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Abstract

Societally important decadal predictions of temperature and precipitation over

Europe are largely affected by variability in the North Atlantic Ocean. Within

this region, the Labrador Sea is of particular importance due its link between

surface-driven density variability and the Atlantic Meridional Overturning Cir-

culation (AMOC). Using physical justifications, we propose a statistical model

to describe the temporal variability of ocean density in terms of salinity-driven

and temperature-driven density. This is a hidden semi-Markov model that al-

lows for either a salinity-driven or a temperature-driven ocean density regime,

such that the persistence in each regime is governed probabilistically by a semi-

Markov chain. The model is fitted in the Bayesian framework, and a reversible

MCMC algorithm is proposed to deal with a single-regime scenario. The model

is first applied to a reanalysis data set, where model checking measures are also

proposed. Then it is applied to data from 43 climate models to investigate

whether and how ocean density variability differs between them and also the

reanalysis data. Parameter estimates relating to the mean holding time for each

regime are used to establish a link between regime behaviour and the AMOC.

Keywords: Reversible jump; Bayesian; MCMC; HMM; Forward algorithm;

Adaptive Metropolis.

1 Introduction

Skillful decadal predictions of changes in temperature and precipitation over Europe
are valuable for society—for example, to plan adaptation/mitigation strategies and
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maximise economic growth (e.g. through energy trading). In recent years, such ex-
perimental predictions have begun to be made, but there remain significant scientific
challenges. For example, on decadal timescales, low frequency variability in the North
Atlantic ocean (e.g. the Atlantic Meridional Overturning Circulation, AMOC) be-
comes an increasingly important component of any skilful prediction (Collins, 2002).
This low frequency variability has often been linked to the Labrador Sea region, and
variability in seawater density therein (Ba et al., 2014). Understanding the nature of
seawater density changes in this region could thus be valuable in improving the skill
of predictions.

The relatively short time space of instrumental observations, means that it is not clear
whether the interannual variability in density in this region is driven by salinity or
temperature—with implications for the processes involved and subsequent evolution
of the region (Menary et al., 2015). It is therefore necessary to rely on coupled
general circulation climate models, in order to understand the multiannual density
variability and its drivers. More specifically, recent analysis suggests that the real
world Labrador Sea may have recently transitioned from a salinity to a temperature
dominated regime (Menary et al., 2016). In order to estimate whether any recent
regime shift is either a temporary or a longer-term (multi-decadal) change, it makes
sense to investigate the nature/transience of Labrador Sea density-drivers throughout
a number of different climate models.

The work in this paper is motivated by two research questions. The first: are water
density changes in the Labrador Sea driven by sea temperature or salinity changes
and is the driver of density variability stationary in time, or are there regime shifts
between salinity-driven and temperature-driven density over time? Second: what
can we learn from climate models about this potential non-stationarity? As such,
there are two goals here. The first is to develop an appropriate statistical model for
quantifying the temporal variability in the Labrador Sea density in terms of salinity
and temperature regime shifts, and apply it to available observations. The second is
to apply this model to data from 43 free-running climate models, and use the results
to investigate whether climate models are able to simulate regime shifts and thus
better understand how long these shifts can last for.

The paper is structured as follows. Section 2 presents the background in terms of
physical understanding of ocean density variability, which leads nicely to the form of
statistical models to be used. Section 3 then introduces hidden Markov and semi-
Markov models, presenting the argument for why these are appropriate for the ques-
tions posed here, and then proceeding to describe the proposed modelling framework.
Subsequently, Section 4 presents the implementation of the proposed model to ocean
density observations, but also to density data from 43 climate models. Finally Section
5 gives a short summary and a discussion.
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2 Background

The importance of understanding the Labrador Sea density variability in terms of
temperature and salinity variability has been highlighted in Menary et al. (2016).
Seawater density ρ, can be described mathematically as a function of temperature T
and salinity S such that

ρ = fT (T ) + fS(S) + fS,T (S, T ).

This equation is non-linear in temperature and salinity over the full, observed tem-
perature/salinity parameter space. However, for small perturbations (i.e. of the order
of interannual variability averaged over a large enough volume) around a given mean
Temperature/Salinity state (T̄ , S̄), the equation can be considered approximately lin-
ear. Here, we focus on the top 500m of the North Atlantic Labrador Sea (45-60◦W,
55-65◦N), for which a linear approximation of T and S explains more than 99% of the
variance in most climate models (Menary et al., 2015), thus:

ρ ≈ fT (T, S̄) + fS(T̄ , S) + f(T̄ , S̄). (1)

where ρ0 = f(T̄ , S̄) is a constant and is the density about which these perturba-
tions are occuring. The approximation we use follows Delworth et al. (1993) and
Menary et al. (2015) and decomposes the density (ρ) into components due solely to
temperature variations (denoted ρT ) and components due solely to salinity variations
(ρS):

ρT = ρ(T + T ′, S)

ρS = ρ(T , S + S ′)

where X and X ′ denote temporal mean and annual anomalies (about that mean)
respectively. Given that ρ0 is time invariant and that our focus is on variability, we
further consider just temporal anomalies (deviations about the mean) by subtracting
ρ0 from (1), such that

ρ′ ≈ fT (T, S̄)′ + fS(T̄ , S)′

= ρ′T + ρ′S. (2)

Finally, we take advantage of observed physical behaviour in the region of interest.
That is, the signs of the anomalous density changes due to either temperature (ρ′T )
or salinity (ρ′S) generally oppose one another on interannual timescales due to the
oceanic anomalies generally being simultaneously either both warm and saline or
both cold and fresh (Yashayaev and Loder, 2017). As such, to first order, the density
anomaly (ρ′T or ρ′S) that has the same sign as ρ′ can be said to be driving ρ′. (For
clarity of exposition, we will henceforth omit the dash symbol which simply denotes
anomalies.) This in conjunction with equation (2) results in two possible equations
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for ρ:

ρ = βSρS + εS (salinity driven density) (3)

ρ = βTρT + εT (temperature driven density) (4)

where the uncertainty εT (εT ) is partly due to concomitant variations in temperature
(salinity) that are (by definition) not captured by ρS (ρT ) and the scaling factor βS
(βT ) captures the density compensation (with a smaller scaling factor implying more
density compensation). It is worth recalling that in this formulation, ρ, ρS and ρT are
anomalies, so that their mean is zero and they are interpreted as deviations about a
common mean.

