

New Phytologist

Leaf economics and plant hydraulics drive leaf/wood area ratios

\(\left.$$
\begin{array}{|r|l|}\hline \text { Journal: } & \text { New Phytologist } \\
\hline \text { Manuscript ID } & \text { Draft } \\
\hline \text { Manuscript Type: } & \text { MS - Regular Manuscript } \\
\hline \text { Author: Submitted by the } & \text { n/a } \\
\hline \text { Complete List of Authors: } & \begin{array}{l}\text { Mencuccini, Maurizio; CREAF, Universidad Autonoma de Barcelona, c/o, } \\
\text { CREAF; Pg. Lluís Companys 23, ICREA } \\
\text { Rosas, Teresa; Universitat Autonoma de Barcelona, Biologia Animal, } \\
\text { Vegetal i Ecologia; CREAF, Centre de Recerca Ecologica i Aplicacions } \\
\text { Forestals } \\
\text { Rowland, Lucy; University of Exeter, Department of Geography } \\
\text { Choat, Brendan; University of Western Sydney, Hawkesbury Institute for } \\
\text { the Environment } \\
\text { Cornelissen, Johannes (Hans); University Amsterdam, Department of } \\
\text { Systems Ecology } \\
\text { Jansen, Steven; Ulm University, Institute for Systematic Botany and } \\
\text { Ecology, Koen; Wageningen University and Research Wageningen }\end{array}
$$

\hline Kramer, Koen;

Environmental Research, Forest Ecology and Forest Management Group

Lepenas, Andrei; University at Albany State University of New York,\end{array}\right\}\)| Geography and Planning |
| :--- |
| Manzoni, Stefano; Stockholms Universitet, Institutionen för |
| naturgeografi; Stockholm University, Bolin Centre for Climate Research |
| Niinemets, Ülo; Estonian University of Life Sciences, Institute of |
| Agricultural and Environmental Sciences; Estonian Academy of Sciences, |
| Biology |
| Reich, Peter; University of Minnesota, Department of Forest Resources |
| Schrodt, Franziska; University of Nottingham, Geography |
| Soudzilovskaia, Nadia; Leiden University, Institute of Environmental |
| Sciences, CML |
| Wright, Ian; Macquarie University, Biological Sciences; |
| Key Words: | | Huber value, xylem hydraulics, leaf economics spectrum, wood density, |
| :--- |
| leaf size, Corner's rules, biomechanics, trait tradeoff |

Leaf economics and plant hydraulics drive

leaf/wood area ratios


``` Lepenas \(^{9}\), S Manzoni \({ }^{10,11}\), Ü Niinemets \({ }^{12,13}\), P Reich \({ }^{5,14}\), F Schrodt \({ }^{15}\), NA Soudzilovskaia \({ }^{16}\), I Wright \({ }^{17}\), J Martínez-Vilalta \({ }^{1,3}\)
```

${ }^{1}$ CREAF, E08193 Bellaterra, Barcelona, Spain
${ }^{2}$ ICREA, Pg. Lluís Companys 23, 08010 Barcelona (Spain).
${ }^{3}$ Universitat Autònoma de Barcelona, E08193 Bellaterra, Barcelona, Spain

4 Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
${ }^{5}$ Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797 Penrith 2751 NSW, Australia
${ }^{6}$ Systems Ecology, Department of Ecological Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

7 Ulm University, Institute of Systematic Botany and Ecology, Albert-Einstein-Allee 11, 89081 Ulm, Germany
${ }^{8}$ Wageningen University and Research, Droevendaalsesteeg 1, 6700 AA, Wageningen, The Netherlands
${ }^{9}$ Department of Geography, New York State University at Albany, Albany, NY, USA ${ }^{10}$ Physical Geography, Stockholm University, Stockholm, Sweden
${ }^{11}$ Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

RUNNING TITLE: Global drivers of leaf/wood area partitioning

```
12 Estonian University of Life Science, Kreutzwladi 1, 51006 Tartu, Estonia
13 Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
14 Department of Forest Resources, University of Minnesota, St. Paul, MN 55108 USA
15 School of Geography, University of Nottingham, Nottingham, UK
16 Institute of Environmental Sciences, CML, Leiden University; Einsteinweg 2, 2333 CC
Leiden, The Netherlands
17 Department of Biological Sciences, Macquarie University, Sydney NSW 2109, Australia
*corresponding author.
Maurizio Mencuccini
CREAF, Universidad Autonoma de Barcelona
Cerdanyola del Valles 08193
(Barcelona, Spain)
m.mencuccini@creaf.uab.cat
tel. +34-93-5868474
fax +34-93-5814151
```


Contributions by authors:

```
\(M M, T R, J M-V\) and \(B C\) conceived and implemented the research; all authors contributed to data collection; MM analyzed the data with \(\mathrm{JM}-\mathrm{V}, \mathrm{BC}\) and TR ; MM wrote the first draft with contributions from TR, JM-V, IW; all coauthors contributed substantially to revisions.
```

Keywords: Huber value, xylem hydraulics, leaf economics spectrum, wood density, leaf size, Corner's rules, biomechanics, trait tradeoff

RUNNING TITLE: Global drivers of leaf/wood area partitioning

Total word count (excluding summary, references and legends):	$\mathbf{6 , 4 9 1}$	No. of figures:	$\mathbf{3}$
Summary:	$\mathbf{2 0 0}$ (max 200)	No. of Tables:	$\mathbf{1}$
Introduction:	$\mathbf{1 , 1 0 4}$	No of Supporting Information files:	Methods S1, Table S1 to S3, Figure S1 to S5.
Materials and Methods:	$\mathbf{2 , 1 2 2}$	No. of references	$\mathbf{9 9}$
Results:	$\mathbf{1 , 0 8 3}$		
Discussion:	$\mathbf{2 , 1 8 2}$		
Acknowledgements:	$\mathbf{1 1 4}$		

RUNNING TITLE: Global drivers of leaf/wood area partitioning

Abstract

Biomass and area ratios between leaves, stems and roots regulate many physiological and ecological processes. The Huber value H_{v} (sapwood area/leaf area ratio) is a central variable controlling plant water balance and its drought responses, but it currently cannot be predicted based on easily measurable and widely available traits.

We hypothesise that global patterns in H_{v} of terminal woody branches can be predicted based on variables related to plant hydraulics, leaf economics and leaf size.

Using a global compilation of 1135 species-averaged H_{v}, we show that H_{v} decreases with specific leaf area, leaf mass, xylem hydraulic specific conductivity K_{s}, wood density and plant stature. All traits depend on climate but the climatic correlations are stronger for explanatory traits than H_{v}. Negative isometry is found between H_{v} and K_{s}, suggesting a compensation to maintain hydraulic supply to leaves across species. High H_{v} and low K_{s} are seen in short small-leaved low-SLA shrubs in arid relative to tall large-leaved high-SLA trees in moist environments.

This work identifies the major global drivers of branch sapwood/leaf area ratios. Our approach based on widely available traits facilitates the development of accurate models of aboveground biomass partitioning and helps improve predictions of vegetation responses to drought.

RUNNING TITLE: Global drivers of leaf/wood area partitioning

Introduction

Plant growth and survival depend in large part on the characteristics of individual plant organs and on the partitioning of resources to these organs (Thornley 1972; Grime 1979; Tilman 1988; Westoby 1998). Hence, biomass partitioning integrates key physiological and ecological processes (Hunt \& Cornelissen 1997; Shipley 2006; Poorter et al. 2015). At the global scale, the biomass ratios between leaves, stems and roots are known to be affected by abiotic factors such as temperature (Gill \& Jackson, 2000; Lapenis et al., 2005; Reich et al., 2014a; Reich et al., 2014b; Freschet et al., 2017), light (Poorter et al. 2012), potential evapotranspiration (Ledo et al. 2017), soil water stress (Lapenis et al., 2005; Poorter et al., 2012) and nutrients (Poorter et al. 2012; Freschet et al. 2017), and biotic factors such as plant size (Poorter et al. 2015; Ledo et al. 2017). Biomass ratios globally have also been reported to vary by plant functional type, e.g., eudicots invest more in leaf tissues than monocots and gymnosperms more than angiosperms (Poorter et al. 2012; Duursma \& Falster 2016). While global patterns in biomass ratios are beginning to be elucidated, the dependence of partitioning among tissues on specific traits is not well understood.

Functional balance and adaptive dynamics theories (Thornley 1972; Bloom et al. 1985; Franklin et al. 2012; Farrior et al. 2013) suggest that, over evolutionary time scales, partitioning should be regulated to guarantee access to the most limiting resource in competitive and variable environments. However, complications arise because plant size declines with reduced resource availability (Coleman et al. 1994; McCarthy \& Enquist 2007), biomass partitioning varies with plant size (Enquist \& Niklas 2002; Poorter et al. 2015), and because biomass ratios reflect both partitioning and turnover times (Thornley 1972; Gill \& Jackson 2000; Reich 2002; Niinemets 2010). Additionally, hydraulic (Tyree \& Ewers 1991) and biomechanical (Niklas \& Spatz 2010) properties of stems depend on stem cross-sectional areas and their geometry. If the objective is to derive predictive relationships of tissue partitioning, areal ratios of leaves and xylem may be more appropriate than mass ratios. Finally, linking partitioning to plant trait spectra is difficult, because of the many constraints that need to be considered simultaneously (Dewar et al., 2009; Franklin et al., 2012). One study (Duursma \& Falster 2016), showed that biomass distribution between stem and leaves across tree functional types varied with plant size and specific leaf area (SLA), suggesting that the partitioning of biomass between organs may depend on plant and leaf properties. It then follows that patterns of partitioning may be tightly linked to the trade-offs controlling the functional properties of those organs, which in turn are dependent on climate and resource availability.

