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Direct reciprocity is a powerful mechanism for evolution of cooperation, based on repeated
interactions1–4. It requires that interacting individuals are sufficiently equal, such that
everyone faces similar consequences when they cooperate or defect. Yet inequality is ubiq-
uitous among humans5,6 and is generally considered to undermine cooperation and wel-
fare7–10. Most previous models of reciprocity neglect inequality11–15. They assume that
individuals are the same in all relevant aspects. Here we introduce a general framework
to study direct reciprocity among unequals. Our model allows for multiple sources of in-
equality. Subjects can differ in their endowments, their productivities, and in how much
they benefit from public goods. We find that extreme inequality prevents cooperation. But
if subjects differ in productivity, some endowment inequality can be necessary for cooper-
ation to prevail. Our mathematical predictions are supported by a behavioral experiment
where we vary the subjects’ endowments and their productivities. We observe that overall
welfare is maximized when the two sources of heterogeneity are aligned, such that more
productive individuals receive higher endowments. In contrast, when endowments and
productivities are misaligned, cooperation quickly breaks down. Our findings have impli-
cations for policy-makers concerned with equity, efficiency, and public goods provisioning.
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In social dilemmas, overall welfare is maximized if all individuals cooperate, yet each individual
prefers to defect16. Such dilemmas occur at all levels of human society. They affect families,
companies, and nations17,18. An extensive body of research has shown that cooperation is more
likely when groups are stable and subjects interact repeatedly11–15. This mechanism of direct
reciprocity, however, presumes that group members have sufficient leverage to influence one
another. Subjects need to be able to give appropriate responses. Tit-for-tat can only be effec-
tive if it incentivizes others to cooperate. Most previous models of reciprocity assume perfect
symmetry between individuals11–15. Real groups often exhibit substantial heterogeneity coming
from multiple sources5,6. Experimental work shows that inequality in players’ endowments re-
duces cooperation7,8 and undermines the social structure of a population9. Even if subjects start
out equally, game dynamics can introduce inequality over time, disfavoring individuals who are
more cooperative19 (see SI). So far, it has been difficult to predict the effect of heterogeneity on
cooperation, especially if subjects vary along multiple dimensions. Here, we propose a general
framework to explore how different kinds of heterogeneities interact and affect cooperation.

We consider public good games with n players. In each round, player i receives a fixed
endowment ei, which can be interpreted as a regular income. After receiving their endowments,
players independently decide which fraction xi of their endowment to contribute to the public
good. The payoff ui of player i for that round depends on the distribution of endowments,
e1, . . . , en, and on the players’ relative contributions, x1, . . . , xn. It is typically assumed that all
players have the same endowment and that contributions to the public good are multiplied by a
common productivity factor, r (Fig. 1a). Instead, here we consider interactions where players
have different endowments, different productivities or where payoffs are nonlinear (Fig. 1b-d).

As a specific example, we consider public good games where each players’ contributions are
multiplied by an individual factor ri and equally shared among all participants,

ui =
1

n

nX

j=1

rjejxj + (1�xi)ei. (1)

The first term represents the payoff derived from the public good, the second term the player’s
remaining endowment. We interpret the factors rj as the players’ productivities and assume
1<rj < n for all j. Thus, the game is a social dilemma in which individuals have an incentive
to free-ride16. While we focus on example (1) throughout most of the main text, our findings
generalize to arbitrary public good games that satisfy four natural requirements (see Materials
and Methods).

If the public good game (1) is played once, defection is the only equilibrium. But for repeated
interactions, cooperation can prevail if players adopt conditional strategies such as Tit-for-Tat2,
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Win-Stay Lose-Shift11, or multiplayer-variants thereof20. We assume after each round there is
another one with probability �.

To explore the effects of different kinds of heterogeneity, we first characterize when cooper-
ation can be maintained. For a given public good game and a given endowment distribution, we
say that full cooperation is feasible if there is a subgame perfect equilibrium in which all players
always contribute their entire endowment. In such an equilibrium, players have no incentive to
deviate after any history of previous play21. In the SI we prove that cooperation is feasible if and
only if the strategy Grim is an equilibrium. Grim cooperates unless another player has defected
in a previous round3. From the equilibrium condition for Grim, it follows that cooperation is
feasible in game (1) if and only if for all players i with ei>0 we have

�

n

X

j 6=i

rjej �
⇣
1� ri

n

⌘
ei. (2)

The expected benefit from the future cooperation of others must exceed the incentive to defect in
the present round. For cooperation to be feasible, future losses must outweigh present gains.

Based on this general characterization of when cooperation is feasible, we derive a number of
results. First, cooperation is never feasible if there is too much inequality, such that most of the
endowment is in the hands of one player (see SI). For linear and symmetric games (Fig. 1), we
show that if cooperation is feasible at all, it is feasible for equal endowments (Fig. 2a). However,
if the game is asymmetric (Fig. 2b) or non-linear (Fig. 2c), full cooperation may only be feasible
when players have unequal endowments. In such a case it can even be optimal to give some
players no initial endowment at all.

To gain intuition, consider the case where players differ in productivities, r1 > . . . > rn. We
find a two-fold advantage of giving higher endowments to more productive players. First, there is
a stability advantage: an unequal distribution of endowments makes it easier for full cooperation
to be an equilibrium. To see this, assume instead that players receive equal endowments. Then
condition (2) implies cooperation is feasible if

� � n� rn
R� rn

. (3)

Here R = r1+ . . .+rn is the sum of all productivities. For equal endowments, player n with
lowest productivity faces the largest temptation to defect, because this player has the highest
marginal cost 1�rn/n of contributing. This temptation can be counter-balanced by allocating
a smaller endowment to player n who then has less gain from withholding, whereas the others
have more leverage to retaliate in future rounds. Both effects enhance the stability of cooperation.
Second, there is an efficiency advantage of unequal endowments. Because contributions of more
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productive players are multiplied by a higher factor, social welfare is maximized when the most
productive player obtains the largest share of the initial endowment – subject to the constraint
that full cooperation is feasible.

If the game only involves two players, we can compute which endowment distribution is most
conducive to cooperation. An endowment distribution is maximally cooperative if it requires the
lowest continuation probability � for cooperation to be feasible. Using condition (2), we show in
the SI that endowments need to be distributed as

e1
e2

=

s
r2(2�r2)

r1(2�r1)
. (4)

Equal distribution, e1=e2, is only maximally cooperative if players have the same productivities.
Otherwise, the more productive player should have a larger share of the endowment.

After exploring under which conditions cooperation is feasible, we study when cooperation can
evolve3. To make an evolutionary approach computationally tractable, we first consider players
who only respond to the outcome of the last round. Moreover, we assume players only choose
from a finite set of possible contributions. For example, they may either contribute their full
endowment or nothing at all. In that case we refer to the two possible actions as cooperation and
defection, respectively. With some small probability ", players commit errors such that a player
who intends to cooperate defects by mistake (and vice versa). Players adopt new strategies over
time by comparing their payoff to the payoff they would obtain by using a random alternative
strategy. The better the payoff of the alternative strategy, the more likely players switch. We iter-
ate this process for many steps and record the average cooperation rates over time (see Materials
and Methods).

Our numerical findings parallel the previous equilibrium results. Cooperation cannot evolve
if one of the players receives almost all of the endowment. Moreover, for linear and sym-
metric games, individuals are most likely to cooperate if everyone receives the same endow-
ment (Fig. 2d). Yet if some players are more productive than others (Fig. 2e), or if the game
is non-linear (Fig. 2f), unequal endowments yield more cooperation and higher payoffs. In all
cases, we observe that the strategy Grim is less relevant, because it cannot sustain cooperation
in the presence of noise3. Instead, cooperation evolves if the strategy Win-Stay Lose-Shift11

(WSLS) is an equilibrium (Extended Data Figs. 1–5). WSLS contributes the full endowment
in the first round, or if all players made the same relative contribution in the previous round.
Otherwise WSLS contributes nothing11,20.

In the simulations, a group of defectors is most likely invaded by strategies like Tit-for-Tat.
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These conditional cooperators in turn quickly adopt WSLS which is more robust with respect
to errors. However, because of stochasticity, any strategy is replaced eventually, even if it is an
equilibrium (see SI). Further simulations show that analogous results hold when players choose
between more than two discrete contributions each round (Fig. 3), or when strategies are repre-
sented by finite-state automata15 (Extended Data Fig. 6).

To explore the applicability of these theoretical results, we have designed an online behavioral
experiment based on the two player game of Fig. 3. Participants are either equally productive or
not. They have the same endowment or not. We obtain five treatments: full equality, endowment
inequality, productivity inequality, aligned inequality, and misaligned inequality (Fig. 4a). In
the last two treatments, individuals differ in both dimensions. Either the more productive player
(aligned) or the less productive player (misaligned) receives the larger endowment. Previous ex-
periments suggests that - in isolation - heterogeneous endowments reduce overall cooperation7,8,
whereas heterogeneous productivities have a negligible effect22. Here we study the interaction
of the two heterogeneities in repeated games, for which previous research did not find significant
effects23.

Based on our evolutionary analysis, we expect aligned inequality to increase welfare and
misaligned inequality to reduce it, compared to the case of productivity inequality alone (Fig. 3).
The experiment confirms these predictions (Fig. 4b–e). Aligned inequality results in substan-
tially higher contributions than misaligned inequality and generates the highest surplus across all
treatments. Under aligned inequality, most high-endowment players match the relative contribu-
tion of the low-endowment players. That is, if the low-endowment player gives his full endow-
ment, then so does the high-endowment player, even if her absolute contributions are three times
higher. In contrast, contributions under misaligned inequality do not follow a clear norm; often
the high-endowment player only matches the co-player’s absolute contribution (Extended Data
Figs. 7–10 and SI).

We have introduced a general framework to study direct reciprocity among unequals. Our
three complementary approaches – equilibrium calculations, evolutionary simulations, and a be-
havioral experiment – suggest an unexpected benefit of inequality. We show that equal endow-
ments can be detrimental to social welfare if subjects differ along multiple other dimensions,
such as productivity or benefit from public goods. In those cases, some inequality can increase
both the stability of cooperation and the efficiency of contributions.

Despite these potential benefits, inequality comes with caveats. First, maximizing coopera-
tion requires a delicate balance between different dimensions of heterogeneity. Finding the right
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degree of inequality can prove difficult when the players’ personal characteristics, such as their
productivities, are only known imperfectly. The problem is aggravated by our finding that an
excess of inequality is always detrimental. Second, endowment inequality could interfere with
institutional solutions to cooperation. For example, when cooperation is maintained through
sanctions, heterogeneous groups may disagree on which norm to enforce24. Additional prob-
lems arise when sanctioning institutions can be corrupted25,26, especially when better-endowed
individuals can ‘play the system’.

Finally, reducing inequality is often considered an important policy objective in itself. Hu-
mans dislike inequality27 and are sometimes willing to sacrifice their own wealth to guarantee
more egalitarian outcomes28,29. In addition, inequality often renders successful coordination in
social dilemmas difficult, since different actors may disagree on which cooperative equilibrium
is fair30. However, here we have shown that inequality does not need to render cooperation im-
possible. When individuals are naturally heterogeneous, moderate inequality can be necessary
for cooperation to prevail.
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Main figure legends

Figure 1: Public good games among unequals. We consider social dilemmas in which par-
ticipants decide how much of their endowment ei to contribute to a public good. Each players’
contributions are multiplied by ri and then divided among all players. The players have equal
endowments if e1 = e2 = e3. The game is symmetric if players are indistinguishable except for
their endowments and contributions. Here, the game is symmetric if r1 = r2 = r3. The game
is linear if the payoffs depend linearly on the players’ endowments and contributions. Here,
the game is linear if the factors ri are constant. a, Most previous work assumes that players
have the same endowment, the game is symmetric, and payoffs are linear. b–d, Instead, we
allow players to have different endowments, different productivities, and nonlinear payoffs. e,
We derive general results for n player games. f, As a special case, we study pairwise interactions.

Figure 2: Feasibility and evolvability of cooperation in public good games among unequals.
We consider groups of three players who interact in three different public goods games. In each
case, we ask when equal endowments help to maintain cooperation (a–c), or favor its evolu-
tion (d–f). The triangles represent the possible ways to distribute the initial endowment among
the players. Corners correspond to distributions where one player receives all the endowment.
Edges correspond to distributions where one player receives no endowment. The center of the
triangle marks equal endowments. ‘Group payoff’ in the lower panels corresponds to the total
payoff across all group members, averaged over 106 time steps of an evolutionary simulation.
We find that extreme inequality is always detrimental to cooperation. However, when the game
is asymmetric or nonlinear, slightly unequal endowments may be necessary for cooperation to
be feasible (b, c), and for cooperation to evolve (e, f).

Figure 3: When players differ in their productivities, equal endowments do not maximize
contributions. We consider public good games between two players. a, Players either coincide
in their productivities, r1=r2=1.6, or b, player 1 is more productive, r1=1.9, r2=1.3. In each
case, we vary player 1’s share of the initial endowment. We perform evolutionary simulations
for three scenarios, depending on what fraction of the endowment players can contribute: either
{0, 1} or {0, 1/2, 1} or {0, 1/3, 2/3, 1}. For equal productivities, cooperation is most likely to
emerge when both players receive the same endowment. In contrast, when players differ in pro-
ductivity, the maximum total payoff is achieved when player 1 obtains a larger fraction of the
endowment. The position of the maximum is well-approximated by the maximally cooperative
endowment distribution (4).
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Figure 4: Exploring the effects of multidimensional inequality with a behavioral experi-
ment. a, Based on the two-player game of Fig. 3, we conduct experiments with varying endow-
ments and productivities. There are five conditions: (1) full equality, (2) endowment inequality,
(3) productivity inequality, (4) aligned inequality (the more productive player has higher endow-
ment), and (5) misaligned inequality (the more productive player has lower endowment). b–e,
For each treatment, we compare the theoretical predictions from evolutionary simulations (grey
bars) with the respective average values of the experiment (colored bars). We show the players’
relative contributions (upper panels) and the generated surplus (by how much the players’ total
payoffs exceed their initial endowments, lower panels). Aligned inequality yields high coopera-
tion rates and higher payoffs than other treatments. Colored dots represent individual groups of
players; the number of observations for each treatment are 42, 42, 40, 39, 40, respectively. Error
bars represent 95% confidence intervals. Two asterisks indicate experimental differences with
p < 0.01; three asterisks indicate differences with p < 0.001 (using two-tailed Mann-Whitney
tests). See Materials and Methods.
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Materials and Methods

General modeling framework.
In the main text we have used the public goods game (1) to illustrate our main findings. However,
the framework that we use to study reciprocity in asymmetric social dilemmas is general and can
encompass many other examples (as indicated in Fig. 2c,f). Here we briefly introduce our general
framework. A full account is provided in the SI.

We consider games with n players. The players’ endowments in each round are given by the
endowment vector e= (e1, . . . , en). Endowments are nonnegative, ei � 0 for all players i, and
normalized, e1+ . . .+en = 1. Given their endowments, players decide which fraction of their
endowment they contribute, as summarized by the contribution vector x = (x1, . . . , xn), with
xi2 [0, 1] for all players i. We refer to xi as the player’s relative contribution, and to eixi as the
player’s absolute contribution. We use the shorthand notation x= 0 if no player contributes to
the public good, and x=1 if all players contribute their full endowment. Given the endowments
e and the relative contributions x in a given round, player i’s payoff in that round is ui(e,x). If
there are no contributions, players receive their initial endowment ui(e,0)=ei.
We consider public good games that satisfy the following four conditions:

(C) Continuity: The payoff functions ui(e,x) are continuous in both arguments.
(PE) Positive externalities: As a player with a positive endowment increases her contribution,

the payoffs of all other players increase.
(IF) Incentive to free-ride: As a player with positive endowment increases her contribution, her

own payoff decreases.
(OC) Optimality of cooperation: As a player with positive endowment increases her contribu-

tion, the overall payoff over all members of the group increases.

The first condition of continuity is merely a technical assumption that is useful for some of
the analytical results. The other three conditions generalize previous notions of social dilemmas
in one-shot games where players can either cooperate or defect16.

We note that the above conditions rule out certain threshold public good games, where pay-
offs increase discontinuously once total contributions exceed a certain threshold31–34. In such
threshold public good games, cooperation can often emerge even if the game is only played once,
because players have an incentive not to fall below the threshold35. By considering public good
games that satisfy (C) – (OC), we consider the most stringent case of a social dilemma, where
repeated interactions are key to sustain positive contributions. Asymmetric threshold public good
games in a one-shot or finite-horizon setting have been studied in Refs. 36–39. Hauser et al40

explore the consequences of heterogeneities in the players’ background fitness. Finally, Ethan
Akin characterizes strategies to maintain cooperation in the asymmetric prisoner’s dilemma41.
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We can classify public good games according to two properties, linearity and symmetry. We
say a public good game is linear if payoffs ui(e,x) are linear in both arguments, e and x. A
public good game is symmetric if players are indistinguishable, except for their endowments and
for their contributions. Formally, if � = (�1, . . . , �n) is a permutation of the numbers 1, . . . , n,
and if e� and x� are the respectively permuted endowment and contribution vectors, then the
public good game is symmetric if ui(e,x) = u�i(e�,x�) for all permutations �, endowments e

and contributions x. That is, if players were to switch roles with respect to their endowments and
contributions, their payoffs would change accordingly. In particular, the public good game (1) is
symmetric if and only if all players have the same productivity, r1= . . .=rn.

Equilibrium analysis.
We explore under which conditions full cooperation can be sustained if the public good game is
repeated. After each round, there is another round with probability �. Strategies for the repeated
game are rules that tell the player which fraction of the endowment to contribute, depending on
the players’ endowments and on all previous contributions. If the contribution vector in round t is
x(t), payoffs are given by the weighted average payoff per round, ⇡i = (1��)

P1
t=0 �

tui(e,x(t)).
For a given public good game with payoff function u=(u1, . . . , un), continuation probabil-

ity �, and endowment distribution e, we say full cooperation is feasible if there is a subgame
perfect equilibrium in which all players contribute their full endowment in every round. In a
subgame perfect equilibrium, no player has an incentive to deviate after any given history21. It
is a refinement of the Nash equilibrium concept: every subgame perfect equilibrium is a Nash
equilibrium, but the converse does not need to be true.

We refer to the set of all endowments for which full cooperation is feasible as Eu(�). In
Fig. 2a – c, these sets are illustrated as blue areas within the space of all endowment distribu-
tions. In the SI, we characterize these sets for all games that satisfy the conditions (C) - (OC).
We show that the following are equivalent (SI, Proposition 1):

(i) Cooperation is feasible for a given endowment distribution e

(ii) The condition �
�
ui(e,1�i)�ui(e,0)

�
� ui(e,1�i)�ui(e,1) holds for all players i with

positive endowment. Here, 1�i is the shorthand notation for a group in which everyone
contributes the full endowment, except for player i who contributes nothing.

(iii) Grim is a subgame perfect equilibrium for the endowment distribution e.

Based on this general characterization, we prove the following implications.

1. For any given payoff function u and continuation probability �, there is a threshold e⇤i <1

such that e /2 Eu(�) holds for any endowment distribution e with ei>e⇤i . That is, cooper-
ation is never feasible if one of the players receives an excessive share of the endowment.
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2. If the public good game is symmetric and linear, and Eu(�) 6=?, then (1/n, . . . , 1/n) 2
Eu(�). That is, if full cooperation is feasible in a linear and symmetric public goods game,
then it is always feasible when all players receive the same endowment.

3. If the public good game is either asymmetric or non-linear, there are cases for which
Eu(�) 6= ?, but (1/n, . . . , 1/n) /2 Eu(�). That is, in asymmetric or non-linear public
good games, full cooperation may only be feasible for unequal endowment distributions.

Evolutionary analysis.
We have also explored the dynamics that arises if players have not yet settled on a particular
equilibrium. Instead, they may begin with randomly initialized strategies, and then learn to use
more profitable strategies over time.

