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Abstract:  

A simple colloidal drop generally forms ring like patterns after drying. The deposition morphology of 

the dried drop changes significantly when such a drop dries in the vicinity of another similar drop. 

Here we present an observational study and statistical analysis of the patterns formed inside an 

isolated as well as interacting drops of gelatin containing sodium sulfate (Na2SO4). In all the cases, 

multiple concentric regions of solute particles combined with the polymer gel appear as the drops dry 

up. Needle crystals of sulfur and coacervates of salt and gelatin are visible in some regions. The outer 

region becomes non-uniform, so does the size distribution of the needle crystals and coacervates. The 

non-uniformity increases with proximity of the drops. Here we propose a novel mechanism of 

growing patterns inside the single drop during drying and correlate that with the results obtained for 

interacting drops. This study and the proposed mechanism provide insights into the future studies of 

drying drops under different physical conditions. Further we explore the statistical characteristics of 

the single and interacting drops using the field emission scanning electron microscopy (FESEM) 

images. Next, we report fractal and image texture analyses along with object shape statistics of the 

drop FESEM images, under various experimental conditions. Several statistical hypothesis tests have 

been carried out to identify the most significant features.   
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Study of pattern formation in a drying liquid drop deposited on a solid substrate is an interesting 

and contemporary topic in fluid flow (Tarasevich et al. 2016; Deegan et al. 1997). A typical drop 

containing suspension of particles always leaves a ring of dirt deposited along the three-phase contact 

line (TPCL) after complete drying. This phenomenon is known as the ‘coffee-ring’ effect. The coffee-

ring pattern arises when the drop is pinned on the substrate and maintains capillary flow during 

evaporation (Deegan et al. 1997)(Sefiane 2014). Another type of deposition is also observed near the 

central region following the Marangoni flow, which arises from the surface tension gradient as a 

result of temperature or concentration gradient (Hu & Larson 2006). 

1.1 Background and Motivation 

Quite revolutionary changes came to food industry when spray drying was introduced to 

encapsulate food ingredients. This procedure of enriching flavours or quality of the food products is 

used since 1930s (Huang et al. 2017)(Zhang et al. 2017). But as the dehydration of the drops is 

involved here, the membrane of polymers encapsulating the product may vary due to improper 

distances between the drops. People have used several optimisers to reach proper micro-

encapsulations. But here we propose that this encapsulation method could be insignificant if 

inhomogeneity forms at the outer boundary which depends on the distance between the drops. 

The drop consists of salt ions in the biopolymer sol. During the 1st half of the drying, 

crystallization occurred in the sol phase, and then the crystal structures are modified during the 

polymerization (Choudhury et al. 2013).  It has been already observed by many researchers humidity 

effects the crystal structures (Pradhan & Panigrahi 2015), (Choudhury et al. 2015) and different kinds 

of crystal separations can be done by using this property of crystal formation. It is quite similar to the 

magnetic nanoparticles (MNPs) growth processes in the presence of polymers (Maity et al. 2011). 

These are widely investigated due to their potential of interacting properties in biomedical 

applications, such as drug delivery, cell separation, genetic engineering etc. (Haracz et al. 2015). 

Therefore, study of interacting drops may help in understanding their applications in these fields. 

Research of plasmonics (Tao et al. 2007)(Fan et al. 2010)(Nakanishi et al. 2009) and metamaterials 

involve self-assembly of nanoparticles in super-lattice to observe their collective properties (Yoon et 

al. 2014)(Lewandowski et al. 2015)(He et al. 2014)(Dong et al. 2010)(Jiao et al. 2015). The collective 

arrangements of nanoparticles can be controlled by varying relative humidity (RH) or simply placing 

another drop of the same colloidal solution. The same method can also enhance spectroscopies and 

properties of solar cells (Alvarez-Puebla et al. 2011)(Wang et al. 2007)(Rozin et al. 2015)(Zijlstra et 

al. 2009).  