2.1 Density regimes

Based on ocean reanalyses, there is evidence in observed data pointing to the fact
that density changes over time are indeed described by two alternating regimes on a
decadal time scale (Menary et al., 2016). One is a salinity driven regime (3) where
density changes over time are mostly explained by changes in salinity, while the other
is a temperature driven regime (4) where density is primarily driven by temperature.
As such, we seek a modelling framework here that can describe and estimate this
alternating regime change in time—in a probabilistic manner—from data sets of ρ(t),
ρS(t) and ρT (t).

3 Modelling framework

3.1 Hidden Markov and semi-Markov models

A natural modelling framework for describing underlying regime changes in the dis-
tribution of a random variable, is the hidden Markov model or HMM. This latent
structure model is one where the probability distribution of the modelled quantity is
assumed dependent upon the states of an unobserved discrete time Markov chain. At
any given time point (where time is defined by discrete equidistant points), the hid-
den chain will be in a particular state (from which regimes are defined), and in each
state the data generating mechanism can be different. HMMs were first introduced in
the context of speech recognition and have since found use in a plethora of different
applications such as environmental (Hughes et al., 1999; Bellone et al., 2000), medical
(Jouyaux et al., 2000; Kozumi, 2000; Hu and Gruttola, 2007) and financial (Rydén
et al., 1998).

A potential limitation in HMMs is that the state holding times are implicitly geo-
metrically distributed, meaning that in some applications the temporal persistence
of some regimes cannot be adequately captured (e.g. Guedon (2003); Tokdar et al.
(2010)). A natural extension of HMMs are hidden semi-Markov models (HSMMs),
where state holding times are explicitly defined. HSMMs are in general more compu-
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tationally intensive than HMMs, however they have still found use in environmental
applications (Sansom and Thomson, 2001) but also elsewhere—see Yu (2010) for a
detailed list.

In what follows, we present a Bayesian hidden semi-Markov modelling framework
for describing ocean density temperature/salinity regime changes, based on HSMMs.
We employ reversible jump MCMC to allow for the special cases where the density
variability is driven solely by either temperature or salinity.

3.2 Model formulation

Define ocean density by ρ(t) where the time step t = 1, . . . , n is yearly. Also define by
ρS(t) and ρT (t) the density where respectively temperature T or salinity S are being
held constant. Given that under the assumptions in Section 2 all three variables have
the same mean, we can mean-centre the data so that all three variables have mean
zero. This has the added benefit of avoiding issues with interpretation of intercepts
in the models below. As described in Section 2, a potential model for describing the
situation where density is being solely driven by salinity changes across all time is:

ρ(t) = βSρS(t) + εS(t) (5)

εS(t) ∼ N(0, σ2
S) (6)

and we denote this model by MS. The equivalent model, MT for solely temperature
driven density is:

ρ(t) = βTρT (t) + εT (t) (7)

εT (t) ∼ N(0, σ2
T ). (8)

Both of these models are extreme in that they assume no regime shifts, whereas the
hypothesis here is that at any point in time, density will either be in a salinity regime
or a temperature regime. We therefore consider a third model, MST where a regime
switching mechanism is described by a latent semi-Markov chain C(t) with two states:
C(t) ∈ {S, T}. The model is given by:

ρ(t)|C(t) = βC(t)ρC(t)(t) + εC(t)(t) (9)

εC(t)(t) ∼ N(0, σ2
C(t)). (10)

This is a model that jumps between MS and MT , as depicted in Figure 1. The
semi-Markov chain is defined by two holding time distributions h(τ ;φS) and h(τ ;φT ),
where τ = 1, 2, . . . is the holding time random variable and (φS, φT ) are associated
holding time parameters for each regime. If both these distributions are Geometric,
then this is an HMM where the scalar parameters 0 < φS, φT < 1 define the 2 × 2
transition matrix. Notice that τ 6= 0 so that self-transitions are not allowed, as this
would conflict with the very definition of holding times between well-defined regimes
(Economou et al., 2014). This implies that neither MS nor MT are special cases of
MST , a point we return to later. The definition of the latent chain is completed by
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an initial state distribution π = (πS, πT ), the probability that in the first time step
t = 1 the state is either C(1) = S or C(1) = T .

Note that conditional on the covariates ρS(t) and ρT (t), models MS and MT assume
independence in ρ(t), although marginally we would expect ρ(t) to inherit temporal
dependence from the covariates. On the other hand, model MST directly induces
temporal structure in ρ(t) since density values in each regime will be more similar to
each other.

3.3 Likelihood

To define the likelihood of model MST , it is instructive to start by thinking of the
likelihood of a semi-Markov chain observed in some time interval [t = 1, t = n]. A
particular realisation of such a chain is given in the bottom half of Figure 1, where
it starts in state S which holds for τ1 = 6 time steps, then switches to state T which
holds for τ2 = 5 time steps and so on. Given this chain will ultimately be assumed
latent, the holding time of the last state held is assumed right censored so that τK ≥ 4.
The data for this chain are then the holding times τ = (τ1, . . . , τK) and the regime
sequence r = (r1, . . . , rK) where rk ∈ {S, T}. The likelihood is defined as

LSMC (τ , r;φ,π) = πr1

K∏
k=1

hrk(τk;φr1)×HrK (τK ;φrK ) (11)

where φ = (φS, φT ) and HrK (τK ;φrK ) = Pr(τ > τK ;φrk) =
∫∞
τK
hrK (u;φrK )du.