To this end, we first consider a simplified strategy space. We assume that the players’ con-
tributions in any given round only depend on the outcome of the previous round, as in most
previous work on evolution of reciprocity41–63. In addition, we assume players can only choose
among a fixed finite set X = {x̂1, . . . , x̂m} of possible contributions. Under these two assump-
tions, the players’ strategies take the form of a vector p = (p0,k, px,k). The entries p0,k for
1 km give the player’s probability to choose contribution level x̂k in the first round, when
no previous history is yet available. The other entries px,k give the player’s probability to choose
x̂k in subsequent rounds, conditional on the contribution vector x 2Xn of the previous round.
For p to be a sensible strategy, we require

Pm
k=1 p0,k =1 and

Pm
k=1 px,k =1 for all x; that is, the

strategy must prescribe an action for any given outcome of the previous round. When all players
apply memory-1 strategies, their payoffs in the repeated game can be computed efficiently by
representing the game as a Markov chain. The algorithm is shown in the SI.

In the special case that players can only give their full endowment or nothing at all, we obtain
X = {0, 1}. We refer to these two possible actions as ‘cooperation’ (C) and ‘defection’ (D).
When there are only these two possible contribution levels, we can drop the index k in the
definition of a memory-1 strategy and write p = (p0; px). Under this notation, pz is now the
probability that the player will cooperate in the next round. If the game involves only two players,
we obtain the typical format of memory-1 strategies for the iterated prisoner’s dilemma3, p =

(p0; pCC , pCD, pDC , pDD). For example, the strategy Grim may be approximated by the memory-
1 strategy p = (1; 1, 0, 0, 0). In the absence of errors, this memory-1 strategy cooperates if and
only if both players have cooperated in all previous rounds.

Pure memory-1 strategies have entries that are either zero or one. Given the outcome of the
previous round, their action is deterministic. Stochastic memory-1 strategy have entries that can
take arbitrary values between zero and one. For given m and n, there are finitely many pure
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memory-1 strategies, but infinitely many stochastic memory-1 strategies.
For our evolutionary analysis, the players’ actions may be subject to implementation errors.

That is, if the set of possible contributions is X={x̂1, . . . , x̂m} and the player decides to choose
the contribution x̂k, he will instead make a different contribution x̂l with probability "/(m�1).
We refer to " as the players’ error rate. For infinitely repeated games (with � = 1), errors have
the useful mathematical property that they make the game dynamics ergodic. As a result, the
players’ payoffs will be independent of the players’ contribution in the very first round. In that
case, we no longer need to specify a player’s initial contribution strategy p0,k.

To model how players adapt their memory-1 strategies over time, we introduce an evolu-
tionary process which we call ‘introspection dynamics’. For this process, we again consider n
players who interact in an asymmetric public goods game. In each evolutionary time step, one
of the players is chosen at random to revise her strategy. To this end, this player i considers a
randomly chosen alternative memory-1 strategy. Suppose the original strategy yields payoff ⇡i,
whereas the alternative strategy yields payoff ⇡̃i (keeping the strategies of the co-players fixed).
Then player i switches to the alternative strategy with probability ⇢ =

�
1+exp[�s(⇡̃i � ⇡i)]

��1.
The parameter s�0 represents the ‘strength of selection’. In the limiting case s!0, the switch-
ing probability simplifies to ⇢ = 1/2, such that players adopt new strategies at random. In the
other limiting case s!1, the player only adopts the alternative strategy if it yields at least the
payoff of her original strategy. Iterating this updating over many time steps, we obtain an ergodic
process on the space of all strategy choices of n players. In particular, we note that this process
has no absorbing states. Even if a strategy profile is an equilibrium, there is always a positive
chance that one of the players deviates due to chance. For small n, the invariant distribution of
the evolutionary process can be calculated exactly. For larger n, the invariant distribution can be
approximated by simulations.

Although memory-1 strategies have been routinely used to explore the evolution of reci-
procity41–63, it is natural to ask to which extent our results depend on the assumption of one-
round memory. To explore this issue, we have repeated all simulations with a more general
strategy space. We follow the approach by van Veelen and Garcı́a15,64,65. Players can choose
among all strategies that can be represented by finite-state automata over the possible contri-
butions X . Finite-state automata contain the previously considered memory-1 strategies as a
special case. However, they can also encode strategies with arbitrarily long memory ( Extended
Data Fig. 6a). For the evolutionary process we assume that when a mutation occurs, four cases
can occur. Either (i) the action chosen in a given state changes, (ii) a transition between two
states changes, (iii) a new state is added to the finite-state automaton, or (iv) an existing state
is removed (see Extended Data Fig. 6b). Simulations show that although absolute cooperation
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rates tend to be somewhat lower for this strategy space, all our qualitative predictions remain
unchanged (Extended Data Fig. 6c). See SI for details.

Experimental methods.
For our experiment, we have recruited 436 participants on Amazon Mechanical Turk (AMT)
to take part in an interactive game. The experiment was implemented with SoPHIE, an online
platform that allows for real-time interaction between AMT participants10,66,67.

Participants were matched in pairs, which were randomly assigned to one of the five treat-
ments. For each pair, one participant was randomly determined to adopt role A, whereas the
other participant obtained role B. Players received $1.00 for participating and could earn a bonus
payment depending on their performance in the game. The tokens earned during the game were
converted to US dollars at a rate of 800 tokens = $1.00. The average bonus participants earned
was $1.70. After reading the experimental instructions (see SI), all participants had to pass a se-
ries of comprehension questions to ensure they understood the consequences of their decisions.
All players were anonymous. They were only identified by their player ID (“A” or “B”). Each
game consisted of at least 20 rounds. Thereafter, the game was continued with a 50% probability
after each round to avoid end-game effects.

The behavioral experiment is based on the public goods game (1). Prior to the first round,
both players were assigned an endowment ei and a productivity value ri. The possible values of
ei and ri are depicted in Fig. 4a. Once assigned, each participant’s ei and ri remained constant
throughout the experiment. Both players were informed about their own and the other player’s
endowment and productivity. Each round, participants decided how much to contribute to the
public good. They could contribute any integer between 0 and ei. A player’s absolute contri-
bution was multiplied by the respective productivity value ri. All multiplied contributions were
split equally among the players. Participants could not observe the other player’s contribution
before making their own decision. However, after each round, participants learned each other’s
contributions as well as the resulting payoffs for each player.

We have analyzed the data using two-tailed non-parametric tests, using pairs of two inter-
acting players as our statistical unit. That is, for each quantity of interest, we calculated the
respective average value for each pair of players; then we compared this average value across
treatments (Fig. 4) or within each treatment (Extended Data Fig. 7, Extended Data Fig. 10).
For comparisons between treatments we use the Mann-Whitney test, whereas for comparisons
within a treatment we use the Wilcoxon signed-rank test. In the main text and all figures we
report the outcome of each test directly, without correcting for multiple testing. However, all our
key findings continue to hold when we apply Bonferroni correction (SI Section 5.3).
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The sample size was determined in advance based on similar past research10. The number
of groups that completed the experiment were N1 = 42, N2 = 42, N3 = 40, N4 = 39, N5 = 40,
for each of the five treatments, respectively. We find no significant differences between groups
that completed the experiment and groups in which at least one player dropped out (see SI). For
the statistical results presented in the main text, we have only used the first 20 rounds of groups
that completed the experiment. However, all our conclusions remain valid if we include dropout
groups by using multiple imputation (see Supplementary Tables 1 and 2).

In the SI, we provide a full description of the employed methods, and we report all test statis-
tics and p-values. Moreover, we discuss further aspects of our empirical results, such as the game
dynamics over time or the distribution of contributions (Extended Data Figs. 7–10).

Parameters used for figures.
Fig. 2a–c shows the region in the endowment space in which full cooperation is feasible. The
respective calculations are provided in the SI. The first two columns are based on the linear
public goods game (1) with parameters r1= r2= r3=2, �=0.8 (Fig. 2a) and r1=2.9, r2=1.5,
r3=1.1, �=0.3 (Fig. 2b), respectively. The last column considers a non-linear 3-player public
goods game with �=0.35 (Fig. 2c) and payoff function

ui(e,x) =
1

2
·max
j, k6=j

�
ejxj + ekxk

�
+

1

3
·

3X

j=1

ejxj + (1� xi)ei. (5)

This game represents a situation in which the two highest absolute contributions are of particular
importance for the public good.

The panels Fig. 2d–f show the outcome of evolutionary simulations. We have systematically
varied the players’ initial endowments, considering all endowment distributions (e1, e2, e3) for
which ei 2 {0.00, 0.05, . . . , 0.95, 1.00}. We have used the same three payoff functions as in the
panels Fig. 2a–c, a continuation probability of �=1, and strong selection s=1, 000. Players use
stochastic memory-1 strategies without errors, and they either contribute their full endowment or
nothing, X={0, 1}. The evolutionary process was simulated for 106 elementary time steps.

Fig. 3 shows simulations as we vary player 1’s endowment e1 2 {0.00, 0.05, . . . , 1.00} and
e2=1�e1. We use the same productivity values as in the experiment, r1= r2=1.6 (left panel)
and r1 = 1.9, r2 = 1.3 (right panel), respectively, and consider the case � = 1 and s = 1, 000.
To explore the robustness of our evolutionary findings, we consider three different scenarios,
depending on the possible contribution levels in each round, X1= {0, 1}, X2= {0, 1/2, 1}, and
X3 = {0, 1/3, 2/3, 1}. Players can choose among all pure memory-1 strategies, subject to an
error rate of "=0.001. For each value of e1, simulations were run for 2·106 time steps.
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Extended Data Figs. 1 – 4 show further evolutionary results for the pairwise game consid-
ered in the behavioral experiment. For these figures, we assume players only choose among pure
memory-1 strategies with errors, and they can only contribute their full endowment or nothing in
any given round. As a consequence, there are 16 possible strategies p=(pCC , pCD, pDC , pDD).
For example, the strategy of unconditional defectors is given by ALLD = (0, 0, 0, 0), whereas
Win-Stay Lose-Shift takes the form WSLS=(1, 0, 0, 1)3. For these 16 strategies, we can com-
pute numerically exact strategy abundances (see SI). Except for the parameters explicitly varied,
all payoff parameters are the same as in the five experimental treatments, using a continuation
probability �=1, selection strength s=1, 000, and error rate "=0.05.

Extended Data Fig. 5 considers a public goods game where players have the same produc-
tivity, but they yield different benefits from the public good. The payoff function is given by

ui(e,x) = qi ·r
X

j

xjej + (1�xi)ei. (6)

Here, r is the players’ common productivity and qi 2 [0, 1] is player i’s share of the public
good. The game is a social dilemma only for certain values of qi (see SI for details). We show
numerically exact results for pure memory-1 strategies with errors, and possible contribution
levels X={0, 1}. We use the parameters r=1.6, s=1, 000, and "=0.05.

For Extended Data Fig. 6, we repeat the simulations shown in Fig. 3 for the case when
players can choose their strategies from the set of finite-state automata. We use the same baseline
parameters as in Fig. 3. However, simulations are run for longer (5·106 time steps) and the error
rate has been set to "=0 to allow for neutral invasions as in van Veelen and Garcı́a15,64,65.

Fig. 4 and Extended Data Figs. 7 – 10 depict the results of our behavioral experiment. To
indicate statistical significance, we either use 1 asterisk (significance at p = 0.05), 2 asterisks
(p=0.01), or 3 asterisks (p=0.001). As an auxiliary information, we also provide error bars in-
dicating the respective 95% confidence intervals in Fig. 4 and Extended Data Figs. 7,10. For the
theoretical predictions, we have used simulations for stochastic memory-1 strategies and possible
contributions x2 {0, 1}. As parameters, we have chosen s=1, 000, "=0.001. As indicated in
Fig. 3 and Extended Data Fig. 4, our qualitative predictions are independent of the evolutionary
parameters we use, and independent of the possible contribution levels. A detailed description
of the methods applied and of the depicted results is provided in the SI.

Code availability. All evolutionary simulations and numerical calculations have been performed
with MATLAB R2014A. We provide the respective scripts in the SI. These scripts can be used to
compute the players’ payoffs, to simulate the introspection dynamics, and to numerically com-
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pute the expected dynamics.

Data availability. The experimental data on which Fig. 4 and Extended Data Figs. 7–10 are
based on, as well as the STATA file that contains our statistical analysis, is available on
https://osf.io/92jyw/?view_only=35fac40c9ad8406db49684fcb27930bd.
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Extended data figure legends

Extended Data Figure 1: Realized versus expected trajectories of cooperation. In Fig. 2 and Fig. 3 we
have shown how often players cooperate on average. Here we depict evolutionary trajectories over time,
for the five treatments considered in our experiment. For this illustration, we assume that players can
choose among the 16 pure memory-1 strategies. The upper panels show five realizations of the introspec-
tion dynamics. In the lower panels, we show expected trajectories of the introspection dynamics, which
can be derived explicitly (see SI Section 4.3). These expected trajectories represent the cooperation rate
over time as we average over many realizations of the process. We observe substantial cooperation in
three of the five cases: in the treatments with full equality, productivity equality, and aligned inequality.

Extended Data Figure 2: Under endowment inequality and misaligned inequality, players fail to
coordinate on Win-Stay Lose-Shift. Here, we consider the long-run dynamics of the games considered
in Extended Data Fig. 1. For each pair (p1,p2) of pure memory-1 strategies, we can compute how often
the respective strategy pair is played according to the invariant distribution of the evolutionary process.
a, c, d, Under full equality, productivity inequality, or aligned inequality, players typically coordinate on
a WSLS equilibrium, as indicated by the colored square in the center of the dotted lines. b, e, Under en-
dowment inequality or misaligned inequality, players fail to coordinate on a unique equilibrium. Instead,
most of the evolving strategies prescribe to defect against the opponent. We note that in those treatments
in which players have different endowments, the low-endowment player faces a reduced strength of se-
lection (because this player’s endowment is reduced from 0.5 to 0.25). As a consequence, his marginal
distribution in panels b,e is more uniform than the marginal distribution of the high-endowment player.

Extended Data Figure 3: An equilibrium analysis explains why cooperation emerges in only three of
the five treatments. Using the same two-player setup as in Extended Data Figs. 1–2, we have explored
how much players contribute on average when we simultaneously vary player 1’s endowment (x-axis), as
well as her productivity r1. For each parameter combination, we record the player’s total contributions and
how often they use WSLS according to the invariant distribution of the evolutionary process (indicated in
shades of grey). We compare these evolutionary results with the region where WSLS is an equilibrium
(indicated by dashed lines) and with the region where GRIM is an equilibrium (dotted lines), see SI for
details. The colored symbols indicate which parameter combinations have been used for the experimental
treatments. a–c, For equal productivities, the full equality treatment (1) is in the region where cooperation
can evolve, whereas the unequal endowment treatment (2) is not. d–f, For unequal productivities, only the
misaligned inequality treatment (5) is outside the region where cooperation can evolve.

Extended Data Figure 4: Robustness of evolutionary results with respect to parameter changes. To
explore the robustness of our theoretical predictions, we varied the expected number of rounds played be-
tween two players (a), the selection strength (b), and the rate at which players commit an implementation
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error (c). While the quantitative results depend on these parameters, the qualitative ordering of the five
treatments is the same across all considered scenarios. Except for the parameters explicitly varied on the
x-axis, all parameters are the same as in Extended Data Figs. 1–2.

Extended Data Figure 5: Cooperation in an asymmetric game where players derive different payoffs
from the public good. Instead of considering players who differ in their productivity, here we consider
an asymmetric two-player public goods game where players differ in the share of the public good they
get (the exact model is specified in the SI). We vary two parameters, player 1’s share of the initial endow-
ment, and player 1’s share of the public good. For each parameter combination, we record the players’
average contributions over the course of the evolutionary process (indicated in grey color). For games in
which players get different shares of the public good, we note that the game is only a social dilemma if
neither player’s share is too large (otherwise that player would always have an incentive to cooperate, no
matter what the co-player does). However, if both players get an intermediate share of the public good,
full cooperation can again evolve when WSLS is an equilibrium.

Extended Data Figure 6: Evolution of cooperation among players using finite-state automata. a, Here
we represent finite-state automata for a game between two players in which players can either contribute
their full endowment (C) or nothing (D). A finite-state automaton consists of three components: a set of
states (represented by big circles), the action played in each state (represented by the color of the circle
and the letters ’C’ and ’D’), and a transition rule (represented by arrows; the associated letter shows for
which of the co-player’s actions the respective arrow is taken). Finite-state automata are able to implement
all memory-1 strategies. In addition, they can encode strategies that depend on arbitrarily long sequences
of past actions. b, To model evolution among finite-state automata, we employ the mutation scheme of
Garcı́a and van Veelen15,64. When a mutation occurs, either the direction of a random arrow is changed,
the action in a randomly chosen state is changed, a random state is removed, or a state is added. c, Using
this more general strategy space, we have repeated the simulations in Fig. 3. While overall cooperation
rates are slightly lower, all qualitative results remain unchanged.

Extended Data Figure 7: Contributions and payoffs of the two players across treatments. For each
of the five experimental treatments, we compare the average contributions and the average payoff of the
two players. Grey bars indicate the theoretical prediction based on evolutionary simulations. Colored
bars depict the outcome of the experiment. Error bars represent the respective 95% confidence intervals.
Asterisks indicate statistical differences based on two-tailed Wilcoxon signed-rank tests. The number of
groups per treatment is 42, 42, 40, 39, 40, respectively. a, b, Under full equality, the two players contribute
a similar share of their endowment, and they obtain approximately equal payoffs. Under endowment in-
equality, both players’ cooperation rates are reduced, with the high-endowment player 1’s contributions
being significantly lower than the contributions of player 2. c, d, For productivity inequality and aligned
inequality, we find no differences in the players’ relative contributions. For misaligned inequality, the
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relative contributions of the better-endowed but less productive player 2 are drastically reduced. For both
aligned and misaligned inequality, the two players earn significantly different payoffs. Nevertheless, the
player with the lower payoff in the aligned inequality treatment derives a similar payoff as the two player
types under productivity inequality. For details, see SI.

Extended Data Figure 8: Dynamics of cooperation. For each of the five treatments, we show the
players’ average contributions over the course of the experiment. In all treatments the contributions are
relatively stable over time, except for a significant negative trend in the treatment with endowment in-
equality (see SI for details).

Extended Data Figure 9: Individual cooperation decisions across the five treatments. To analyze
the joint contribution decisions of the two players, we plot here how often player 1 has contributed y1

tokens while player 2 has contributed y2 tokens, for each pair (y1, y2). Under full equality, productivity
inequality, and aligned inequality, most individual decisions are mutually cooperative. In contrast, under
endowment inequality and misaligned inequality, contributions are more scattered. Moreover, in the treat-
ment with misaligned inequality, we observe that a substantial fraction of high endowment players only
matches the co-player’s absolute contributions. For example, in 12.4% of the rounds, the low-endowment
player contributes all 25 tokens at her disposal, and the high-endowment player contributes the same ab-
solute amount of tokens (corresponding to 1/3 of this player’s endowment).

Extended Data Figure 10: Abundance of reciprocal behaviors across the five treatments. To explore
whether subjects apply reciprocal strategies, we show the fraction of rounds in which subjects match or
exceed their co-player’s relative contribution from the previous round. That is, if player 1 has contributed
x% of her endowment in round t, we record whether or not player 2 contributes at least x% of his en-
dowment in round t+1. Note that reciprocal strategies do not automatically yield high cooperation rates,
because mutually defecting players are also reciprocal. Error bars represent the respective confidence
intervals. The asterisks indicate a statistically significant difference, using a two-tailed Wilcoxon signed-
rank test. Sample sizes are 42, 42, 40, 39, 40, respectively. Generally, we find high levels of reciprocity;
only in the treatment with misaligned inequality, the high-endowment low-productivity player 2 exhibits
a strongly reduced reciprocity rate. See SI for details.
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to coordinate on Win-Stay Lose-Shift.
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Supplementary Methods and Results

In Section 1, we describe the basic setup of our model. We introduce a general framework to analyze
repeated public good games among unequals, and we describe the players’ possible strategies and the
resulting payoffs. In Section 2, we summarize previous work on asymmetric social dilemmas, and
we discuss the novelty of our approach. In Section 3 we analyze under which conditions players can
sustain cooperation, depending on the players’ endowments and on the shape of the payoff function.
We complement this static equilibrium analysis with an evolutionary perspective in Section 4. There,
we consider players who adapt their strategies over time. We explore under which conditions players
learn to be fully cooperative, assuming that the initial population consists of unconditional defectors. In
Section 5 we give a full description of our experimental study, including a more detailed analysis of the
subjects’ behavior. In Section 6, we critically review some of our model assumptions, and we propose
several model extensions for future work. Finally, the appendix contains the proofs of our equilibrium
results, the MATLAB code for the simulations, and the game instructions of our behavioral experiment.

