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We investigate the formation of weak chimera states in modular networks of

electrochemical oscillations during the electrodissulution of nickel in sulfuric acid. In

experiment and simulation, we consider two globally coupled populations of highly

non-linear oscillators which are weakly coupled through a collective resistance. Without

cross coupling, the system exhibits bistability between a one- and a two-cluster state,

whose frequencies are distinct. For weak cross coupling and initial conditions for

the one- and two-cluster states for populations 1 and 2, respectively, weak chimera

dynamics are generated. The weak chimera state exhibits localized frequency synchrony:

The oscillators in each population are frequency-synchronized while the two populations

are not. The chimera state is very robust: The behavior is maintained for hundreds

of cycles for the rather heterogeneous natural frequencies of the oscillators. The

experimental results are confirmed with numerical simulations of a kinetic model for the

chemical process. The features of the chimera states are compared to other previously

observed chimeras with oscillators close to Hopf bifurcation, coupled with parallel

resistances and capacitances or with a non-linear delayed feedback. The experimentally

observed synchronization patterns could provide a mechanism for generation of

chimeras in biological systems, where robust response is essential.

Keywords: chimera, network, oscillation, synchronization, clustering

INTRODUCTION

Synchronization of oscillatory chemical reactions is an important dynamical phenomenon with
relevance to many physical and biological processes [1]. Early studies focused on the dynamics
of continuous, stirred tank reactors (CSTRs) where coupling is through active or passive mass
transfer, or by electrical means [2–6]. Different types of interactions were able to induce
different synchronization patterns, e.g., in-phase, anti-phase, and out-of-phase entrainment.
The CSTR technology however is difficult to scale up to a large population of reactors [7,
8]. Belousov-Zhabotinsky (BZ) microdroplets [9, 10], beads [11, 12], microwell arrays [13],
and nanodroplets [14] provide ways to study synchronization of populations. In oscillatory
electrochemical systems, electrode arrays can be applied to investigate coupled systems, up to
about 100 oscillators [15]. Globally coupled electrochemical oscillators indeed showed a variety
of synchrony patterns with various levels of coherence, including full synchrony [16] and other
stable [17] and intermittent [18] cluster states.

Understanding what coupling properties—topology, delay, symmetry, and non-linearity
—influence synchronization in dynamical models [1, 19] provides guidelines for the design of
experiments. In particular, phase-model-based predictions turned out to be useful for identification
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of synchronization patterns in experiments [17, 18]. While the
importance of phase models in interpreting synchronization
structures was emphasized in early studies [5], some reluctance
remained among chemists to adopt phase models in the
theoretical description of chemical reactions due to their
simplified nature [20]. Only one angular variable, the phase, is
used to uniquely identify the state of the chemical reactions.
However, oscillatory chemical reactions typically require at least
two chemical species [20]. While phase descriptions can be
rigorously justified for weak interaction [21], the full range of
interactions in chemical systems include strong and highly non-
linear coupling. Hence, pure phase model description should
be used with care. Nonetheless, many dynamical phenomena,
e.g., clustering [17], desynchronization [22, 23], and slow
switching [18] were interpreted and designed using phase
model approaches.

Chimeras, synchrony patterns with coexisting domains of
coherence and incoherence in networks of identical oscillators,
have attracted a tremendous amount of attention in the last
decades [24, 25]. They were originally reported by Kuramoto
and Battogtokh in rings of non-locally coupled oscillators
where the coupling strength depends on the distance between
oscillators [26]. These traditional chimeras have been studied
theoretically in the continuum limit of infinitely many oscillators
[26, 27]. By contrast, the concept of a “weak chimera” [28, 29]
provides a rigorous characterization of chimeras in networks of
finitely many oscillators and capture features of the chimeras
originally described by Kuramoto and Battogtokh: Weak
chimeras in networks of identical oscillators are characterized
by localized frequency synchrony, i.e., there are oscillators
that are synchronized in frequency and others which have
distinct frequencies.

The theoretically predicted chimera states challenged the
fundamental understanding of the non-linear dynamics of
chemical reactions and the experimental techniques that enabled
the construction of networks of coupled chemical reactions.
Can we design networks and choose experimental conditions
favorable for the chimera state?

