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Extraordinary transmission and radiation from finite
by infinite arrays of slots
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Alastair P. Hibbins, and J. Roy Sambles

Abstract—In this communication an efficient Method of Mo-
ments (MoM) code is used for the analysis of the extraordinary
transmission (EOT) through a periodic array of rectangular slots
in a conducting screen, in the case where the number of slots
is finite in one direction and infinite in the orthogonal direction.
The slots can be arbitrarily rotated within the periodic unit cell.
Once the magnetic current density on the slots is obtained by
means of MoM, both the transmission coefficient and the far
field radiated by the array of slots are computed. The onset of
EOT turns out to be strongly dependent on the orientation of the
slots with respect to the direction in which the array is infinite.
If the slots are perpendicular to this direction, EOT appears for
a single infinite chain of slots. However, tens of parallel chains
of slots are required to reproduce the EOT response when the
slots are aligned along the parallel chains direction. The obtained
radiation patterns show the excitation of grating lobes as the
number of slots grows in the direction where the arrays are
finite.

Index Terms—Scattering, Moment methods, periodic struc-
tures, arrays

I. INTRODUCTION

Two decades ago, experiments carried out at optical fre-
quencies found remarkable transmission of light through pe-
riodic arrays of subwavelength holes in conducting screens
at frequencies meaningfully lower than the cut-off frequency
of the holes, which coined the term Extraordinary (Optical)
Transmission (EOT) [1]. The EOT phenomenon was initially
explained in terms of the excitation of surface plasmons
supported by the air-metal interface [2], which are significantly
affected by the plasma-like behavior of electrons at optical
frequencies. However, the discovery of EOT at millimeter
wave frequencies [3], [4], where metals roughly behave as
perfect electric conductors (PEC), made it clear EOT is not
related to the properties of metals at optical frequencies, and is
ultimately due to the periodicity of the arrays of holes through
which the electromagnetic waves transmit [4]. Although most
of the theoretical and experimental studies on EOT have
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focused on 2-D periodic arrays of holes [1]–[4], the EOT
phenomenon also occurs in 1-D periodic arrays of holes as
shown in [5]. In fact, linear chains of subwavelength holes
can be considered as the basical geometrical unit showing this
property [5]. In the last few years, the EOT phenomenon has
found an application in the design of antennas [6]. An excellent
review on the EOT topic can be found in [7].

Just a few years after the experimental discovery of EOT,
theoretical computations on the transmission through periodic
infinite arrays of holes and periodic finite arrays of holes were
carried out by means of the coupled mode method [7]. In this
numerical method, the fields inside the holes are expanded in
terms of waveguide modes, and the fields in the air regions
surrounding the conducting screen are expressed in terms of a
discrete (infinite case) or continuous (truncated case) spectrum
of plane waves. The coupled mode method converges very
quickly with respect to the number of waveguide modes when
the conducting screens are electrically thick, but it may require
hundreds of waveguide modes for accurate results in the case
of electrically thin conducting screens [8] since the magnetic
current singularities at the holes conducting edges are not
modelled in an accurate way by waveguide modes.