The need to build sufficient xylem hydraulic capacity to supply the canopy, given a certain distance between roots and leaves (Zimmermann 1983; Tyree \& Ewers 1991) provides a first

RUNNING TITLE: Global drivers of leaf/wood area partitioning
constraint, i.e., higher hydraulic efficiency (i.e., higher specific conductivity per unit xylem area, K_{s}) may be required for thin and long stems to compensate pressure losses along a longer hydraulic pathway. A second trade-off comes from Corner's rules (Corner 1949). Corner's rules state that larger individual leaves are subtended by thicker stems and are more widely spaced in branches of a given length, implying that for a given leaf area, the trade-offs between building many small leaves or few large ones have consequences for stem size (Westoby \& Wright 2003; Kleiman \& Aarssen 2007; Olson et al. 2009; Smith et al. 2017). A third trade-off relates to the partitioning towards leaf area construction in relation to the carbon returned by photosynthesis over a leaf's lifespan (Kikuzawa 1991), as embodied in the leaf economics spectrum (LES) theory (Reich et al. 1997; Wright et al. 2004; Shipley et al. 2006). The central trait mediating this trade-off is SLA, which is the ratio between the radiation-intercepting leaf area and the required mass investment (Niinemets 1999, 2001). Finally, one might expect wood density (WD) to control the amount of biomass investment in xylem cross-sectional areas. High WD increases mechanical stiffness and resistance to breakage (Niklas \& Spatz 2006; Chave et al. 2009) and cavitation (Hacke et al. 2001) but high WD also implies high carbon cost, especially for tall trees (Mencuccini 2003). Based on mechanical stability and carbon cost principles, the trade-offs between building thin terminal branches with dense wood or building thick branches with low density (Niklas \& Spatz 2010) may have consequences for the ratios between xylem and leaf areas.

To advance our understanding of how xylem hydraulics, wood and leaf economics may control resource partitioning in woody plants globally, we employ the Huber ratio (xylem sapwood area / leaf area, H_{v}) of crown-top branches as a measure of the relative areal ratios of leaves and wood (Tyree \& Ewers 1991). H_{v} can be viewed as the ratio of investment in xylem area (i.e., excluding pith, heartwood, stem bark and phloem) over the expected gains obtained by leaf display and thus, it is an essential parameter in models of water use by vegetation (Mencuccini et al. 2019). It is employed to convert xylem specific conductivity into a more physiologically meaningful variable, i.e., leaf-specific conductivity ($K_{\mathrm{L}}=K_{\mathrm{s}} H_{\mathrm{v}}$). K_{L} links the unit-area water flux through plants with the water potential gradient necessary to drive that flux. While Corner's rules do not distinguish between the components of branch cross-sectional area, H_{v} only considers tissues potentially involved in water transport. Relative to a pipe model ratio, the H_{v} indicates investment for hydraulic supply to leaves, while biomechanical support and storage functions are not considered. Because H_{v} is defined based on actively-conducting sapwood, turnover times of sapwood into heartwood are implicitly considered. Although H_{v} can vary somewhat within a plant depending on where it is measured (cf., review in Mencuccini et al. 2019), the dataset reported here refers to samples of

RUNNING TITLE: Global drivers of leaf/wood area partitioning
crown-top terminal branches. Finally, we develop an analytical framework to predict H_{v} from organlevel traits.

Specifically, we test the hypotheses that the relative partitioning between sapwood area and leaf area $\left(H_{v}\right)$ is affected jointly by properties controlling leaf economics and plant hydraulics, i.e., by a) leaf traits broadly related to leaf spectra (as defined by the SLA and leaf size) and b) xylem hydraulic efficiency K_{s} and maximum tree height $H_{\max }$ (which is strongly related to maximum hydraulic path length). Additionally, we also test a hypothesis related to wood economics, i.e., that c) WD scales with H_{v}. Understanding how partitioning between leaves and wood in terminal branches is jointly determined by leaf and wood properties is a significant step towards predicting how organ-level traits can affect global patterns of biomass partitioning and vegetation responses to drought.

Materials and Methods

Theory

A theoretical model to predict $H_{v}\left(\mathrm{~cm}^{2} \mathrm{~m}^{-2}\right)$ based on organ-level traits is currently not available. As a starting point, we employ the definition of the Huber value to partition the identity into component variables:

$$
\begin{equation*}
H_{v}=\frac{A_{x}}{A_{L, t o t}}=\frac{A_{x}}{\sum A_{L}}=\frac{A_{x}}{\sum S L A M_{L}}=\frac{A_{x}}{\operatorname{SLAnM_{L^{\prime }}}} \tag{Eqn.1}
\end{equation*}
$$

where A_{x} and $A_{\mathrm{L}, \text { tot }}$ are xylem sapwood area $\left(\mathrm{cm}^{2}\right)$ and subtended leaf area $\left(\mathrm{m}^{2}\right)$, respectively. The capital sigma in the denominator indicates a summation over all leaves of a crown-top twig, A_{L}, M_{L} and SLA are mean area of a leaf $\left(\mathrm{m}^{2}\right)$, mean mass of a leaf ($10^{-3} \mathrm{~kg}$) and mean specific leaf area $\left(m^{2} \mathrm{~kg}^{-1}\right)$, respectively, while n is the number of leaves in a branch of a given length. SLA is known to depend on light availability within tree crowns (e.g., Niinemets et al. 2015), while H_{v} data reflects only conditions of canopy-top branches. Once variables are log-transformed, Eqn. 1 predicts a negative scaling for H_{v} against both M_{L} and $S L A$. In practice, negative isometric scaling ($\mathrm{b}=-1.00$) is not expected between these variables, because of, among other factors, non-zero covariances between $M_{\llcorner }$and $S L A$ and between $M_{\llcorner }$and n. SLA and $M_{\llcorner }$act very distinctively with regard to how they might affect H_{v}. Doubling SLA halves H_{v} without changes in leaf biomass. Conversely, doubling M_{L} halves H_{v} by doubling leaf biomass. The presence of A_{x} in the numerator of Eqn. 1 suggests a sizedependency of H_{v}. To incorporate it, the potential hydraulic conductance of a plant can be expressed

RUNNING TITLE: Global drivers of leaf/wood area partitioning
as $K_{\mathrm{p}}=K_{\mathrm{s}} A_{\mathrm{x}} / H_{\text {max }}$, where $K_{\mathrm{p}}\left(\mathrm{kg} \mathrm{MPa}^{-1} \mathrm{~s}^{-1}\right)$, $K_{\mathrm{s}}\left(\mathrm{kg} \mathrm{m}^{-1} \mathrm{MPa}^{-1} \mathrm{~s}^{-1}\right)$ and $H_{\text {max }}(\mathrm{m})$ are potential plant hydraulic conductance, branch specific conductivity and plant maximum height, respectively. This conductance is referred to as 'potential' because it does not account for actual path length, only maximum height. We employ $H_{\text {max }}$ instead of actual sampling heights, because sampling heights are not available for the majority of our samples. Hence our results must be understood with regard to the effects of plant potential stature, not actual height per se, on these relationships. We recognise that metabolic scaling theory (MST, West et al. 1999; Savage et al. 2010) provides suitable expressions for this scaling. We do not employ quarter-power relationships, as our intention is not to test our global dataset against predictions from MST, but to explore the joint covariation of leaf economics and xylem economics variables in relation to H_{v}. Substituting $K_{\mathrm{p}} H_{\text {max }} / K_{\mathrm{s}}$ for A_{x} into Eqn. 1 gives:

$$
\begin{equation*}
H_{v}=\frac{K_{p} \quad H_{\max }}{n S L A K_{s} M_{L}} \tag{Eqn.2}
\end{equation*}
$$

The first term on the right hand side of the equation contains the ratio K_{p} / n, the total stem hydraulic supply capacity to each leaf. Both K_{p} and n are dependent on stem diameter (Mencuccini 2002; Savage et al. 2010; Smith et al. 2017), while K_{p} / n is much less so (West et al. 1999). The second term on the right hand side of Eqn. 2 predicts a direct scaling of H_{v} with $H_{\text {max }}$ and an inverse scaling with $K_{\mathrm{s}}, S L A$ and M_{L}. The direct scaling of H_{v} with $H_{\text {max }}$ ensures that taller plants have greater relative allocation to xylem area to compensate for their stature (McDowell et al. 2002). This compensation is moderated by other processes, i.e., vertical conduit tapering (West et al. 1999; Anfodillo et al. 2006) and larger conduits at the apex of tall plants (Olson et al. 2014, 2018), both of which affect K_{s}. An inverse scaling of H_{v} with $H_{\max }$ may thus also be obtained, if K_{s} scaled with $H_{\max }$ more than proportionally. In addition, a negative scaling with $H_{\max }$ may also be obtained if plants minimise sapwood construction and/or maintenance costs, instead of hydraulic resistance (Anfodillo et al. 2016; Fajardo et al. 2019). An inverse relationship between H_{v} and K_{s} is expected because of functional balance between water supply and demand (Whitehead \& Jarvis, 1981; see derivation in the Supplementary Information, Methods S1) and it has been found empirically before for smaller datasets (Choat et al. 2011; Gleason et al. 2012).

Equations 1-2 express H_{v} in term of the constituent traits, thus providing a predictive reference framework for tissue partitioning based on organ-specific traits. Beside the predictions based on the framework above, additional models were tested. Firstly, we tested whether H_{v} scaled with $W D$ (strictly, stem specific gravity). A negative relationship between H_{v} and $W D$ may arise because of xylem carbon construction costs (cf., Supplementary Materials Section S1 for in-depth

RUNNING TITLE: Global drivers of leaf/wood area partitioning
discussion). Secondly, we tested a model excluding K_{s} from the set of traits employed to predict H_{v}. The advantage of excluding K_{s} is that it allows to obtain a model for H_{v} based only on widely available easy-to-measure traits, making it possible to employ global databases to predict sapwoodleaf area ratios. Overall, our analyses provide the first approximation to a framework explaining the variability in a difficult-to-predict allocation trait, based on standard leaf and xylem traits and plant stature.