Now let’s consider the conditional likelihood of model MST , given the observed semi-
Markov chain during a particular regime. While in regime rk ∈ {S, T} which lasts
for a time period of τk time steps, this is given by:

Lrk
(
ρ(τk),ρrk(τk); βrk , σ

2
rk
| rk, τk

)
=
∏
t∈τk

f
(
ρ(t), ρrk(t); βrk , σ

2
rk

)
(12)

where f
(
ρ(t), ρrk(t); βrk , σ

2
rk

)
is the Gaussian probability density function implied

by (9)-(10) depending on the the regime rk. Also, ρ(τk) and ρrk(τk) are vectors
representing the data in time interval τk. Considering now the whole time interval
[t = 1, t = n], the joint likelihood of the data and the observed chain is given by:

LSMM (ρ,ρS,ρT , r, τ ;θ) =
K∏
k=1

hrk(τk;φrk)Lrk
(
ρ(τk),ρrk(τk); βrk , σ

2
rk
| rk, τk

)
(13)

× πr1HrK (τK ;φrK ) (14)

obtained by combining (11) and (12) and where θ = (φ,π, βS, βT , σ
2
S, σ

2
T ) are all

the parameters of model MST . Recall however that the chain is latent, so to ob-
tain the marginal likelihood of the data one needs to integrate it out—something
which involves a computationally intensive combinatoric sum over all possible regime
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sequences and holding times:

LHSMM

(
ρ,ρrk ;θ

)
=

∑
τ1+···+τK=n

T∑
r1=S

· · ·
T∑

rK=S

LSMM (ρ,ρS,ρT , r, τ ;θ) (15)

where n is the length of the observation window in discrete time steps.

3.3.1 Forward and backward algorithm

For a given value of θ, Economou et al. (2014) provide an efficient algorithm for
computing the sum in (15) and use this to fit HSMMs in a Bayesian setting using
MCMC—and here we adopt this algorithm to fit model MST as a Bayesian model.
This is the so called forward algorithm (in HMM jargon), which sequentially computes
the probability distribution p(C(t)|ρ1:t,θ) of the latent states at each time step t given
the data up to t, from which the likelihood is computed as a by-product.

For the purpose of estimating the latent state sequence, a backward algorithm can
be utilised after model fitting (Economou et al., 2014), to compute the probability
distribution p(C(t)|ρ,θ) of the latent states at each time step t given all the data (not
just the data up to t). Monte Carlo can then be used to integrate out θ to obtain the
predictive distribution p(C(t)|ρ) of the latent states at each time step. One can then
simulate from this distribution or set a probability threshold such as 0.5, to decide
on the most likely state at each t.

Note, however, that this method uses the marginal distribution of each state given
the data and as such will not necessarily produce the most likely state sequence,
which would be obtained by maximizing p(C|ρ) with respect to C = {C(t)}. The
most likely state sequence is in many applications of primary interest, and this is
certainly the case here where focus lies in the decadal variability of the regimes.
Conventionally, the Viterbi algorithm (Viterbi, 1967) has been employed to compute
the most likely state sequence for HMMs by maximizing p(C|ρ,θ), using recursive
algorithms similar to the forward and backward. However, this is conditional upon
the parameters θ, and in a Bayesian setting one should really integrate out θ to
quantify estimation uncertainty. Using Monte Carlo is possible, although this will
not maintain the Markovian (and indeed semi-Markovian) structure of the chain. For
HMMs implemented using MCMC, Scott (2002) proposed a simulation approach for
approximating the most likely state sequence from p(C|ρ). This is based on viewing
the most likely state sequence as a function of θ(j), where j is a particular MCMC
iteration. For each θ(j) one can use the Viterbi algorithm and obtain the most likely
state sequence C(j), and then approximate the most likely sequence as the C(j) that
happens most often.

To employ this here, we would first need to adapt the Viterbi algorithm to the HSMM.
Fortunately, it is fairly straightforward to modify the forward-backward algorithm
described in Economou et al. (2014) in order to employ the (HMM) Viterbi algorithm
described in Section 3.2 of Scott (2002), for HSMMs. This is described in more detail
in the Appendix.
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3.4 Model specification

Here we complete the model specification by specifying the holding time distribu-
tions and the prior distribution for θ. We follow the example in Economou et al.
(2014) and assume the holding time distribution for each state is a zero-truncated
Poisson distribution so that h(τ ;φrk) = φτrke

−φrk/
(
τ !(eφrk − 1)

)
with mean holding

time φrk/
(
1− e−φrk

)
. The implications of this modelling choice are checked later

on, using out-of-sample prediction. For the holding time parameters φS and φT we
assume independent exponentially distributed priors with rate parameter 0.1 (mean
10). This is a weakly informative prior with mean 10 and variance 100, implying an
average holding time of 10/ (1− e−10) ≈ 10 for each state. This is consistent with
the application to ocean density where the regime changes are expected to vary on
a decadal time scale. Furthermore, we assume this prior to be truncated on (0, n):
the lower bound to adhere with the range of φS, φT > 0 (disallow self-transitions to
ensure identifiability of holding times and thus interpretation of their probability dis-
tribution) while the upper bound (the length of observation period) to aid in model
identification. This upper bound reflects the fact that model MST captures a regime
changing scenario, while single regime scenarios are meant to be captured by models
MS and MT .

For the coefficients βS and βT , we assume a Gaussian distribution with zero mean
and standard deviation

√
2. Although informative, this is to ensure that the response

ρ(t) attains plausible values of ocean density (see equations (5) and (7)). For the
standard deviations σS and σT we consider an exponential prior with rate 10 (mean
0.1, variance 0.01). This was chosen to reflect the small variability in observed time
series of ocean density where standard deviation estimates were at least one order of
magnitude smaller than 0.1. Finally, for the initial state distribution parameter πS
we assume a uniform distribution on (0, 1), noting that πT = 1− πS.