In this communication we explore the phenomenon of EOT
through periodic arrays of tilted rectangular slots in zero
thickness PEC screens in the case where the number of slots is
finite in one direction, and infinite in the orthogonal direction.
Other authors have studied the analysis of the scattering by
finite by infinite periodic arrays of PEC rectangular patches
or dipoles in free space (see [9] and references therein)
and also, by finite by infinite periodic arrays of slots in a
conducting screen [10]. However, whereas the aforementioned
papers focus on the scattering and radiation properties of
the arrays and on their frequency selective properties, in
this communication we focus on the occurrence of the EOT
phenomenon. In the current paper the spatial domain version
of MoM has been used for the determination of the magnetic
currents on the slots. Thanks to the use of basis functions
which account for the singularities of the magnetic currents
at the edges of the slots [11], the MoM turns out to converge
very quickly with respect to the number of basis functions
per slot, which makes it possible to study large truncated
arrays of slots in conducting screens of negligible thickness
as opposite to the coupled mode method. Both the use of
basis functions accounting for edge singularities and the use
of Ewald’s method for the determination of the 1-D periodic
Green’s function [12] have made it possible to implement a
version of MoM that outperforms that presented in previous
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papers [9], [10]. The code implemented has been used to study
the phenomenon of EOT in single infinite chains of narrow
rectangular apertures in different orientations (which comple-
ments the studies carried out in [5]), and to check how the
EOT results obtained for a finite number of parallel chains (1-
D periodic problem) converge to those obtained for an infinite
number of chains (2-D periodic problem) as the number of
parallel chains becomes larger. The same MoM code can also
be used to obtain the dispersion relation of the leaky waves
that can propagate through the 1-D periodic perforated screens
in case Ewald’s method for 1-D periodic Green’s function is
adequately adjusted to deal with leaky waves [13]. Also in
this communication, an asymptotic expansion of the electric
field has been carried out to obtain the radiation pattern of the
array at large distances from the perforated screen. The results
obtained for these radiation patterns show how transmitted
power is split between the direction of the impinging waves
and the direction of the excited grating lobes.

II. NUMERICAL APPROACH
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Fig. 1. Perspective view of a one-dimensional periodic array of rectangular
holes. A finite number Ns of slots is assumed to be located in the y direction
with a spacing b, while the number of holes in the x direction is infinite with
a spacing a. The slots are rotated an angle α, which also defines a new set
of coordinates (ζ, ξ), aligned with the axes of the slots.

Let us consider the geometry depicted in Fig. 1, in which
an infinite perfectly conducting plane of negligible thick-
ness is perforated with a periodic array of slots, which is
infinite in the x direction and finite in the y direction.
The periodic unit cell is a rectangle of dimensions a × b,
and Ns unit cells are considered in the y direction. The
slots are centered in each unit cell, their width and length
are ws and ls respectively (ws � ls < min(a, b)), and
they are tilted an angle α with respect to the y axis as
shown in Fig. 1. Let the surface occupied by the periodic
unit cells be Sij = {ia ≤ x ≤ (i+ 1)a; jb ≤ y ≤ (j + 1)b}
(i = . . . ,−1, 0, 1, . . . ; j = 0, . . . , Ns − 1), and let ηij be the
surface of the slot located on Sij .

In the following, a harmonic time dependence of the physi-
cal quantities of the type ejωt will be assumed and suppressed
throughout. Let us assume that a plane wave propagating in

the half-space z < 0 of Fig. 1 in a direction given by the
spherical coordinates (φinc, θinc) obliquely impinges on the
perforated screen. Let Esc

t (x, y, z = 0) = Esc
x (x, y, z =

0)x̂ + Esc
y (x, y, z = 0)ŷ be the tangential scattered electric

field induced on the screen (Esc
t (x, y, z = 0) = 0 on the

conducting portion of the perforated screen) by the incident
plane wave. Then, the functions Esc

t (x, y, z = 0) on the Ns
slots η0j will be the solution of the following set of Ns coupled
integral equations

Jas(x, y) +

+∞∑
i=−∞

Ns−1∑
j=0

∫∫
ηij

GM (x− x′, y − y′)

·Esc
t (x
′, y′, z = 0) dx′dy′ = 0 (x, y) ∈ η0j (1)

(j = 0, . . . , Ns − 1),

where Jas(x, y) is the electric current density excited by the
plane wave impinging on the conducting screen in the absence
of the slots, and GM (x, y) is the dyadic Green’s function
defined in [14, Eqns. (2) & (3)]. Since Esc

t (x, y, z = 0) is
a Floquet-periodic function of x of period a (and therefore,
once we find a solution Esc

t (x, y, z = 0) in the slots η0j
(j = 0, . . . , Ns−1), the electric field on the rest of the slots of
Fig. 1 will be automatically determined), (1) can be rewritten
as