Datasets

Measured values of crown-top branch H_{v} were obtained from a) an updated version of the hydraulic dataset by Choat et al. (2012) (i.e., XFT, xylem functional traits), including several new datasets from China, b) an Amazonian dataset from RAINFOR (Patiño et al. 2012), c) an Australian dataset (from Togashi et al. 2015) and d) an African/S. American dataset from TROBIT (Schrodt et al. 2015). Smaller datasets from China were obtained from (Niu et al., 2017; Song et al., 2018). The geographical distribution of sampling sites/species location is given in Fig.S1 and the biome distribution plot in Fig. S2. The RAINFOR and the TROBIT projects (accounting for $\sim 50 \%$ of all H_{v} here) followed a single protocol for the measurement of leaf area, mass, xylem area, SLA and wood density (Patiño 2005). Specifically, 1-m-long top-canopy branches were sampled typically at the end of the rainy season (leaf phenology can be variable and is poorly predictable in the tropics, e.g., Wu et al., 2016) from sun-exposed crowns of trees of diameter at breast height $>10 \mathrm{~cm}$. Bark, heartwood if present, and xylem pith were visually excluded from xylem measurements. However, since dyes were not routinely used, hydraulically active xylem was not identified. For the hydraulic dataset ($\sim 50 \%$ of the entries), crown top samples were also typically collected. Units and protocols were checked by experts, although study-to-study variability in sampling/measurement methods may be present in our sample (especially, regarding use of dyes and sample length). Measurements conducted on seedlings, inside greenhouses and those subjected to experimental treatments were excluded from this study. Values of wood specific conductivity K_{s} were obtained from the updated XFT, leaf economics traits (SLA, leaf lifespan LL), $H_{\max }$ and WD from XFT and Glopnet (Wright et al. 2004), (Patiño et al. 2012), (Schrodt et al. 2015) and/or TRY (Kattge et al., 2011). Xylem vulnerability to embolism from XFT was employed for one analysis, for which r-shaped curves were excluded. Individual, one-sided projected leaf areas A_{L} were obtained from (Wright et al. 2017) and leaf masses M_{L} calculated by dividing A_{L} by $S L A$.

RUNNING TITLE: Global drivers of leaf/wood area partitioning

Information on genus-level woodiness, leaf habit, leaf type, leaf shape and plant growth form were obtained from the sources above or from (Zanne et al. 2014). When required, missing pieces of information were extracted by web scraping of wiki pages from Wikipedia (https://en.wikipedia.org/wiki/Main_Page), Encyclopaedia of Life (http://eol.org/), Flora of China (http://www.efloras.org) and Useful Tropical Plants (http://tropical.theferns.info/) using xm/2, rvest and httr in R (R Core Team 2017). The dataset was finally trimmed to the following levels for each categorical variable: woodiness (woody only), leaf habit (winter and drought-deciduous, evergreen), leaf shape (compound, simple), leaf type (needle leaf, broadleaf), plant habit (shrub, tree) and taxon group (Angiosperm, Gymnosperm). The final dataset contained 1135 species-averaged H_{v} values from 736 sites (1618 unique values when including lianas, vines, succulents and cacti). The other quantitative variables had somewhat lower coverage (i.e., $>90 \%$ for $S L A$ and $W D,>70 \%$ for $H_{\max }$ and leaf size, 40% for K_{s}).

For each species record, species climatic envelopes were calculated with speciesmap (https://remkoduursma.github.io/speciesmap/articles/Using_speciesmap.html), an R package that combines species occurrences from GBIF (Global Biodiversity Information Facility, http://www.gbif.org), with climate layers from WorldClim (http://www.worldclim.org) and CGIARCSI, cf. Trabucco et al., 2008). speciesmap rasterizes species occurrences and extracts 0.025, 0.5 and 0.975 quantiles for mean annual temperature (MAT), precipitation (MAP) and potential evapotranspiration (PET) across all grid cells of the species occurrence region. Converting the occurrence data into presence/absence grid cells equally weighs over- and under-sampled areas in the climate envelope estimates. Species classification into biomes was obtained from a Whittaker diagram of MAT and MAP (Wright et al. 2004). For those H_{v} measurements where Latitude/Longitude were available from the original publications, we compared MAT/MAP at the sampling site against values obtained for the GBIF climate envelope (slope $=0.96, R^{2}=0.94, n=686$, and slope $=0.90, R^{2}=0.91, n=686$, for MAT and MAP, respectively; the slopes <1.0 suggest, as expected, a $4-10 \%$ underestimation of MAT/MAP from GBIF relative to local values). Because annual MAP/MAT values may be poorly related to relative water supply particularly during the growing season, a Moisture index (MI) was calculated as MAP/PET. To bring species binomials to a common taxonomy, names were matched against accepted names in The Plant List using taxonstand (Cayuela et al. 2012). Any binomials not found in this list were matched against the International Plant Names Index (IPNI; http:// www.ipni.org/), eFloras and Tropicos (http://www.tropicos.org). The final list with unresolved species nomenclature was carefully checked manually.

RUNNING TITLE: Global drivers of leaf/wood area partitioning

Statistical analyses

To assess functional scaling between variables, bivariate relationships between H_{v} and other traits (SLA, M $M_{\mathrm{L}}, K_{\mathrm{s}}, H_{\max }$ and WD) were summarised using standardised major axis (SMA) slopes using smatr (Warton et al. 2006). All traits were log-10 transformed to improve residual distribution and examine relationships across order of magnitude differences. We carried out a goodness-of-fit test for the overall relationships to identify global scaling patterns (i.e., overall line slopes and intercepts $\pm 95 \%$ confidence intervals). Slopes were compared between categorical groupings by leaf type (broad/needle leaves), leaf shape (simple/compound) leaf habit (winter deciduous/drought deciduous/evergreen), plant growth form (shrub/tree) and taxon group (Angiosperm/Gymnosperm) using a likelihood ratio test (Warton et al. 2006). Where slopes were deemed not to significantly differ, we tested for intercept differences between the common-slope lines and/or shifts of the data clouds along the common-slope line using a Wald test with one degree of freedom (Warton et al. 2006).

Path models (SEM) were used to examine whether the hypothesised correlation structures were consistent with the observed multivariate relationships among traits determining H_{v}. We used the sem function in lavaan (Rosseel 2012) and followed Brown (2006) for model selection and diagnostics. SLA, $M_{\mathrm{L}}, H_{\text {max }}$ (in some models also $W D$ and/or K_{s}) were allowed to co-vary with each other as they jointly affected H_{v}. To explore the possibility that these relationships were modulated by additional factors, we allowed for trait covariance to depend on additional categorical variables (i.e., leaf shape, leaf type, plant growth form and taxon group), included as fixed effects in some models. Directed climate effects (MAT, MAP, MI) on leaf, xylem traits and $H_{\text {max }}$ were included in some models, together with directed climate effects on H_{v}. The saturated path models were simplified by removing non-significant paths (using z tests and $\triangle A I C$ values) until a minimal adequate model was found. Goodness of fit was assessed using absolute fit, parsimony and comparative fit (Brown 2006). Full-information Maximum Likelihood allowed including species with partially missing traits. Finally, the path model coefficients were used to predict H_{v} based on organ-specific traits.

To test whether relationships of organ traits with H_{v} were affected by leaf turnover times, the models above were modified to include leaf lifespan LL. Also, as an alternative, we employed leaf habit (deciduous/evergreen) in some models, because the sample size for $L L$ ($\mathrm{n}=105$ coupled values of $L L$ and H_{v}) was much lower than for leaf habit. Leaf habit strongly relates to $L L$ (t-test, $\mathrm{P}=1.14 \mathrm{e}^{-10}$). Variation in LL is high among evergreen species, but the consequences for our interpretation are minimal because models with $L L$, leaf habit, or without are almost identical.

RUNNING TITLE: Global drivers of leaf/wood area partitioning

To check for the possibility that systematic biases were present across the original datasets (XFT; RAINFOR; TROBIT; Togashi et al., 2015; Niu et al., 2017; Song et al., 2018), we treated these datasets as a random factor in a linear mixed model (nlme, Pinheiro \& Bates, 2000). We modelled H_{v} as a function of leaf and xylem traits, by varying intercept and slope as a function of dataset. We tested the significance of the factor "dataset" by running an ANOVA comparison of the model accounting for dataset as a random factor against a simpler linear model without the random factor. The test showed that the simpler linear model was equally effective ($\mathrm{P}=0.9998$). We therefore discard the possibility that systematic biases across pooled datasets can affect our conclusions, although we acknowledge that study-to-study variability within each dataset is likely. All analyses were carried out in R version 3.4.3 (R Core Team 2017).