1 Model description

1.1 A general framework for public good games among unequals

In the following, we introduce a general framework for social dilemmas with multiple players who may
differ along multiple dimensions. To this end, let us consider a group of n� 2 players. Initially, each
group member i is given an endowment ei � 0. We refer to the n-tuple e= (e1, . . . , en) as the group’s
endowment vector. These endowments may be interpreted as the players’ regular income, or as the
amount of time they have at their free disposal. Without loss of generality, we assume total endowments
are normalized such that e1+. . .+en=1. When players have equal endowments, the endowment vector
is e = (1/n, . . . , 1/n).

Each player can choose which fraction xi of her endowment she wishes to contribute to the public
good, with 0  xi  1. We call the n-tuple x = (x1, . . . , xn) the group’s contribution vector. Given
an endowment vector e and a contribution vector x, player i’s absolute contribution to the public good
is ei ·xi. We use the shortcut notation x= 1 for the contribution vector where each player contributes
her full endowment. We write x= 0 when each player contributes nothing at all. For two contribution
vectors x=(x1, . . . , xn) and x0 = (x01, . . . , x

0
n), we write x�x0 if xi�x

0
i for all players i.

The payoffs of the public good game may depend on the endowments, the contributions, and on
personal characteristics of the players (such as a player’s productivity, or the degree to which a player
benefits from publicly provided goods). Specifically, given the distribution of endowments e, and the
relative contributions x, players yield the payoff u(e,x)2Rn, where u denotes the public good’s payoff
function. The i-th component ui(e,x) corresponds to the payoff of player i. We assume that when no
player contributes, players end up with their initial endowments, ui(e,0)=ei for all players i. We refer
to the sum over all individual payoffs, U(e,x) :=

Pn
i=1 ui(e,x), as the group payoff.
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In the following, we will mostly be interested in situations in which there is a tension between
individual and collective incentives to contribute. To formalize this tension, we consider public good
games with the following four properties.

(C) Continuity: Payoffs change continuously in the players’ endowments and contributions.
The payoff function u(e,x) is continuous in both its arguments, e and x.

(PE) Positive externalities: Players prefer their co-players to make higher contributions.
If x and x0 are two contribution vectors such that xi=x

0
i and xj�x

0
j for all j 6= i then ui(e,x) �

ui(e,x0) for all endowment distributions e. In this case, the strict inequality ui(e,x)>ui(e,x0)

holds if and only if there is at least one co-player j with ej>0 and xj>x
0
j .

(IF) Incentives to free-ride: Players have an incentive to lower their own contributions.
If x and x0 are two contribution vectors such that xi<x

0
i and xj=x

0
j for all j 6= i then ui(e,x) �

ui(e,x0) for all endowment distributions e. In this case, the strict inequality ui(e,x)>ui(e,x0)

holds if and only if player i’s endowment is positive, ei>0.

(OC) Optimality of cooperation: From a collective perspective, higher contributions are preferred.
If x and x0 are two contribution vectors such that x�x0 then U(e,x) � U(e,x0). In this case, the
strict inequality U(e,x)>U(e,x0) holds if and only if there is a player i with ei>0 and xi>x

0
i.

The first condition of continuity is mainly required for technical reasons; it will be useful to show that
full cooperation cannot be sustained when initial endowments are too unequal. The other three properties
extend previous definitions of cooperation in symmetric social dilemmas1,2 to the case of asymmetric
public good games. In any game that satisfies (IF), players have an incentive to contribute as little as
possible. Without repeated interactions, such games have a unique Nash equilibrium according to which
no player contributes, x=0.

We note that the four properties introduced above rule out certain threshold public good games, where
payoffs suddenly increase when payoffs exceed a predefined threshold3–8. In such games, cooperation
can already be sustained in one-shot interactions, because people have an incentive not to fall below
the threshold. In contrast, here we are interested in games where the social dilemma is as stringent as
possible, and where repeated interactions are key to maintain mutual cooperation.

In Fig. 1 of the main text we have classified different public good games according to two dimensions,
linearity and symmetry. A public good game is linear if a player’s payoff is a linear function of her own
endowment and of the absolute contributions of all other group members,

ui(e,x) =
nX

j

cijxjej + ei. (1)

The constants cij determine to which extent player j’s absolute contribution to the public good affects
player i’s payoff. We note that property (PE) requires cij > 0 for all co-players j 6= i, whereas prop-

3



erty (IF) requires cii<0 for all players i. The property (OC) requires c1j+. . .+cnj>0 for all players j.
Property (C) is satisfied since linear functions are continuous.

A public good game is symmetric if players do not differ in their personal characteristics, such
that any payoff differences between players can entirely be explained by differences in their endow-
ments and contributions. To formalize this notion of symmetry, let � be a permutation of the numbers
(1, . . . , n). For a given endowment vector e and contribution vector x, let e� := (e�(1), . . . , e�(n)) and
x� :=(x�(1), . . . , x�(n)) be the permuted endowment and contribution vectors. We call the payoff func-
tion u symmetric if

ui(e,x)=u�(i)(e�,x�) for all e,x,�. (2)

That is, if players were to switch roles with respect to their endowments and their contributions, then
their payoffs are switched accordingly. In particular, for symmetric payoff functions the group payoff is
independent of the players’ identities, U(e,x)=U(e�,x�).

1.2 Repeated games

Herein, we consider individuals that do not interact once with each other, but repeatedly over several
rounds. Specifically, we assume that after each round of the public goods game, there is another round
with probability �, with 0< � < 1. It follows that the expected number of rounds follows a geometric
distribution with mean 1/(1��). Player i receives the same endowment ei in every round. However,
the player’s contribution xi may change from one round to the next, and the player’s decision how much
to contribute in a given round may depend on previous outcomes of the game. Players make these
decisions according to their strategies. A strategy for player i is a rule that tells the player how to choose
her contribution xi(t) in round t, depending on the players’ endowments e and depending on all players’
previous contribution decisions.

For example, the strategy ALLD sets xALLD(t) = 0 in every round, independent of the players’
endowment and independent of the outcome of previous rounds. Another example is the strategy Grim.
A Grim player contributes her full endowment xGrim(0)=1 in the initial round. In all subsequent rounds,
she continues to contribute her full endowment xGrim(t)=1, provided that all players have done so in all
previous rounds. Otherwise, if at least one player has contributed less than his full endowment in some
previous round, a Grim player contributes nothing, xGrim(t)=0.

In this way, the players’ strategies determine which fraction of the endowment the players contribute
in each round. If the contributions at time t are given by the vector x(t)=

�
x1(t), . . . , xn(t)

�
, the players’

payoffs for the repeated game are defined as the weighted average

⇡ := (1� �)
1X

t=0

�
t
u
�
e,x(t)

�
. (3)

We will sometimes consider the limiting case that there is always another round, and �!1. In that case,

4



the players’ payoffs according to Eq. (3) approach the average payoff per round,

⇡ = lim
T!1

1

T

T�1X

t=0

u
�
e,x(t)

�
, (4)

provided this limit exists. Herein, we will often consider players with bounded memory such that the
existence of the limit in Eq. (4) is guaranteed9.

2 Related literature

2.1 Related work in evolutionary game theory

Traditionally, most models on the evolution of cooperation study the behavior of individuals who have the
same personal attributes, the same incentives to cooperate, and the same strategy set to choose from10.
Only a few models have considered the effect of different sources of asymmetry. Here we provide a
review of this previous work.

Bergstrom et al11 consider a one-shot model of public good provision in which players decide how
much of their wealth they want to spend either on a private or a public good. In their model, individual
preferences are such that total contributions to the public good in equilibrium are always positive; in
particular, mutual defection is not an equilibrium. Provided all players contribute, a sufficiently weak
redistribution of wealth has no effect at all because players adjust their public good contributions accord-
ingly. However, equalizing the initial wealth of players may decrease total contributions if it involves
transfers from contributors to non-contributors.

The effect of asymmetric cooperation costs has also been studied in the context of the volunteer’s
dilemma12,13. In the volunteer’s dilemma, it takes one group member to pay a cost for everyone in the
group to derive some benefit. Asymmetric costs can facilitate coordination when players can make their
choice in continuous time13: in equilibrium, the player with the lowest cost volunteers without delay.

Closer to our work, inequality in the players’ endowments and their wealth have been considered in
models of the collective risk-dilemma8,14,15. In the collective-risk dilemma, a group of players needs to
collect a fixed target sum in order to avoid dangerous climate change3. If they fail to meet the required
threshold, they lose their remaining endowment with some exogenous loss probability. Vasconcelos
et al14 consider a model in which players are either ‘rich’ or ‘poor’, and in which players can decide
whether or not they wish to contribute a fixed fraction of their endowment to the public pool. In this
model, heterogeneity can promote cooperation, but only in cases when poor players imitate the strategies
of the rich (and vice versa). In Abou Chakra et al8, players differ along two dimensions, their wealth and
their loss probability. Players who have more to lose – either because they are wealthier or because they
have a higher loss probability – tend to make higher contributions.

Finally, Akin16 considers memory-1 strategies in the asymmetric repeated prisoner’s dilemma with-
out discounting. Building on the recently developed theory of zero-determinant strategies17–22, he char-
acterizes all strategies that can be used to sustain mutual cooperation.
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We add to this evolutionary game theory literature in the following way:

(i) We provide a general framework that is applicable to social dilemmas with an arbitrary number of
players and continuous degrees of cooperation.

(ii) We allow for various different dimensions of heterogeneity. For example, players can simultane-
ously differ in their endowments, productivities, or their benefit from the public good. We predict
how these different forms of inequality interact.

(iii) We explore direct reciprocity in strict social dilemmas, while most of the previous work had its
focus on inequality in one-shot games, or in games with a finite horizon.

(iv) In our applications, the threat of future retaliation is key to sustain cooperation. The logic of
reciprocity seems to suggest that cooperation is most likely if all players have the same endowment,
yet we show that this does not need to be the case.

(v) We employ three different, but complementary approaches: equilibrium calculations, individual-
based simulations, and a behavioral experiment. Each approach is based on slightly different
assumptions, yet they all yield the same qualitative results.

2.2 Related experimental work

The public goods game is one of the classical paradigms to study the dynamics of cooperation in be-
havioral experiments. The vast literature on this topic suggests that individual contributions depend on
many different aspects, including the net cost of contributions, communication opportunities, and thresh-
olds, see the reviews of Ledyard23 and Zelmer24. In the following, we summarize previous experimental
work in which participants either experienced only one kind of inequality, or in which different kinds of
inequality interacted.

Effect of one-dimensional inequality. Several studies have explored the origins and consequences of
endowment inequality in public good games. For example, Buckley and Croson25 study a linear public
goods game in groups in which half of the players have 25 tokens per round, whereas the other half has
50 tokens per round. They find that both kinds of players contribute roughly the same absolute amount
(that is, players with a higher endowment make a lower relative contribution). In a similar experiment,
Hargreaves Heap et al26 compare the contributions of homogeneous and heterogeneous groups. Their
participants either have 20, 50, or 80 tokens, and they interact in groups of size 3. Players who are
either given 20 or 50 tokens play consistently, independent of whether they are in a homogeneous or
in a heterogeneous group. However, 80-token players contribute significantly less in mixed groups,
compared to homogeneous groups in which everyone receives 80 tokens. In the experiment of Cherry et
al27, players either earn their initial endowments in a quiz, or the endowments are randomly assigned by
the experimenter. This study finds that the origin of the endowment has no effect, whereas heterogeneity
decreases the players’ contributions. Similarly, in the experiment of Kesternich et al28, subjects are either
assigned random endowments, or they earn their endowments by outperforming their peers in a ‘slider
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task’ that requires effort. Again, when contributions are voluntary, the origin of endowment seems to
have a minor effect, although highly endowed subjects tend to contribute less if they have earned their
endowment in the effort task.

Gächter et al29 explore the consequences of endogenous inequality. In their linear public goods game,
all players are equipped with the same starting capital. However, a player’s accumulated wealth in round t

is his endowment for round t+1. The study finds that inequality (as measured by the Gini coefficient) is
increasing over time. Moreover, there is substantial variation in inequality between groups. In a similar
experiment, Cardigan et al30 study contributions in public good games when a player’s payoff in odd
rounds serves as the player’s endowment in the subsequent even rounds. They find that under certain
conditions, this “carryover” can increase contributions in odd rounds. Nishi et al31 consider pairwise
prisoner’s dilemma games among players on a dynamical network. Their treatments differ in the degree
of inequality, and in whether players are informed about their co-player’s accumulated wealth. As their
main result they find that heterogeneity has a negligible impact on cooperation per se, but visible wealth
inequality has a negative impact32.

Moreover, several studies have explored how heterogeneity interacts with different mechanisms for
the maintenance of cooperation. These mechanisms include communication33,34, voting35,36, institu-
tional sharing rules28,37, mandatory minimum contributions38, or sanctions29,36,39. For example, the
experiment by Reuben and Riedl39 explores the interaction of endowment inequality and costly punish-
ment. There are 2⇥4=8 treatments. The treatments differ in whether or not subjects are able to punish
each other after each round, and in the type of endowment or benefit inequality considered. This study
finds that without punishment, contributions steadily decline across all groups, such that any difference
between groups is blurred. In contrast, when punishment is possible, contributions are high in all group
types. Moreover, depending on the type of inequality, different contribution norms are enforced.

Without any additional mechanisms, the existing data suggests that unequal endowments tend to de-
crease contributions, whereas the effect of unequal productivities is ambiguous. Our own experiment
agrees with this view: when the two players are equally productive, unequal endowments diminish over-
all cooperation. Conversely, when players have equal endowments, differences in the players’ produc-
tivity have a negligible effect on contributions. Interestingly, in most of the aforementioned experiments
on asymmetric public good games, the number of rounds is fixed and known to the participants. For
such repeated social dilemmas with a predefined horizon, backward induction suggests that participants
should not cooperate at all. In contrast to this prediction, a complete unravelling of contributions is rarely
observed in repeated social dilemma experiments40. In such cases, our theoretical framework for indefi-
nitely repeated games may provide a more accurate prediction of the qualitative behavior in asymmetric
public good games, even if subjects are informed about the exact length of the game ex ante.

Effect of interacting inequalities. The interaction of different forms of inequality has received com-
parably little attention, with two exceptions. First, in one treatment of Chan et al33, the authors allow
for two sources of heterogeneity. In that treatment, players could differ in their endowments and in the
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benefit they derived from the public good (the treatment only allows for what we would call aligned
inequality). The authors use a non-linear payoff function, and parameters have been chosen such that
mutual defection cannot arise as an equilibrium. As a consequence, their experiment does not meet the
conditions of a strict social dilemma, as discussed in Section 1. Nevertheless, their results are in line with
our prediction: they find that in the absence of communication, aligned inequality can help cooperation.

Second, van Gerwen et al41 explore cooperative behavior in a contextualized public goods game be-
tween three subjects. Subjects may differ in their ‘skills’ (akin to our endowment), and in whether or not
they have received ‘training’ (akin to our differences in productivities). In addition, groups may differ
in how many rounds subjects interact with each other. Groups either remain stable for six consecutive
rounds (‘stable teams’), or they are formed anew after each round (‘altering teams’). For comparison
with our study, which is based on direct reciprocity, the stable team treatments of van Gerwen et al are
most relevant. For those treatments, the authors find that more skilled subjects (i.e., players with higher
endowment) tend to make higher absolute contributions. Interestingly, however, a player’s contribution
is neither affected by his training, nor is there a significant interaction between training and skills. More-
over, on the group level van Gerwen et al find no difference in contributions based on whether training is
provided to high-skill or low-skill subjects (see the ‘High’ and ‘Low’ condition in their Figure 2). That
is, they find no difference between aligned and misaligned inequality as we do. There are two reasons
that might explain why their conclusions differ:

1. The comparably short duration of their experiment: Their stable teams only interact for six rounds.
Moreover, the total number of rounds is commonly known, leading to a significant end-game effect
(as confirmed by their Table 4). The horizon of the stable team experiments may thus be too short
for reciprocity to unfold.

2. The framing of their experiment: To increase external validity, subjects in van Gerwen et al are
provided with strongly contextualized instructions. For example, subjects learn that their training
is a gift by the employer. The authors themselves expect that these contextualized instructions
increase the contributions of those individuals who receive training. Such framing effects might
explain why groups with aligned inequality did not outperform groups with misaligned inequality.
The framing might also explain why some statistical relationships became significant when altering
teams were considered instead of stable teams.

In sum, we add to the previous experimental literature on public good games in the following way.
(i) We provide a general theoretical framework to explain reciprocal behavior in repeated social dilem-

mas. Our framework applies to arbitrary public good games. Players may be symmetric or asym-
metric, and their payoffs may be linear or nonlinear.

(ii) We experimentally confirm previous results on the isolated effects of endowment and productivity
inequality.

(iii) We are first to show that in repeated games, endowment and productivity inequality interact non-
trivially. If the two inequalities are aligned, overall welfare is maximized. If they are misaligned,
cooperation is reduced substantially.
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3 Equilibrium analysis

Whereas one-shot public good games only allow for equilibria with zero contributions, repeated games
can give rise to alternative equilibria9,42. In the following, we are particularly interested in the subgame
perfect equilibria in which players contribute their full endowment in every round. A strategy profile is
called a subgame perfect equilibrium if, after any previous history of play, no player has an incentive
to deviate from her strategy43. The subgame perfect equilibrium concept represents an equilibrium
refinement of the Nash equilibrium: every subgame perfect equilibrium is also a Nash equilibrium,
while the converse does not need to hold44.

3.1 Feasibility of cooperation

We say that full cooperation is feasible in a given public good game if there is a subgame perfect equi-
librium in which all players contribute their full endowment in every round. For a given payoff function
u and continuation probability �, let Eu(�) denote the set of all endowment distributions that allow for
full cooperation,

Eu(�) =
n
e=(e1, . . . , en)

��� Full cooperation is feasible for the given endowment distribution e
o
. (5)

In the upper triangles in Fig. 2, the respective sets Eu(�) are represented by blue-shaded areas. In
the following Proposition, we give a simple characterization of the set Eu(�) for arbitrary public good
games. We use the notation x=1�i to refer to the contribution vector where all players but player i give
their full endowment, whereas player i contributes nothing.

Proposition 1. Consider a public good game with payoff function u and continuation probability �<1,
and let e denote some endowment distribution. The following are equivalent:

1. e 2 Eu(�)

2. The following condition holds for all players i with ei>0,

�

⇣
ui(e,1�i)�ui(e,0)

⌘
� ui(e,1�i)�ui(e,1) (6)

3. The strategy profile where all players apply the strategy Grim is a subgame perfect equilibrium for
the given endowment distribution e.

All proofs for the results in this section are in the Appendix. The above Proposition says that if full
cooperation can be sustained at all for a given endowment distribution e, then it can be sustained with
the strategy Grim. In most applications, the stability of Grim can be checked easily. Using Proposition 1,
we can show that Eu(�) exhibits the usual monotonic dependence on the continuation probability �.

Proposition 2. Consider a public good game with payoff function u.

1. Suppose � and �
0 are two continuation probabilities with �<�

0. Then Eu(�) ⇢ Eu(�0).
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2. There is a �
0
<1 such that Eu(�) 6=; for all ���

0.