Jas(x, y) +

Ns−1∑
j=0

∫∫
η0j

G
per

1D (x− x′, y − y′)

·Esc
t (x
′, y′, z = 0) dx′dy′ = 0 (x, y) ∈ η0j (2)

(j = 0, . . . , Ns − 1),

where G
per

1D (x, y) is the 1-D periodic dyadic Green’s function
given by

G
per

1D (x, y) =

+∞∑
i=−∞

GM (x− ia, y)ejikx0a, (3)

and kx0 = −k0 sin(θinc) cos(φinc) (k0 = ω
√
µ0ε0 = 2π/λ0,

λ0 being the free space wavelength). In order to determine the
value of Esc

t (x, y, z = 0) in the slots η0j (j = 0, . . . , Ns−1),
we have applied Galerkin’s version of MoM to the set
of Ns integral equations of (2). The basis functions for
Esc
t (x, y, z = 0) have been chosen in such a way that the

corresponding basis functions for the magnetic current density
on the slots, Msc(x, y) = ẑ×Esc

t (x, y, z = 0), coincide with
the basis functions used in [15] to approximate the electric
current density on the rectangular dipoles of a multilayered
periodic structure (see [15, Eqns. (17), (18) & (19)]). These
basis functions have the advantage that they account for the
physical edge singularities of the magnetic current density at
the slot edges, and therefore, they ensure a fast convergence
of MoM with respect to the number of basis functions as
shown in [15, Fig. 8]. For the particular problem treated in
this paper, numerical simulations have shown that only four
basis functions per slot suffice to provide very accurate results
in the MoM solution of (2). This is checked in Section III
where our results are compared with CST results, and good
agreement is found.
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The MoM matrix entries have been computed in a very
efficient way. In particular, these entries have been expressed
as double integrals in a rectangular domain with respect to
the two coordinates ζ and ξ shown in Fig. 1. The integrand
of these integrals are products of cross-correlations between
the basis functions (or between their divergences) times the
free-space scalar 1-D periodic Green’s function. (see [14,
Eqns. (43), (44) & (45)]). The scalar 1-D periodic Green’s
function (different from the Green’s functions of [14]) has
been efficiently obtained by means of Ewald’s method as
explained in [12, Section IV]. For large separations between
source and field points (Rt in [12]), where the spectral series of
Ewald’s method may show numerical problems, we have used
the spectral representation of the 1-D periodic Green’s function
for its computation (see [12, Eqn. (34)]). The singularities of
the integrands of the double integrals have been handled as
explained in [14].

If we solve the wave equation in the half-space z > 0 of
Fig. 1, it can be shown that the electric field scattered by the
perforated conducting screen in that half-space can be written
as

Esc(x, y, z > 0) =
1

2π

+∞∑
m=−∞

∫ +∞

−∞
Ẽsc(kxm, ky, z = +0)

× ej(kxmx+kyy−kzmz)dky, (4)

where kxm = 2πm
a + kx0, kzm =

√
k20 − k2xm − k2y when

k2xm + k2y < k20 and kzm = −j
√
k2xm + k2y − k20 when k2xm +

k2y > k20 , and where Ẽsc(kxm, ky, z = +0) is the 2-D Fourier
transform, discrete in x and continuous in y, of Esc(x, y, z =
+0). If we introduce spherical coordinates in (4), the electric
field radiated by the dominant m = 0 Floquet mode of (4)
(the only radiative mode when a < λ0) will be given by

Esc,0(r �, θ, φ)
∣∣∣
z>0

=
1

2π
ejkx0r sin θ cosφ

∫ +∞

−∞
Ẽsc(kx0, ky, z =+0)

×ej(ky sin θ sinφ−
√
k20−k2x0−k2y cos θ)rdky

∣∣∣
r�
. (5)