3.5 Model implementation

There are seven parameters to estimate for model MST so we therefore consider ob-
taining samples from the joint posterior distribution using MCMC, and in particular
the Metropolis-Hastings (MH) algorithm. More specifically, we consider a robust
adaptive MH algorithm proposed by Vihola (2012) and implemented in the R pack-
age adaptMCMC (Scheidegger, 2018). This implies that all parameters are updated
simultaneously using a multivariate normal proposal distribution, which is adapted
to achieve a particular acceptance rate—here this is set to 0.25. Such a proposal
distribution assumes parameters on the real line, meaning that all parameters except
βS and βT must be transformed appropriately.

For parameters σS and σT we use the transformation uσ = qσ(σ) = log(σ) (drop-
ping the subscript) so that the prior on uσ is f(uσ) = fσ(euσ)euσ , where fσ(·) is
the exponential prior on σ. The parameter πS is transformed using uπ = qπ(π) =
log(π/ (1− π)) so that the prior distribution on uπ is fπ (1/(1 + e−uπ)) (2 + euπ +
e−uπ)−1, and since fπ(·) is U(0, 1), this simplifies to f(uπ) = (2 + euπ + e−uπ)−1.
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Finally, for parameter φS ∈ (0, n) (and thus φT ) we consider uφ = qφ(φ) = log (φ/(n− φ))
so that uφ ∈ (−∞,∞). The prior on uφ is then fφ (n/(1− e−uφ)) (n/(2 + euφ + e−uφ))
where fφ(·) is the truncated exponential prior on φS.

3.6 Model selection via reversible jump

As noted earlier, neither model MS nor MT are special cases of model MST , due to the
fact that regime holding times are considered non-zero and have a restricted upper
bound through the prior on φS and φT . Allowing holding times to be zero would
result in a non-identifiable model in the parameters relating to the state with zero
holding time. In fact, zero holding time are equivalent to allowing self-transitions,
something which is contrary to the very definition of the HSMM in terms of holding
time distributions.

As such, a way is required by which to decide whether a particular data set is better
explained by either of the three models: do the data support a regime changing
scenario (MST ) or is it a case of solely salinity (MS) or solely temperature (MT )
driven ocean density? Given that the models do share some of the parameters, one
way to do this in the Bayesian context is to use reversible jump MCMC or RJMCMC
(Green, 1995), where a prior probability distribution is placed upon which model is
preferable a priori, so that the data are used to derive a posterior probability for
which model is more appropriate.

The general formula for the acceptance probability of going from model Mv with
parameters θv to proposed model Mv∗ with parameters θv∗ is given by:

αv,v∗ =
L(ρ; θv∗ ,Mv∗)p(θv∗ |Mv∗)p(Mv∗)p(Mv∗ |Mv)Jv∗,v(u

∗ | θv∗)

L(ρ; θv,Mv)p(θv |Mv)p(Mv)p(MV |Mv∗)Jv,v∗(u | θv)

∣∣∣∣∂gv,v∗(θv, u)

∂ (θv, u)

∣∣∣∣
(16)

where L(ρ; θv∗ ,Mv∗) is the likelihood of model Mv∗ (noting that we dropped the co-
variates ρS and ρS for brevity), p(θv∗ |Mv∗) is the joint prior of its parameters, p (Mv∗)
is the prior probability on model Mv∗ and p(Mv∗ |Mv) is the proposal probability of
going from model Mv to Mv∗ . Here, we assume p(Mv) = 1/3 for all v = S, T, ST and
p(Mv∗ |Mv) = 1/3 for all v∗, v = S, T, ST .

To ensure the parameter dimension is matched across models, auxiliary parameters u
are required for RJMCMC, with associated functions gv,v∗(θv∗ , u) that return a vector
collecting parameters across both models (some of which can be shared). As such,
Jv,v∗(u | θv) in (16) denotes the proposal distribution of the auxiliary parameters
required for moving from model Mv to proposed model Mv∗ . Finally, the last term
in (16) denotes the Jacobian determinant of gv,v∗(θv, u).

In specific modelling frameworks such as finite mixture models, the auxiliary variables
can be chosen in way so that all parameters across all models have some interpretation,
e.g. mixing probabilities of two of the components in a 3-component mixture model
can be defined as a sum of one of the components in a reduced 2-component model.
In the context of HMMs (which can be thought of an extension of finite mixture

9



models), Robert et al. (2000) have utilised RJMCMC to fit a conditional Gaussian
finite mixture distribution.

However, for models with covariates (such as here) where coefficients are not nec-
essarily interpretable across models, setting up suitable auxiliary parameters is less
straightforward. Instead, we propose here to fit each of the three density models sep-
arately (keeping in mind that MS and MT are very simple models) and then use the
resulting (adapted) proposal distributions as the J(·|·) in (16) to conduct RJMCMC.

Below we describe in detail the various moves between each of the three models.
Start by denoting the parameter vector for each model: θS = (βS, σS), θT = (βT , σT )
and θST = (βS, βT , σS, σT , φS, φT , πS) respectively for MS, MT and MST . Assuming
an MCMC run for each of the three models, the adaptive MH discussed earlier will
provide (adapted) multivariate Gaussian proposal distributions PS(·), PT (·), PST (·)
for each of uS = (βS, qσ(σS)), uT = (βT , qσ(σT )) and

uST = (βS, βT , qσ(σS), qσ(σT ), qφ(φS), qφ(φT ), qπ(πS)) , (17)

respectively.