That is, the set of all endowment distributions for which cooperation is feasible increases with the contin-
uation probability. If a given endowment distribution allows for full cooperation for a given continuation
probability, then it also allows for full cooperation for all larger continuation probabilities. Moreover,
cooperation is always feasible if only the continuation probability � is sufficiently large.

Using Proposition 1 we can also show that cooperation is never feasible if initial endowments are too
strongly biased in favor of one player.

Proposition 3. Consider an arbitrary public good game with continuation probability � < 1 and en-
dowment distribution e. For any player i, there is an "i > 0 such that if player i’s endowment exceeds
ei=1�"i then full cooperation is infeasible.

The result of Proposition 3 also becomes apparent in Fig. 2 of the main text. In all triangles depicted,
there is a neighborhood around the corners of the triangle where cooperation is not feasible. Intuitively,
full cooperation in repeated games can only be sustained if any deviation in the present round can be
punished by withholding contributions in future rounds. However, if the initial endowments are too con-
centrated such that one player is given an excessive share, her co-players cease to have enough leverage
to prevent her from free riding.

It may appear that a similar argument could also show that an equal endowment distribution is gener-
ally most conducive to cooperation. In the following sections we show that this conjecture is true when
the public good game is linear and symmetric, whereas it is false if payoffs are nonlinear or asymmetric.

3.2 Linear and symmetric public good games

A linear public goods game (1) satisfies the symmetry condition (2) if and only if the payoff function has
the form

ui(e,x) = c1

X

j 6=i

xjej � c2xiei + ei. (7)

Here, the constant c1 measures by how much player i’s payoff is affected by co-player j’s contribution
(due to symmetry, this constant is independent of both i and j). Similarly, c2 measures to which extent
player i’s payoff depends on her own contribution; again, due to symmetry c2 is independent of i. The
three properties (PE), (IF), and (OC) then imply c1>0, c2>0 and (n�1)c1�c2>0, respectively. In the
main text we have considered scenarios where total contributions of all players are multiplied by a joint
productivity factor r, with 1<r<n, and then equally shared among all group members. This standard
formulation of public goods games can be recovered as a special case of game (7) when we set c1=r/n

and c2=1�r/n.
By applying Proposition 1 to the linear and symmetric public goods game (7), we find that coopera-

tion is feasible for a given endowment distribution e if and only if

�c1(1� ei) � c2ei for all players i with ei>0. (8)
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Equivalently, cooperation is feasible for the endowment distribution e if and only if

�
c1

c2
� max{ei}

1�max{ei}
. (9)

Condition (9) indicates that it is always the player with the highest initial endowment who has the largest
temptation to deviate from full cooperation.

Now, suppose that cooperation is feasible for some endowment distribution, such that Eu(�) 6= ;.
Thus, there needs to be an endowment distribution e = (e1, . . . , en) that satisfies inequality (9). But
since max{ei}�1/n and since the map z 7!z/(1�z) is monotonically increasing for 0<z<1, it then
follows that also the equal endowment distribution (1/n, . . . , 1/n) satisfies inequality (9). That is, if full
cooperation is feasible at all in some given linear and symmetric public good game, then it can always
be achieved by assigning equal endowments to all players.

By plugging the equal endowment distribution e= (1/n, . . . , 1/n) into condition (9), we can con-
clude that cooperation is feasible in a linear and symmetric public goods game if and only if � � �

⇤ with
�
⇤ := c2/

�
(n�1)c1

�
. In particular, since (n�1)c1�c2 > 0 it follows that �⇤ < 1, and thus coopera-

tion is always feasible if the public goods game is repeated sufficiently often. We can summarize these
observations as follows.

Proposition 4. Consider a linear and symmetric public goods game with payoff function (7).

1. If full cooperation is feasible for some arbitrary endowment distribution, it is also feasible when
players have equal endowments. That is, if Eu(�) 6=; for some �, then (1/n, . . . , 1/n)2Eu(�).

2. Full cooperation is feasible, that is Eu(�) 6=;, if and only if � � c2

c1

1

n�1
.

This first result in Proposition 4 is also apparent in Fig. 2a: the center of the triangle which represents
the point of equal endowments is always an element of the blue area where full cooperation is feasible,
provided � is sufficiently large for this blue area to exist.

3.3 Asymmetric linear public good games

As an example of a public goods game that is linear but asymmetric, we have considered the following
example in the main text,

ui(e,x) =
1

n

X

j

rjxjej + (1�xi)ei. (10)

We have interpreted rj as the productivity of player j’s contributions to the public good. The payoff
function (10) satisfies the two properties (IF) and (OC) if and only if the individual productivities satisfy
1 < rj < n. If that is the case, property (PE) holds automatically, whereas property (C) is trivially
satisfied for all public good games of the form (10).

When we apply Proposition 1 to the asymmetric public goods game (10), we yield the following

11



necessary and sufficient condition for the feasibility of cooperation:

�

n

X

j 6=i

rjej �
⇣
1� ri

n

⌘
ei for all players i with ei>0. (11)

In particular, for equal endowments, e=(1/n, . . . , 1/n), full cooperation is feasible if and only if

� � n�min(rj)Pn
j=1 rj �min(rj)

. (12)

Condition (12) indicates that when players are given equal endowments, the player with the the lowest
productivity will face the largest temptation to deviate (because this player faces the highest marginal
cost 1�ri/n of contributing). This observation suggests that when players differ in their productivities,
cooperation may be easier to sustain when players also differ in their endowments.

In Fig. 2b of the main text, we have provided a simple example. There, we have considered a 3-
player public goods game with r1 = 2.9, r2 = 1.5, r3 = 1.1, and continuation probability � = 0.3. A
straightforward computation of the conditions (11) shows that when players have equal endowment, full
cooperation is infeasible, because both players 2 and 3 (the players with comparably low productivity)
have an incentive to deviate. In contrast, if we redistribute endowments such that e=(4/5, 1/5, 0), the
feasibility condition (11) is satisfied for all players. Interestingly, according to this distribution most of
the initial endowment goes to the most productive player 1, and player 3 does not receive any endowment
at all. However, player 2’s share of the endowment, e2=1/5, is sufficient to still incentivize player 1 to
cooperate.

Moreover, we note that even if full cooperation were feasible with equal endowments, players may
still fare better when a higher share of the endowment is given to the more productive player. To illustrate
this point, consider the above public good game with r1=2.9, r2=1.5, r3=1.1, but with the continu-
ation probability increased to �=0.5. In that case, cooperation is also feasible for an equal endowment
distribution. However, in that equilibrium, each player’s payoff is (r1+r2+r3)/9⇡0.61, which is smaller
than the mutual cooperation payoff for e=(4/5, 1/5, 0), yielding a payoff of (4r1+r2)/15⇡0.87. We
can summarize these observations as follows.

Proposition 5.

1. There are asymmetric linear public good games such that Eu(�) 6=;, but (1/n, . . . , 1/n) 62Eu(�).

2. There are asymmetric linear public good games such that even if full cooperation is feasible for
equal endowments, unequal endowments allow for higher equilibrium payoffs for every player.

While the above Proposition shows that some inequality can improve the stability of cooperation, it
does not clarify which kind of inequality is most conducive to cooperation. The following result shows
that the conditions for the feasibility of cooperation are most easily satisfied if the players’ endowments
match their productivities. The proof is given in the Appendix.
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Proposition 6. Consider the public goods game with payoff function (10), and assume without loss of
generality that players are ordered according to their productivities, r1  r2  . . .  rn. Let e0 =
(e01, . . . , e

0
n) be some endowment vector, and let e00 = (e001, . . . , e

00
n) be the permuted endowment vector

such that the ordering of the entries in e00 is aligned with the players’ productivities; that is, e00=e0� for
some permutation � and e

00
1e

00
2 . . .e

00
n. If e02Eu(�), then e002Eu(�).

Proposition 6 states that if full cooperation can be sustained for some endowment distribution, then it can
always be sustained by redistributing the players’ endowments such that more productive players have
higher endowments.

So far, we have been concerned with asymmetric games in which players have differed in their produc-
tivity. Alternatively, we may also consider games in which players are equally productive, but they differ
in the extent to which they benefit from publicly provided goods. Such games may be represented by the
payoff function

ui(e,x) = qi ·r
X

j

xjej + (1�xi)ei. (13)

The coefficient r with 1<r<n represents the players’ common productivity. The coefficient qi deter-
mines the relative value of the public good to player i. Without loss of generality, we may assume that
these coefficients are normalized such that q1+. . .+qn=1. In order for the game to qualify as a social
dilemma, (PE) requires that qi>0 for all players i, whereas (IF) requires qi<1/r.

Again, it is straightforward to construct examples of a public good game with payoff function (13)
such that full cooperation can only be sustained for unequal endowment distributions. According to
Proposition 1, cooperation is feasible for a given endowment distribution e if and only if

�qir(1�ei) � (1�qir)ei for all players i with ei>0. (14)

For equal endowments, e = (1/n, . . . , 1/n), it follows that full cooperation is feasible if and only if

� � 1� r ·min(qi)

(n� 1)r ·min(qi)
. (15)

Similar to before, under equal endowments it is the player with the highest marginal cost to contribute
who is most likely to deviate (here, the player with the smallest benefit from the public good). To prevent
this player from deviating, it may again be effective to redistribute initial endowments, such that players
with a stronger incentive to contribute get a larger share of the endowment.

As a numerical example, let us consider a 3-player public goods game with q1 = 0.1, q2 = 0.3,
q3 = 0.6, r = 1.5 and � = 0.5. A straightforward computation shows that when players have equal
endowments, condition (14) is violated for players 1 and 2. Instead, the inequalities in (14) hold for all
players if endowments are redistributed such that e=(0, 1/5, 4/5).

We note, however, that games in which players derive unequal benefits from the public good differ in
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two important aspects from games where players have unequal productivities. First, when players derive
unequal benefits, player i’s payoff in the fully cooperative equilibrium is ⇡i=qir, and thus independent
of the initial endowments. That is, provided players still achieve full cooperation, a redistribution of
endowments has no payoff effects. Second, in the 3-player game with different productivities, everyone
preferred the mutual cooperation payoff for the endowment distribution (0, 1/5, 4/5) to the mutual de-
fection payoff when players have equal endowments. In the 3-player game where players derive different
benefits from the public good, this does not need to be the case anymore. In the example discussed in
the previous paragraph, player 1 yields a payoff of 1/3 if all players are given an equal endowment and
everyone defects. In contrast, player 1 yields the lower payoff of 0.15 if the initial endowment distribu-
tion is e=(0, 1/5, 4/5) and everyone cooperates. That is, even if a redistribution of endowments from
(1/3, 1/3, 1/3) to (0, 1/5, 4/5) favors mutual cooperation, players may no longer unanimously agree to
such a redistribution.

3.4 An example of a nonlinear symmetric public goods game

As a simple example of a nonlinear but symmetric public goods game, Fig. 2c,f of the main text illustrates
the case of a game with payoff function

ui(e,x) = c1 ·max
j, k6=j

�
ejxj+ekxk

�
+ c2 ·

nX

j=1

ejxj + (1� xi)ei, (16)

for constants c1, c2 > 0. Due to the first term on the right hand’s side, the payoff function u is piece-
wise linear but not linear for n � 3. This game reflects a situation in which the two highest absolute
contributions are particularly important for the success of the public good. Payoff function (16) satisfies
property (IF) if c1+c2<1, and it satisfies property (OC) if c2>1/n.

Given that the payoff function (16) provides an extra benefit to the two highest absolute contributions,
an equal distribution of endowments may no longer be optimal for groups of size n� 3. According to
Proposition 1, full cooperation can be sustained for equal endowments if and only if

� � 1� c2

2c1+(n�1)c2
. (17)

When players have unequal endowments, and without loss of generality e1�e2� . . .�en, Proposition 1
yields the following condition for full cooperation,

� � max

⇢
(1�c1�c2)e1+c1e3

c1(e2+e3) + c2(1�e1)
,

(1�c2)e3
c1(e1+e2) + c2(1�e3)

�
. (18)

Condition (18) indicates that if any player has an incentive to deviate from full cooperation, it is either
the player with the highest endowment, or the player with the third-highest endowment (i.e., the first
player whose contribution is not multiplied by the factor c1). By comparing the conditions (17) and (18),
we obtain the following result.
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Proposition 7. Consider a nonlinear public good game between n�3 players with payoff function (16).
Let e0 be the equal endowment distribution. Let e00 be a distribution where the full endowment is equally
split among two players only; that is, there are players i, j such that e00i = e

00
j = 1/2 and e

00
k = 0 for all

other k. Then for all continuation probabilities 1�c1�c2
c1+c2

�<
1�c2

2c1+(n�1)c2 we have e0 62Eu(�), e002Eu(�).

The content of Proposition 7 is illustrated in Fig. 2c, where we have considered the case n = 3 with
c1=1/2, c2=1/3. For these parameter values, equal endowments can maintain cooperation for ��0.4,
whereas splitting the endowment between two players can maintain cooperation for � � 0.2. For the
figure, we have used the value � = 0.35; in that case, cooperation is feasible in three separate regions,
centered around the three points where two players equally split the full endowment.

3.5 Maximally cooperative endowment distributions

In the remainder of this section, we wish to introduce a notion for endowment distributions that are most
conducive to cooperation. To this end, let us first formally define the minimal continuation probability
compatible with full cooperation. For a given public good game with payoff function u, we define this
minimal continuation probability �

⇤
u as

�
⇤
u := inf

n
�2 [0, 1]

��� Eu(�) 6=;
o
. (19)

Because of Proposition 2, this minimal continuation probability is well-defined and satisfies 0< �
⇤
u<1.

Using this minimal continuation probability we introduce the following notion of maximally cooperative
endowment distributions.

Definition. For a given public good game u we say that an endowment distribution e⇤ = (e⇤1, . . . , e
⇤
n)

is maximally cooperative if e⇤2Eu(�⇤u).

That is, an endowment distribution e⇤ is maximally cooperative if it requires the lowest continuation
probability for cooperation to be feasible. Due to Proposition 2, it follows that such a distribution is most
conducive to cooperation in the following sense: If cooperation is feasible for any endowment distribu-
tion for a given �, then it is guaranteed to be feasible when players receive the maximally cooperative
endowment distribution e⇤.

To find the maximally cooperative endowment distribution, one needs to identify a pair (e⇤, �⇤) such
that all inequalities (6) are satisfied; moreover, for any other such pair (e, �) it needs to be true that ���

⇤.
Because the left hand’s side of the inequalities (6) may involve products of ei and �, this generally yields
a nonlinear optimization problem. In the following we solve this optimization problem for the special
case of a pairwise game with a linear payoff function.

Proposition 8. Consider a public good game between two players with linear payoff function u given
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by Eq. (1), such that
u1(e,x) = c11x1e1+c12x2e2+e1

u2(e,x) = c21x1e1+c22x2e2+e2,
(20)

for constants c11, c22 < 0 and c12, c21 > 0. Then the minimal continuation probability �
⇤
u and the maxi-

mally cooperative endowment distribution e⇤ = (e⇤1, e
⇤
2) are given by

�
⇤
u =

r
c11c22

c12c21
and

e
⇤
1

e
⇤
2

=

r
c12c22

c11c21
. (21)

In the main text, we have considered the example where players have different productivities, such that
cij = rj/n for j 6= i and cii = ri/n � 1. In that special case, the maximally cooperative endowment
distribution according to Eq. (21) becomes

e1

e2
=

s
r2(2�r2)

r1(2�r1)
. (22)

In particular, it follows that an equal endowment distribution e1 = e2 is maximally cooperative if and
only if the two players coincide in their productivities. If players differ in their productivities, the more
productive player is supposed to yield a higher endowment according to the maximally cooperative
endowment distribution.

Similarly, for the game with asymmetric benefits considered in Section 3.3, we can set cij = qir/n

and cii=qir/n� 1. In this case, the maximally cooperative endowment distribution becomes

e1

e2
=

s
q2(2�rq2)

q1(2�rq1)
. (23)

Again, we conclude that equal endowments are only maximally cooperative if q1 = q2, such that both
players derive the same benefit from the public good. Otherwise, if there is a player who derives a larger
benefit, this player is supposed to receive the larger endowment.

4 Evolutionary analysis

Whereas the previous results have clarified when full cooperation is feasible, based on static equilibrium
considerations, here we explore whether cooperation can actually evolve if players have not yet settled
on a particular equilibrium. To make such an evolutionary approach computationally tractable, we first
focus on a a reduced strategy space.

4.1 Memory-one strategies

Compared to the previous equilibrium analysis, the strategy space considered in the following is based
on two simplifying assumptions. First, we assume that in each round, players only choose among a finite
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set X of contribution levels, X = {x̂1, . . . , x̂m}. In the most simple case that X = {0, 1}, we refer to
the two possible choices as ‘defection’ (D) and ‘cooperation’ (C), respectively. Second, we assume that
players use memory-one strategies: a player’s decision to cooperate in the next round may depend on the
outcome of the previous round, but it is independent of all earlier rounds. Memory-one strategies have
the major advantage that the payoffs according to Eqs. (3) and (4) can be computed efficiently, as we
describe further below.

Memory-one strategies can be represented by a vector p= (p0,k, px,k), with entries in the unit in-
terval [0, 1]. The entries p0,k for 1  k  m denote the probability that in the first round, the player
contributes a fraction x̂k of the endowment . The remaining entries px,k encode the conditional prob-
ability that the player contributes x̂k in any subsequent round, given that the contribution vector of the
previous round was x2X

n. For the vector p to be a sensible strategy, we require that in each round, the
respective probabilities sum up to one,

P
k p0,k=1 and

P
k px,k=1 for all contribution vectors x2X

n.
If all entries of p are either equal to 0 or equal to 1, we say the memory-one strategy is deterministic or
pure. Otherwise the strategy is called stochastic.

When all n players use memory-one strategies p1
, . . . ,pn, the resulting payoffs can be calculated

using a Markov chain approach. The states of this Markov chain are the mn possible contribution vectors
x 2 X

n that determine the outcome of a given round. If x is the contribution vector of the previous
round, the probability that the next round’s contribution vector is x0 = {x̂k1 , . . . , x̂kn} can be calculated
as mx,x0 = p

1
x,k1

· . . . · pnx,kn . The corresponding transition probabilities can be assembled in a matrix
M = (mx,x0). In addition, we need to specify the probability to observe each contribution vector x0 =

{x̂k1 , . . . , x̂kn} in the very first round. This probability is given by v
0
x0 = p

1
0,k1

· . . . · pn0,kn . Given the
initial distribution v0=(v0x) and the transition matrix M=(mx,x0), we calculate

v = (1� �)v0 · (I � �M)�1
, (24)

where I is the mn⇥m
n identity matrix. The entries of the vector v = (vx) give the weighted probability

to observe each possible outcome x2X
n over the course of the repeated game. For �!1, the vector v

approaches a left eigenvector of M with respect to the eigenvalue 1. Given the vector v, we can calculate
the players’ payoffs according to Eqs. (3) and (4) as

⇡ =
X

x2Xn

vx · u(e,x). (25)

For our evolutionary analysis, we suppose that the players’ decisions can be subject to noise. That
is, in any given round there is some small probability " > 0 that a player implements a wrong move.
For example, a player might contribute less than he actually wanted, or he may cooperate although he
actually wanted to defect. As a consequence, if the player’s actual memory-1 strategy is p, his effective
strategy becomes (1�") · p+"/(m�1) · (1�p). This assumption ensures that the transition matrix M

is positive (that is, each entry of M is positive). In the limit �! 1, the presence of noise thus implies
that the invariant distribution v is independent of the outcome of the initial round. For the simulations in
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the main text, we have used " = 0.001 throughout. Other error rates give similar results, provided that
errors are sufficiently rare (Extended Data Fig. 4).