Now, if we carry out an asymptotic evaluation of the integral
of (5) by means of Rayleigh’s method of stationary phase (see
[16, pp. 284-286]), it turns out that

Esc,0(r �, θ, φ)
∣∣∣
z>0
≈ ej(kx0 sin θ cosφ−βps(θ,φ))r cos θ√

2πr(1− sin2 θ cos2 φ)

×
√
jk0

(
1− sin2 θinc cos

2 φinc

1− sin2 θ cos2 φ

)1/4

× Ẽsc(kx0, ky = −kpsy (θ, φ), z = +0), (6)

where

βps(θ, φ)=k0

√
(1−sin2 θinc cos2 φinc)(1−sin2 θ cos2 φ), (7)

and

kpsy (θ, φ)=k0 sin θ sinφ

√
(1− sin2 θinc cos2 φinc)

1− sin2 θ cos2 φ
. (8)

When (4) is used in the equation ∇ · Esc(x, y, z > 0) =
0, the z component of the vector quantity Ẽsc(kx0, ky, z =
+0) appearing in (6) can be expressed in terms of the two
components of Ẽsc

t (kx0, ky, z = 0) as shown below

Ẽsc
z (kx0, ky, z = +0) =

1

kz0

(
kx0Ẽ

sc
x (kx0, ky, z = 0)+kyẼ

sc
y (kx0, ky, z = 0)

)
. (9)

Once MoM is applied, Ẽsc
t (kx0, ky, z = 0) can be obtained

as the 2-D Fourier transform, discrete in x and continuous in
y, of Esc

t (x, y, z = 0). This fact, together with (9), implies
that the solution of (2) makes it possible to compute the far
field Esc,0(r �, θ, φ)

∣∣∣
z>0

by means of (6).
For the wave impinging on the perforated screen of Fig. 1,

we can define the scattering width [17] of the dominant m = 0
Floquet mode along the incidence direction as

σ0
1D(θinc, φinc)= lim

r→∞

2π
√
y2 + z2|Esc,0(r, θ = θinc, φ = φinc)|2

|E0|2

=
k0 cos

2 θinc|Ẽsc(kx0, ky = ky0, z = +0)|2(
1− sin2 θinc cos2 φinc

)1/2 |E0|2
, (10)

where we have made use of (6). The quantity σ0
1D of (10) will

be a measure of the length in the y direction that the truncated
array of slots of Fig. 1 presents to a wave impinging on the
array.

In order to estimate the amount of power transmitted
through the array of holes of Fig. 1, we are going to define
a dimensionless transmission coefficient, T1D, as the ratio
between the power radiated into the half-space z > 0 by the
Ns unit cells located within the interval 0 < x < a, P 1D

rad

∣∣∣
z>0

,
and the power of the impinging plane wave available at those
Ns cells, P 1D

av , i. e.,

T1D =
P 1D

rad

∣∣∣
z>0

P 1D
av

. (11)

The quantitiy P 1D
av

∣∣∣
z>0

of (11) is given by

P 1D
av =

Nsab cos θinc|E0|2

2Z0
, (12)

where Z0 =
√
µ0/ε0 is the free space wave impedance, and

where E0 is the complex vector amplitude of the electric field
of the impinging plane wave. The quantity P 1D

rad of (11) is given
by

P 1D
rad

∣∣∣
z>0

=
1

2
Re

{
Ns−1∑
j=0

∫ ∫
η0j

[Esc(x, y, z = +0)

×(Hsc(x, y, z = +0))∗] · ẑdxdy

}
, (13)

where Hsc(x, y, z) stands for the magnetic field scattered by
the perforated conducting screen. After some mathematical
manipulations, it is possible to express P 1D

rad

∣∣∣
z>0

in a simple
way in terms of the weight coefficients of the basis functions
of Esc

t (x, y, z = 0), and in terms of the MoM matrix entries.
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III. NUMERICAL RESULTS
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Fig. 2. Normalized scattering width of single infinite periodic chains of
slots (Ns = 1 in Fig. 1) for different values of the slots length under
normal incidence conditions. Results are presented for: (a) slots parallel to
the periodicity direction, α = 90◦; (b) slots tilted an angle α = 45◦ with
respect to the periodicity direction; (c) slots perpendicular to the periodicity
direction, α = 0◦. Our results obtained with MoM for the case ls/a = 0.4
(solid lines) are compared with CST results (×). Parameters: ws/a = 0.05,
θinc = 0◦.