As the theory of chimera states is quickly growing [24,
25], developments of experimental and data analysis techniques
were also needed to identify and classify partially synchronized
states as chimera states [30]. The BZ bead system with optical
feedback technique is a promising approach that can generate
various types of chimera patterns in different configurations [31–
34]. In electrochemistry, non-linear electrical coupling during
silicon dissolution generates localized patterns that possess many
features similar to chimeras [35–40]. The beating mercury drop
system also showed that while homogeneous coupling generates
rather synchronized states, inhomogeneous coupling results
in partial synchronization similar to a chimera [41]. Current
oscillations of nickel electrodissolution, in the transpassive
dissolution region, on electrode arrays exhibit a wide range
synchronization patterns [15]. Oscillation occurs due to the
hidden negative differential resistance of the electrodissolution
process [42]. Two different types of chimeras were identified
[43–45]. On a ring with long-range interaction, a short-lived
synchrony pattern, similar to the traditional chimera was found

[44, 45]. When non-linear coupling was generated with a
computer feedback, weak chimeras [28, 29, 46] were obtained
with a four-oscillator network, where two pairs of elements
were locked in-phase and anti-phase configurations with distinct
frequencies [43].

In this paper, we report the occurrence of weak chimera states
in a modular network of electrochemical oscillators with the
electrodissolution of nickel in sulfuric acid. First, for comparison
with previous results, an overview is given on the characteristics
of chimera states in the nickel electrodissolution system [43–45].
In these previous experiments, the chimera state was observed
either in a device [44, 45] with relatively short life-time, or in a
computer feedback system [43] with long life-time. Here we seek
long life-time chimeras in a device. Numerical simulations are
performed to explore parameter space and identify experimental
conditions for which weak chimera states can be observed with
strongly non-linear oscillators in the presence of linear (or
difference) coupling through the electrode potential. Finally,
experiments are performed to show the existence of the weak
chimeras in the electrochemical system.

MATERIALS AND METHODS

Figure 1 shows the experimental setup and the three different
network topologies. Each approach uses different techniques to
generate favorable experimental conditions for the chimera state.

Ring Network With Non-local Coupling
A standard three-electrode electrochemical cell for the ring
network with non-local coupling [44] is shown in Figure 1A.
This approach used an electrode array, in which the electrode
pairs are coupled by parallel resistance/capacitance circuit
elements. An array of nickel wires (only two are shown in
the figure) were used as the working electrode. A Hg/Hg2SO4

saturated K2SO4 is the reference, and a platinum rod is the
counter electrode. The electrodes were immersed in a 3MH2SO4

solution. The cell temperature was maintained at 10◦C by a
circulating bath. The working electrode array has 1mm diameter
wires, embedded in epoxy, with a spacing of 2mm. With this
large spacing the potential drop in the electrolyte is sufficiently
small (about 0.1mV), so that without the presence of additional
coupling, the oscillations do not show synchronization [16]. The
working electrodes were connected to a potentiostat through an
external resistance (Rind) for each wire. The potentiostat sets the
constant circuit potential, and the currents, measured from the
potential drops across the individual resistances, were digitized
using a National Instrument PCI 6255 data acquisition board at a
rate of 200Hz (Note that each wire has the same circuit potential
in this configuration).

The properties of individual oscillations for a wire of a
given diameter can be changed by the circuit potential (V),
the attached total external resistance, the concentration of the
sulfuric acid, and the temperature. Once the properties of the
individual oscillators are set, the wires in the electrode arrays
can be coupled externally for a given topology. As shown in
the bottom panel of Figure 1A, the network topology consists
of 20 nodes with 140 links. Each node is an oscillatory nickel
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FIGURE 1 | Schematics of the experimental setups (top) for the different types of network topologies (bottom). (A) Non-local ring network with 20 nodes and 140

links. Rind : individual resistance. C: capacitance. R: cross resistance. (B) Weakly non-linear oscillator and highly non-linear delayed feedback in two pairs of oscillators

with weak cross-coupling. CE: Counter electrode. RE: Reference electrode. WE: Working electrode. K: coupling strength. ε: cross coupling factor. N: number of

oscillators in a general configuration. (C) Highly non-linear oscillators and linear interactions in two populations of electrodes with weak, global cross coupling. Rcoll :

collective resistance. Rg: group resistance.

electrodissolution reaction, which takes place on the surface of
the electrode. The links of the network are established through
a coupling resistance R [45] and capacitance C. To induce some
delay in the coupling current a capacitor in parallel was added
to each coupling resistor [47]. In the network, each node is
coupled to seven of its nearest neighbors of the ring network in
both directions.