Results

In bivariate analyses, H_{v} scales significantly, inversely and with similar correlation strength (r from -0.54 to -0.60) with each of the three leaf traits, i.e., $S L A$, individual leaf area $A_{\llcorner }$and individual leaf mass M_{L} (all $\mathrm{P}<2.2 \mathrm{e}^{-16}$, Figure 1a and b , Table 1). H_{v} also scales significantly and inversely with xylem specific conductivity K_{s} and plant stature $H_{\max }\left(r=-0.53\right.$ and $r=-0.45$; both $\mathrm{P}<2.2 \mathrm{e}^{-16}$). Finally, H_{v} and $W D$ are positively but poorly related ($P=0.09, r=0.06$). In log10 scale, H_{v} varies over 3 orders of magnitude, much more than SLA (>1 order), slightly more than K_{s} and $H_{\max }$ (<3 orders), but less than leaf size (6 orders). Apart from a few gymnosperms, species with very high H_{v} are often short shrubs with needle-like leaves in the Proteaceae, Ericaceae, and Asteraceae of the steppes/semideserts of S America or Australia. Those with very low H_{v} tend to be large-leaved tall tropical trees in a large number of families (esp., Fabaceae and Malvaceae) in either wet or dry forests. The scaling slope of H_{v} against SLA (-1.93) is far steeper than $-1.0\left(\mathrm{P}<2.2 \mathrm{e}^{-16}\right)$. By contrast, the scaling slopes against M_{L} and A_{L} are significantly flatter than $-1.0\left(\mathrm{~b}=-0.50\right.$ and -0.44 , respectively; $\left.\mathrm{P}<2.2 \mathrm{e}^{-16}\right)$. The slopes against K_{s} and $H_{\max }$ are not significantly different from negative isometry (Table 1, $\mathrm{b}=-1.04$ and $b=-0.96$, respectively).

Plant growth form (shrub/tree) and taxon group (Angiosperm/Gymnosperm) affect the magnitude but not the direction of these relationships (cf., Figure 1, Table S1). Relative to trees, shrubs are characterised by leaves with lower SLA, smaller A_{L} and M_{L} and by a xylem with lower K_{s}, while having a higher H_{v} (Figure 1). In contrast, Gymnosperms are shifted vertically downwards and tend to have lower H_{v} for a given SLA, leaf size and K_{s} relative to Angiosperms (Table S1). For a given stature, shrubs are shifted downward and Gymnosperms upward, relative to Angiosperms. When LL

RUNNING TITLE: Global drivers of leaf/wood area partitioning
is tested in bivariate relationships, it co-varies positively and significantly with H_{v}, but the relationship is weak ($P<0.05, r=0.28$). Similar results are obtained for leaf habit and $H_{v}(P<0.01$, $r=0.10)$.

Many of the bivariate relationships between $H_{v}, M_{\mathrm{L}}, A_{\mathrm{L}}, K_{\mathrm{s}}, W D, H_{\text {max }}$ and $S L A$ are affected by various categorical variables (Table S1). Regardless of the specific comparison, the inverse relationships between H_{v} and other traits are conserved, although low sample size makes the relationships non-significant for some groups (needle-like leaves, winter-deciduous plants). Generally, categorical variables related to leaf shape (simple/compound), leaf type (broad/needle leaves) and leaf habit (deciduous/evergreen) are associated with changes in the bivariate slopes between H_{v} and traits. Out of the possible 18 relationships, nine have heterogeneous slopes (cf., Table S1 for the P slope test values). In contrast, growth form (shrub/tree) and taxon group (Angiosperm/Gymnosperm) are only associated with elevation changes and shifts in data clouds along the common-slope lines (Tables 1 and S1).

SEM analyses (Table S2) confirmed that each of SLA, $M_{\mathrm{L}}, H_{\text {max }}$ and K_{s} contribute substantially $\left(S L A>M_{\mathrm{L}}>K_{\mathrm{s}}>H_{\max }\right.$) and independently to variation in H_{v} (Figure 2 A). H_{v} remains negatively related to $H_{\text {max }}$ leaf $\left(S L A, M_{\mathrm{L}}\right)$ and xylem $\left(K_{\mathrm{s}}\right)$ properties, with this model being strongly supported ($\mathrm{P}=0.697$, Table S2; Figure 2A). In this and subsequent models, substituting A_{L} for M_{L} leads to almost identical results (data not shown). All four traits strongly co-vary with one another.

We verified the robustness of the dependency of H_{v} against $H_{\text {max }}$, leaf and xylem traits, by incorporating one additional categorical variable (i.e., taxon group, plant growth form, leaf habit, leaf form, leaf shape) with effects on these traits. In no case do we find that the scaling of H_{v} against leaf/xylem traits disappears or is strongly altered (with the partial exception of the scaling of $H_{\text {max }}$, Figure S3). In all cases, the categorical variables affect the traits directly, while their effects on H_{v} are either very small (Fig. S3E) or non-significant (other panels in Fig. S3). Conversely, highly significant differences in H_{v} are always found across the levels of all these categorical variables using a general linear model (i.e., when trait effects on H_{v} are not accounted for; always $\mathrm{P}<0.0001$; data not shown). When LL is tested with the co-varying leaf/xylem traits, it is not found to be a contributor to H_{v} and it is excluded ($\mathrm{P} \gg 0.05$). Similarly, despite its much larger sample size, leaf habit is not a significant contributor to H_{v} (Fig.S3C).

We also explored the robustness of these relationships to differences in climatic conditions, by incorporating MAT, MAP (singly or in combination) or MI across the species climatic envelopes (MAP and MAT are highly and positively correlated in our dataset, $\mathrm{P}<2.2 \mathrm{e}^{-16}, \mathrm{R}^{2}=0.48$). Highly

RUNNING TITLE: Global drivers of leaf/wood area partitioning
significant effects of MAT, MAP and MI are found when tested directly in correlations against H_{v} ($\mathrm{P}<2.2 \mathrm{e}^{-16}, \mathrm{r}=0.49 ; \mathrm{P}<2.2 \mathrm{e}^{-16}, \mathrm{r}=0.43$, and $\mathrm{P}<2.2 \mathrm{e}^{-16}, \mathrm{r}=0.28$, respectively; H_{v} declines with increases in MAT, MAP or MI). Interestingly, when examined within the network of trait relationships explaining H_{v}, all four plant traits (SLA, $M_{\mathrm{L}}, H_{\max }$ and K_{s}) increase at higher MAT, MAP and MI. However, direct climatic effects on H_{v} are comparatively small or non-existent (Figure S4). In addition, the proportions of explained variance of H_{v} in models with the direct effects of climate on H_{v} are lower than the proportions for the model without climate (i.e., $r^{2}=0.48-0.50$ versus 0.54 , when climate is versus when it is not included, respectively; cf., Fig.2A with Fig. S4). Importantly, the path coefficients from traits to H_{v} change minimally up or down compared to previous models.

Having examined the relationships between H_{v} and $H_{\text {max }}$, leaf and xylem traits, $W D$ is included in the path models. WD co-varies with all four other traits and negatively affects H_{v}, contributing to increase the model r^{2} for H_{v} from 0.54 to 0.57 (Table S2, Figure 2). The direction of the effect of $W D$ on H_{v} remains identical (and its magnitude similar), with the inclusion of additional categorical variables (data not shown). Overall among all models, the best one explains 57% of the variance in H_{v} (Figure S5 and Table S2).

Finally, we examined the performance of a model based only on widely available traits, i.e., excluding the trait with the lowest coverage (K_{s}) (Figure 3). A model based on SLA, $M_{\mathrm{L}}, H_{\text {max }}$ and $W D$ explains almost the same amount of variance (i.e., 53%) as the one including xylem conductivity (54\%) and somewhat less compared to the model with all five traits (57\%, cf., Figures 2 and 3), but with comparable standardised root mean square residuals (SRMSR) (Tables S2 and S3).

Discussion

We show evidence of consistent global scaling of H_{v} against plant stature, leaf and wood traits, with relationships robust to the incorporation of climatic variables and major plant groupings, with the best model explaining close to 60% of the global-scale variability in H_{v} in a sample of $>1,100$ species. By comparison, a regression against MAT and MAP explains only 26% of the variance of H_{v} (data not shown). This result generalises findings previously reported based on smaller datasets, with relationships between H_{v} and/or K_{s} with SLA and/or WD (Stratton et al. 2000; Meinzer et al. 2004; Pickup et al. 2005; Gleason et al. 2012; Patiño et al. 2012), of H_{v} with $H_{\max }$ (Liu et al. 2019) and of a negative $H_{v}-K_{s}$ relationship (Martínez-Vilalta et al. 2004; Choat et al. 2011; Togashi et al. 2015). Our findings can be employed to improve models' skills for the prediction of vegetation functions in

RUNNING TITLE: Global drivers of leaf/wood area partitioning
biomes where a lack of empirical data currently limits the parameterization of plant hydraulic processes.

Covariation between K_{s} and H_{v} in relation to leaf size and SLA
H_{v} scales against individual leaf mass M_{L} with a slope of ~-0.5 (Table 1). Strictly speaking, Equation 2 predicts a scaling of -1.00 , although, as explained before, additional variables may affect this slope. Given the lack of information regarding these variables at the global scale, we refrain from interpreting the discrepancy between predicted and observed exponent of this relationship. It is tempting to explain the scaling between K_{s} and M_{L} (or A_{L}) as a consequence of the longer path length inside longer leaves, leading to greater conduit tapering and larger K_{s} down the branch. Such analysis should consider the potential covariations with all the other hydraulic variables (cf., Supplementary Information Section S1 and Whitehead \& Jarvis (1981)). The positive slope of K_{s} almost exactly matches the negative slope of H_{v} against M_{L}, effectively leading to an invariance of the product of these two variables (i.e., leaf specific hydraulic conductivity $K_{\mathrm{L}}, K_{\mathrm{L}}=K_{\mathrm{s}} H_{\mathrm{v}}$) across leaf sizes (data not shown). Changes in M_{L} impact on many other functional aspects, including proportion of supporting versus physiologically active tissues (Niinemets et al. 2007), radiation load and boundary layer conductances (Wright et al. 2017). Hence, it is remarkable that no trends are found in the relationship between M_{L} and K_{L}.