Fig. 2 shows the frequency dependence of the normalized
scattering width of single infinite chains of slots for different
orientations of the slots with respect to the periodicity direc-
tion. The direction of the electric field of the impinging wave
has always been taken perpendicular to the slots direction. Our
results obtained with the MoM approach described in Section
II for the normalized scattering width are compared in Fig. 2
with results obtained by means of the commercial software
CST [18] for the case ls = 0.4a. Excellent agreement is found
between both sets of results. We have found that the CPU time
required by CST is around 200 times larger than that required
by our in-house software, and this CPU time ratio excludes the
CPU time required for adaptive-mesh convergence with CST.
The important CPU time saving clearly shows the advantages

of developing an efficient in-house software for the study of
EOT phenomena in truncated periodic structures.

Please note that a Wood’s anomaly, consisting of a zero in
transmission at a/λ0 = 1, is found in Figs. 2(b) and (c). The
Wood’s anomaly is associated to the onset of “grating lobes”
that propagate along the plane of the array at this frequency,
with a wavelength equal to the periodicity. It is preceded by an
associated EOT peak (maximum of transmission) for ls/a =
0.4 as expected [4], [14]. However, the Wood’s anomaly and
the EOT peak are not present in Fig. 2(a). In order to explain
the lack of Wood’s anomaly in Fig. 2(a) from a physical point
of view, we have to think that the Wood’s anomaly at a/λ0 = 1
is connected with the onset of the grating lobes m = ±1
scattered by the periodic structure of Fig. 1 [14]. In the case
of Fig. 2(a), the planes x = qa (q = . . . ,−1, 0,+1, . . .)
act as magnetic walls, and for the particular direction of the
excitation electric field in Fig. 2(a), the two grating lobes
m = ±1 launched when a/λ0 ≥ 1 merge to form a TE2 mode
that propagates along an equivalent parallel-plate waveguide
limited by two magnetic walls at x = 0 and x = a. However,
TE modes in the equivalent parallel-plate waveguide do not
lead to Wood’s anomalies and EOT peaks, which is explained
in detail in [4] by means of an equivalent circuit containing
frequency-dependent capacitances and inductances. Note that
the Wood’s anomaly occurs in Fig. 2(c) for a/λ0 = 1 (when
the axis of the slot is orthogonal to the direction of the
periodicity) in spite of the apparent similarity with the case
of Fig. 2(a). This is because in the former case the planes
x = qa (q = . . . ,−1, 0,+1, . . .) act as electric walls, and
for the particular direction of the excitation electric field in
Fig. 2(c), the two grating lobes m = ±1 launched when
a/λ0 ≥ 1 merge to form a TM2 mode that should propagate
along an equivalent parallel-plate waveguide limited by two
electric walls at x = 0 and x = a. And TM modes in the
equivalent waveguide do generate Wood’s anomalies and EOT
peaks as explained in detail in [4], which justifies the presence
of the Wood’s anomaly when a/λ0 = 1 in Fig. 2(c). Finally,
in the case of Fig. 2(b), there are no symmetry conditions at
the onset of grating lobes (no electric or magnetic walls at the
planes x = qa) that prevent the excitation of TM modes in the
equivalent waveguide, and the Wood’s anomaly at a/λ0 = 1
is present.