Network With Spatially Distributed
Non-linear Delayed Feedback
The experimental setup with non-linear feedback shown in
Figure 1B [43]. The system consisted of four oscillators divided
into two populations with stronger coupling in the populations
and a weaker coupling between them (Figure 1B bottom). The
oscillators are coupled through linear and quadratic delayed
feedback. The same electrode array can be used as with the non-
local ring network. (To further eliminate coupling through the
electrolyte, the electrodes had 3mm spacing.) A multichannel
potentiostat (ACM Instruments Gill IK64) was used. The
potential Vσ ,k(t) of the wire k in population σ ∈ {1, 2} with
respect Hg/Hg2SO4 sat K2SO4 reference electrode, was set with
a multichannel potentiostat interfaced with a real-time Labview
controller. The electrode potentials Eσ ,k (t) of the four wires were
converted using the currents (Iσ ,k(t)): Eσ ,k (t) = Vσ ,k (t) −

Iσ ,k(t)Rind, with Rind = 1 kOhm. The electrode potentials were

adjusted for offset with, Eσ ,k = Eσ ,k − o, where o is the time
averaged electrode potential (The quantity owasmeasured before

the experiments, for a timeframe of about 100 oscillations). The
circuit potential of each wire is adjusted by the feedback using
the equation:

Vσ ,k (t)=V0+K
∑

κ , j∈{1, 2}

Kκσh(Eκ ,j(t − τ )) (1)

where Kκσ determines the network topology, K is the total
feedback gain, τ is the global delay, and

h
(

Eκ ,j (t)
)

= k1
[

Eκ ,j (t)−Eκ ,j (t−τEx)
]

+k2
[

Eκ ,j (t)
2+Eκ ,j (t−τEx)

2
]

(2)

is the feedback. For each population, K11 = K22 = 1. Coupling
between the population is set to K12 = K21 = ε, where ε

is the cross-coupling factor. The linear and quadratic feedback
gains, k1 and k2, respectively, are applied to induce the required
dynamics. The delay τEx was set to be equal to half of the
period of the uncoupled oscillators. See [43] for more details on
the choice of the parameters k1, k2, and τEx. V0 = 1, 160mV
and the natural frequency (i.e., the frequency of the oscillation
without coupling) was about 0.45Hz. In a typical experiment
of about 500 oscillations, the natural frequency change is
about 2–3 mHz.

Modular Network
Figure 1C shows the experimental setup for a modular network
consisting of coupled oscillator populations. In the bottom
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FIGURE 2 | Experimental traditional chimera state in a non-locally coupled regular network. (A) Frequency of the oscillators. Open circles: natural frequency. Solid

circles: frequency with coupling. (B) Space-time plot of the current in gray scale. (C) Snapshot of the current of the electrodes. V = 1,094mV, Rind =1 kOhm,

R = 499 kOhm, C = 4.7 µF.

of Figure 1C a schematic of the network topology is shown:
A total of 80 oscillators are divided into two populations
of 40. The same working electrode array, reference and
counter electrodes, and electrolyte was used as with the
feedback experiment above. The cell was connected to a
single channel potentiostat (ACM Instruments, Gill AC), and
an individual resistance (Rind) was added to each electrode.
Additionally, two group resistances (Rg) and a collective
resistance (Rcoll) were used to generate the intra- and inter-
population coupling, respectively.

RESULTS AND DISCUSSIONS

To put our results in context, we start out with reviewing the
chimera states observed earlier with non-local ring network
(section Chimera State with Non-local Ring Network Close to
Hopf Bifurcation) and weak chimeras with non-linear feedback
(section Weak Chimera with Non-linear Feedback). In section
Weak Chimera in Modular Networks with Strongly Non-linear
Oscillators, new results are presented in a modular network of
highly non-linear oscillators coupled through differences in the
electrode potentials.