Moving from MS to MT . Current parameter vector is θS = (βS, σS) so need to
propose auxiliary variable u relating to the two parameters θT = (βT , σT ) of MT .
This can be proposed from PT (u) defined above. In the notation of (16), this implies
JS,T (u|θS) = JS,T (u) = PT (u). Then do the dimension matching using

gS,T (θS, u) = (βS, σS, u1, exp{u2}) = (u∗1, exp{u∗2}, β∗T , σ∗T )

where uj denotes the jth element of u. Then,∣∣∣∣∂gS,T (θS, u)

∂ (θS, u)

∣∣∣∣ = exp{u2}

and the acceptance probability is

αS,T =
L(ρ; θ∗T ,MT )p(θ∗T |MT )JT,S(u∗)

L(ρ; θS,MS)p(θS |MS)JS,T (u)
exp{u2}

where JT,S(·) is the Gaussian proposal PT (·) obtained from fitting model MT .

Moving from MT to MS. This move is symmetric to the one above. Current
parameter is θT = (βT , σT ) so propose u ∼ JT,S(u|θT ) = PS(u) and use function

gT,S(θT , u) = (u1, exp{u2}, βT , σT ) = (β∗S, σ
∗
S, u

∗
1, exp{u∗2})

to match the dimension. The acceptance probability is then

αS,T =
L(ρ; θ∗S,MS)p(θ∗S |MS)JS,T (u∗)

L(ρ; θT ,MT )p(θT |MT )JT,S(u)
exp{u2}.

Moving from MS to MST . Current parameter is θS = (βS, σS) so need an auxiliary
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variable u relating to the other 5 parameters of MST . This can be proposed from
JS,ST (u|θS) = JS,ST (u), a 5-dimensional Gaussian derived from the 7-dimensional
Gaussian PST (u), where u is the vector resulting from taking away the first and third
elements of (17). Then, use the function

gS,ST (θS, u) =
(
βS, u1, σS, q

−1
σ (u2), q

−1
φ (u3), q

−1
φ (u4), q

−1
π (u5)

)
= θ∗ST

to do the dimension matching. In other words, (βS, σS) remain the same while the
five remaining parameters of MST are being generated. It is straightforward to show
that the necessary Jacobian determinant is given by∣∣∣∣∂gS,ST (θS, u)

∂ (θS, u)

∣∣∣∣ = eu2n2

5∏
i=3

1

2 + eui + e−ui
= GS,ST (18)

so that the acceptance probability is:

αS,ST =
L(ρ; θ∗ST ,MST )p(θ∗ST |MST )

L(ρ; θS,MS)p(θS |MS)JS,ST (u)
×GS,ST .

Note that there is no auxiliary variable needed for the opposite move from MST to
MS as described below.

Moving from MST to MS. Current parameter is θST so just take its first and third
elements to get θ∗S = (β∗S, σ

∗
S). The acceptance probability is

αST,S =
L(ρ; θ∗S,MS)p(θ∗S |MS)JS,ST (u∗)

L(ρ; θST ,MST )p(θST |MST )
.

where u∗ is obtained from current θST as

u∗ = (βT , qσ(σT ), qφ(φS), qφ(φT ), qπ(πS)) .

Moving from MT to MST . This move is symmetric to the move from MS to MST .
Current parameter is θT = (βT , σT ) so need u relating to the other 5 parameters
of MST . This can be proposed from JT,ST (u), the 5-dimensional Gaussian derived
from PST (u), where u is the vector resulting from taking away the second and fourth
elements of (17). Then, use the function

gT,ST (θT , u) =
(
u1, βT , q

−1
σ (u2), σT , q

−1
φ (u3), q

−1
φ (u4), q

−1
π (u5)

)
= θ∗ST

whose Jacobian determinant GT,ST is the same as (18). The acceptance probability
is:

αT,ST =
L(ρ; θ∗ST ,MST )p(θ∗ST |MST )

L(ρ; θT ,MT )p(θT |MT )JT,ST (u)
×GT,ST .

Moving from MST to MT . Current parameter is θST so just take its second and
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fourth elements to get θ∗T = (β∗T , σ
∗
T ). The acceptance probability is

αST,T =
L(ρ; θ∗T ,MT )p(θ∗T |MT )JT,ST (u∗)

L(ρ; θST ,MST )p(θST |MST )
.

where u∗ is obtained from current θST as

u∗ = (βS, qσ(σS), qφ(φS), qφ(φT ), qπ(πS)) .

Within-model moves. All internal moves are done using MH, with proposal dis-
tributions PS(·), PT (·), PST (·) obtained from individual MCMC runs for each of the
three models.

4 Model application

4.1 EN4 Reanalysis data

The available observations are in the form of a reanalysis product (EN4, Good et al.,
2013). EN4 ingests quality controlled ocean observations of temperature and salinity
for each month and merges them onto a regular grid. It then infills the remain-
der by optimal interpolation using fixed horizontal and vertical decorrelation length
scales and relaxing to its own climatology with an e-folding timescale of 9.5 months.
The resulting time series are values of ocean density ρ(t) for t = 1, . . . , 115 years,
corresponding to the time period 1900-2014 inclusive.

Three MCMC chains were run (in parallel)—for each of the models MS, MT and
MST—for 100K iterations. The burn-in for MS and MT was 10K while for MST it
was 50K to ensure convergence. This was assessed by visual plots and the Gelman and
Rubin R̂ multi-chain diagnostic (Gelman et al., 2013). Subsequently, the reversible
jump algorithm described earlier was run for 50K iterations (once for each of the three
chains), using the adapted proposal distributions from the individual model runs.
Figure 3 shows a trace plot of the logarithm of the posterior distribution, computed
at each MCMC sample. The log-posterior is a summary of all model parameters and
the plot indicates overall convergence (individual plots also assessed but not shown).

The posterior probability for model MST was p(MST |ρ) = 0.9999 indicating very
strong evidence of a regime switching scenario for this data set (only 15 out of 150K
samples indicated model MS, while none for MT ). As such, we consider model MST

as the most appropriate for this data set, and proceed to ensure an adequate fit to
the data.