We have carried out CST simulations of the periodic struc-
tures of Fig. 2 for ls/a = 0.4 in the case where the width of
the conducting plane of Fig. 1 is finite in the y direction. The
CST results obtained for the normalized scattering width of
the array in that case practically coincide with those of Fig. 2
provided the edges of the conducting plane in the y direction
are further than three periods from the array. This can serve as
a guide for realistic applications of the phenomena presented
here.

The implemented MoM code has also been used to obtain
the dispersion relation of waves travelling along the x direction
in the periodic structure of Fig. 2(b) when ls/a = 0.4. For
that purpose, Ewald’s method for the determination of the
scalar 1-D periodic Green’s function has been modified to
account for complex wavenumbers along the x direction as
described in [13]. The results obtained indicate that in the
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neighborhood of the EOT peak a backward proper leaky wave
can propagate along the periodic chain of slots, and that the
leaky wave radiates at broadside direction when a/λ0 = 0.995,
which exactly corresponds to the frequency of the EOT peak
appearing in Fig. 2(b). This finding connects with the surface
plasmon explanation of the EOT phenomenon described in [2].
Unfortunately, the dispersion relation results cannot be shown
in this communication due to size limitations.
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Fig. 3. Transmission coefficient of Ns parallel infinite periodic chains of
slots for different values of Ns under normal incidence conditions. Results
are presented for: (a) slots parallel to the periodicity direction, α = 90◦; (b)
slots tilted an angle α = 45◦ with respect to the periodicity direction; (c) slots
perpendicular to the periodicity direction, α = 0◦. Parameters: ls/a = 0.4,
ws/a = 0.05, b = 1.1a, θinc = 0◦.

In Fig. 3 we plot results for the transmission coefficient
T1D of Ns parallel infinite chains of slots in a periodic
configuration as shown in Fig. 1. The period in the y direction
where the periodic array is finite, b = 1.1a, is chosen to be
different from the period in the x direction where the array
is infinite, a, so that the different phenomena related to the
periodicity in each direction can be clearly distinguished. By
comparison with Fig. 2, in Fig. 3 we have restricted ourselves
to the case where ls/a = 0.4 since this is the case for which
EOT peaks are expected to appear according to Fig. 2. Note
that in Fig. 3(a) a Wood’s anomaly starts being apparent when

Ns ≥ 20 for b/λ0 = 1 (which corresponds to a/λ0 = 0.91
in the Figure), and the associated EOT peak also becomes
observable. This Wood’s anomaly would correspond to the
onset of the grating lobes m = 0, n = ±1 if the periodic
array of slots were infinite in the x and y directions (as in
the case treated in Section II of [14]). In accordance with the
explanation given in the previous paragraph for the results of
Fig. 2(c), this Wood’s anomaly is allowed by the structure of
Fig. 3(a) because the slots are perpendicular to the y direction,
and as the number of slots in the y direction grows and
the periodicity in this direction becomes more defined, the
phenomena associated to this periodicity (Wood’s anomaly
and EOT peak) become observable in Fig. 3(a). The Wood’s
anomaly for a/λ0 = 1 is not present in Fig. 3(a) for the
same symmetry arguments introduced in the comments to
Fig. 2(a). In Fig. 3(c) the Wood’s anomaly for a/λ0 = 1
and the associated EOT peak appear for all values of Ns
since the symmetry arguments used to explain the Wood’s
anomaly of Fig. 2(c) still hold for Fig. 3(c). However, the
Wood’s anomaly for b/λ0 = 1 is absent because the slots
in the structure of Fig. 3(c) are parallel to the y direction,
and as this structure becomes periodic in this direction, the
grating lobes associated to this periodicity direction will not
be excited when b/λ0 = 1 for the same symmetry reasons the
grating lobes associated to the periodicity in the x direction
were not excited in Fig. 2(a) when a/λ0 = 1. Concerning
Fig. 3(b), since the structure analyzed in this latter Figure is
not symmetric, the two Wood’s anomalies for b/λ0 = 1 and
for a/λ0 = 1 and the associated EOT peaks are present in
the results plotted. However, whereas the Wood’s anomaly for
a/λ0 = 1 is present for all values of Ns, the Wood’s anomaly
for b/λ0 = 1 becomes noticeable for Ns ≥ 20. This is due
to the fact that whereas the Wood’s anomaly for a/λ0 = 1
is related to the periodicity in the x direction, which exists
for all values of Ns, the Wood’s anomaly for b/λ0 = 1 is
related to the periodicity in the y direction, which requires
a large value of Ns to start being apparent. Please note that
when Ns ≥ 20, an additional Wood’s anomaly is formed in
Figs. 3(a) to (c) when a/λ0 = 1.35, which corresponds to the
case where the relation (1/a)2 + (1/b)2 = (1/λ0)