4.2 A model of introspection dynamics

In the following we introduce a simple framework to model how players adopt new memory-one strate-
gies over time. When games are symmetric, it is common to consider a process where players tend to
imitate strategies of more successful players45, or where successful players produce more offspring46.
For games among unequals, however, such processes may yield counterintuitive results, because a strat-
egy that is successful for one player may be disadvantageous for another. Alternatively, to study the
dynamics in asymmetric matrix games, past work has considered players who are drawn from different
populations, and who only adopt strategies that are successful within their own population47,48. How-
ever, for games in large groups such a multi-population approach seems unrealistic. In many of our
applications, different players may interact with each other although they do not stem from different
well-defined populations. To model the strategy dynamics among unequal players, we thus introduce a
novel evolutionary process. Our process is based on the idea that occasionally, players may come up
with new strategies, and that they compare their payoff so far with the payoff they could have got if they
had used the new strategy all along. We call this process introspection dynamics.

Specifically, in a group of n players, we assume that in each evolutionary time step one of the players
is chosen at random. This player i then picks a random new strategy of her available strategy set (while
the co-players’ strategies remain fixed). If the player’s previous strategy yielded a payoff ⇡i, whereas the
new strategy would have yielded the payoff ⇡̃i, we assume that the player switches to the new strategy
with probability

⇢s(⇡i, ⇡̃i) =
1

1 + exp
⇥
� s(⇡̃i � ⇡i)

⇤ . (26)

The parameter s� 0 reflects the strength of selection. In the boundary case s=0, the switching proba-
bility simplifies to ⇢=1/2, such that strategy changes occur at random. In the limit of strong selection,
s!1, the player only adopts the new strategy if it yields at least the payoff of the old strategy.

In Figs. 2 – 4 of the main text, we have shown simulation results for this introspection dynamics.
There, we have assumed that initially all players use ALLD. Then we have iterated the above described
elementary updating process, assuming that subjects can choose among all stochastic memory-1 strate-
gies and that payoffs are computed by Eq. (25). By iterating this process over many time steps t, we
yield a sequence of strategies

�
p1(t), . . . ,pn(t)

�
, where pi(t) denotes the memory-1 strategy employed

by player i after t time steps. Based on this sequence, we can calculate the average cooperation rates and
payoffs of all players over the entire simulation. The respective MATLAB implementation is provided in
the Appendix.
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4.3 Introspection dynamics for players with finitely many strategies

If players employ pure memory-one strategies, such that the total number of strategies k is finite, we can
use an exact method to compute expected trajectories of the introspection dynamics. The introspection
dynamics takes the form of a discrete Markov chain with k

n possible states P = (p1
, . . . ,pn). The

transition probability from state P to state P̃ is given by

wP,P̃ =

8
>>>>><

>>>>>:

1

n(k�1)
· ⇢s(⇡i, ⇡̃i) if pi 6= p̃i

, and pj= p̃j for all j 6= i.

1�
X

p̃i 6=pi

1

n(k�1)
· ⇢s(⇡i, ⇡̃i) if P = P̃

0 otherwise.

(27)

The transition probabilities according to Eq. (27) indicate that within each time step, at most one player
can change her strategy. This player is chosen randomly (a particular player i is chosen with proba-
bility 1/n), and then given the chance to pick a new strategy (each remaining strategy has the same
probability 1/(k�1)). This strategy is then adopted with probability ⇢s(⇡i, ⇡̃i). Again, we can collect all
transition probabilities in a k

n⇥k
n matrix W =(wP,P̃ ). If the initial state of the population is given by

the vector y(0)=
�
yP (0)

�
, then the expected strategy distribution at time t is y(t)=y(0) ·W t. Because

the evolutionary process is ergodic for all finite selection strengths s, the distribution y(t) converges to
a unique invariant distribution y=(yP ) that solves y=y ·W . Its entries yP reflect how often we are to
observe the population in state P = (p1

, . . . ,pn) over an evolutionary timescale.
For the evolutionary results depicted in our Extended Data Figures, we have employed this Markov

chain approach for groups of size n=2. In that case, each player can choose among k=25 =32 pure
memory-1 strategies (when � < 1), or among k=24=16 strategies (when �=1, such that the coopera-
tion probability in the first round can be neglected). Extended Data Fig. 1 is based on the five scenarios
considered in the behavioral experiment. It compares realized cooperation trajectories of introspection
dynamics as defined in Section 4.2 to the expected trajectories defined in this section. Extended Data

Fig. 2 depicts the invariant distribution y for the same five scenarios. In three cases, we observe that
players predominantly settle at a state where both players employ Win-Stay Lose-Shift (WSLS, see next
subsection). To calculate the invariant distribution y, we have used MATLAB to solve the homogeneous
linear system (I256�W

0)y = 0. Here, I256 is the 24 ·24 = 256-dimensional identity matrix, and W
0

refers to W transposed. Extended Data Fig. 3 shows the players’ average contributions and how often
they employ WSLS, again computed from the invariant distribution y of the process. Extended Data

Fig. 4 illustrates how the players’ average payoffs according to the invariant distribution y change as we
vary the expected number of rounds 1/(1��), the selection strength s, or the error rate ". Finally, in
Extended Data Fig. 5 we present evolutionary results when players are engaged in a public goods game
with asymmetric benefits, with payoffs given by Eq. (13). The MATLAB implementation to generate the
respective data is provided in the Appendix.
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4.4 Analysis of Win-Stay Lose-Shift

Equilibrium conditions for Win-Stay Lose-Shift. For our evolutionary results, we have assumed that
the players’ decisions are subject to noise. Under such conditions, a homogeneous group of Grim players
may no longer be able to maintain full cooperation: if one of the Grim players fails to cooperate due to
an error, the whole group switches to defection for the remainder of the game. Instead, the evolutionary
results depicted in Extended Data Fig. 1 – Extended Data Fig. 5 suggest that for high continuation
probabilities, full cooperation only emerges as the strategy Win-Stay Lose-Shift (WSLS) becomes pre-
dominant.

While previous studies have explored this strategy for symmetric social dilemmas with discrete ac-
tions49–52 , we can extend the definition of WSLS for general n-player public goods games with contin-
uous contribution levels as follows. A WSLS player contributes her full endowment in the first round, or
if all players with a positive endowment have contributed the same share of their endowment in the pre-
vious round. Otherwise, if people have differed in their relative contributions in the last round, a WSLS
player contributes nothing. For a two-player game with two discrete contribution levels, this definition
reduces to the usual definition of WSLS, p = (p0; pCC , pCD, pDC , pDD) = (1; 1, 0, 0, 1).

In contrast to Grim, a population of WSLS players is robust with respect to noise. If one of the
players deviates from full cooperation due to an error, all players collectively defect the next round, and
then revert to mutual cooperation in all subsequent rounds.

The following Proposition characterizes when WSLS is an equilibrium. The proofs of the results in
this section are again given in the Appendix.

Proposition 9. Consider a public good game with payoff function u, continuation probability �<1, and
endowment distribution e. Then the strategy profile where all players apply WSLS is a subgame perfect
equilibrium if and only if

�

⇣
ui(e,1)�ui(e,0)

⌘
�
⇣
ui(e,1�i)�ui(e,1)

⌘
for all players i with ei>0. (28)

We note that Proposition 9 does not make any restrictions on the possible deviation strategies. When
condition (28) holds, there is no incentive to deviate from WSLS even if players have access to higher-
memory strategies, or when they choose among continuous contribution levels.

When we compare the two Propositions 1 and 9, we note that the critical threshold � for WSLS
to be an equilibrium is strictly larger than the respective threshold for Grim. As a consequence, the set
of endowment distributions for which WSLS is an equilibrium, referred to as EW

u (�), is a strict subset
of the set Eu(�) of endowments where Grim is an equilibrium. This relationship is also illustrated in
Extended Data Fig. 3, where the region E

W
u (�) (indicated by dashed lines) is strictly contained in the

region Eu(�) (indicated by dotted lines). As shown in that figure, high cooperation rates only evolve in
the parameter region where WSLS is a subgame perfect equilibrium. The following Proposition shows
that the sets EW

u (�) and Eu(�) have similar qualitative properties.
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Proposition 10.

1. Consider a public goods game with payoff function u, and let �, �0 be two continuation probabilities
with �<�

0. Then E
W
u (�)⇢E

W
u (�0).

2. If EW
u (�) 6= ; for some public goods game with linear and symmetric payoff function u and for

some continuation probability �, then (1/n, . . . , 1/n)2E
W
u (�).

3. There are public good games with an asymmetric payoff function u such that EW
u (�) 6= ; for some

continuation probability �, but (1/n, . . . , 1/n) 62E
W
u (�).

4. Consider a pairwise game with linear payoff function (1). If EW
u (�) 6= ; for some given con-

tinuation probability �, then e⇤ 2 E
W
u (�), where e⇤ is the maximally cooperative endowment

distribution as characterized by Eq. (21).

To the extent that the evolution of cooperation is linked to the performance of WSLS, the above
results complement the static results from the previous section. Cooperation should more readily evolve
as the continuation probability � increases; in symmetric and linear games, cooperation is most likely
to evolve under an equal endowment distribution; and in asymmetric games, an uneven distribution of
endowments is more favorable to the evolution of cooperation. These predictions based on the stability
of WSLS are further supported by our numerical results in Fig. 2, Fig. 3, and Extended Data Fig. 1 –
Extended Data Fig. 5.

Evolutionary stability of Win-Stay Lose-Shift. The conditions for subgame perfection in Eq. (28)
guarantee that when all players adopt WSLS, no player can gain a higher payoff by deviating. However,
they do not imply that WSLS is evolutionarily stable in the sense of Maynard Smith53. After all, neutral
deviations that leave the deviating player with exactly the same payoff may still be possible.

There is by now a rather extensive literature on whether evolutionarily stable strategies for repeated
games exist at all54–63. For the repeated prisoner’s dilemma without errors, Selten and Hammerstein
have noted that Tit-for-Tat is not evolutionarily stable because it can be neutrally invaded by ALLC54.
Boyd and Lorberbaum have generalized this result to show that in the absence of errors, no pure strategy
is evolutionarily stable55. In particular, they show that once a first neutral mutant gains a sizable pro-
portion of the population, a second mutant strategy can be selectively favored to invade. Similar results
apply to mixtures of pure strategies56 and to stochastic strategies57. Taking a dynamic perspective, van
Veelen and Garcia have shown in a series of papers that cooperation rates in evolving populations tend
to oscillate59–61. For any resident population, there always exist neutral ‘stepping stone’ mutations out
of equilibrium. Over time, cooperation comes and goes.

However, these results do not mean that evolutionary stability in repeated games is generally im-
possible. Under the realistic assumption that players sometimes commit errors, Boyd has shown that
a strategy is evolutionarily stable if it is a ‘strong perfect equilibrium’62. That is, in a game with dis-
counted payoffs, a strategy is evolutionarily stable if it is a strict best response to itself after any possible
history. Intuitively, errors guarantee that any possible history is reached with positive probability. This
general reachability in turn prohibits neutral mutants to exist that only differ from the resident off the
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equilibrium path. Based on this insight, we can reformulate Proposition 9 to gain the following result on
the evolutionary stability of WSLS.

Proposition 11. Consider a public good game with payoff function u, continuation probability � < 1,
and endowment distribution e with ei > 0 for all players i. Moreover, suppose the inequality (28) is
strict,

�

⇣
ui(e,1)�ui(e,0)

⌘
>

⇣
ui(e,1�i)�ui(e,1)

⌘
for all players i. (29)

Then there exists a threshold "0>0 such that WSLS is evolutionarily stable for all error rates 0<"<"0.

When the conditions of Proposition 11 are met, any deviation in a group of WSLS players leads to a
strictly lower expected payoff for the deviating player. As a consequence, any such deviation is disfa-
vored by the evolutionary process.

Two remarks are in order. First, we stress that Proposition 11 again does not restrict the possible
mutant strategies. Even if players are permitted to react to arbitrarily long histories of past play, any
deviation from WSLS leaves them with a strictly lower payoff. Second, we note that for any finite
selection strength, the evolutionary process we have considered is ergodic. That is, no matter which
strategy profile the group currently adopts, there is always a chance that one of the players decides to
switch his strategy, even if the new strategy yields a strictly lower payoff. The process is guaranteed
to leave any strategy profile eventually. Realized cooperation trajectories will thus exhibit oscillations,
even if WSLS is evolutionarily stable (see Extended Data Fig. 1 for some typical examples of such
trajectories).

Nevertheless, the conditions in Proposition 11 are important, as they affect how often players coop-
erate on average over an evolutionary timescale. Once WSLS is evolutionarily stable, a group of WSLS
players can only be left due to a rare chance event. Depending on the strength of selection, a considerable
number of elementary introspection events may be necessary until one player deviates.

4.5 Evolution among players with finite state automata

So far we have explored the evolution of cooperation when players can choose among all memory-1
strategies. Memory-1 strategies have been routinely used in previous work as they are convenient to
analyze17–22. However, the emergence of reciprocity in evolutionary simulations can be sensitive to the
considered strategy space50,64,65 and to the applied mutation scheme66,67. It is thus natural to ask to
which extent our evolutionary results depend on the assumption of memory-1 players. To explore this
issue in more detail, we consider the evolutionary dynamics when players have access to a vastly larger
strategy set.

Strategies represented by finite state automata. In the following, we adapt the framework of van Vee-
len and Garcia59–61 to the asymmetric games studied herein. For simplicity, we describe the framework
for pairwise games only, and we assume players use pure strategies without errors.
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As before, players can choose among a finite set of contribution levels X={x̂1, . . . , x̂m}. To make
their decisions, players use finite state automata A=(⌦,�, µ). The first component ⌦ = {!1, . . . ,!k}
is the set of possible states of the automaton. The second component � : ⌦ ! X determines how
much the player contributes in each state. Finally, the third component µ : ⌦ ⇥X!⌦ is the transition
function. Depending on the automaton’s present state and on the co-player’s contribution, it determines
the player’s state in the next round. Without loss of generality, we assume that the finite state automaton
is initially in the first state !1.

The memory-1 strategies considered in the previous sections can all be represented as finite state
automata. As an example, let us assume that players can either contribute their full endowment or
nothing, X = {0, 1}. Again, we identify these two actions with cooperation (C) and defection (D),
respectively. Suppose a player uses the memory-1 strategy p = (p0; pCC , pCD, pDC , pDD), and for
simplicity assume that initially the player cooperates, p0 = 1. Then p is equivalent to a finite state
automaton Ap=(⌦p,�p, µp) with elements defined by

⌦p=(!1,!2), �p(!1)=C and �p(!2)=D, µp(!, x)=

(
!1 if p!,x = 1

!2 if p!,x = 0.
(30)

We illustrate this representation of memory-1 strategies as finite state automata in Extended Data

Fig. 6a. There, we depict three particular examples, AllD, Tit-for-Tat, and Win-Stay Lose-Shift.
While every memory-1 strategy can be represented as a finite state automaton, the set of strategies

representable by finite state automata is considerably richer. As an example of a strategy that is not
memory-1, Extended Data Fig. 6a provides a finite-state representation of Tit for two Tats68. More
generally, it can be shown that in fact all possible pure strategies for the repeated prisoner’s dilemma can
be approximated arbitrarily closely by finite state automata60.

To calculate the players’ payoffs, suppose player 1 uses an automaton with k1 states and player 2
uses an automaton with k2 states. Because strategies are pure and players do not commit errors, the
game dynamics is deterministic. In particular, it takes at most k1 ·k2 rounds until the two players enter
an infinite loop. From that moment on, their actions repeat themselves indefinitely. For the simulations
shown in Extended Data Fig. 6c, we assume no discounting, and the players’ payoffs are thus simply
defined as their average payoff per round over all rounds of the loop. Similar results can be obtained in
discounted games. In the Appendix, we provide the MATLAB implementation that we have used.

Introspection dynamics for players with finite state automata. To model the evolutionary dynamics,
we assume that initially both players use the AllD automaton depicted in Extended Data Fig. 6a. In each
time step, one of the players is then chosen at random to experiment with a mutation Ã of his present
automaton A. Following van Veelen and Garcia59,60, we allow for four different types of mutations (see
also Extended Data Fig. 6b),

(i) Mutation in the state transitions (‘Change an arrow’). When this mutation occurs, one input (!, x)
of the transition function is randomly chosen. Then its output µ(!, x) is changed randomly, such
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that all alternative states in ⌦ have the same probability 1/(k�1) to become the new output.

(ii) Mutation in the chosen contribution level (‘Change an action’). When this mutation occurs, one state
! 2⌦ is randomly chosen. Then the chosen contribution level �(!) in that state is changed ran-
domly, such that all alternative contribution levels have the same probability 1/(m� 1) to be
chosen.

(iii) Mutation in the number of states (‘Remove a state’). When this mutation occurs, one state !2⌦ is
randomly chosen. This state is then removed from ⌦. All transitions that lead into this state are
randomly and independently redirected. All remaining states have the same probability to be the
new target of these redirected transitions.

(iv) Mutation in the number of states (‘Add a state’). When this mutation occurs, a new state !0 is added
to the set ⌦. For each pair (!0

, x), the outgoing transitions µ(!0
, x) are determined randomly, such

that all states in ⌦ have the same probability to be the target (including the new state). In addition,
one of the existing transitions among the previous states is randomly chosen, and randomly redi-
rected towards the new state. That is, a pair (!, x) with ! 6=!

0 is randomly chosen, and the value
of µ(!, x) is changed to !

0.

As in the case of memory-1 strategies, we assume that the player then compares his previous payoff
⇡i with the payoff ⇡̃i he could have got when using the mutated automaton Ã. The player switches
to the mutated automaton with probability ⇢s(⇡i, ⇡̃i), as defined in Eq. (26). This elementary updating
process is then again iterated for T time steps. This yields two sequences

⇣
A1(0), . . . ,A1(T )

⌘
and

⇣
A2(0), . . . ,A2(T )

⌘
, where Ai(t) is the automaton used by player i after t time steps. Based on this

sequence, we calculate the average cooperation rate over the entire simulation.
We note that the above mutation scheme is capable of producing every possible finite state automaton

over the set of possible contributions X . Like van Veelen and Garcia59,60, we assume for the simula-
tions that the four types of mutations mentioned occur with probabilities 17.5%, 17.5%, 35%, and 30%,
respectively. We obtain similar results when different probabilities are used (however, for computational
reasons, it is useful to assume that the removal of a state is more likely than adding a new state).

Simulation results. To compare the evolutionary dynamics among players with finite state automata
with our previous results on memory-1 strategies, we have re-run the simulations of Fig. 3 in the main
text. That is, we consider two scenarios, depending on whether the players’ productivities are equal or
unequal (r1= r2=1.6 compared to r1=1.9> 1.3= r2). In each scenario, we run separate simulations
for different endowment distributions, e12{0, 0.1, . . . , 0.9, 1}. The results are shown in Extended Data

Fig. 6c.
Compared to Fig. 3, we first observe that the simulations based on finite state automata yield some-

what lower cooperation rates overall. This reduced level of cooperation seems to be partly driven by
the differences in the mutation process. In the memory-1 space, we have assumed that every possible
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strategy is equally likely to be the next mutant. In particular, an AllD player may switch to Tit for Tat
within one time step. In contrast, when players use finite state automata, an AllD player can only arrive at
Tit-for-Tat through a sequence of consecutive elementary mutations. This sequence is easily interrupted
once a mutation leads to the removal of a state. As a consequence, we observe that players with finite
state automata tend to defect unconditionally more often than memory-1 players.

However, all qualitative results reported before remain unchanged. When players are equally produc-
tive, we observe that cooperation is most abundant when players obtain equal endowments. Conversely,
when players have different productivities, cooperation rates reach a maximum when the more productive
player obtains more of the endowment. Again, the position of this maximum is reasonably approximated
by the maximally cooperative endowment distribution as computed in Eq. (22).

Overall, the results in Fig. 3 and Extended Data Fig. 6 suggest that our evolutionary results on
the effect of endowment inequality are not sensitive to the considered strategy space. Provided that
the strategy space is kept constant, equal endowments promote cooperation when players are equally
productive. Unequal endowments prove beneficial when players differ in their productivity.