Chimera State With Non-local Ring
Network Close to Hopf Bifurcation
Here we considered oscillations in the experimental system that
occur close to Hopf bifurcation [48]. Normally, the natural
frequency of the oscillations has a range of about 16 mHz and
frequency of 0.4Hz [45]. To ensure nearly identical oscillators,
the range of the natural frequencies was carefully tuned to fall
below 0.5 mHz by small changes of the individual resistances,
as shown in Figure 2A. Coupling through resistors corresponds
to a Kuramoto-model-like behavior (i.e., with nearly sinusoidal
phase interaction function) [47]. When coupling is through
capacitance, the coupling signal is delayed with a phase of about
π /2 [47]. A combination of resistive and capacitive coupling
was applied such that the coupling parallel RC circuit had a
time constant 2.35 s, which approximatelymatches the oscillation
period of 2.5 s [45]. Such coupling, in our experiments, ensured
that the oscillations synchronized at relatively weak strengths,
with a delay sufficient for the chimera states to arise. As the
coupling was turned on, the population split into a domain
of synchronized (electrodes 1–4, 17–20) and desynchronized
(electrodes 5–16) elements, as shown in Figure 2B. The
frequency of the synchronized elements is 0.389Hz and the
desynchronized elements have lower frequencies (Figure 2A).
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FIGURE 3 | Experimental weak chimera state with non-linear feedback. (A) Hysteresis between the in-phase and anti-phase synchronization, as a function of the

global coupling delay, τ ; black line: forward sweep; red line: backward sweep. (B,C) Weak chimera state with τ = 0.51 s and ε = 0.1. (B) Space time plot of the

current of the four oscillators. (C) Time series of the phase difference within population 1 (black thin line ϕ1, 2 − ϕ1, 1), population 2 (red thick line, ϕ2, 2 − ϕ2, 1), and

for two elements between the populations (blue dashed line, ϕ2, 2 − ϕ1, 1). Feedback parameters: K = 0.52, k1 = 0.22, k2 = 2.0 1/V.

Additionally, these frequencies form a semi-circle as a function
of the position of the elements. This distribution was predicted
theoretically for the chimera state [26]. Note that for this
chimera state some oscillators are synchronized in frequency,
while others are not. Figure 2C shows a snapshot of the currents.
The elements 1–4 and 17–20 have very similar values and
the desynchronized elements have a broader distribution. This
chimera state has a limited lifetime of about 80–100 oscillations.
This lifetime is in accordance with theoretical predictions [49]
and numerical simulations with experiment-based phase models
[45] describing the chemical process. The observations thus show
that the experimentally observed dynamical state is similar to
the traditional Kuramoto chimera state, induced by non-local
interactions in a ring topology [49]. Later efforts were focused
on characterizing the impact of oscillator heterogeneity (i.e.,
“remnant” chimeras obtained without adjustments of natural
frequencies) [45], and increasing the lifetime of the chimera states
with a more non-linear system [43].

Weak Chimera With Non-linear Feedback
Weak chimeras can arise in modular oscillator networks
consisting of multiple populations with stronger coupling within
populations and weaker coupling between different populations
[28]. In a phase model, with a pair of oscillators, bistability
between an in-phase, and an anti-phase solution with distinct
frequencies can be observed. Under such conditions, a chimera
state forms in a network of two pairs of two oscillators, where one

of the two strongly coupled oscillator pairs exhibit in-phase, the
other anti-phase state. The two synchronized pairs of oscillators
have different frequencies, resulting in a weak chimera [29].

We used a synchronization engineering [18] technique to
design a combination of first and second order feedbacks to
induce a dynamics that represents the desired phase model.
When this feedback is applied to two oscillators [43], there
is region global delay τ with bistability between in-phase and
anti-phase synchronization (see Figure 3A). For τ = 0 s, the
electrodes are in-phase synchronized; increasing the value until
τ ≈ 0.8 s the dynamics shift to anti-phase synchronization.
Now, when we started from anti-phase synchronization and the
global delay was decreased, there was a critical point where the
dynamics shifted back into in-phase synchronization at about
0.2 s. Consequently, there is a region from τ ≈ 0.2 s to τ ≈ 0.8 s
in which both states can exist and are stable. A delay of τ ≈ 0.51 s
was chose for investigation of the chimera state.