With regard to the $H_{v}-S L A$ scaling, we find a much steeper slope (~-1.9, Table 1), implying a more-than-proportional decline in H_{v} with SLA. Similar to the case above, K_{s} scales positively against SLA with a slope that is so steep (slope of ~ 1.6, Table 1) to effectively negate the negative scaling of H_{v}. Hence the increase of K_{s} with SLA balances the decline of H_{v} with SLA, again leading to no relationship between SLA and leaf-specific conductivity K_{L} (data not shown). Although the processes leading to these specific scaling exponents are not known, their consequences are apparent. Stomatal conductance and unit-area photosynthetic rates are positively associated with hydraulic capacity in leaves and stems (Mencuccini 2003; Brodribb et al. 2004; Santiago et al. 2004; Scoffoni et al. 2016). Globally, SLA is unrelated to unit-area photosynthetic rates (Wright et al. 2004, 2005). All else being equal, high SLA leads to lower H_{v} (Figs. 2 and 3). Hence, the compensation between K_{s} and H_{v} (keeping K_{L} constant) avoids high-SLA leaves experiencing lower stomatal conductance and lower unit-area photosynthetic rates. The general result is that high-SLA (or "acquisitive") leaves are necessarily associated with larger canopy areas (for a given investment in sapwood area), while an absolute increase in xylem K_{s} helps maintain hydraulic supply to the larger canopy (cf., SI Section 2).

RUNNING TITLE: Global drivers of leaf/wood area partitioning

While SLA values obtained from TRY may reflect conditions of partial canopy shading (Keenan \& Niinemets 2016), this is unlikely to lead to different conclusions.

Overall, cross-species changes in H_{v} against either $M_{\llcorner }$or SLA are compensated for by changes in K_{s}. This is confirmed both by the scaling of H_{v} directly against K_{s} (negative isometry, i.e., $\mathrm{b}=-1.00$, Table 1) and by the fact that the negative relationship between these two variables remains even after accounting for the covariance among traits (Figure 2). Therefore, covariation between H_{v} and K_{s} changes the cross-species balance between conductive areas and specific conductivity per unit area, maintaining similar levels of leaf hydraulic supply with varying SLA and M_{L}. The existence of a compensation between these two hydraulic properties has been reported already (Ewers \& Fisher 1991; Martínez-Vilalta et al. 2004; Choat et al. 2011; Togashi et al. 2015), but its significance at the global scale had not been realised. While a trade-off between hydraulic efficiency and safety prevents the occurrence of plants with high efficiency and high safety (Gleason et al. 2016), the negative isometric scaling between xylem efficiency and H_{v} separates high relative allocation to a hydraulically inefficient xylem, versus low allocation to xylem with high hydraulic efficiency. This is similar to and likely overlaps with the trade-off generally observed across wood types, i.e., from tracheid-based conifer wood to diffuse-porous and ring-porous angiosperm wood. This compensation justifies a broadly constant leaf-specific hydraulic conductivity K_{L} with varying $S L A, M_{\mathrm{L}}$, WD (cf., Table 1) and, as discussed later, plant stature.

The regulation of H_{v} by leaf and xylem traits takes place via different processes. In the case of SLA, the regulation is assured partly by the mathematical link between these two variables at constant leaf biomass investment (Lloyd et al. 2013; Osnas et al. 2013). The association between SLA and H_{v} therefore links water transport traits to the ecological trade-offs behind LES traits. In the case of M_{L}, the regulation occurs because changes in M_{L} inevitably lead to changes in total mass investment in leaves, although reductions in leaf numbers n partly compensate increases in M_{L}. Therefore, the $M_{\mathrm{L}}-H_{\mathrm{v}}$ effect is mediated via the effect of Corner's rules on leaf packing (Smith et al. 2017). Finally, in the case of the regulation of H_{v} by K_{s}, a compensation takes place between investment in thick but inefficient versus thin but efficient xylem. From this perspective, Corner's rules, LES and hydraulic supply to leaves are largely decoupled axes of variation.

The role of plant stature

Plant stature is negatively correlated with H_{v}. If the relationship between stature and Huber values was determined by gravity or the need to counter frictional losses during water transport,

RUNNING TITLE: Global drivers of leaf/wood area partitioning
one would predict a positive effect (Eqn.2). Indeed, this is typically observed within species (i.e., when H_{v} changes during development at constant maximum height; McDowell et al. 2002). The occurrence of a negative isometric relationship suggests instead that stature brings about the need to reduce relative biomass allocation to sapwood, possibly as a consequence of sapwood carbon costs versus leaf gains (Mencuccini 2003; Niinemets 2010; Anfodillo et al. 2016; Fajardo et al. 2019). This may especially be the case under low light and/or high competitive conditions, where carbon balance may be less favourable (Togashi et al. 2015). Nonetheless, the correlation coefficient of $H_{\max }$ with H_{v} is lower than for almost all other traits (Table 1). Equivalently, the standardised coefficient for $H_{\max }$ is the lowest among the variables controlling changes in H_{v} in our path models (Figs. 2,3), suggesting that changes in stature are not strongly correlated with sapwood-leaf area ratios, when all the other variables are partialled out. This low correlation is likely caused by the covariation between $H_{\max }$ and other leaf traits and the compensation between H_{v} and K_{s}. In our path models, K_{s} is negatively related to H_{v} while it co-varies positively with $H_{\text {max }}$, hence net size effects of $H_{\max }$ on H_{v} are strongly reduced. Assuming a broadly constant H_{v} along a plant profile (Mencuccini et al. 2019), the negative isometric scaling (slope of -1.00 , cf., Table 1) between H_{v} and $H_{\text {max }}$ suggests that allocation to sapwood relative to leaf area for the whole plant is likely much less variable than indicated only by branch-top H_{v}, although datasets to test this hypothesis globally do not currently exist. Isometric scalings were also found for K_{s} against $H_{\text {max }}$ (slope of +1.00) and H_{v} against K_{s} (slope of -1.00). Hence, a broadly constant branch-top leaf-specific hydraulic conductivity K_{L} is maintained (cf., West et al. 1999), despite the increasing stature of tall trees. This occurs via increases in specific conductivity (likely via increased canopy-top conduit diameters, Olson et al. 2014, 2018) and reductions in H_{v}, probably to avoid stature-related carbon costs (Mencuccini 2003). Plant stature also co-varies with M_{L} (and more weakly, $S L A$). Compared to shrubs (most of them, from desert or woodland, not boreal, biomes), tall (mainly tropical) trees are characterised by larger leaves and, less consistently, leaves with high specific leaf area. This also contrasts with trends occurring within individual trees, where leaf size and SLA strongly decline with height (Koch et al. 2004; Burgess \& Dawson 2007).

The role of wood density

The negative association of $W D$ with H_{v} is robust to the covariation with other organ-level traits, categorical and climatic variables. A mechanistic interpretation of the role of $W D$ is complicated by its involvement in several processes (cf., discussion in Supplementary Materials Section S1). The direct negative effect of $W D$ on H_{v} most likely reflects a bio-mechanical / carbon

RUNNING TITLE: Global drivers of leaf/wood area partitioning
cost trade-off between smaller but denser sapwood areas versus larger areas made up of cheaper wood, perhaps via the relationships between WD and wood mechanical properties (Chave et al. 2009; Niklas \& Spatz 2010). WD also acts indirectly via conduit size and packing (which lead to negative covariance of $W D$ with K_{s}, cf., derivation in SI, Section S1) and via its covariances with SLA and M_{L}. WD may also be linked to abundance of fibres, fibre wall thickness and parenchyma wood fractions (Ziemińska et al. 2015). We considered that $W D$ may act on H_{v} via hydraulic safety. This analysis however shows no significant effect of P50 on H_{v} in a path model with the other traits (data not shown).

Climate and other moderating variables

Within species, H_{v} can respond to climatic conditions, e.g., radiation, site water balance, vapour pressure deficit and/or temperature (Mencuccini \& Grace 1995; Delucia et al. 2000). We confirm these findings globally, with significant cross-species effects of MAT, MAP and MI on H_{v}. One of the most interesting results of our analysis is that direct climatic effects on H_{v} become nonsignificant or very small when the effects of MAT, MAP and especially of MI, are tested in a path model, accounting for indirect climatic effects via $H_{\max }$ and leaf/xylem traits. This finding suggests that evolutionary pressure by climate on H_{v} may largely occur via the component traits, e.g., reducing $H_{\text {max }}, K_{\mathrm{s}}, M_{\mathrm{L}}$ and $S L A$ under dry conditions.

Prediction of hydraulic traits for global models

Global models increasingly need to be parameterised with wood-to-leaf biomass ratios and hydraulic traits (Fatichi et al. 2016; Matheny et al. 2017; Mencuccini et al. 2019), including H_{v} and K_{s} specific to different plant functional types. However, adequate parameterisation of hydraulic and biomass scaling in terrestrial biosphere models requires understanding of how the relevant traits are integrated and co-vary with one another. A model for sapwood/leaf partitioning based entirely on organ-specific traits has the advantage of increasing model consistency and avoid overparameterization. The fact that the model including only four easily measured and widely available traits (SLA, $M_{\mathrm{L}}, H_{\text {max }}$ and $W D$) performs similarly to the models including the less available xylem efficiency K_{s} raises the possibility that H_{v} may be estimated globally from parameters already employed in models. Additionally, the negative isometric scaling between H_{v} and K_{s} is robust to several comparisons across potential grouping variables and to the covariation with other traits.

RUNNING TITLE: Global drivers of leaf/wood area partitioning

Therefore, it may also be possible to predict K_{s} as a function of H_{v}, assuming a globally constant K_{L}. Further investigations are required to determine the robustness of this approach for modelling hydraulic traits in different plant functional types.