1.2 Novelty of the present work 

The study of interacting drops has drawn a large number of applications such as DNA mapping 

(Jing et al. 1998), medical diagnosis (Brutin et al. 2011)(Yakhno 2008), drug delivery (He et al. 

2003)(Wong 2011), inkjet printing (Park & Moon 2006)(Layani et al. 2009) etc. Deposition of a 

complex fluid drop on a solid surface and letting it dry creates interesting patterns such as fractals 

(Choudhury et al. 2013), concentric rings (Choudhury et al. 2016)(Sefiane 2014), cracks (Khatun et 

al. 2013) etc. Interestingly, two identical drops of complex fluid, when placed closely, affect the 

deposition pattern of each other, after drying as reported in (Pradhan & Panigrahi 2015; Pradhan & 

Panigrahi 2016),(Edwards et al. 2015). It has been reported that the deposition patterns of drops of ink 

and water containing 1 µm polystyrene particles change with the separation distance between the 

drops as the evaporation is slower from the nearest region than that from the other regions of the two 

drops (Pradhan & Panigrahi 2015). This phenomenon is not only used to vary the deposition pattern 

but is also important in preparing different shapes of the residue of a colloidal drop. Formation of 
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arched structures of the residue of colloidal alumina on alumina pillars was reported in (Chen & 

Evans 2009) when the drops are allowed to dry adjacently. The proposed explanation behind this 

phenomenon is the effect of particle convection inside the drop due to non-uniform evaporation from 

the surface of the adjacent drops (Pradhan & Panigrahi 2016)(Edwards et al. 2015). The coffee-ring 

effect of a single dried drop leads to particle separation which is used, reportedly, in nano-

chromatography of biomolecules (Wong et al. 2011). 

In this context, the study of pattern formation in drying interacting drops of biological relevance 

can be used as a novel method for medical diagnosis and forensic science. In this work, we have 

studied the pattern formation in a drying drop composed of gelatin-sodium sulfate in the presence of a 

neighbouring drop. We propose a novel mechanism based on the kinetics during the evaporation and 

morphology of the dried up single drops, which is again correlated with changes found in case of 

interacting drops. 

2. Experimental Methods 

2.1 Preparation of Gelatin Solution Containing Na2SO4 

For the experiments, sodium sulfate (Na2SO4) is obtained from Merck (Mumbai, India) and 

gelatin from Lobachemie (Mumbai, India). In the beginning, we prepare 3 wt% of Na2SO4 water 

solution. Now 0.5 g gelatin was added to the formerly prepared Na2SO4 water solution and stirred in a 

magnetic stirrer at 60ºC in order to make homogeneous solution of final concentration 1 wt%. The 

solution is then allowed to cool at room temperature (25ºC) before starting the experiment.  

2.2 Deposition of Drops 

The optically smooth microscopic glass slides are cleaned with Extran detergent (Merck, 

Mumbai), then rinsed with de-ionized water and ethanol repeatedly to remove any impurity. Initially 

single drop of Na2SO4 water solution is deposited on one glass slide. Simultaneously on a similar 

glass slide an isolated drop of Na2SO4 gelatin solution is deposited.  

In another set of experiment, two drops of Na2SO4 gelatin solution are deposited alongside. The 

distance between edge to edge of the two drops varies from 100 µm to 700 µm. In all cases volume of 

the single drop is taken as 5 µl. All the drops are allowed to evaporate at relative humidity 53 ± 2% 

and temperature 25ºC. We also vary relative humidity from 46±2% to 86±2% by keeping the drops in 

a closed chamber containing saturated solution of Potassium Carbonate (K2CO3) and Potassium 

Chloride (KCl). We check the reproducibility of the patterns under corresponding ambient conditions. 

