 2004). MT was discovered 
in 1957 as a cadmium binding protein in horse kidney (Margoshes et al., 1957). MT 
is known as a crucial molecule to protect human health from toxicity of cadmium 
due to its tendency to capture it (Klaassen et al. , 2009). MT is one of the existing 
proteins in human body. Cysteine amino acids frequently repeat in MT sequence.  
Since naturally it can capture cadmium via its sulfur atom in cysteine amino acids, a 
part of its sequence (including L-cysteine) as a small peptide can be observed 
theoretically as the base for deriving the most eligible biological materials to be used 
in the production of cadmium(II) biosensor technology. 
 
 
1.1. Problem Statements  
 
Exact structural determination studies have not been published for the cadmium(II) 
complexes of the most common small peptide molecules (Sigel et al., 2013). 
Therefore, the lack of information about the binding energy of cadmium(II) with 
small peptides and the cadmium(II) peptide complexes with the lowest energy 
conformation in literature demands further investigation to explain the probability 
of using small peptides in cadmium(II) biosensor technology. Cadmium(II) tendency 
to bind with cysteine amino acids in the peptides and proteins was proved 
experimentally (Sutherland et al., 2011). Cysteine interacts with the metal ions via 
its sulfur atom, and the presence of cysteine in different peptides undoubtedly affects 
the metal binding energy with its sulfur atom. Thus, the process of binding of the 
metal with cysteine in different peptides needs further investigation and research.  
 
 
1.2. Research Objectives 
 
The objectives of this research are as follows: 
 
� To investigate the effect of the peptide length on Cd-S binding energy. 
� To investigate the tripeptides sequence effect on Cd-S binding energy. 
� To select a proper theoretical method for calculating bond length and bond 

angle of cadmium(II) complexes among those, which were used.  
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Having adequate information about this interaction in hand, the most feasible peptide 
can be proposed for further observation to be constructed to interact with 
cadmium(II) as the biological chelating agent in the biosensors for detection of 
cadmium(II). The information can also aid to identify some properties of proteins, 
which contain this metal ion. For these purposes, one needs to understand the 
stability of the cadmium(II) peptide complexes and to describe it based on the energy 
of the complex system. The questions, such as, how the cadmium(II)-peptide 
interaction region affects the whole complex system, how much the bond energy is 
and what the range of the bond length is, should be answered adequately and 
thoroughly. 
 
 
To sum up, this research covers a theoretical study about the interaction between 
cadmium(II) and deprotonated cysteine using density functional theory (DFT) 
(Hohenberg & Kohn, 1964). Changes in the energy of the system can give us the 
idea of which reaction process is the most appropriate one by cadmium(II) in the 
medium. To denote the energy loss after forming the complex, the energy of 
cadmium(II), the energy of the peptide and the energy of the complex, in vacuum 
and considering water molecules’ dielectric effect using polarizable continuum 
model (PCM), were calculated. The details about the mentioned methods are 
depicted and explained in chapter three. 
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