Our conclusion that relative partitioning to sapwood/leaf area can be explained via component traits is limited to the canopy-top branches where H_{v} was measured. Using the limited available data, Mencuccini et al. (2019) showed that, while varying from species to species, H_{v} tend to remain relatively constant from twig to trunk base. A constant sapwood-leaf ratio along the plant axis is consistent with metabolic scaling theory (West et al. 1999; Savage et al. 2010). However, neither the dataset we previous employed (Mencuccini et al. 2019), nor metabolic scaling theory account for light-dependent variation in traits within tree canopies.

About 40% of the variance in H_{v} remains unaccounted for in our models. Part of this variance could be explained by variations in the factor K_{p} / n, which is incorporated in Eqn. 2 but is not quantified due to lack of data. Similarly, lack of size (A_{x}, distance from apex, sampling height) measurements prevent us from investigating additional constraints, such as axial variability in K_{s}. Methodological uncertainties for K_{s} (e.g., Espino \& Schenk 2011) and study-to-study variability in the sampling strategy for H_{v} (leaf and xylem phenology; infrequent use of dyes) add to the same problem. A better understanding of H_{v} scaling within plants is essential to estimate how leaf/wood partitioning can be scaled from branches to whole plants (Mencuccini et al. 2019).

Acknowledgements

This research was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) via competitive grants CGL2013-46808-R (FUN2FUN project) and CGL2017-89149-C2-1-R (DRESS project). T.R. was supported by a FPI scholarship from the MINECO. J.M.V. benefited from an ICREA Academia award. FS acknowledges support from a University of Nottingham Anne McLaren fellowship. The study was supported by the TRY initiative on plant traits (http://www.try-db.org). We thank S Patiño (deceased) and J Lloyd for initially drawing our attention to the RAINFOR and TROBIT field collections of Huber values. The data derived from the hydraulics database is partly an outcome from a working group funded by the ARC through the Australia-New Zealand Research Network for Vegetation Function.

RUNNING TITLE: Global drivers of leaf/wood area partitioning

Reference List

Anfodillo, T., Carraro, V., Carrer, M., Fior, C. \& Rossi, S. (2006). Convergent tapering of xylem conduits in different woody species. New Phytol., 169, 279-290.

Anfodillo, T., Petit, G., Sterck, F., Lechthaler, S. \& Olson, M.E. (2016). Allometric trajectories and "stress": A quantitative approach. Front. Plant Sci., 7, 1-6.

Bloom, A.J., Chapin, S.F. \& Mooney, H.A. (1985). Resource limitation in plants- An economic analogy. Annu. Rev. Ecol. Syst.

Brodribb, T.J., Holbrook, N.M., Zwieniecki, M.A. \& Palma, B. (2004). Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima. New Phytol., 165, 839-846.

Brown, T.A. (2006). Confirmatory Factor Analysis for Applied Research. Methodol. Soc. Sci.
Burgess, S.S.O. \& Dawson, T.E. (2007). Predicting the limits to tree height using statistical regression of leaf traits. New Phytol., 174, 626-636.

Cayuela, L., Granzow-de la Cerda, Í., Albuquerque, F.S. \& Golicher, D.J. (2012). taxonstand: An r package for species names standardisation in vegetation databases. Methods Ecol. Evol., 3, 1078-1083.

Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G. \& Zanne, A.E. (2009). Towards a worldwide wood economics spectrum. Ecol. Lett., 12, 351-366.

Choat, B., Jansen, S., Brodribb, T.J., Cochard, H., Delzon, S., Bhaskar, R., et al. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755.

Choat, B., Medek, D.E., Stuart, S.A., Pasquet-Kok, J., Egerton, J.J.G., Salari, H., et al. (2011). Xylem traits mediate a trade-off between resistance to freeze-thaw-induced embolism and photosynthetic capacity in overwintering evergreens. New Phytol., 191, 996-1005.

Coleman, J.S., McConnaughay, K.D.M. \& Ackerly, D.D. (1994). Interpreting phenotypic variation in plants. Trends Ecol. Evol., 9, 186.

Corner, E.J.H. (1949). The Durian theory or the origin of the modern tree. Ann. Bot., 13, 367-414.
Delucia, E.H., Maherali, H. \& Carey, E. V. (2000). Climate-driven changes in biomass allocation in pines. Glob. Chang. Biol., 6, 587-593.

Dewar, R.C., Franklin, O., Mäkelä, A., McMurtrie, R.E. \& Valentine, H.T. (2009). Optimal function explains forest responses to global change. Bioscience, 59, 127-139.

Duursma, R.A. \& Falster, D.S. (2016). Leaf mass per area, not total leaf area, drives differences in above-ground biomass distribution among woody plant functional types. New Phytol., 212, 368-376.

Enquist, B.J. \& Niklas, K.J. (2002). Global allocation rules for patterns of biomass partitioning in seed plants. Science (80-.)., 295, 1517-1520.

Espino, S. \& Schenk, H.J. (2011). Mind the bubbles: Achieving stable measurements of maximum hydraulic conductivity through woody plant samples. J. Exp. Bot., 62, 1119-1132.

Ewers, F.W. \& Fisher, J.B. (1991). Why vines have narrow stems: histological trends in Bauhimia (Fabaceae). Oecologia, 88, 233-237.

Fajardo, A., McIntire, E.J.B. \& Olson, M.E. (2019). When short stature is an asset in trees. Trends Ecol.

RUNNING TITLE: Global drivers of leaf/wood area partitioning

Evol., 34, 193-199.
Farrior, C.E., Dybzinski, R., Levin, S.A. \& Pacala, S.W. (2013). Competition for Water and Light in Closed-Canopy Forests: A Tractable Model of Carbon Allocation with Implications for Carbon Sinks. Am. Nat., 181, 314-330.

Fatichi, S., Pappas, C. \& Ivanov, V.Y. (2016). Modeling plant-water interactions: an ecohydrological overview from the cell to the global scale. Wiley Interdiscip. Rev. Water, 3, 327-368.

Franklin, O., Johansson, J., Dewar, R.C., Dieckmann, U., McMurtrie, R.E., Brannstrom, A., et al. (2012). Modeling carbon allocation in trees: a search for principles. Tree Physiol., 32, 648-666.

Freschet, G.T., Valverde-Barrantes, O.J., Tucker, C.M., Craine, J.M., McCormack, M.L., Violle, C., et al. (2017). Climate, soil and plant functional types as drivers of global fine-root trait variation. J. Ecol., 105, 1182-1196.

Gill, R.A. \& Jackson, R.B. (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytol., 147, 13-31.

Gleason, S.M., Butler, D.W., Ziemińska, K., Waryszak, P. \& Westoby, M. (2012). Stem xylem conductivity is key to plant water balance across Australian angiosperm species. Funct. Ecol., 26, 343-352.

Gleason, S.M., Westoby, M., Jansen, S., Choat, B., Hacke, U.G., Pratt, R.B., et al. (2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species. New Phytol., 209, 123-136.

Grime, J.P. (1979). Plant Strategies and Vegetation Processes. John Wiley and Sons, New York.
Hacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D. \& McCulloh, K.A. (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457-461.

Hunt, R. \& Cornelissen, J.H.C.C. (1997). Components of relative growth rate and their interrelations in 59 temperate plant species. New Phytol., 135, 395-417.

Kattge, J., Diaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Bonisch, G., et al. (2011). TRY - a global database of plant traits. Glob. Chang. Biol., 17, 2905-2935.

Keenan, T.F. \& Niinemets, Ü. (2016). Global leaf trait estimates biased due to plasticity in the shade. Nat. Plants, 3.

Kikuzawa, K. (1991). A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. Am. Nat., 138, 1250-1263.

Kleiman, D. \& Aarssen, L.W. (2007). The leaf size/number trade-off in trees. J. Ecol., 95, 376-382.
Koch, G.W., Sillet, S.C., Jennings, G.M. \& Davis, S.D. (2004). The limits to tree height. Nature, 428, 851-854.

Lapenis, A., Shvidenko, A., Shepaschenko, D., Nilsson, S. \& Aiyyer, A. (2005). Acclimation of Russian forests to recent changes in climate. Glob. Chang. Biol., 11, 2090-2102.

Ledo, A., Paul, K.I., Burslem, D.F.R.P., Ewel, J.J., Barton, C., Battaglia, M., et al. (2017). Tree size and climatic water deficit control root to shoot ratio in individual trees globally. New Phytol., 217, 8-11.

Liu, H., Gleason, S.M., Hao, G., Hua, L., He, P., Goldstein, G., et al. (2019). Hydraulic traits are coordinated with maximum plant height at the global scale. Sci. Adv., 5, eaav1332.

RUNNING TITLE: Global drivers of leaf/wood area partitioning

Lloyd, J., Bloomfield, K., Domingues, T.F. \& Farquhar, G.D. (2013). Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand? New Phytol., 199, 311-321.

Martínez-Vilalta, J., Sala, A. \& Piñol, J. (2004). The hydraulic architecture of Pinaceae - a review. Plant Ecol., 171, 3-13.

Matheny, A.M., Mirfenderesgi, G. \& Bohrer, G. (2017). Trait-based representation of hydrological functional properties of plants in weather and ecosystem models. Plant Divers., 39, 1-12.

McCarthy, M.C. \& Enquist, B.J. (2007). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct. Ecol., 21, 713-720.

McDowell, N., Barnard, H., Bond, B.J., Hinckley, T., Hubbard, R.M., Ishii, H., et al. (2002). The relationship between tree height and leaf area: Sapwood area ratio. Oecologia, 132, 12-20.

Meinzer, F.C., Brooks, J.R., Bucci, S., Goldstein, G., Scholz, F.G. \& Warren, J.M. (2004). Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types. Tree Physiol., 24, 919-28.

Mencuccini, M. (2002). Hydraulic constraints in the functional scaling of trees. Tree Physiol., 22, 553565.

Mencuccini, M. (2003). The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant. Cell Environ., 26, 163-182.