As shown in Figure 3B, in the four-oscillator network with
weak cross coupling (ε = 0.1), population 1 is in anti-phase while
population 2 is in-phase synchronized [43]. The phase difference
between elements are shown in Figure 3C. For elements in the
same population, the phase difference remains nearly the same
(in- or anti-phase), but the phase difference between one element
in population 1 and population 2 is growing. This state thus
represents a weak chimera. With the weak chimera, the in- and
anti-phase populations can remain desynchronized even in the
presence of the cross coupling. Note that the oscillations of the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 July 2019 | Volume 5 | Article 38

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Ocampo-Espindola et al. Electrochemical Chimera in Modular Network

FIGURE 4 | Numerical simulation: Cluster formation with global coupling (K = 2× 10−4). (A) Frequency of the one- (black solid circles) and the two-cluster states (red

empty diamonds) as a function of the circuit potential, V. (B) Space time plot of the electrode potential for the one- and the two-cluster states. (C) Frequency of the

elements in the one- (black solid circles) and two-cluster (red empty diamonds) states. (D,E) Time series of the electrode potentials for the elements in the one- (black

line) and two-cluster (red line) states. In panels (B–D), V = 25.0.

phase difference for the anti-phase pair arise due to the presence
of coupling from the two nearly in phase oscillators in the other
populations. These oscillators speed up and slow down the anti-
phase pair (due to their weak cross coupling) as their phase
difference drifts apart [43].

Weak Chimera in Modular Networks With
Strongly Non-linear Oscillators
We now consider networks of two coupled populations with a
larger number of oscillators per population and inherent non-
linearities through the phase response curve and the oscillators’
waveforms. For a phase description, these properties lead to
non-sinusoidal phase interaction, which can give multistability
between in-phase synchrony and other cluster states with global
coupling [17, 50, 51]. This suggests that weak chimeras can occur
for coupled populations. In contrast to the setup in the previous
section, the coupling is not mediated by a computer but through
a resistance, i.e., the electrode potential difference between the
electrodes results in a coupling current that can induce chemical

changes [47]. First, we demonstrate the approach with model
simulations, and then confirm the findings in experiments.

Numerical Simulations

Weused the kinetic scheme proposed byHaim et al. [52] of nickel
electrodissolution tomodel the behavior of a single electrode. The
model was written for two variables, the dimensionless electrode
potential e and the total surface coverage of the nickel oxide and
hydroxide θ . For 40 electrodes coupled through a combination
of individual (Rind) and global (collective) (Rcoll) resistance, the
charge and mass balance equations are the following [53]:

dei

dt
=

V − ei

R
− JF (ei, θi) + K

40
∑

j=1

(

ej − ei
)

(3)

Ŵi
dθi

dt
=

exp (0.5ei)

1+ Ch exp (ei)
(1− θi) −

bCh exp (2ei) θi

cCh + exp (ei)
(4)

where i = 1, . . . , 40, V is the dimensionless circuit potential, R =

20 is the dimensionless individual total resistance, JF (e, θ) is the
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FIGURE 5 | Numerical simulation: Weak chimera state in the modular network with weak cross coupling. V = 25, K = 2 × 10−4 and ε = 0.05. (A) Frequency of

elements (population 1: black solid circles; population 2: red open diamonds). (B) Space time plot of the electrode potential. Population 1: k = 1,…,40. Population 2: k

= 41,…,80. (C) Phase difference between two elements in population one, (black thick line ϕ1 − ϕ2), populations 2 red thin line, (ϕ41 − ϕ45), and between populations

(blue dashed, ϕ1 − ϕ41). (D) Time series of the electrode potential for the chimera state; population 1: black line, populations 2: red line.

Faraday current density calculated by the equation

JF (e, θ) =

[

Ch exp (0.5e)

1+ Ch exp (e)
+ a exp (e)

]

(1− θ) , (5)

and Ŵi is the surface capacity. Ŵi were randomly chosen
between 9.999 × 10−3 and 10.001 × 10−3 for simulating
the heterogeneities of the different natural frequencies of the
oscillators [54]. Moreover, Ch = 1600, a = 0.3, b = 6 ×

10−5 and c = 0.001 are kinetic parameters. The global coupling
occurs through the electrode potential equation (last term in
Equation 3). K is the global coupling strength, K = Rc/(RindR)
and R = Rind + 40Rc [53]. Equation 3 is the charge balance:
Current can be generated by charging the electrical double layer,
the charge transfer electrochemical reactions (Faradayic current),
and through coupling to the electrode potentials of the other
wires. Nickel electrodissolution and water electrolysis are the two
major chemical steps that contribute to the Faradayic current
density in Equation 5 [52]. The oxide layer, whose coverage
is given by Equation 4, blocks parts of the electrode from
dissolution and water electrolysis. Without coupling (K = 0),
Equations (3–5) exhibit a supercritical Hopf bifurcation at V =

10.2. The numerical simulations are performed at somewhat
elevated circuit potentials (V > 24), where the oscillations
exhibit non-linear waveforms.