2.3 Imaging of the Pattern Formation of Drying Drops 

The patterns in the dried drops are characterized by three different techniques. Low-resolution 

images are photographed using Nikon CoolPix L120 camera. Intermediate resolution images are 

obtained using an optical microscope (Leica DM 750) and high resolution images are obtained from 

FESEM (FEIC-QUO-35357-0614 with Bruker Quantax 100). 

2.4 Wettability Pattern 

Time evolution of contact angle, base diameter, height and volume of drops are measured by 

automated optical contact angle (OCA) goniometer and the data is analysed using SCA 20 

(DataPhysics Instruments, GmbH) software. The circle is fitted to drop-shape and various parameters 

are estimated using spherical cap model. Data are recorded for drying of the single drop as well as 

double drops. 
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3. Results for Single Drop 

3.1 Pattern Formation in Drying Drop of Na2SO4 Solution  

We observe dendritic growth inside and creeping of salt crystals outside the drying drop of 

Na2SO4 solution, as shown in Figure 1. The solute particles forming a ring like pattern (coffee-ring 

effect) contouring the dried-up drop can be observed in Figure 1(a). The creeping of the dendritic salt 

crystals outside the boundary line and towards the centre could be observed clearly from the 

microscopic view of a part of the aforementioned ring Figure 1(b). Creeping salt crystals of Na2SO4 is 

discussed briefly in the work of Bonn et al. (Shahidzadeh-Bonn et al. 2008). 

 

Figure 1: (a) Dried drop of Na2SO4 solution, (b) Creeping of salt crystal outside the drop as well as 

dendritic growth inside. 

3.2 Pattern Formation of Na2SO4 Solution Drop Containing Gelatin 

The patterns in dried drop of Na2SO4 containing gelatin show four distinct regions in Figure 2. 

The widths of the first and second regions are ⁓25 µm and ⁓10 µm respectively. The first region 

consists of large number of needle-like crystals of Na2SO4 in Figure 2(a) whereas the second region 

consists of a few needle crystals and their aggregates in Figure 2(b). 

 

Figure 2: A dried drop of gelatin containing Na2SO4 salt consists of four regions: (a) outer most 

needle-crystal region, (b) intermediate region of needle-crystals and its aggregates, (c) aggregates of 

the needle crystals, (d) central region. 
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The aggregates region (width ~50 µm), consists only of the aggregates of needle crystals Figure 

2(c). In this region, the sizes of the aggregates of needle crystallites are found to be larger than that in 

the intermediate region. EDX results in Figure 3(a) confirm that the background of these aggregates 

contains gelatin. At the central region of the dried drop floral pattern of Na2SO4 in the presence of 

gelatin is noticed, as shown in Figure 3(b). We believe that the salts accumulate in this region leading 

to the observed floral pattern. 

 

Figure 3: (a) EDX spectra of the aggregates of the needle crystals and (b) EDX spectra of the central 

region. 

3.3 Mechanism of Pattern Formation of a Single Drying Drop 

We believe that the formation of these nontrivial patterns in a single drop of this complex fluid 

might be the consequence of the Marangoni effect. It is well known that when a drop of aqueous 

solution is deposited on a partially hydrophilic substrate, the evaporation flux, from the drop surface 

is non-uniform and is maximum along the TPCL and minimum at the apex of the drop (Pradhan & 
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Panigrahi 2015)(Deegan et al. 1997). It diverges as the instantaneous radius of a drop approaches the 

three phase contact line as: 
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where, R is the initial radius of the drop and θc is the angle subtended by the deposited drop with the 

substrate. 

Accordingly, the 3-phase contact line tends to cool faster than the other regions of the drop 

resulting in an increase in the surface tension, along the TPCL. But the substrate is still now hotter 

than the drop because of evaporative cooling and consequently, there would be a temperature gradient 

developed between the substrate and the drop, as shown in Figure 4. 

 

Figure 4: In the schematic diagram of a single Na2SO4 gelatin drop-drying mechanism, cooling is 

represented by yellow colour, whereas hotter regions are represented by darker reddish colours. 