5 Experimental analysis

5.1 Methods and procedures

Recruitment and sample size. To explore the validity of our theoretical results, we have recruited
N = 436 participants on Amazon Mechanical Turk (AMT). AMT is an online labor market which is
routinely used for psychological and economic studies69–71. Participants on AMT receive a base payment
for participation: the base pay was $1.00 in our experiment. In addition, participants may receive further
payments, known as a “bonus payment”, based on their performance in the game. To earn a bonus,
participants could earn tokens during the game which were converted to US dollars at the end of the
game at a rate of 800 tokens = $1.00; the average bonus participants earned was $1.70.

For our experimental study, participants were recruited to interact with each other in pairs. We
implemented the online experiment with SoPHIE, an online platform that allows for real-time interaction
between AMT participants72–74. The sample size was determined in advance based on similar past
research74. We recruited at least 80 participants per condition because we expected that the effect size
for our key predictions would be moderate and that the dropout rate would be about 30%, as previously
observed in similar interactive online experiments73,74. In the end, dropouts were lower than expected
(about 7%; for a detailed dropout analysis, see Section 5.3).

The experiment was approved by the Harvard University Institutional Review Board (Protocol Num-
ber 14306).

Instructions and comprehension. Participants entered the study, read the instructions and had to pass
several comprehension questions before they could continue (the instructions as well as the questions are
provided in the Appendix). If they failed one of the comprehension questions, the relevant instructions
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were shown again so that participants could try again. Only when all questions have been answered
successfully were participants eligible to continue.

After reading the instructions and passing the comprehension questions, participants entered a wait-
ing room. Once at least two participants had arrived, they were paired for the duration of the experiment.
If no other participant arrived within 10 minutes, unpaired participants were redirected to an exit screen,
and thanked for their attention and patience. They received the respective $1.00 base payment for partic-
ipating in the study but no further bonus payment.

Parameters and decisions each round. We implemented five different treatments based on the lin-
ear public good games (7) and (16). The treatments differed in how the initial endowment was dis-
tributed among the players, and in how productive the players’ contributions were (i.e., by which factor
a player’s absolute contributions were multiplied). Specifically, we have used the following parameters
(see also Fig. 4a):

Treatment
Endowment ei Productivity ri

Player 1 Player 2 Player 1 Player 2

(1) Full equality 50 50 1.6 1.6
(2) Endowment inequality 75 25 1.6 1.6
(3) Productivity inequality 50 50 1.9 1.3
(4) Aligned inequality 75 25 1.9 1.3
(5) Misaligned inequality 25 75 1.9 1.3

The parameter values for the treatments (1) – (3) were chosen such that (i) the total size of the endowment
is constant (e1+e2=100), and (ii) the maximum achievable group payoff is the same across conditions.
The parameter values for the treatments (4) and (5) then follow from symmetry considerations. We note
that all parameter values are in line with the four properties (C) – (OC), as introduced in Section 1.

Every pair of participants interacted in at least 20 rounds of the public goods game. To avoid end-
game effects, players knew that in each round after the 20th round, there was a 50% probability that
there would be another round. From this distribution, the average number of rounds was 21.0 with a
range between 20 and 29. Taking into account that due to dropouts some groups did not complete the
game, the average number of rounds actually played was 20.3 with a range between 1 and 29.

In each round, both participants had to decide simultaneously how much to contribute to the pub-
lic good. Participants could contribute any integer value between 0 and ei, the participant’s respective
endowment. After both participants made their decisions, they received all relevant information on the
outcome of this round: each participants’ absolute contributions, their productivity factor, the total pub-
lic good provided by each participant, and the returns from the public good per participant. Participants
then continued to the next round of the game until the end of the game. When the game had ended,
participants were thanked for their participation, and they received their payment.
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Statistical methods. For all our main experimental results, depicted in Fig. 4 and Extended Data

Figs. 7–10, we used non-parametric tests (Mann-Whitney test for between-treatment comparisons, and
Wilcoxon signed-rank test for within-treatment comparisons). For these tests, we considered groups of
two players as our statistical unit. We used two-tailed tests throughout. For between-treatment com-
parisons, we restrict ourselves to comparisons where the players’ productivity is kept fixed but their
endowments may vary. That is, we compare the two treatments (1) and (2), and we separately compare
the treatments (3), (4), and (5). In this way our results indicate, for given productivities of the players,
how a redistribution of endowments would affect the players’ contributions to the public good.

When we report results on the players’ contributions, we consider their relative contributions (i.e.,
which fraction of their endowment the players contribute, corresponding to the variable x in our theo-
retical model). As a consequence, we note that even when we find that a high-endowment player gives
relatively less than a low-endowment player (x1<x2), the high-endowment player’s absolute contribu-
tions may still be higher (when e1x1>e2x2).

For our analysis, we only consider the first twenty rounds of the game because this was the minimum
number all groups had in common. Moreover, for the results in the main text and in the following
section, we have excluded groups in which at least one participant dropped out half-way through the
game. However, in Section 5.3 we repeat our analysis using imputed values for the dropout groups
instead. All our main results remain unchanged. Unless noted otherwise, all statistical tests have been
performed with Stata SE 15.1.

5.2 Results

Average payoffs and contributions across treatments. In Fig. 4, we have depicted the players’ average
contributions across the five treatments, as well as the resulting surplus (i.e., the difference between the
players’ payoffs and their initial endowments, relative to the initial endowments).

When players are equally productive, we find that their total contributions make up 72.2% of their en-
dowment in the full equality treatment, compared to 49.0% under endowment inequality (Mann-Whitney
test, Z=2.813, p=0.005). As a direct consequence, the two treatments also differ in the generated sur-
plus, which is 43.3% under full equality but only 29.4% under endowment inequality (Mann-Whitney
test, Z=2.813, p=0.005).

For the case where players have unequal productivities, we find no significant differences in the
players’ contributions between productivity inequality and aligned inequality: players contribute 72.8%
of their endowment under productivity inequality and 73.5% under aligned inequality (Mann-Whitney
test, Z = 0.844, p = 0.399). However, both of these treatments differ significantly from the treatment
with misaligned inequality, where players only contribute 45.5% of their endowment (Mann-Whitney
tests, treatments (3) vs. (5): Z = 3.818, p < 0.001; (4) vs. (5): Z = 3.825, p < 0.001). With regard
to the generated surplus all three treatments differ from one another. As predicted by our theoretical
analysis, aligned inequality yields the highest surplus (the respective values are (3): 43.8%, (4): 55.1%,
(5): 23.1%; Mann-Whitney tests, (3) vs. (4): Z = 3.357, p < 0.001; (3) vs. (5): Z = 4.592, p < 0.001;
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(4) vs. (5) Z=4.802, p<0.001).

Comparing the contributions of the two players. In Extended Data Fig. 7 we show the contributions
and payoffs for each treatment, separately for the two players.

As one may expect, in the full equality treatment there are no differences in the players’ contributions
and payoffs. The average contribution of players 1 and 2 are 72.3% and 72.2%, respectively, and their
payoffs are 71.63 tokens and 71.69 tokens per round, respectively (Wilcoxon test, Z=0.784, p=0.433).

Under endowment inequality, the relative contributions of the high-endowment player 1 fall below
the contributions of player 2, their average contributions being 47.2% and 54.4%, respectively (Wilcoxon
text, Z = 2.194, p = 0.028). As a consequence, the high-endowment player keeps more of their own
units and thus earns a substantially higher payoff of 78.8 tokens, compared to the 50.6 tokens for the
low-endowment player (Wilcoxon test, Z=5.098, p<0.001).

Under productivity inequality, we find that the relative contributions of the two players are similar,
with the more productive player 1 contributing 73.4% of her endowment on average, and the less pro-
ductive player 2 contributing 72.2% (Wilcoxon test, Z=0.380, p=0.704). As a result, also their payoffs
are comparable, 71.6 tokens and 72.2 tokens, respectively (Wilcoxon test, Z=0.366, p=0.714).

We find a similar agreement in the players’ contributions under aligned inequality. Here the high-
endowment and high-productivity player 1 contributed 73.4% of her endowment, whereas the low-
endowment and low-productivity player 2 contributed 73.8% (Wilcoxon test, Z = 0.705, p = 0.481).
However, since the players are not fully cooperative and player 1’s initial endowment is higher, player 1
obtains a higher payoff on average, with 84.2 tokens compared to 70.8 tokens (Wilcoxon test, Z=3.239,
p=0.001).

Finally, under misaligned inequality, the players differ in both their contributions and their even-
tual payoffs. Whereas player 1 contributes 62.9% of her endowment and earns a payoff of 43.5 tokens,
player 2 contributes 39.7% of his endowment and earns 79.5 tokens (Wilcoxon tests, contributions:
Z=4.234, p< 0.001; payoffs: Z=5.464, p<0.001).

Dynamics of cooperation over time. In Extended Data Fig. 8 we show how much the two players in
each treatment have contributed over time. To test whether there is any significant time trend within a
treatment, we have compared the players’ total contributions during the first five rounds with their total
contributions during the last five rounds. For four of the five treatments we find no significant trends over
time (Wilcoxon tests, p>0.1 for all four of these treatments); only under endowment inequality, we find
that overall contributions slightly decrease, from 54.0% during the first five rounds to 43.9% during the
last 5 rounds (Wilcoxon test, Z=2.578, p=0.010).

Reciprocal behavior across the five treatments. To gain some insights into the players’ strategies,
we have analyzed to which extent their behaviors are guided by reciprocity considerations. To this end,
we say that a player’s relative contribution is reciprocal if it matches or exceeds the co-player’s relative
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contribution in the previous round. That is, if one player contributes 60% of her endowment in one
round, a reciprocal co-player would contribute at least 60% of his endowment in the following round. As
illustrated in Extended Data Fig. 10, a majority of the players’ contribution decisions can be classified
as reciprocal, such that the frequency of reciprocal behavior is typically between 70% and 90%.

The only exception is the treatment with misaligned inequality. Here, the low-endowment high-
productivity player 1 reciprocates in 85.9% of all rounds, whereas the high-endowment low-productivity
player 2 only reciprocates in 44.9% of all cases (Wilcoxon test, Z = 4.252, p < 0.001). To explore
this mismatch in the players’ reciprocity in more detail, Extended Data Fig. 9 shows the players’ joint
contribution decisions. For misaligned inequality, we observe that in a substantial fraction of rounds, the
two players coordinate on a state where they both give the same absolute amount to the public good (for
example, in 12.4% of the cases, both players contribute 25 tokens, which is the maximum contribution
for player 1, but only a third of player 2’s endowment). As a result, player 1’s relative contributions
systematically exceed the relative contributions of player 2.

5.3 Robustness of the statistical results

As is usual in online experiments, some groups did not complete the study because players decided to
drop out. These instances could potentially confound our analysis if there is a correlation between the
game situation a participant experiences and his decision to leave the experiment. To quantify the effect
of dropouts, we have performed two separate analyses. First, we have explored whether there are some
systematic patterns in the groups that dropped out. Second, we have repeated all our statistical tests using
imputed values for the groups that did not complete the study. Both analyses suggest that our statistical
results are robust with respect to attrition.

Dropout analysis. Here, we investigate whether selection bias may have occurred on the basis of exoge-
nous or endogenous variation (e.g. depending on the assigned treatment, or on the experienced contri-
bution behavior during the game). In total, fifteen out of 218 groups (6.9%) did not complete the game
because at least one of the players dropped out. The following table shows how many groups completed
the experiment in each treatment.

Treatment
Completed game

Total
No Yes

(1) Full equality 2 42 44
(2) Endowment inequality 1 42 43
(3) Productivity inequality 3 40 43
(4) Aligned inequality 5 39 44
(5) Misaligned inequality 4 40 44

Total 15 203 218
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Most dropouts occurred in the treatment with aligned inequality (4), whereas the fewest groups
dropped out in the endowment inequality treatment (1). When we use the data of this table to test whether
dropouts depend on the treatment, we find no significant association (Fisher’s exact test, p=0.531).

Next we have explored whether dropouts are associated with other variables, such as the group’s co-
operation dynamics. To this end, we have explored several logistic regression models. Because dropouts
are comparably rare, standard logistic regression can fail due to the problem of “separation”75. In that
case, the estimate for the regression parameter diverges and the maximum likelihood estimate does not
exist. We observe this divergence for our endowment inequality treatment, for which there is only a
single group that dropped out. To address this problem, we use Firth’s logistic regression76 instead,
with standard errors clustered at the group level. We have verified that in those cases in which standard
logistic regression produces finite parameter estimates, the results are qualitatively similar.

We have first explored whether less cooperative groups are more likely to drop out. As the indepen-
dent variable we use the average sum of contributions across all rounds for each group. This variable
takes values between 0 (if neither player ever contributed anything) and 100 (if both players always con-
tributed everything). As the dependent variable we use an indicator variable with values 0 or 1 (dropped
out or completed the game, respectively). When we pool across all conditions, there is no significant
relationship between the dropout status of a group and the average contributions in a group (p=0.309).

Next, we add a variable for the condition assignment to this logistic regression (1 = full equality,
2 = endowment inequality, 3 = productivity inequality, 4 = aligned inequality and 5 = misaligned in-
equality). As before, average contributions do not predict dropout (p=0.409). Furthermore, none of the
condition indicators are significant (p-value of (2) endowment inequality dummy: p = 0.754; (3) pro-
ductivity inequality: p=0.655; (4) aligned inequality: p=0.269; (5) misaligned inequality: p=0.517).
These results suggest that there is no significant relationship across conditions between average contri-
butions and whether or not the group completes the game.

We also consider each treatment separately. We use Firth’s logistic regression with the same indepen-
dent and dependent variables at the group level, but now for each treatment. The sum of contributions
is not a significant predictor of group dropout in the full equality (p = 0.579), endowment inequality
(p=0.313), productivity inequality (p=0.736), aligned inequality (p=0.271) or misaligned inequality
(p=0.319) conditions.

Finally, we explore whether treatment assignment and contribution dynamics jointly affect dropouts.
To this end, we pool across all conditions. As the independent variables, we use

(i) the sum of contributions (ranging between 0 and 100, abbreviated as SOC below),

(ii) the five condition indicators (1 = full equality, 2 = endowment inequality, 3 = productivity inequal-
ity, 4 = aligned inequality, 5 = misaligned inequality; full equality is also the baseline group for
comparisons) and

(iii) the interaction term between these two variables.

The dependent variable is 0 if the group dropped out or 1 if the group completed the game. We find
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that none of the interaction terms are significant predictors of dropout (SOC interacted with endowment
inequality indicator: p=0.646; with productivity inequality indicator: p=0.815; with aligned inequality
indicator: p= 0.330; with misaligned inequality indicator: p= 0.881). A post-hoc comparison of the
interaction coefficients also does not reveal any significant differences (comparisons of interaction terms:
SOC⇥ (2) vs. SOC⇥ (3): p= 0.487; SOC⇥ (2) vs. SOC⇥ (4): p= 0.185; SOC⇥ (2) vs. SOC⇥ (5):
p=0.705; SOC⇥(3) vs. SOC⇥(4): p=0.386; SOC⇥(3) vs. SOC⇥(5): p=0.652; SOC⇥(4) vs. SOC
⇥(5): p=0.152).
Overall, we find no indication that there is a systematic bias in the players’ dropout decisions.

Robustness analysis with imputed missing values. For the experimental results reported in Section 5.2
we have only considered groups that have completed the game. In the following, we provide a comple-
mentary analysis in which we include missing data using a multiple imputation scheme.

Specifically, we apply the iterative, non-parametric imputation method introduced by Stekhoven and
Bühlmann77. Their ‘missForest’ imputation method uses random forests (RF), which is a supervised
machine learning method based on an iterative decision tree process. In our case, the generated trees split
at nodes of variables that predict contributions on the basis of the existing data and makes predictions
about the missing values. As is common with RF procedures, the final dataset of predicted values is then
tested and validated against a hold-out sample.

As predictors we use treatment assignment, round, player type, endowment, productivity and non-
missing contributions. Using these variables, we predict out-of-sample the missing contributions of
dropout groups. The parameters for the missForest function in R were as follows. We kept the standard
number of trees supplied to the RF method (100), because our data is not high-dimensional. Decreasing
or increasing the number of trees did not change the results. We set the maximum iteration parameter for
the imputation procedure to 10 such that after 10 iterations, the procedure is forced to a hard-stop if it has
not met its stopping criteria. The stopping criteria are such that after each iteration, the previous and the
current imputed data matrix are compared. If the difference between them goes up for the first time, the
most recent imputed dataset is returned. In practice, the stopping criteria were met after 4 iterations and
the hard-stop was not enforced. The missForest function returns the normalized root mean squared error
(NRMSE) to assess how the final imputed dataset fared in the out-of-sample prediction; the NRMSE was
0.000016 in our computations, suggesting a low error rate.

With the imputed dataset, we repeat the same analysis as in the previous Section 5.2. The results
are summarized in Supplementary Table 1 (for the two treatments in which players have equal pro-
ductivities) and in Supplementary Table 2 (for the three treatments in which players have different
productivities). In each case, the left column (‘main sample’) displays our previous results based on
only those groups who completed the study. The right column (‘Imputed sample’) shows the new results
using the data of all groups, based on the imputation method described above. As before, we use non-
parametric Mann-Whitney tests for between-treatment comparisons, and Wilcoxon signed-rank tests for
within-treatment comparisons (two-tailed).
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Main sample Imputed sample

Contributions (1) 72.2% vs. (2) 49.0%, Z=2.813** (1) 73.4% vs. (2) 50.2%, Z=2.847**

Surplus (1) 43.3 vs. (2) 29.4, Z=2.813** (1) 44.0 vs. (2) 30.1, Z=2.847**

Player 1 vs. Player 2

Contributions
(1) 72.3% vs. 72.2%, Z=0.765 (1) 73.5% vs. 73.3%, Z=0.524
(2) 47.2% vs. 54.4%, Z=2.194* (2) 48.5% vs. 55.4%, Z=2.234*

Player 1 vs. Player 2

Payoffs
(1) 71.6 vs. 71.7, Z=0.784 (1) 72.0 vs. 72.1, Z=0.548
(2) 78.8 vs. 50.6, Z=5.098*** (2) 78.8 vs. 51.3, Z=5.159***

First versus last

five rounds

(1) 71.1% vs. 72.8%, Z=0.350 (1) 72.3% vs. 73.9%, Z=0.367
(2) 54.0% vs. 43.9%, Z=2.578** (2) 55.0% vs. 45.1%, Z=2.653**

Player 1 vs. Player 2

Reciprocity
(1) 90.0% vs. 88.5%, Z=0.804 (1) 90.3% vs. 88.5%, Z=0.552
(2) 71.6% vs. 80.1%, Z=1.449 (2) 72.1% vs. 80.5%, Z=1.533

Supplementary Table 1: Results for main and imputed samples under equal productivites. Bold numbers in
brackets refer to the respective treatment, (1) Full equality, (2) Unequal endowments. The number of data points
is N1=N2=42 (left column) and N1=44, N2=43 (right column), respectively.
* p< 0.05, ** p< 0.01, *** p< 0.001, using either a Mann-Whitney test (for between-treatment comparisons) or
a Wilcoxon signed-rank test (for within-treatment comparisons). All tests are two-tailed.