Figure 4A shows the frequency of the synchronized

oscillations as a function of the circuit potential (V) with

K = 2 × 10−4 for the one- and two-cluster states for

24.3 ≤ V ≤ 25.3. At low V , only the one-cluster state exists.

For 24.9 ≤ V ≤ 25.3 there is bistability between the one- and

two-cluster states. Note the frequencies of both the one- and
the two-cluster states decrease with increasing the potential

and that the two-cluster states have slightly larger frequencies.
In previous study [17], a phase model analysis was performed,
which showed that very close to a Hopf bifurcation the phase
coupling function exhibits only first harmonic components, and
thus only one-cluster state is possible with positive coupling.
The two-cluster state arises because of the presence of higher
harmonics in the phase coupling function, which are induced
by higher harmonics in both the infinitesimal phase response
function and the oscillation waveform [17]. These non-linearities
have been interpreted with higher-order correction terms
of the amplitude equations close to a Hopf bifurcation [55],
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FIGURE 6 | Experiments: Cluster formation with global coupling. (A) Frequency of the one- (black solid circles) and the two-cluster state (red empty diamonds) as a

function of the circuit potential, V. The one cluster state was obtained by increasing the circuit potential from V = 1.100V. The two-cluster state can be obtained by

increasing the circuit potential past V = 1, 270mV, where the one-cluster state breaks up, and decreasing V. (B) Space time plot of the current for the one- and

two-cluster states. (C) Frequency of the elements in the one- (black solid circles) and two-cluster (red empty diamonds) states. (D,E) Time series of the current of the

elements in the one- (black line) and two-cluster (red line) states. Rind = 600 Ohm, Rg = 10 Ohm, Rcoll = 0 Ohm, K = 16.7 µS. In panels (B–E), V = 1,240mV.

or with integrate-and-fire type models with a refractory
period [56].

The behavior at V = 25.0 of the one- and the two-cluster
states are shown in Figures 4B–E. In the one-cluster state, the
electrode potentials (Figure 4D) follow the same variations. In
the two-cluster state (Figure 4E), there are two groups of 20
elements that are in nearly anti-phase configuration. Note that in
contrast to previous studies [43–45], the waveforms are not very
harmonic and exhibit a moderate relaxation character.

The space time plot for the one- and two-cluster state (the left

and right panel, respectively) are shown in Figure 4B. The one

cluster exhibits uniform oscillations, while in the two-cluster state
there are two groups in an approximate anti-phase configuration
(Note that in the two clusters the configurations depend on
initial conditions. Here we consider initial conditions opposite
of the limit cycle, randomized in space). The frequencies of
the elements are shown in Figure 4C. The two-cluster state has
about 5% higher frequency (ω = 0.06474) than the one cluster
(ω =0.06142) state, with frequency difference 1ω = 3.32 ×

10−3. Because there is bistability between the one-cluster and
the two-cluster states with differing frequency, the conditions

may favor the formation of weak chimera states in networks.
We note that oscillator heterogeneity was added to the model to
better represent the experimental scenario. The same bistability
also occurs for uniform populations (i.e., with Ŵi = 0.01 for
all oscillators).

As a simple modular network obtained from the globally
coupled oscillator populations, we introduce some cross coupling
between two populations. For the electrode potential, the
equations are:

del
dt

=
V − el

R
− JF

(

el, θl
)

+ K

40
∑

j=1

(ej − el)+ εK

80
∑

k=41

(ek − el)

l = 1, 2, . . . , 40 (6)

dei

dt
=

V − ei

R
− JF (ei, θi) + εK

40
∑

j=1

(

ej − ei
)

+ K

80
∑

k=41

(

ek − ei
)

i = 41, 42, . . . , 80 (7)

(The equations for surface coverages are the same, i.e.,
Equation 4). There is a strong global coupling within the
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FIGURE 7 | Experiments: Weak chimera state in modular network with weak cross coupling. (A) Frequency of elements (population 1: black solid circles; population

2: red open diamonds). (B) Space time plot of the current oscillations. Population 1: k = 1,…,40. Population 2: k = 41,…,80. (C) Phase difference between two

elements in population one (black thick line ϕ1 − ϕ2), populations 2 red thin line (ϕ41 − ϕ45), and between populations (blue dashed, ϕ1 − ϕ41 ). (D) Time series of the

currents of the elements in the chimera state; population 1: black line, population 2: red line. V = 1,250mV, Rind = 580 Ohm, Rg = 9 Ohm, Rcoll = 0.5 Ohm, K =

17.0 µS, ε = 0.03.

populations, K, and weak global cross coupling between the
populations εK, where ε is the cross-coupling factor (0 ≤ ε ≤ 1).