Mencuccini, M. \& Grace, J. (1995). Climate influences the leaf area/sapwood area ratio in Scots pine. Tree Physiol., 15, 1-10.

Mencuccini, M., Manzoni, S. \& Christoffersen, B. (2019). Modelling water fluxes in plants: from tissues to biosphere. New Phytol., 222.

Mitchell, P.J., Veneklaas, E.J., Lambers, H. \& Burgess, S.S.O. (2008). Using multiple trait associations to define hydraulic functional types in plant communities of south-western Australia. Oecologia, 158, 385-397.

Niinemets, Ü. (1999). Components of leaf dry mass per area - thickness and density - alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol., 144, 35-47.

Niinemets, Ü. (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453-469.

Niinemets, Ü. (2010). A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res., 25, 693-714.

Niinemets, Ü., Keenan, T.F. \& Hallik, L. (2015). A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol., 205, 973-993.

Niinemets, Ü., Portsmuth, A., Tena, D., Tobias, M., Matesanz, S. \& Valladares, F. (2007). Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Ann. Bot., 100, 283-303.

Niklas, K.J. \& Spatz, H.C. (2006). Allometric theory and the mechanical stability of large trees: Proof and conjecture. Am. J. Bot., 93, 824-828.

Niklas, K.J. \& Spatz, H.C. (2010). Worldwide correlations of mechanical properties and green wood

RUNNING TITLE: Global drivers of leaf/wood area partitioning
density. Am. J. Bot., 97, 1587-1594.
Niu, C.-Y., Meinzer, F.C. \& Hao, G.-Y. (2017). Divergence in strategies for coping with winter embolism among co-occurring temperate tree species: the role of positive xylem pressure, wood type and tree stature. Funct. Ecol., 31, 1550-1560.

Olson, M.E., Aguirre-Hernández, R. \& Rosell, J.A. (2009). Universal foliage-stem scaling across environments and species in dicot trees: Plasticity, biomechanics and Corner's Rules. Ecol. Lett., 12, 210-219.

Olson, M.E., Anfodillo, T., Rosell, J.A., Petit, G., Crivellaro, A., Isnard, S., et al. (2014). Universal hydraulics of the flowering plants: Vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecol. Lett., 17, 988-997.

Olson, M.E., Soriano, D., Rosell, J.A., Anfodillo, T., Donoghue, M.J., Edwards, E.J., et al. (2018). Plant height and hydraulic vulnerability to drought and cold. Proc. Natl. Acad. Sci. USA, 115, 75517556.

Osnas, J.L.D., Lichstein, J.W., Reich, P.B. \& Pacala, S.W. (2013). Global leaf trait relationships: Mass, area, and the leaf economics spectrum. Science (80-.)., 340, 741-744.

Patiño, S. (2005). Manual de campo para el estudio de hojas y madera editado para establecer efectos de sequías. Proyecto Pan-Amazonia, EU, 12 pp.

Patiño, S., Fyllas, N.M., Baker, T.R., Paiva, R., Quesada, C.A., Santos, A.J.B., et al. (2012). Coordination of physiological and structural traits in Amazon forest trees. Biogeosciences, 9, 775-801.

Pickup, M., Westoby, M. \& Basden, A. (2005). Dry mass costs of deploying leaf area in relation to leaf size. Funct. Ecol., 19, 88-97.

Pinheiro, J.C. \& Bates, D.M. (2000). Mixed-Effects Models in S and S-PLUS. Springer-Verlag New York Berlin Heidelberg.

Poorter, H., Jagodzinski, A.M., Ruiz-Peinado, R., Kuyah, S., Luo, Y., Oleksyn, J., et al. (2015). How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol., 208, 736-749.

Poorter, H., Niklas, K.J., Reich, P.B., Oleksyn, J., Poot, P. \& Mommer, L. (2012). Biomass allocation to leaves, stems and roots: meta-analysis of interspecific variation and environmental control. New Phytol., 193, 30-50.

R Core Team. (2017). R: A language and environment for statistical computing.
Reich, P.B. (2002). Root-shoot relations: optimality in acclimation and adaptation or the. 'Emperor's New Clothes'? In: Plant Roots: The Hidden Half (eds. Waisel, Y., Amram, E. \& Kafkafi, U.). Marcel Dekker, New York, pp. 205-220.

Reich, P.B., Luo, Y., Bradford, J.B., Poorter, H., Perry, C.H. \& Oleksyn, J. (2014a). Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proc. Natl. Acad. Sci. U. S. A., 111, 13721-13726.

Reich, P.B., Rich, R.L., Lu, X., Wang, Y.-P. \& Oleksyn, J. (2014b). Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections. Proc. Natl. Acad. Sci. U. S. A., 111, 13703-13708.

Reich, P.B., Walters, M.B. \& Ellsworth, D.S. (1997). From tropics to tundra: Global convergence in plant functioning. Proc. Natl. Acad. Sci. U. S. A., 94, 13730-13734.

RUNNING TITLE: Global drivers of leaf/wood area partitioning

Rosseel, Y. (2012). Iavaan: An R Package for Structural Equation Modeling. J. Stat. Softw., 48, 1-36.
Santiago, L.S., Goldstein, G., Meinzer, F.C., Fisher, J.B., Machado, K., Woodruff, D., et al. (2004). Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia, 140, 543-550.

Savage, V.M., Bentley, L.P., Enquist, B.J., Sperry, J.S., Smith, D.D., Reich, P.B., et al. (2010). Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants. Proc. Natl. Acad. Sci. USA, 107, 22722-7.

Schrodt, F., Domingues, T.F., Feldpausch, T.R., Saiz, G., Quesada, C.A., Schwarz, M., et al. (2015). Foliar trait contrasts between African forest and savanna trees: Genetic versus environmental effects. Funct. Plant Biol., 42, 63-83.

Scoffoni, C., Chatelet, D.S., Pasquet-kok, J., Rawls, M., Donoghue, M.J., Edwards, E.J., et al. (2016). Hydraulic basis for the evolution of photosynthetic productivity. Nat. Plants, 2, 16072.

Shipley, B. (2006). Net assimilation rate, specific leaf area and leaf mass ratio: Which is most closely correlated with relative growth rate? A meta-analysis. Funct. Ecol., 20, 565-574.

Shipley, B., Lechowicz, M.J., Wright, I. \& Reich, P.B. (2006). Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 87, 535-541.

Smith, D.D., Sperry, J.S. \& Adler, F.R. (2017). Convergence in leaf size versus twig leaf area scaling: do plants optimize leaf area partitioning? Ann. Bot., 119, 447-456.

Song, J., Yang, D., Niu, C.-Y., Zhang, W.-W., Wang, M. \& Hao, G.-Y. (2018). Correlation between leaf size and hydraulic architecture in five compound-leaved tree species of a temperate forest in NE China. For. Ecol. Manage., 418, 63-72.

Stratton, L., Goldstein, G. \& Meinzer, F.C. (2000). Stem water storage capacity and efficiency of water transport: their functional significance in a Hawaiian dry forest. Plant, Cell Environ., 23, 99-106.

Thornley, J.H.M. (1972). A balanced quantitative model for root:shoot ratios in vegetative plants. Ann. Bot., 36, 431-441.

Tilman, D. (1988). Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton, NJ, USA, 376 pp.

Togashi, H.F., Prentice, I.C., Evans, B.J., Forrester, D.I., Drake, P., Feikema, P., et al. (2015). Morphological and moisture availability controls of the leaf area-to-sapwood area ratio: analysis of measurements on Australian trees. Ecol. Evol., 5, 1263-1270.

Trabucco, A., Zomer, R.J., Bossio, D.A., van Straaten, O. \& Verchot, L. V. (2008). Climate change mitigation through afforestation/reforestation: A global analysis of hydrologic impacts with four case studies. Agric. Ecosyst. Environ., 126, 81-97.

Tyree, M.T. \& Ewers, F.W. (1991). The hydraulic architecture of trees and other woody plants. New Phytol., 119, 345-360.

Warton, D.I., Wright, I.J., Falster, D.S. \& Westoby, M. (2006). Bivariate line-fitting methods for allometry. Biol. Rev., 81, 259-291.

West, G.B., Brown, J.H. \& Enquist, B.J. (1999). A general model for the structure and allometry of plant vascular systems. Nature, 400, 664-667.

Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil, 199, 213-

RUNNING TITLE: Global drivers of leaf/wood area partitioning
227.

Westoby, M. \& Wright, I.J. (2003). The leaf size - twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135, 621-628.

Whitehead, D. \& Jarvis, P.G. (1981). Coniferous forests and plantations. In: Water Deficits and Plant Growth (ed. Kozlowski, T.T.). Academic Press, New York, pp. 49-152.

Wright, I.J., Dong, N., Maire, V., Prentice, I.C., Westoby, M., Díaz, S., et al. (2017). Global climatic drivers of leaf size. Science (80-.)., 357, 917-921.

Wright, I.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Garnier, E., Hikosaka, K., et al. (2005). Assessing the generality of global leaf trait relationships. New Phytol., 166, 485-496.

Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.

Wu, J., Albert, L.P., Lopes, A.P., Restrepo-Coupe, N., Hayek, M., Wiedemann, K.T., et al. (2016). Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science (80-.)., 351, 972-976.

Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A., Fitzjohn, R.G., et al. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92.

Zhu, S.-D., Song, J.-J., Li, R.-H. \& Ye, Q. (2013). Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests. Plant. Cell Environ., 36, 879891.

Ziemińska, K., Westoby, M. \& Wright, I.J. (2015). Broad anatomical variation within a narrow wood density range-A study of twig wood across 69 Australian angiosperms. PLoS One, 10, e0124892.

Zimmermann, M.H. (1983). Xylem Structure and the Ascent of Sap. Springer, Berlin Heidelberg.