2 fulfills.
This latter Wood’s anomaly would exactly correspond to the
onset of the grating lobes m = ±1, n = ±1 if the periodic
array of slots were infinite both in the x and y directions, and
therefore, it is something to be expected as the array of slots
increases its size in the y direction.

In Fig. 4 we have represented the normalized power radia-
tion patterns emitted by the truncated array of slots of Fig. 1
in the y− z plane at the EOT peaks of Figs. 3(a) to (c). Since
there are two EOT peaks in Fig. 3(b) (one for a/λ0 = 0.897
and one for a/λ0 = 0.995), two different radiation patterns
are plotted in this case, one for each EOT peak. Note that as
Ns increases, the radiation of the dominant m = 0 Floquet
mode along the incidence direction (θ = 0◦) becomes more
and more directive. Of course, this would be the only radiation
direction in case the array were infinite in the y direction. In
the cases of Figs. 4(c) and (d), one can see the excitation of
two grating lobes that would correspond to the grating lobes
m = 0, n = ±1 if the periodic array of slots were infinite
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Fig. 4. Normalized radiation patterns in the y − z plane for z > 0 (φ = ±90◦) of the periodic arrays of slots analyzed in Fig. 3 when: (a) α = 90◦ and
a/λ0 = 0.887; (b) α = 45◦ and a/λ0 = 0.897; (c) α = 45◦ and a/λ0 = 0.995; (d) α = 0◦ and a/λ0 = 0.960. The direction of the grating lobes is
indicated in red. Parameters: ls/a = 0.4, ws/a = 0.05, b = 1.1a, θinc = 0◦.

in the x and y directions. In this latter case, the directions of
radiation of these two grating lobes with respect to the positive
z axis would be given by the angles

θ0,±1gl = ± arctan

(
λ0/b√

1− (λ0/b)2

)
(14)

The angles predicted by Eqn. (14) are marked in red in
Figs. 4(c) and (d) (θ0,±1gl = ±66.06◦ in the case of Fig. 4(c)
and θ0,±1gl = ±71.26◦ in the case of Fig. 4(d)), and it can be
checked these two angles coincide with the radiation maxima
related to the grating lobes when Ns ≥ 20, which provides an
indirect validation for the computed radiation patterns.

IV. CONCLUSION

An efficient MoM code has been implemented for the analy-
sis of EOT in periodic arrays of tilted slots which are infinite in
one direction and truncated in the orthogonal direction. Good
agreement has been found between our results and CST, our
code being around 200 times faster than CST. The results ob-
tained indicate even though EOT peaks and Wood’s anomalies
may not reveal in single chains of infinite slots owing to the
lack of periodicity in the direction perpendicular to the chains,
they become apparent when more than twenty of these chains
are periodically gathered. An asymptotic expansion of the
fields scattered by the arrays has been carried out to compute
the far field radiation patterns These radiation patterns clearly
show the excitation of grating lobes as radiation maxima that
become sharper and sharper as the number of slots grows in
the direction where the arrays are finite, irrespective of the
existence or not of a Wood’s anomaly at their onset.
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