With ε = 0.05 with initial conditions corresponding to the

one (or two)-cluster states for all the oscillators, the expected

one (or two) cluster state was obtained. Figure 5 shows the
behavior with ε = 0.05 from initial conditions for population 1
(elements 1–40) with in-phase, and population 2 (elements
41–80) with conditions opposite of the limit-cycle randomized
in space (Other parameters are the same as in Figure 4).
Figure 5A shows the frequency of the elements. The two-
cluster still has about 5% higher frequency (ω = 0.06485) than
the one-cluster (ω = 0.06157) but the frequency difference
is slightly lower than that without coupling, 1ω = 3.28 ×

10−3. The grayscale plot (Figure 5B) shows that the first forty
elements (population 1) exhibit uniform oscillations while the
elements 41–80 (population 2) form two clusters in anti-phase
configurations. As shown in Figure 5C, the phase difference
of the elements in the one-cluster state remains constant,

approximately 2π (or zero), while in the two-cluster the phase
difference between two elements in different clusters has small
amplitude oscillations around π. For a pair of elements in
different populations, we observed a phase drifting behavior,
further confirming the chimera state. The presence of the
desynchronized behavior between the populations could also
be seen in the times series data of the electrode potentials
(Figure 5D). Under these conditions, the presence of the chimera
state is a unique behavior of the network interactions.With global
coupling (ε = 1.0), the chimera state disappears: With initial
conditions similar to the chimera state in Figure 5 we obtained
a one-cluster, in-phase synchronized state.

Experiments

Without coupling, the oscillators exhibit slight heterogeneity,
and the natural frequencies have a standard deviation of about
14 mHz. To confirm the weak chimera state, we performed a
set of experiments following the guidelines developed in the
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simulations. First, we used only population 1 (40 electrodes), and
coupled them globally (i.e., Rcoll = 0Ohm, Rg = 10 Ohm in
Figure 1C). With K = 16.7 µS, the frequencies of the elements
in the one- and two-cluster states are shown in Figure 6. ForV ≤

1, 220mV, only the one-cluster state is stable. The frequencies
decrease with increasing circuit potential. For 1, 230mV ≤ V ≤

1, 270mV a two-cluster state was also found (This two-cluster
state can be obtained by increasing the circuit potential past V =

1, 270mV, where the one-cluster state breaks up, and decreasing
the potential). Thus, in this region, there is bistability between
the one- and two-cluster states and, similar to the simulations,
the two-cluster state has slightly larger frequency than the one-
cluster state. Note that the occurrence of such bistability between
one- and two-cluster states was predicted by experiment-based
phase models [17].

As an example of the behavior observed in this region, the
dynamics is shown at V = 1, 240mV. The time series data
for the one- and two-cluster states also confirm that this state
was found with oscillation waveform of relaxation character (see
Figures 6D,E). The grayscale plots (Figure 6B) show the one-
(left) and two-cluster states (right). The elements in the one-
cluster state oscillate nearly uniformly, while those in the two-
cluster states form two groups, oscillating in anti-phase. The
two-cluster state forms an almost balanced configuration with
18 and 22 elements in each cluster. As in the simulation, the
two-cluster state has a higher frequency (ω = 0.437Hz) than the
one-cluster (ω = 0.396Hz); the frequency increase is about 10%
with a frequency difference of 41 mHz (see Figure 6C).

Now we consider the modular network with two populations
of 40 electrodes. The oscillators in each population are coupled
with Rg . As shown in Figure 1C, the two populations are coupled
through a collective resistance Rcoll. The resistance Rcoll induces
global coupling between every electrode pair, with coupling
strength Kcoll = Rcoll/[

(

Rind + 40Rg
)

Req], where Req = Rind +

40Rg+80Rcoll. The group resistance induces coupling only within
a population, i.e., Kg = Rg/[Rind(Rind + 40Rg)]. The total
coupling thus K = Kg + Kcoll, and ε = Kg/K.