Main sample Imputed sample

Contributions

(3) 72.8% vs. (4) 73.5%, Z=0.844 (3) 73.5% vs. (4) 72.4%, Z=0.420
(3) 72.8% vs. (5) 45.5%, Z=3.818*** (3) 73.5% vs. (5) 44.5%, Z=4.226***
(4) 73.5% vs. (5) 45.5%, Z=3.825*** (4) 72.4% vs. (5) 44.5%, Z=4.114***

Surplus

(3) 43.8 vs. (4) 55.1, Z=3.357*** (3) 44.2 vs. (4) 54.1, Z=3.014**
(3) 43.8 vs. (5) 23.1, Z=4.592*** (3) 44.2 vs. (5) 22.5, Z=4.986***
(4) 55.1 vs. (5) 23.1, Z=4.802*** (4) 54.1 vs. (5) 22.5, Z=5.262***

Player 1 vs. Player 2

Contributions

(3) 73.4% vs. 72.2%, Z=0.380 (3) 73.8% vs. 73.1%, Z=0.414
(4) 73.4% vs. 73.8%, Z=0.705 (4) 71.9% vs. 74.0%, Z=1.181
(5) 62.9% vs. 39.7%, Z=4.234*** (5) 61.2% vs. 39.0%, Z=4.575***

Player 1 vs. Player 2

Payoffs

(3) 71.6 vs. 72.2, Z=0.366 (3) 71.9 vs. 72.3, Z=0.401
(4) 84.2 vs. 70.8, Z=3.239** (4) 84.3 vs. 69.8, Z=3.899***
(5) 43.5 vs. 79.5, Z=5.464*** (5) 43.2 vs. 79.3, Z=5.736***

First versus last

five rounds

(3) 73.3% vs. 70.8%, Z=1.085 (3) 73.7% vs. 72.5%, Z=1.034
(4) 73.2% vs. 74.6%, Z=0.079 (4) 70.9% vs. 73.8%, Z=0.602
(5) 50.1% vs. 44.1%, Z=1.472 (5) 50.3% vs. 42.8%, Z=2.049*

Player 1 vs. Player 2

Reciprocity
(3) 83.6% vs. 84.3%, Z=0.492 (3) 83.6% vs. 84.2%, Z=0.454
(4) 85.2% vs. 88.1%, Z=0.280 (4) 77.6% vs. 87.4%, Z=1.036
(5) 85.9% vs. 44.8%, Z=4.252*** (5) 86.8% vs. 43.1%, Z=4.648***

Supplementary Table 2: Results for main and imputed samples under unequal productivities. Bold numbers
in brackets refer to the respective treatment, (3) Unequal productivies, (4) Aligned inequality, (5) Misaligned
inequality. The number of data points is N3 = 40, N4 = 39, N5 = 40 (left column) and N3 = 43, N4 = 44 and
N5=44, respectively.
* p< 0.05, ** p< 0.01, *** p< 0.001, using either a Mann-Whitney test (for between-treatment comparisons) or
a Wilcoxon signed-rank test (for within-treatment comparisons). All tests are two-tailed.
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According to the two tables, the main sample and the imputed sample yield qualitatively and quan-
titatively similar results. In fact, across all tests, there is only one difference. For the treatment with
misaligned inequality, we have reported in the previous section that there is no significant trend in the
players’ contributions over time. Players contribute 50.1% of their endowment during the first five rounds
of the experiment, whereas they contribute 44.1% during the last five rounds (Z = 1.472, p = 0.141).
In contrast, for the imputed sample, the trend becomes significant. According to the imputed sample,
contributions start at 50.3% during the first five rounds and drop to 42.8% during the last five rounds
(Z=2.049, p=0.041, see Supplementary Table 2).

Overall this additional analysis based on imputed data suggests that the major conclusions of our
experiment remain unchanged. When players have equal productivities, equal endowments result in the
highest surplus. In contrast, when players differ in their productivities, the highest surplus is achieved
under aligned inequality, where the most productive player receives a larger share of the endowment.

Robustness with respect to multiple testing. In the previous analyses, we have tested multiple hy-
potheses, and we have reported individual test statistics. Running multiple tests on the same data set
increases the risk that some null hypotheses are rejected by chance, even if all hypotheses were true78.
A commonly employed guard against such false discoveries is the Bonferroni correction, which makes
an adjustment to the relevant threshold for the p-value, based on the number of hypotheses tested79.
More specifically, if h is the number of tested hypotheses and ↵ is the significance level of interest (e.g.,
↵=0.05 or ↵=0.01), then the Bonferroni corrected significance level becomes ↵/h.

In the following, we explore which of our key results reported in the main text remain valid if we
use the Bonferroni method to correct for multiple testing. In Fig. 4, we explore the impact of inequality
on two quantities, total contributions and generated surplus. To explore whether there are significant
differences between treatments for these two quantities, we have performed eight statistical tests in total
(see the first two rows in Supplementary Table 1 and Supplementary Table 2). As a consequence,
the Bonferroni corrected significance levels become 0.05/8 = 0.00625 (1 asterisk), 0.01/8 = 0.00125

(2 asterisks), and 0.001/8=0.000125 (3 asterisks).
Using these stricter significance levels, we find that all our main text conclusions remain valid after

applying the Bonferroni correction. For example, for equal productivities we have found that unequal
endowments lead to lower contributions and a reduced surplus. The corresponding p-value of p=0.005

remains significant even if we correct for multiple testing (although the relevant significance level is now
0.05/8, i.e., one asterisk instead of two). Similarly, we also find for the treatments with unequal pro-
ductivities that all reported differences in the players’ contributions and their surplus remain significant
(although the number of asterisks may again change).

In sum, this analysis suggests that our key findings reported in the main text remain unchanged if we
account for multiple testing.
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6 Discussion

In this last section, we close by critically reviewing some of our model assumptions, and by suggesting
a few model extensions for future work.

On the rigidity of endowments and productivities. In the main text, we have discussed our frame-
work by focusing on a linear public good game where players may differ in their endowments and their
productivities. When comparing the players’ contributions across different public good games, we have
often tacitly assumed that a player’s productivities are given, whereas their endowments can be varied.
There are two reasons why we consider this assumption to be useful.

First, we believe that in many applications, the players’ endowments are best interpreted as their
monetary resources, whereas their productivities could reflect their skills. In such a scenario, it is plausi-
ble to assume that in the short run, endowments are more amenable to interventions than productivities.

The second reason is of a more conceptual nature. When comparing the outcome of different pub-
lic good games, one needs to make sure that games are commensurable. In the case of endowments,
there exists a natural linear budget constraint: after any endowment redistribution, the sum of total en-
dowments needs to remain unchanged. This budget constraint allows us to compare the consequences
of different endowment distributions (provided they all sum up to the same value). With respect to the
players’ productivities, it is somewhat less clear what the appropriate budget constraint would be. In
some cases it may again be natural to assume that the sum over all players’ productivities is constant.
In some other cases, however, it may be more natural to assume that it becomes disproportionally diffi-
cult to further increase the productivity of individuals who already are highly productive. To allow for
a clean comparison, we have thus decided to take the players’ productivities as fixed, and to vary their
endowments. However, our framework and our analytical results are general. Once a budget constraint
for the players’ productivities is specified, our theoretical results immediately apply.

Public good contributions and taxation. In our model we do not consider the process by which endow-
ments could be redistributed among players. Instead, we take different distributions as given and explore
their impact on cooperation and welfare. However, there seem to be natural parallels between our frame-
work and the question of how a social planner should set the tax rate in a population. This social planner
might collect some of the group members’ endowments and redistribute them. Alternatively, the social
planner might directly invest the collected endowments into the public good.

It is not clear how this latter mechanism could be mapped onto our framework. As a first approx-
imation, one could assume that in addition to the players 1,...,n there is another player 0 (the social
planner). Player 0 has no own endowment. Instead Player 0 determines a tax rate T , which all other
group members need to pay. Depending on the implementation of the tax, it may either be a player’s
total endowment that is subject to taxation, or only the proportion of the endowment the player decided
to withhold. Given the implemented tax, all players 1,...,n would then decide how much to contribute to
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the public good. Again, these contributions would be multiplied by some individual factor ri. In addi-
tion, the total amount of tax collected is multiplied by r0. The resulting sum is then equally distributed
among all n group members (excluding Player 0).

In this extended framework, the problem of optimal taxation can be studied as a problem of mech-
anism design. How should the social planner set the tax rate T , and which implementation should be
chosen, in order to maximize group payoffs? A particularly interesting case might arise if the social
planner’s own productivity r0 is considerably below the maximum productivity maxi ri of the group
members.

However, we note that the above account of taxation abstracts away several important aspects. For
example, it assumes that players and the social planner would routinely contribute to the same public
good. In many applications it seems instead more natural that individuals can choose between different
public goods (e.g., creating new jobs versus donating money to universities). This choice might in turn
depend on which public good is most relevant to the respective individual. Due to these intricacies,
we have refrained from modeling taxation explicitly, and leave it for future research instead. A related
question is which kind of taxation a population considers as fair, which hinges heavily on perceptions of
income inequality in a society80.

Central institutions and corruption. Herein, we have explored how cooperation in asymmetric groups
can emerge when individuals interact repeatedly. In our model, individuals cooperate because there is
a shadow of the future. If subjects were to withhold their contributions, they risk that also other group
members reduce their contributions in subsequent rounds.

Instead, there is also a rich theoretical and experimental literature that explores the effects of central-
ized or decentralized punishment institutions on cooperation81–86. A few of these experimental studies
explicitly take into account that players may be heterogeneous29,36,39. However, it seems to us that a full
theoretical understanding of how punishment institutions act in asymmetric groups is still missing.

In this context, it may also interesting to study how the efficiency of central punishment institutions is
undermined by bribery and corruption87. In the context of homogeneous groups, corruption possibilities
can lead to a large decrease in public good provisioning, with the exact welfare losses depending on the
cultural background of a society, the implemented transparency rules, and the extent to which leaders
themselves are invested in the public good88. In the context of heterogeneous groups, corruption may
have further detrimental implications. For example, when players with a higher endowment are better
capable of bribing public sanctioning institutions, any efficiency advantages of unequal endowments may
be dampened or reversed. While our present framework does not address these issues, we believe these
questions are worthwhile of further study.
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7 Appendix

7.1 Proofs

Proof of Proposition 1.
(1) ) (2) Suppose e 2 Eu(�). Then there is a strategy for each player such that no player has an

incentive to deviate by not cooperating in every round, for the given endowment distribution e. In
the following, we refer to players who play their equilibrium strategy as ‘residents’, and to players
who deviate as ‘mutants’. If all players are residents, the equilibrium payoff is ⇡R = ui(e,1).

Now suppose player i considers deviating by using the strategy ALLD instead. Then her payoff in
the first round is ui(e,1�i). Due to Property (PE), her payoff in all subsequent rounds is at least
ui(e,0). Hence, the mutant payoff to a deviating ALLD player is at least

⇡M � (1��)ui(e,1�i) + �ui(e,0). (31)

Since the strategies of the residents form a subgame perfect equilibrium, we can conclude that

(1��)ui(e,1�i) + �ui(e,0)  ui(e,1), (32)

or equivalently,
�

⇣
ui(e,1�i)�ui(e,0)

⌘
� ui(e,1�i)�ui(e,1). (33)

(2) ) (3) To prove that Grim is a subgame perfect equilibrium, we can make use of the one-shot de-
viation principle44. That is, we only need to show that no mutant can get a higher payoff if she
deviates in one round, and acts exactly as the other residents in all subsequent rounds. To this
end, let us first assume that we are in the first round, or that all players have contributed their
full endowment in all previous rounds. As the residents apply the strategy Grim, they continue to
contribute their full endowment in the next round. A one-shot deviation consists in contributing
an amount lower than the full endowment. In that case, Property (IF) implies that the maximum
one-shot deviation payoff can be achieved by not contributing at all, in which case the continuation
payoff becomes

⇡M = (1��)ui(e,1�i) + �ui(e,0). (34)

Given the assumptions in (2), this continuation payoff is at most the resident payoff ui(e,1).

Alternatively, let us now assume that players did not contribute their full endowment in all past
rounds. In that case, a one-shot deviation requires player i to contribute a positive amount in the
next rounds, whereas all other players continue to contribute nothing. By Property (IF), such a
deviation is unprofitable.

(3) ) (1) Since in a group of Grim players everyone contributes her full endowment in every round, and
since Grim forms a subgame perfect equilibrium by assumption, full cooperation is feasible.
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Proof of Proposition 2.

1. Suppose e2Eu(�). Because of Proposition 1, it follows that

�
�
ui(e,1�i)�ui(e,0)

�
� ui(e,1�i)�ui(e,1).

Since �
0
> � by assumption and ui(e,1�i)�ui(e,0) because of Property (PE), it follows that

�
0�
ui(e,1�i)�ui(e,0)

�
� �

�
ui(e,1�i)�ui(e,0)

�
� ui(e,1�i)�ui(e,1).

Therefore, again by Proposition 1, e2Eu(�0).

2. Consider the map ' :�n!�n, where �n is the n-dimensional unit simplex, defined by

'(e)=
u(e,1)

U(e,1)
.

Because u(e,x) is continuous in e due to property (C), and because U(e,1)>U(e,0)=1 due to
property (OC), we conclude that ' is continuous. Since �n is compact and convex, it follows by
Brouwer’s fixed point theorem that there exists an endowment distribution e0 = (e01, . . . , e

0
n) such

that '(e0)=e0. As a consequence, we obtain that for all players i the following relationship holds,

ui(e
0
,1) = U(e0,1) · e0i > e

0
i = ui(e

0
,0). (35)

Let us now define �
0 by

�
0 = max

i

⇢
ui(e0,1�i)� ui(e0,1)

ui(e0,1�i)� ui(e0,0)

�
. (36)

By inequality (35), �0 < 1. Moreover, e0 2 Eu(�0) because the inequalities in condition (6) are
satisfied by construction of �0. The claim that Eu(�) 6= ; for all �� �

0 then follows from the first
part of this proof.

Proof of Proposition 3. For a public good game with payoff function u and continuation probability �,
we define the following function with respect to player i,

Fi(e) = �

⇣
ui(e,1�i)�ui(e,0)

⌘
�
⇣
ui(e,1�i)�ui(e,1)

⌘
. (37)

According to Proposition 1, full cooperation is feasible for some given endowment distribution e if and
only if Fi(e)�0 for all i. In the special case that player i is given the whole endowment (that is, e is such
that ei=1 and ej =0 for all j 6= i), it follows from Property (PE) that ui(e,1�i)=ui(e,0), whereas it
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follows from Property (IF) that ui(e,1�i)>ui(e,1). For that endowment distribution e we thus obtain
Fi(e)<0. Since u(e,x) is continuous in e because of Property (C), Fi(e) is continuous as well. Hence
there is an "i > 0 such that Fi(e0)< 0 for all e0 for which e

0
i > 1�"i. That is, for all such endowment

distributions e0, cooperation is infeasible.

The proofs of Propositions 4 and 5 is by example, provided in Sections 3.2 and 3.3. The proof of
Proposition 6 is by iterated application of the following Lemma.

Lemma. Consider a standard public goods game with payoffs according to Eq. (10), and assume pro-
ductivities satisfy r1< . . .< rn. Let e1 be an endowment vector for which endowments are not ordered
according to the players’ productivities, such that there is an index k such that e1k > e

1
k+1. Let e2 be

the endowment vector for which e
2
k = e

1
k+1, e2k+1= ek and e

2
j = e

1
j for all other j. If full cooperation is

feasible for e1 then so it is for e2.

Proof. Rewriting the condition (11), it follows that cooperation is feasible for a given endowment distri-
bution e if and only if

�
n� (1��)ri

�
ei  �

nX

j=1

rjej (38)

for all players i. Equivalently, if we define the two auxiliary functions G(e) := maxi
��

n� (1��)ri
�
ei
 

and H(e) := �
Pn

j=1 rjej , cooperation is feasible if and only if G(e)  H(e). Now, using the properties
of the two given endowment vectors e1 and e2, we have

�
n�(1��)rk

�
e
2
k =

�
n�(1��)rk

�
e
1
k+1 <

�
n�(1��)rk

�
e
1
k�

n�(1��)rk+1
�
e
2
k+1 =

�
n�(1��)rk+1

�
e
1
k 

�
n�(1��)rk

�
e
1
k,

and
�
n�(1��)rj

�
e
2
j =

�
n�(1��)rj

�
e
1
j

for all other j /2 {k, k+1}. Thus, we can conclude

G(e2)  G(e1). (39)

On the other hand, we have

H(e1) = �

X

j /2{k,k+1}

rje
1
j + �(rke

1
k + rk+1e

1
k+1)  �

X

j /2{k,k+1}

rje
1
j + �(rke

1
k+1 + rk+1e

1
k) = H(e2). (40)

Thus, if cooperation is feasible for e1, and hence G(e1)  H(e1), it follows that

G(e2)  G(e1)  H(e1)  H(e2). (41)
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That is, cooperation is feasible for the endowment vector e2.

The proof of Propositions 7 is again by example, which is provided in Section 3.4. The proof of Propo-
sition 8 is as follows.

Proof of Proposition 8. For arbitrary continuation probability � and endowment distribution e = (e1, e2)

it follows from Eq. (6) that e 2 Eu(�) if and only if

� c12 e2 � �c11 e1

� c21 e1 � �c22 e2.
(42)

Dividing both inequalities by e2 (which is positive due to Proposition 3), we obtain that e2Eu(�) if and
only if

�c22

� · c21
 e1

e2
 � · c12

�c11
. (43)

In particular, an endowment distribution e 2 Eu(�) exists if and only if �c22/
�
�c21

�
 �c12/(�c11).

This condition yields ���
⇤
u, with �

⇤
u as defined by the first equation in (21). Plugging this �⇤u into either

the left hand side or the right hand side of condition (43) shows that e1/e2 is given by the second equation
in (21).

Proof of Proposition 9. The proof is similar to the proof of Proposition 1, by employing the one-shot
deviation principle44. That is, we show that no mutant can get a higher payoff by deviating for one
round, and by reverting to WSLS thereafter. We consider two cases, depending on whether the history
is such that the n�1 residents would cooperate (contribute their full endowment) or defect (contribute
nothing). Let us first consider the case where players are either in the first round, or they have all chosen
the same relative contribution in the previous round. As the residents use WSLS, they cooperate. By
sticking to the resident strategy the mutant i obtains the usual resident payoff

⇡R = ui(e,1). (44)

If the mutant decides to deviate for one round instead, the best possible deviation is to contribute nothing
at all. In that case the mutant’s continuation payoff is

⇡M = (1� �)ui(e,1�i) + �

⇣
(1��)ui(e,0) + �ui(e,1)

⌘
. (45)

For WSLS to be a subgame perfect equilibrium we require ⇡R � ⇡M , which yields the inequality (28).
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As the second case, assume now that players differed in their last round’s contributions. In that case, by
adhering to the resident strategy WSLS player i obtains the continuation payoff

⇡R = (1� �)ui(e,0) + �ui(e,1). (46)

If the mutant instead contributes some positive amount in the next round, it follows from Property (IF) that
her continuation payoff is at most

⇡M = (1� �
2)ui(e,0) + �

2
ui(e,1). (47)

In particular, since ui(e,1)�ui(e,0) due to Property (OC), we can conclude that ⇡R�⇡M .

Proof of Proposition 10.

1. By Proposition 9, an endowment distribution e satisfies e2E
W
u (�) if and only if

� � ui(e,1�i)�ui(e,1)

ui(e,1)�ui(e,0)
for all players i with ei>0. (48)

Because �
0
>�, e2E

W
u (�) thus implies e2E

W
u (�0).

2. For a linear and symmetric public goods game with payoff function (7), Proposition 9 implies that
E

W
u (�) 6=; if and only if there is some endowment vector e such that

max ei 
�c1

�c1 + (1 + �)c2
(49)

Because 1/nmax(ei), it follows that (1/n, . . . , 1/n)2E
W
u (�).

3. As a simple counter-example, consider the asymmetric payoff function (10) where players have
different productivities. Proposition 9 implies that e2E

W
u (�) if and only if

�

0

@ 1

n

nX

j=1

rjej � ei

1

A �
⇣
1� ri

n

⌘
ei for all players i with ei>0. (50)

For the 3-player case with r1=1.1, r2=1.5, r3=2.9 and �=0.5, a straightforward computation
shows that condition (50) is violated for e=(1/3, 1/3, 1/3), but satisfied for e=(0, 1/5, 4/5).

4. For a fixed � and e= (e1, e2), Proposition 9 implies that e2E
W
u (�) if and only if the following

two conditions hold,
�
�
c11e1+c12e2

�
� �c11e1

�
�
c21e1+c22e2

�
� �c22e2.