4.1.1 Comparison with HMM

As mentioned in Section 3, the HSMM is an extension of the HMM, to allow for
holding time distributions other than Geometric (at the expense of computing time).
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It is therefore of interest to compare the way that the fitted HSMM (with zero-
truncated Poisson distributions) is different from the HMM. To that end, an HMM was
implemented to the EN4 data. In-sample model checking (see subsequent section),
indicated that the two models captured the data in a similar manner. However,
we also conducted out of sample prediction, to test the temporal structure in each
model. This was done by removing m years from the end of the time series and then
predicting the ρ(t) for that time period. This was performed for m = 5, . . . , 60 years,
noting that the total time period was 115 years.

Figure 2 shows the root mean squared (RMSE) and the mean absolute error (MAE)
plotted against m. Both plots indicate little difference between the HSMM and the
HMM (although HSMM marginally better), for up to about 50 years out of sample
prediction. Beyond this, the HMM exhibits a fairly sharp decline in predictive power,
particularly in the RMSE. This is likely due to the nature of the Geometric holding
time distribution where the variance is proportional to the square of the mean, unlike
the truncated Poisson in the HSMM where the mean equals the variance. For the same
mean holding time, the HMM is likely to predict more extreme holding times. Given
the application to ocean density where we a-priori believe that the state switching
mechanism is present (i.e. holding time periods of extreme length are less likely), we
find the HSMM a more appropriate modelling assumption.

4.1.2 Model checking

Model checking is performed by comparing the data ρ with associated predictions of
ρ from the model. The predictive distribution for each data point ρ(t) is

p(ρ(t)|ρ) =

∫
θ

T∑
CT=S

p(ρ(t) | C(t),θ)p(θ|ρ)p(C(t)|ρ)dθ. (19)

To obtain samples from (19), we must first run the backward algorithm outlined in
Section 3.3.1 to obtain the predictive probability p(C(t) = S|ρ) of the latent chain
being in state S at time t. We can then sample state S (and thus T ) as a Bernoulli
realisation. Furthermore, we obtain a sample of θ (the parameters of MST ) by taking
one of the MCMC samples from the posterior p(θ|y). Finally using the sample of the
state C(t) and the sample of θ, we simulate a value from the appropriate conditional
model (9). Repeating this process for each MCMC sample i provides simulated values
from (19), and thus we can construct predicted data sets ρ(i).

As such, we can perform posterior predictive model checking (Gelman et al., 2013)
by enquiring as to whether any of the observed ρ(t) are an extreme with respect to
(19). To succinctly summarise such discrepancies, one can look at summary statistics
of the data and compare them with their respective posterior distributions computed
from predictive samples. Figure 4 shows the predictive distribution of the sample
mean and standard deviation, as well as the lower and upper sample quartiles. The
observed quantities of those are given in vertical lines, indicating that none is an
extreme values alluding to an adequate model fit. There is some evidence that the
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lower quartile in slightly overestimated while the upper one is underestimated, but
the associated tail area probabilities (0.22 and 0.10 respectively) are not too extreme.

We can also look at how well the marginal distribution of ρ(t) was captured as well
as individual points. The left panel in Figure 5 shows posterior predictive means, of
predictions sorted in ascending order, plotted against the sorted observations, along
with 99% prediction intervals. This can be interpreted like a Q-Q plot, indicating that
the marginal distribution of ρ(t) is well captured, with the exception of the maximum
data point which is just outside the upper endpoint of the interval. The right panel
in Figure 5, shows posterior predictive means for each data point, plotted against the
observed ρ(t), along with corresponding 99% prediction intervals. The plot indicates
the points are well captured, with the exception of the two larger values. Summarising,
the model describes the marginal distribution of the data and individual points well,
with slight underestimation of the very extremes. Given the goal here is less about
describing extremes but rather to capture the regime modulated relationship of ρ(t)
with ρS(t) and ρT (t), we consider this discrepancy acceptable.

A more succinct way to compare observations with model predictions, is to consider
a measure that involves both data and parameters. A proposed option (Economou
et al., 2014) is the deviance D(θ,ρ), defined as minus twice the logarithm of the
likelihood (15). For each MCMC sample i from p(θ|ρ), the deviance D(θ(i),ρ) for the
observed data can be computed, as can the deviance for the predictions D(θ(i),ρ(i)). If
the posterior of the “observed” deviance is an extreme with respect to the “predicted”
one, then this indicates that data generated from the model are very different to
the observed data. Figure 6 shows trace plots of both D(θ(i),ρ) and D(θ(i),ρ(i))
indicating the observed data set ρ is not an extreme with respect to predictions. The
probability Pr(D(θ, ρ̃) > D(θ,ρ))—where ρ̃ denotes predictions—is estimated to be
0.64 by the analogous proportion of samples used to produce Figure 6.

Finally, Figure 7 shows the sample autocorrelation function of the data ρ for lags of
up to 15 years. Added to the plot are the posterior means and 95% credible intervals
of the autocorrelation at each lag, computed from the predictive samples. All the
sample values are within the credible intervals indicating that the model adequately
captures the autocorrelation in the data, justifying the choice of holding time distri-
bution (which ultimately controls the autocorrelation in the marginal distribution of
an HSMM).

4.1.3 Interpretation

Table 2 shows the posterior means for θ as well as 95% credible intervals. The mag-
nitude of βS implies that the salinity regime is more dominant than the temperature
regime. In terms of regime persistence, the mean holding time for the salinity regime
is 11.2 years while for the temperature regime it is just 1.6 years. These timescales
are consistent with the prevailing view that deep convection in the Labrador Sea
is episodic, sometimes not occurring for a decade at a time (Yashayaev and Loder,
2016), but that when it occurs it is controlled by temperature rather than salinity.
Figure 8 shows a plot of P (C(t) = S | ρ), the posterior probability of being in regime
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S, plotted against t. The most likely regime sequence (obtained using the method
described in Section 3.3.1) is also shown in Figure 8. Note that in this case the most
likely regime sequence coincides with one that would be obtained by just using the
marginal distribution P (C(t) = S | ρ), however in general this will not be the case.
The plot indicates that the temperature state only holds for very short periods of 1-2
years. To further visualise this, Figure 9 shows plots of ρ(t) against ρS(t) (ρT (t)) for
the subset of data classified as most likely being in regime S (T ). Interestingly, the
values of ρ(t) classified as being driven by regime T are all effectively zero, imply-
ing that the temperature regime is one where ocean density varies very little about
its mean (noting also that ρT (t) is much less variable than ρS(t)). It is possible
that this is linked to the stronger damping of annual temperature variability (at the
atmosphere-ocean boundary), effectively equalizing temperature anomalies. In ad-
dition, the much longer holding time for the (more weakly damped) salinity regime
may provide more time for a stronger relationship between ρS(t) and ρ(t). Although
outside the scope of this study, future work should investigate the structure of the
salinity mean holding time and its physical evolution.