Figure 7A shows the frequency of the one- and two-cluster
states in the network configuration with K = 17µS and ε =

0.03. In this set of experiments, the frequency of the one- and
the two-cluster states with ε = 0 was 0.384Hz and 0.413Hz,
respectively; the frequency difference was 29 mHz with the two-
cluster state having about 8% higher frequency than the one-
cluster state. With ε = 0.03, the frequency difference between
the populations decreased to 27 mHz; the frequency of the two-
cluster state (0.418Hz) was about 7% higher than that of the
one-cluster state (0.391Hz). The grayscale plot (Figure 7B) of the
chimera state shows that the first forty elements (population 1)
are in-phase synchronized and elements 41–80 (population 2)
form two clusters, in anti-phase configuration, with 17 and 23
elements in each cluster. The phase differences are shown in
Figure 7C. The elements in population 1 are nearly in-phase with
a phase difference close to 2π (or zero). The clusters in the two-
cluster population are approximately in anti-phase; the phase
difference shows the characteristics small amplitude oscillations
around π (The high frequency modulation on top of the slow
oscillation is due to in-cycle fluctuation of the phase; averaged

phasemodels cannot explain such fluctuations). Finally, elements
in between population 1 and 2 exhibit phase drifting. The lack of
frequency synchrony can also be seen in the current time series
in Figure 7D.

We also performed a long-term experiment to check for the
robustness of the chimera state. The chimera state was stable for
about 1,000 cycles, after which a one-cluster state was observed.
In this parameter region, the system parameters exhibit a slow
drift toward the Hopf bifurcation point. One explanation for
the loss of the chimera state is that during this slow drift the
oscillations become less non-linear for the chimera state to occur
as the parameters leave the region where bistability is present.

We also confirmed that by increasing the coupling strength,
the chimera state breaks down. While for ε = 0.1 stable chimera
state occurs, with ε = 0.2 (with similar coupling strengths and
initial conditions) only in-phase behavior can be observed in
the experiments.

CONCLUSIONS

Robust weak chimera states were observed in a modular network
of two populations of globally coupled electrochemical oscillators
with simple resistive cross coupling between populations that is
sufficiently weak (ε < 0.2). There are important differences in
the observed chimera states compared to those in our previous
studies [43–45]. A ring network of electrochemical oscillators,
close to Hopf bifurcation, showed chimera state with long-
range interactions [44, 45]. This chimera state was not very
robust in the sense that even small heterogeneities destroyed
the behavior, and only chimera “remnants” occurred. From an
engineering perspective, even the relatively small system size (20
electrodes) required large number (140) of coupling resistors
and capacitances. In addition, the chimera state only occurred
as a transient behavior, for about 80–100 cycles. In the weak
chimera state reported here, global coupling within and between
the modules can be induced with one resistance each; this
design greatly simplifies the experimental setup. Because the
chimera state is very robust it does not require adjustment of
natural frequencies, and the chimera state is sustained for many
hundreds of cycles.

In identifying the experimental conditions for the chimera
state, we relied on our previous study [43], where two populations
of weakly non-linear oscillators were coupled with a strongly
non-linear feedback mechanism. However, here we assumed
that the same type of non-linearities can be obtained with
linear (difference) coupling of highly non-linear oscillators. Such
conditions (1, 230mV ≤ V ≤ 1, 270mV) were found far
from the Hopf bifurcation (V ≈ 1.10V) in the electrochemical
system. While the parameter region favorable for the chimera
state is relatively small (40mV) compared to the region of
oscillations (∼200mV), we note that we focused here on weak
chimeras of a particular type with one- and two-cluster states
with distinct frequencies. Weak chimeras could also occur with
other initial conditions (e.g., with balanced and unbalanced
two-cluster states) and parameter regions with other types of
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desynchronized clusters, e.g., two- and three-cluster states; see
also Bick et al. [29].

Similar weak chimera states could be observed in many other
chemical systems. For example, other electrochemical systems
and the BZ reaction can generate rich variety of clusters, in
particular, when the sign of the coupling strength can also
be varied (e.g., excitatory and inhibitory coupling) [31, 39].
The weak chimera state could contribute to exploring chimeras
in robust biological systems, e.g., circadian clocks [57], and
dynamical diseases [58]; see also [59] for a recent review.
Along these lines, we showed that an integrate-and-fire neuron
model, with refractory period can generate bistability between
cluster states in globally coupled populations [56]. Other possible
biological system could include the oscillatory glycolysis, where
highly non-linear feedback mechanisms are common [60].
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