(51)
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Dividing both inequalities by e2>0 shows that e2E
W
u (�) if and only if

�(1+�)c22
�c21

 e1

e2
 �c12

�(1+�)c11
. (52)

This chain of inequalities can only be met if the left hand’s side is less than the right hand’s side,
which yields the following implicit condition for the minimal continuation probability for which
E

W
u (�) is non-empty,

�

1+�
�
r

c11c22

c21c12
. (53)

By using this lower bound for �/(1+�) and plugging it into (52), we obtain

e1

e2
=

r
c12c22

c11c21
(54)

That is, we have shown that for WSLS to be an equilibrium for the lowest possible continuation
probability, endowments need to meet condition (54), which coincides with the condition for e to
be maximally cooperative. The statement then follows from the first part of this Proposition.

Proof of Proposition 11. The proof is analogous to the proof of Proposition 9, with the only difference
that now all one-shot deviations are required to yield a strictly lower payoff. As a consequence, the
inequality (29) needs to be strict, and all players are required to have a positive endowment, in order to
exclude neutral one-shot deviations. The result then follows from the argument given by Boyd62.
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7.2 MATLAB code used for the evolutionary computations

In the following, we provide the MATLAB algorithms that we have used to (i) calculate the payoffs of
memory-1 players, (ii) simulate the introspection dynamics, and (iii) numerically compute the expected
trajectories for introspection dynamics when players use pure strategies with two possible contributions,
X = {0, 1}. (iv) Moreover, we provide our code for games where players use finite state automata to
represent their strategies. For simplicity, the following code considers groups of size two, which has
been used to create Figs. 3–4 and Extended Data Figs. 1–6 . The respective code for n-player games is
similar, and is available from the authors upon request.

Algorithm to calculate the payoffs in a game between memory-1 players

function [pi,coop,v,COS,M]=payoff(P1,P2,e1,r1,r2,m);

% Output:

% pi, coop, v .. payoffs, cooperation rates, and invariant distribution

% COS .. List of possible outcomes of each round

% M .. transition matrix of the Markov chain

% Input:

% P1 .. mˆ2⇥m matrix that represents player 1’s strategy;

% First m⇥m matrix gives probability to choose contribution x1, etc.

% P2 .. mˆ2⇥m matrix for player 2’s strategy

% e1,r1,r2 .. players’ endowments and their productivities

% m .. number of possible contribution levels, X={0,1/(m-1),...,1}

%% PARAMETERS AND PREPARATIONS %%

e2=1-e1;

pi=zeros(1,2); coop=zeros(1,2); % Initializing the output variables

OS=zeros(mˆ2,2); COS=zeros(mˆ2,2); PayOS=zeros(mˆ2,2);

% Possible outcomes/contributions/payoffs of the one-shot game

for i1=1:m % Going through all possible contribution levels for player 1

for i2=1:m % Same for player 2

j=(i1-1)*m+i2; % Storing i1, i2 in one variable that runs from 1 to mˆ2

OS(j,:)=[i1,i2]; COS(j,:)=[(i1-1)/(m-1), (i2-1)/(m-1)];

PayOS(j,:)=(e1*r1*COS(j,1)+e2*r2*COS(j,2))/2+[(1-COS(j,1))*e1,(1-COS(j,2))*e2];

end

end

%% CONSTRUCTING THE MARKOV CHAIN %%

M=zeros(mˆ2,mˆ2); % Initializing the transition matrix

for i1=1:m, for i2=1:m % Running over the players’ previous actions

for j1=1:m, for j2=1:m % Running over players’ next actions

M((i1-1)*m+i2,(j1-1)*m+j2)=P1(i1+(j1-1)*m,i2) * P2(i1+(j2-1)*m,i2);
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end, end

end, end

v=null(M’-eye(mˆ2)); v=v/sum(v); % Calculating the normalized left eigenvector

pi=PayOS’*v; coop=COS’*v;

% Calculating cooperation rates and payoffs in the case of no discounting

end

Algorithm to simulate the introspection dynamics

function [AvCoop,AvPi,COS,Data]=SimulateIntrospection(e1,r1,r2,epsi,m,s,nGen);

% Output:

% AvCoop, AvPi, AvV .. average cooperation and payoff over course of simulation

% COS .. possible contributions in one-shot game

% Data .. Summary of all parameters used

% Input:

% e1,r1,r2 .. players’ endowments and their productivities

% epsi .. error rate

% m .. number of possible contribution levels, X={0,1/(m-1),...,1}
% s .. strength of selection

% nGen .. number of generations (number of elementary updating events)

%% PARAMETERS AND PREPARATIONS %%

C=clock; rng(C(5)*60+C(6)); % Setting up the random number generator

P1=zeros(mˆ2,m); P2=zeros(mˆ2,m); % Initially, both players use ALLD

[pi,coop]=payoff(P1,P2,e1,r1,r2,m); % Calculate initial payoffs and cooperation

AvPi=pi; AvCoop=coop; % Initialize variables for respective averages

Data=['e1=',num2str(e1), '; r1=',num2str(r1), '; r2=',num2str(r2),...

'; eps=',num2str(epsi), '; m=',num2str(m), '; s=',num2str(s),...

'; nGen=',num2str(nGen)];

%% SIMULATING THE EVOLUTIONARY PROCESS %%

for t=2:nGen

iPop=randi(2); % Randomly choosing a player to update

Mut=getrandomstrategy(m,epsi); % Creating a mutant strategy for that player

% Case 1: Player 1 explores a new strategy

if iPop==1

[piM,coopM,vM,COS]=payoff(Mut,P2,e1,r1,r2,m); % Mutant strategy payoff

rho=1/(1+exp(-s*(piM(1)-pi(1)))); % Player’s updating probability

if rand(1)<rho % If updating occurs

P1=Mut; pi=piM; coop=coopM; % Update respective variables
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end

% Case 2: Player 2 explores a new strategy

else

[piM,coopM,vM,COS]=payoff(P1,Mut,e1,r1,r2,m); % Analogous steps for player

2

rho=1/(1+exp(-s*(piM(2)-pi(2))));

if rand(1)<rho

P2=Mut; pi=piM; coop=coopM;

end

end

% Updating the averages

AvPi=(t-1)/t*AvPi+1/t*pi;

AvCoop=(t-1)/t*AvCoop+1/t*coop;

end

end

function Mut=getrandomstrategy(m,epsi);

% Auxiliary function that creates a sensible mutant strategy

Mut=zeros(mˆ2,m); % Initialize strategy

l=(0:m-1)*m; % Auxiliary vector

for i1=1:m % Running through all previous actions of player 1

for i2=1:m % Running through previous actions of player 2

v=rand(1,m-1); v=[0, v, 1]; v=sort(v); v=diff(v); Mut(i1+l,i2)=v;

% Produces a random stochastic strategy by uniformly drawing a vector v

% in the m-dimensional unit simplex

% To produce a pure strategy, replace above line by following line

% v=zeros(1,m); v(randi(m))=1; Mut(i1+l,i2)=v;

end

end

Mut=(1-epsi)*Mut+epsi/(m-1)*(1-Mut); % Adding errors to the strategy

end

Algorithm to compute expected trajectories of introspection dynamics

function [Coop1,Coop2,XStr1,XStr2,PayMat1,PayMat2,Str,Data]=...

ExpectedIntrospectionDynamics(e1,r1,r2,epsi,s,nGen);

% Output:
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% Coop1, Coop2 .. The players’ cooperation rates over time

% XStr1, XStr2 .. The players’ strategies over time

% PayMat1, PayMat2 .. Payoff matrices for each pair of memory-1 strategies

% Str .. List of all memory-1 strategies in notation (pCC,pCD,pDC,pDD)

% Data .. List of the parameters used

% Input:

% e1,r1,r2 .. players’ endowments and their productivities

% epsi .. error rate

% s .. strength of selection

% nGen .. number of generations (number of elementary updating events)

%% PARAMETERS AND PREPARATIONS %%

e2=1-e1;

POS1=[(r1*e1+r2*e2)/2,r1*e1/2,r2*e2/2+e1,e1]; % One-shot payoffs for player 1

POS2=[(r1*e1+r2*e2)/2,r1*e1/2+e2,r2*e2/2,e2]; % One-shot payoffs for player 2

Str=[0 0 0 0; 0 0 0 1; 0 0 1 0; 0 0 1 1; 0 1 0 0; 0 1 0 1; 0 1 1 0; 0 1 1 1;

1 0 0 0; 1 0 0 1; 1 0 1 0; 1 0 1 1; 1 1 0 0; 1 1 0 1; 1 1 1 0; 1 1 1 1];

% List of all 16 memory-1 strategies with contributions either x=0 or x=1.

ns=size(Str,1); % number of strategies

Data=['e1=',num2str(e1), '; r1=',num2str(r1), '; r2=',num2str(r2),...

'; eps=',num2str(epsi), '; s=',num2str(s), '; nGen=',num2str(nGen)];

%% CREATING PAIRWISE PAYOFF MATRICES FOR EACH PAIR OF MEMORY-1 STRATEGIES %%

PayMat1=zeros(ns,ns); PayMat2=zeros(ns,ns); % Initializing the payoff matrices

CopMat1=zeros(ns,ns); CopMat2=zeros(ns,ns); % Matrices for cooperation rates

for i1=1:ns % Running through all strategies of player 1

for i2=1:ns % Running through all strategies of player 2

s1=Str(i1,:); s2=Str(i2,:);

[pi1,pi2,coop1,coop2]=CalcPay(s1,s2,POS1,POS2,epsi);

PayMat1(i1,i2)=pi1; PayMat2(i1,i2)=pi2;

CopMat1(i1,i2)=coop1; CopMat2(i1,i2)=coop2;

end

end

%% CREATING THE TRANSITION MATRIX W %%

W=zeros(nsˆ2, nsˆ2); % State space: all nsˆ2 combinations of strategies

for i1Old=1:ns % Previous strategy of player 1

for i2Old=1:ns % Previous strategy of player 2

pi1Old=PayMat1(i1Old,i2Old); pi2Old=PayMat2(i1Old,i2Old); % Previous payoffs

% Case 1: Transitions where player 1 is chosen to update

for i1New=1:ns % Running through possible new strategies for player 1

if i1New˜=i1Old
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pi1New=PayMat1(i1New,i2Old); % New payoff

rho=1/(1+exp(-s*(pi1New-pi1Old))); % Update probability

W(ns*(i1Old-1)+i2Old,ns*(i1New-1)+i2Old)=1/(2*(ns-1))*rho;

end

end

% Case 2: Transitions where player 2 is chosen to update

for i2New=1:ns % Running through possible new strategies for player 2

if i2New˜=i2Old

pi2New=PayMat2(i1Old,i2New);

rho=1/(1+exp(-s*(pi2New-pi2Old)));

W(ns*(i1Old-1)+i2Old,ns*(i1Old-1)+i2New)=1/(2*(ns-1))*rho;

end

end

end

end

for k=1:nsˆ2

W(k,k)=1-sum(W(k,:)); % Defining diagonal entries such that total sum is 1

end

%% CALCULATING TRAJECTORIES OVER TIME %%

Coop1=zeros(1,nGen); Coop2=zeros(1,nGen); % Initializing the cooperation vectors

XStr1=zeros(ns,nGen); XStr2=zeros(ns,nGen); % List of the strategies over time

coop1v=zeros(nsˆ2,1); coop2v=zeros(nsˆ2,1);

i1s=zeros(ns,ns); i2s=zeros(ns,ns); % Matrices that indicate which entries

% of W correspond to player 1’s strategy i1s (row) and 2’s strategy i2s (column)

for i=1:ns

i1s(i,:)=ns*(i-1)+1:ns*i;

i2s(i,:)=(0:ns-1)*ns+i;

end

for i=1:ns % Transforming the possible cooperation rates into a vector

coop1v(ns*(i-1)+1:ns*i,:)=CopMat1(i,:);

coop2v(ns*(i-1)+1:ns*i,:)=CopMat2(i,:);

end

v=zeros(1,nsˆ2); v(1)=1; % Initially everyone plays ALLD

for t=1:nGen % Calculating the expected trajectory for each time step

v=v*W; % Iterate process for one time step

Coop1(t)=v*coop1v; Coop2(t)=v*coop2v; % Expected cooperation rate at time t

for i=1:ns

XStr1(i,t)=sum(v(i1s(i,:))); XStr2(i,t)=sum(v(i2s(i,:)));

% Expected frequency of each strategy at time t

end

end
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end

function [pi1,pi2,coop1,coop2]=CalcPay(p,q,POS1,POS2,epsi);

% Subroutine that calculates payoffs and cooperation rates for two players

% with memory-1 strategies p=(pCC,pCD,pDC,pDD) and q=(qCC,qCD,qDC,qDD)

p=p*(1-epsi)+(1-p)*epsi; q=q*(1-epsi)+(1-q)*epsi; % Adding noise

% Creating the transition matrix M

M=[p(1)*q(1), p(1)*(1-q(1)), (1-p(1))*q(1), (1-p(1))*(1-q(1));

p(2)*q(3), p(2)*(1-q(3)), (1-p(2))*q(3), (1-p(2))*(1-q(3));

p(3)*q(2), p(3)*(1-q(2)), (1-p(3))*q(2), (1-p(3))*(1-q(2));

p(4)*q(4), p(4)*(1-q(4)), (1-p(4))*q(4), (1-p(4))*(1-q(4))];

v=null(M’-eye(4)); v=v/sum(v); % v .. normalized left eigenvector of M

pi1=POS1*v; pi2=POS2*v; coop1=v(1)+v(2); coop2=v(1)+v(3);

end

Algorithm when strategies are represented by finite state automata

function [AvgC,AvgPay,Data]=EvolProcFSA(rvec,evec,nCL,s,nGen);

% Output:

% AvgC, AvgPay .. average cooperation and payoff over course of simulation

% Data .. string that stores the used parameter values

% Input:

% rvec=(r1,r2), evec=(e1,e2) .. productivity and endowment vectors

% nCL .. number of different contribution levels (e.g. 2, 3, or 4).

% s .. strength of selection, nGen .. number of updating events.

%% PARAMETERS AND PREPARATIONS

S1=ones(1,nCL+1); S2=S1; % Initially, both players use ALLD (choose first contribution

level, always go to state 1)

n1=1; n2=1; % current number of states of the two finite state automata (FSA)

[pi,coop]=CalcPayoff(S1,S2,rvec,evec,nCL);

AvgPay=pi; AvgC=coop;

Data=['e1=',num2str(evec(1)), '; r1=',num2str(rvec(1)), '; r2=',num2str(rvec(2)),...

'; nCL=',num2str(nCL), '; s=',num2str(s), '; nGen=',num2str(nGen)];

%% EVOLUTIONARY PROCESS

for i=2:nGen

% Randomly choosing a player

iPop=randi(2);
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% Player 1 explores a new strategy

if iPop==1

Mut=getrandomstrategy(S1,nCL);

[piM,coopM]=CalcPayoff(Mut,S2,rvec,evec,nCL);

rho=1/(1+exp(-s*(piM(1)-pi(1))));

if rand(1)<rho

S1=Mut; pi=piM; coop=coopM;

end

% Player 2 explores a new strategy

elseif iPop==2

Mut=getrandomstrategy(S2,nCL);

[piM,coopM]=CalcPayoff(S1,Mut,rvec,evec,nCL);

rho=1/(1+exp(-s*(piM(2)-pi(2))));

if rand(1)<rho

S2=Mut; pi=piM; coop=coopM;

end

end

% Updating the averages

AvgPay=(i-1)/i*AvgPay+1/i*pi;

AvgC=(i-1)/i*AvgC+1/i*coop;

end

end

function Mut=getrandomstrategy(S,nCL)

% Auxiliary program that creates a random mutant based on a given strategy S

% Strategies take the form of an ls x (nCL+1) matrix

% ls is the number of states of the FSA

% The first column defines which action to take in respective state

% The other nCL entries in each row specify the next state of the FSA,

% depending on which of the nCL possible actions the co-player has chosen

%% SETTING THE PARAMETERS

qAdd=0.3; % Probability to add a state

qRemove=0.35; % Probability to remove a state

qAction=0.175; % Probability to change an action

qArrow=0.175; % Probability to change an arrow

lS=size(S,1); % Number of states of the original FSA

Mut=S;

%% CREATING THE MUTANT

qRand=rand(1);
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% Adding a state

if qRand<qAdd

Mut(lS+1,:)=[randi(nCL),randi(lS+1,1,nCL)]; % Append new state to end of Mut

Mut(randi(lS),1+randi(nCL))=lS+1; % Choose a random arrow to point to new state

end

% Deleting a state

if qRand>=qAdd & qRand<qAdd+qRemove & lS>1

iD=randi(lS); % Choosing a random state to be removed

Act=Mut(:,1); Trans=Mut(:,2:end); % Distinguishing between actions and transitions

[j1,j2]=find(Trans==iD); % Find all arrows that point to the state to be removed

for i=1:length(j1)

Trans(j1(i),j2(i))=-1; % Overwriting all arrows that point to removed state

end

for i=iD+1:lS

[j1,j2]=find(Trans==i); % Find arrows that point to state with higher index

for l=1:length(j1)

Trans(j1(l),j2(l))=i-1; % Decrease index of those arrows by one

end

end

[j1,j2]=find(Trans==-1);

for i=1:length(j1) % Assign new target states for arrows to removed state

Trans(j1(i),j2(i))=randi(lS-1);

end

Mut=[Act’; Trans’]’; Mut(iD,:)=[]; % Removing the state with index iD

end

% Changing an action

if qRand>=qAdd+qRemove & qRand<qAdd+qRemove+qAction

rands=randi(lS); % Choosing a random state to change its action

as=S(rands,1);

while as==S(rands,1);

as=randi(nCL); % Assigning a new action to respective state

end

Mut(rands)=as;

end

% Changing an arrow

if qRand >= qAdd+qRemove+qAction & lS>1

i=randi(lS); j=1+randi(nCL); % Choosing a random arrow to be changed

ar=Mut(i,j);

while ar==Mut(i,j)
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Mut(i,j)=randi(lS); % Assigning new target state to respective arrow

end

end

end

function [pi,coop]=CalcPayoff(S1,S2,rvec,evec,nCL);

% Auxiliary program that computes the payoffs and cooperation rates

% when two players with FSA strategies S1 and S2 interact.

% rvec=[r1,r2] and evec=[e1,e2] contain the players’ productivities and endowments

% nCL is the number of different contribution levels

%% PREPARATIONS

l1=size(S1,1); l2=size(S2,1); % number of states of the FSA of the two players

lContr=zeros(1,nCL); for i=1:nCL, lContr(i)=(i-1)/(nCL-1); end

% List of possible contributions (in percentage of the player’s endowment

svec=zeros(l1*l2,2); cvec=svec; pivec=svec;

% Lists that store the players’ visited states, their contributions,

% and their payoffs in the first l1*l2 rounds

%% COMPUTING THE OUTPUT

stop=0; j=0; % Initializing a stop variable and a counter

cS1=1; cS2=1; % Initial states of the two players

while stop==0

j=j+1; a1=S1(cS1,1); a2=S2(cS2,1); % Player’s actions in the respective round

svec(j,:)=[cS1,cS2]; % Storing the player’s current states

cvec(j,:)=[lContr(a1),lContr(a2)]; % Storing their current contributions

pivec(j,:)=(rvec(1)*lContr(a1)*evec(1)+rvec(2)*lContr(a2)*evec(2))/2+...

+[(1-lContr(a1))*evec(1),(1-lContr(a2))*evec(2)];

% Storing the players’ current payoffs

% Check whether current state combination has already occurred earlier:

for k=1:j-1

if svec(k,:)==svec(j,:), stop=1; loopstart=k; end

end

cS1=S1(cS1,1+a2); cS2=S2(cS2,1+a1);

% Compute the next states of the FSA of the two players

end

coop=mean(cvec(loopstart+1:j,:),1); pi=mean(pivec(loopstart+1:j,:),1);

% Calculate average cooperation rates and payoffs by averaging over all

% values in the loop that the two players will reach eventually

end
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7.3 Game instructions of the behavioral experiment

In the following, we provide screenshots of the ‘aligned inequality treatment’ from the perspective of
player 1. The instructions for player 2 and for the other treatments are analogous. They are available
from the authors upon request.
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