In summary, there is compelling evidence to suggest that for the particular data set,
ocean density variability in the Labrador Sea is governed by salinity/temperature
regime changes. The salinity regime is more prevalent in terms of holding time but
also in terms of magnitude of the driving signal. This is consistent with recent
work that investigated a reanalysis system that was strongly constrained by EN4
data, though a competing reanalysis system did not show this behaviour (Menary
and Hermanson, 2018). Although individual deep convective events in the Labrador
Sea are likely temperature controlled (Yashayaev and Loder, 2017), there is clearly
scope for changes in the background stratification to be modulated by salinity, as
shown in reanalyses and climate models (Menary et al., 2015). Unfortunately, a lack
of subsurface observations, particularly of salinity, preclude complete knowledge of
recent real world decadal variability. As such, we apply our methodology to a large
suite of climate models, in order to better understand this uncertainty.

4.2 Application to 43 climate models

As mentioned in the introduction, one of the goals here is to use the model to inves-
tigate whether various coupled general circulation models (CGCMs) of the climate,
exhibit the same regime-changing behaviour observed in the EN4 data. CGCMs can
be run for much longer time intervals, and so should be able to provide a better
understanding of the decadal behaviour in ocean density variability.

The model described in Section 4.1 was applied to 43 pre-industrial control simu-
lations from CGCMs that participated in the fifth coupled model intercomparison
project (CMIP5, Taylor et al., 2012). These simulations aim to recreate an equilib-
rium climate (prior to the secular trend that is now evident) using interannualy invari-
ant external forcings (e.g. solar, greenhouse gas, etc) appropriate for pre-industrial
times. Each control simulation was at least 200 years in length. They represent dif-
ferent approaches to simulating this pre-industrial climate and by comparing them it
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is possible to investigate the strength of internal variability in the climate system.

Adequate model fit was ensured by looking at tail area probabilities derived from
the model checking measures described in Figures 4 and 6. Tables 3, 4 and 5 in the
Appendix, summarise the results in terms of the most likely model (MS, MT , MST )
for each CGCM (second column), as chosen by reversible jump. The other columns
show the posterior mean and 95% credible interval for the parameters of the most
likely model. Quite evidently there is much variability across the various CGCMs.
Starting however from common features, we see that only 8 out of 43 CGCMs exhibit
a non-regime changing scenario. Out of those 8, just one is solely temperature driven
(i.e. model MT ), while the other 7 are all salinity driven (model MS). This preference
for salinity, over temperature, perhaps reflects the relatively low ocean resolution of
these climate models, which is of order 1◦ longitude/latitude, and their associated
mean state biases (Menary et al., 2015). Simulations with higher resolution models
as part of the ongoing sixth coupled model intercomparison project (CMIP6) may
reveal different behaviour.

Most CGCMs are able to simulate a regime changing ocean density in line with
the reanalysis data EN4, albeit with varying degrees of temporal persistence of the
regimes. Overall, the salinity state has larger mean holding times across CGCMs,
much like EN4. Some CGCMs however have a temperature regime that lasts longer
on average than the salinity one.

4.2.1 Relationship with the Atlantic Meridional Overturning Circulation
(AMOC)

The statistical model parameters, in particular the ones relating to the holding times
of each regime (φS and φT ), provide a way of quantifying the temporal regime be-
haviour of each CGCM. As noted previously, density in the Labrador Sea is impor-
tant for the strength and variability in the climatically relevant AMOC. Thus, an
important question is whether the strength of the AMOC in CGCMs is systemat-
ically related to the preference for one density regime or the other. To investigate
this question, we propose a single metric that is a measure of the relative regime
persistence, defined as log(φT/φS), where larger (smaller) values suggest a more tem-
perature (salinity) dominated density regime.

From Figure 10, it can be seen that the AMOC strength in complex CGCMs is indeed
linked to their preference for one density regime over another. In this analysis, we are
limited to the intersection of those climate modelling centres that uploaded AMOC
streamfunction data to the CMIP5 archive (see Table 1 of Menary and Wood (2017))
and those CGCMs for which both regimes are active (i.e. CGCMs for which MST was
the most likely model), which results in a reduced subset of 15 CGCMs. We define
the AMOC at two latitudes: 26.5◦N, which is the latitude of the recently deployed
‘RAPID-MOCHA‘ array (Cunningham et al., 2007), and 45◦N, which represents the
boundary of the subtropical and subpolar gyres in the North Atlantic. At both
latitudes, a strong linear relationship can be seen. CGCMs that have increasingly
temperature-driven density variability in the Labrador Sea tend to have a stronger
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AMOC in the mean, with correlations of 0.79 at 26.5◦N and 0.66 at 45◦N (after
removing one outlier). The outlier at the 45◦N AMOC, is the GISS-E2-R model.
This model was also found to be an outlier in recent climate modelling studies of the
North Atlantic subpolar gyre (Menary and Wood, 2017; Sgubin et al., 2017). Further
investigation and analysis of the results, as well as the physical implications will be
the focus of future work.