X_{2}	X_{1}	Y- Intercept	95\% Cl of the elevation	$\begin{gathered} \hline \text { Slope } \\ (95 \% \mathrm{Cl}) \end{gathered}$	95\% CI of the slope	n	$\|r\|$	$\begin{gathered} (\mathrm{P} \\ \text { value) } \end{gathered}$
H_{v}	SLA	2.126	2.021/2.231	-1.934	-2.041 / -1.833	1039	0.60	$<2.2 \mathrm{e}^{-16}$
H_{v}	A_{L}	0.874	0.824 / 0.923	-0.442	-0.470/-0.416	822	0.60	$<2.2 \mathrm{e}^{-16}$
H_{v}	$M_{\llcorner }$	0.459	0.422 / 0.497	-0.497	-0.532 / -0.464	780	0.54	$<2.2 \mathrm{e}^{-16}$
H_{v}	K_{5}	0.481	0.432 / 0.531	-1.039	-1.126 / -0.960	448	0.53	$<2.2 \mathrm{e}^{-16}$
H_{v}	$H_{\text {max }}$	1.413	1.339 / 1.486	-0.963	-1.021 / -0.908	798	0.45	$<2.2 \mathrm{e}^{-16}$
H_{v}	WD	1.118	1.045 / 1.192	1.721	1.608 / 1.842	1018	0.06	0.09
$K_{\text {s }}$	SLA	-1.300	-1.450 / -1.151	1.601	$1.458 / 1.758$	397	0.35	$4.9 \mathrm{e}^{-12}$
$K_{\text {s }}$	A_{L}	-0.326	-0.415 / -0.236	0.494	0.438 / 0.557	218	0.48	$2.5 \mathrm{e}^{-13}$
$K_{\text {s }}$	$M_{\llcorner }$	0.145	0.075 / 0.215	0.557	0.492 / 0.632	208	0.45	$2.0 \mathrm{e}^{-11}$
$K_{\text {s }}$	WD	-0.667	-0.774 / -0.560	-1.673	-1.845 / -1.514	386	0.18	0.0006
K_{5}	$H_{\text {max }}$	-0.879	-0.994 / -0.764	1.004	0.913 / 1.104	316	0.30	$7.1 \mathrm{e}^{-8}$
M_{L}	SLA	-3.622	-3.943 / -3.300	4.101	3.802 / 4.424	780	0.30	$8.8 \mathrm{e}^{-14}$
M_{L}	A_{L}	-0.869	-0.896 / -0.842	0.911	0.896 / 0.927	780	0.98	$<2.2 \mathrm{e}^{-16}$
M_{L}	WD	-1.019	-1.170 / -0.867	-3.022	-3.277 / -2.787	746	0.18	$2.5 \mathrm{e}^{-5}$
M_{L}	$H_{\text {max }}$	-2.276	-2.481 / -2.071	2.173	2.026 / 2.330	598	0.48	$<2.2 \mathrm{e}^{-16}$
SLA	A_{L}	0.676	0.674 / 0.705	0.222	0.207 / 0.238	802	0.44	$<2.2 \mathrm{e}^{-16}$
SLA	WD	0.477	0.438 / 0.516	-0.956	-1.021/-0.894	976	0.29	$6.4 \mathrm{e}^{-16}$
SLA	$H_{\text {max }}$	0.323	0.277 / 0.369	0.539	0.505 / 0.575	754	0.38	$<2.2 \mathrm{e}^{-16}$
- 0								
WD	$A_{\text {L }}$	-0.060	-0.105 / -0.015	-0.296	-0.320 / -0.273	759	0.20	$9.3 \mathrm{e}^{-7}$
WD	$H_{\text {max }}$	0.236	0.179 / 0.293	-0.609	-0.652/-0.569	722	0.23	$2.4 \mathrm{e}^{-10}$
-								
$A_{\text {L }}$	$H_{\text {max }}$	-1.369	-1.568 / -1.169	2.260	2.116 / 2.414	638	0.53	$<2.2 \mathrm{e}^{-16}$

Table 1. Results of Standardised Major Axis analyses of the bivariate relationships among the plant traits affecting H_{v}. All variables are base-10 log-transformed. Formulas are given as: $\mathrm{X}_{2}=f\left(\mathrm{X}_{1}\right)$. Legend: Cl , confidence intervals; H_{v}, Huber value; SLA, Specific Leaf Area; A_{L}, leaf area; M_{L}, leaf mass; K_{s}, xylem specific conductivity; $H_{\max }$, maximum plant height; $W D$, wood density. Sample size (n), correlation coefficient (r) and probability level (P value) for each regression are also given.

RUNNING TITLE: Global drivers of leaf/wood area partitioning

Figure legends.

Figure 1. Bivariate plots of Huber Value H_{v} against other plant traits, i.e., A) specific leaf area (SLA), B) plant stature $\left(H_{\max }\right)$, C) leaf mass $\left(M_{\mathrm{L}}\right)$ and D$)$ xylem specific conductivity $\left(K_{\mathrm{s}}\right)$. All variables are base-10 log-transformed. Points are coloured to distinguish Gymnosperms (black triangles) from Angiosperms (circles), and among these, trees (red circles) from shrubs (blue circles). The thin black line gives the overall model II regression scaling across all data points (cf., Table 1). Thick black, blue and red lines give separate scaling for the three respective groups. Statistics of the regressions and the comparisons among groups (shrub vs. trees; Angiosperms vs. Gymnosperms) are given in Table S1.

Figure 2. Results of the Path models explaining Huber Value $\left(H_{v}\right)$ based on A) specific leaf area (SLA), leaf mass $\left(M_{\mathrm{L}}\right)$, plant stature $\left(H_{\text {max }}\right)$ and xylem specific conductivity $\left(K_{\mathrm{s}}\right)$ or B) the same variables plus wood density (WD). Data from both angiosperms and gymnosperms are included. All variables are base-10 log-transformed. All coefficients are standardised. Green single-headed lines (and respective numbers) indicate positive relationships, red single-headed lines (and numbers), negative relationships (from cause to effect). Double-headed arrows (and numbers) indicate covariances among variables. The thicknesses of the lines are proportional to the intensity of the effect. Green numbers close to the rounded arrows around each rectangle give the proportion of unexplained variance for each model (values of 1 are given for the predictor variables). The difference between observed and modelled covariance structure is not significant in either of the two models based on a chi-square test ($\mathrm{P}=0.697$ and $\mathrm{P}=0.727$, respectively).

Figure 3. Results of the Path model explaining Huber Value $\left(H_{v}\right)$ based on specific leaf area (SLA), individual leaf mass $\left(M_{\mathrm{L}}\right)$, plant stature $\left(H_{\max }\right)$ and wood density $(W D)$. All variables are base- 10 logtransformed. All coefficients are standardised. Green single-headed lines (and respective numbers) indicate positive relationships, red single-headed lines (and numbers), negative relationships (from cause to effect). Double-headed arrows (and numbers) indicate covariances among variables. The thicknesses of the lines are proportional to the intensity of the effect. Green numbers close to the rounded arrows around each rectangle give the proportion of unexplained variance for each model (values of 1 are given for the predictor variables). The difference between observed and modelled covariance structure is not significant based on a chi-square test ($P=0.469$).

Figure 1. Bivariate plots of Huber Value H_{v} against other plant traits, i.e., A) specific leaf area (SLA), B) plant stature $\left(H_{\max }\right)$, C) leaf mass $\left(M_{\mathrm{L}}\right)$ and D) xylem specific conductivity $\left(K_{\mathrm{s}}\right)$. All variables are base-10 log-transformed. Points are coloured to distinguish Gymnosperms (black triangles) from Angiosperms (circles), and among these, trees (red circles) from shrubs (blue circles). The thin black line gives the overall model II regression scaling across all data points. Thick black, blue and red lines give separate scaling for the three respective groups. Statistics of the regressions and the comparisons among groups (shrub vs. trees; Angiosperms vs. Gymnosperms) are given in Tables 1 and S1.

Figure 2. Results of the Path models explaining Huber Value $\left(H_{v}\right)$ based on A) specific leaf area $(S L A)$, leaf mass $\left(M_{\mathrm{L}}\right)$, plant stature ($H_{\text {max }}$) and $x y$ lem specific conductivity $\left(K_{s}\right)$ or B) the same variables plus wood density ($W D$). Data from both angiosperms and gymnosperms are included. All variables are base-10 log-transformed. All coefficients are standardised. Green single-headed lines (and respective numbers) indicate positive relationships, red single-headed lines (and numbers), negative relationships (from cause to effect). Double-headed arrows (and numbers) indicate covariances among variables. The thicknesses of the lines are proportional to the intensity of the effect. Green numbers close to the rounded arrows around each rectangle give the proportion of unexplained variance for each model (values of 1 are given for the predictor variables). The difference between observed and modelled covariance structure is not significant in either of the two models based on a chi-square test ($\mathrm{P}=0.697$ and $\mathrm{P}=0.727$, respectively).

Figure 3. Results of the Path model explaining Huber Value $\left(H_{\mathrm{v}}\right)$ based on specific leaf area $(S L A)$, individual leaf mass (M_{L}), plant stature $\left(H_{\text {max }}\right)$ and wood density (WD). All variables are base-10 log-transformed. All coefficients are standardised. Green single-headed lines (and respective numbers) indicate positive relationships, red single-headed lines (and numbers), negative relationships (from cause to effect). Double-headed arrows (and numbers) indicate covariances among variables. The thicknesses of the lines are proportional to the intensity of the effect. Green numbers close to the rounded arrows around each rectangle give the proportion of unexplained variance for each model (values of 1 are given for the predictor variables). The difference between observed and modelled covariance structure is not significant based on a chi-square test ($\mathrm{P}=0.469$).