In previous work, a similar index of the density driver in CGCMs was constructed, de-
noted ρTorScontrol, for which larger values implied an increasing dominance of temper-
ature variability (Menary et al., 2015). This index was simply the difference between
two regression coefficients (density versus density due to temperature and density
due to salinity, respectively) and took no account of the switching behaviour allowed
for here, nor the relative holding times in one or the other regime. Nonetheless, for
the 36 models that show regime change (and thus log(φT/φS) can be defined) we
can compare the two methods. We find that the cross-model correlation between
ρTorScontrol and log(φT/φS) is 0.83, which provides confidence that the two, indepen-
dent approaches are measuring a similar phenomenon. However, unlike the previous
method, the model we present here provides much further scope for understanding
the nature of density variability in these climate models—and thus the real world
ocean—in this particularly important region.

All the data and associated R (R Core Team, 2017) code used to implement the models
in this section, are provided in the supplementary material.

5 Discussion

A modelling framework for inferring regime changes in ocean density was presented.
This was based on the concept of hidden semi-Markov models, which is a natural
framework for describing discrete but unobserved state changes in a system. The
model was implemented in the Bayesian framework and as such, reversible jump
MCMC was employed to choose between three candidate models for describing ocean
variability. RJMCMC has only been applied in the context of HMMs so far, and in
the special case that the parameters of conditional model can be interpreted across
models with varying number of latent states. Here we present a formulation that is
not constrained to this case, and is thus potentially more widely applicable.

The model was applied to a reanalysis (a proxy for observed) data set of ocean density
in the Labrador Sea. Model checking based on the predictive distribution of the data
was performed to ensure model adequacy. The results suggested a regime changing
setting with a long lasting salinity and a shorter lasting temperature regime. Further
applying the model to 43 free running CGCMs indicated that most of these evince
a similar regime changing scenario as the reanalysis data. Some CGCMs however
manifested a single regime case.

The conditional models utilised here were specific to the application of ocean density
variability—in fact they were derived from physical arguments. Nevertheless, the
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framework presented here is potentially applicable to any HSMM with any conditional
model for each latent state. In particular, the various conditional models across
models with varying number of states do not need to be in any way nested—and in
the case of HSMMs this avoids self transitions (and thus non-identifiability in the
holding times). Therefore, the method presented here can be used as simply a way
for choosing the HSMM with the optimal number of states.

The requirement that each of the possible models is ran first may be seen as inelegant
and one that increases computational strain. On the other hand, this maximises
flexibility and does not pose any constraints in the definition of the conditional models.
In our experience, the final reversible jump run after all models have been fitted is
relatively very cheap since the proposal distributions are established from the single
runs.
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Figure 1: Schematic showing a particular realisation of the hidden semi-Markov model
for ocean density given by (9)–(10).
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Figure 2: Out of sample predictions (root mean squared error on top and man absolute
error on bottom) of the EN4 data, comparing the HSMM (grey lines) with the HMM
(black lines). The x-axis represent the number of consecutive years used for prediction
at the end of the observation window.
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Figure 3: Trace plot of the logarithm of the posterior distributed evaluation at each
sample from the joint posterior.
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Figure 4: Top left: posterior (predictive) distribution of the sample mean ρ̄. Top
right: posterior of the sample standard deviation. Bottom left/right: posterior of the
lower/upper quartile. The equivalent sample quantities are shown by vertical lines.
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Figure 5: Left: Predicted values sorted in ascending order plotted against the sorted
observed values. Right: Predicted values (means of posterior predictive distributions)
plotted against observed. Both plots include 99% prediction intervals.
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Figure 6: Trace plot of the “observed” deviance D(θ(i),ρ) against i in grey; and of
the “predicted” D(θ(i),ρ(i)) in black.
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Table 1: CGCM
legend

Number CGCM
1 CanESM2
2 CNRM-CM5
3 CNRM-CM5-2
4 FGOALS-g2
5 MPI-ESM-LR
6 MPI-ESM-MR
7 MPI-ESM-P
8 MRI-CGCM3
9 CCSM4
10 NorESM1-ME
11 CESM1-BGC
12 CESM1-CAM5
13 CESM1-FASTCHEM
14 CESM1-WACCM
15 GISS-E2-R
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Table 2: Parameter estimates for model MST fitted to the EN4 reanalysis data set.

Parameter Posterior 95% Cr.I.
Mean

βS 0.446 [0.367, 0.527]
βT 0.003 [−0.008, 0.013]
σS 0.022 [0.019, 0.025]
σT 0.0007 [0.0004, 0.001]
φS 11.205 [7.537, 16.845]
φT 0.970 [0.257, 1.957]
πS 0.665 [0.158, 0.986]
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Viterbi algorithm for HSMMs

The Viterbi algorithm aims to efficiently maximise p(C|ρ,θ) w.r.t. C. This is per-
formed recursively as described in Section 3.2 of Scott (2002). For HSMMs, this is
not as straightforward since the HSMM can be viewed as an non-stationary HMM,
i.e. one where the transition matrix is different for each time step. Fortunately, the
forward and backward algorithms described in Economou et al. (2014) can be modi-
fied in such a way that this time varying transition matrix is computed explicitly and
the Viterbi algorithm applied as in Scott (2002).

Firstly we note that due to conditional independence, maximizing p(C|ρ,θ) is the
same as maximizing p(C,ρ|θ) w.r.t. C. So the same forward algorithm used to
compute the likelihood, can be instead used to maximise it. This can be done sim-
ply by modifying the algorithm on page 8 of Economou et al. (2014), specifically

replacing γTN (j) +
∑TN−1

u=2 ξu(j) with maxj

(
γTN (j) +

∑TN−1

u=2 ξu(j)
)

. This will yield

new vectors αTN (j), which can then be multiplied by `TN to yield quantities LTN (j)
as defined in Scott (2002). The backward step can be followed exactly like in Sec-
tion 3.2 of Scott (2002) where the transition matrix q(i, j) is obtained by computing
ai,j,TN `TNFj(N)/`TN−1

.
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