The temperature gradient throughout the drop generates a surface tension gradient and Marangoni 

flow takes place (Hu & Larson 2006). With time, sol-gel transition ensues and the heavier flocculated 

colloidal gel-salt tends to deposit at the centre of the drop. The surface tension force is more dominant 

at this point compared to both gravitational pull (since the size is less than capillary length) and 

viscous force (since the major portion of the drop is still in sol phase). 

In the mean-time, the height (H) of the drop decreases, keeping three phase contact line pinned, 

resulting in capillary flow of lighter particles, outward from the centre. At this stage Marangoni flow 

ceases to exist due to the significant decrease in the Marangoni number (Ma) to a critical value. It is 

clearly evident from equation (3) that this can happen due to increase in viscosity (µ) and thermal 

diffusivity (κ) in the presence of gelatine. Marangoni number (Ma) is given by: 
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The Ma decreased to a critical value as, viscosity (μ), increases hugely (values of viscosity change 

from 160 mPa s to 1000 mPa s) and so does the thermal diffusivity κ, because of gelation.  

Since the drop becomes very thin at this stage, temperature gradient decreases and there is 

increase in κ. The µ and κ predominate over the surface tension (γ) of the fluid. Therefore, particles, 

which cannot move inward from the outer layer, form needle like crystals. The formation of first 

region is followed by a second region, as there is still enough gel and aqueous solvent left. The 

evaporation in the second region results in a coagulation of needle crystallites to larger structures, as 

shown in Figure 4.     

The salt within the drop tries to retain its crystal growth conditions owing to its hygroscopic 

nature and during crystal formation, salt crystallites separate partially from the gel. Coacervates of 

gelatine and salt are formed with circular contours. It also appeared that the cracked and broken crusts 

on the large rounded deposits look like blisters, which form by fluid/vapour accumulating below a 

skin and subsequent swelling. Since these salt aggregates are encapsulated with gelatine the EDX 

spectra show a strong peak of carbon at this spot as in Figure 3(a). At the end of the drying process, 

the curvature of the drop remains same throughout the drop-surface. This leads to uniform 

evaporation of the drop which results at the middle section of the drop as shown in Figure 2(d). 

We have performed the same experiment for single drop in a closed chamber at relative humidity 

86% and the aggregated needle crystals with circular boundaries are spotted in Figure 5 which are 

more in number than that observed at humidity 46%. The slow evaporation rate at high RH retains 

water in the drop for more time which is the reason for such accumulated crystal configuration. 

Needle shaped crystals of salt are observed more in low RH whereas very few number of needles are 

noticed in high RH. 

 

Figure 5: (a) Aggregates of the needle crystals of a single drop in humidity 86% ± 5% and 

surrounding temperature 22º, (b) same region for single drop, but humidity is 46% ± 5%. 

4. Results for Interacting Drops 

The mechanism of pattern formation, as well as final patterns of the interacting drops are found to 

be quite different from that of an isolated single drop. For example, the width of the regions at the 
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close proximity of the two drops is observed to be significantly smaller than that of a single drop 

Figure 6(a). In the highest proximity region, the number of single needle crystals is found to be 

negligible and the aggregates of needle crystals increase in size while the number of aggregates 

decrease. But the width of the same region in the non-interacting part of the drop is much higher than 

that of the proximity region. The needles of Na2SO4 are clearly visible in Figure 6(b) and they are 

quite large in number, though very small in length. It is clear that the needles couldn’t get much time 

to aggregate at this region and they are unable to form aggregation like Figure 6(a). The nature of the 

pattern at the central region of each of the double drops are almost the same as that at the centre of an 

isolated dried drop. 

 

Figure 6: (a) Interacting region of a drop among two drops, (b) rear region of one of these two drops. 

 

Figure 7: This figure depicts the mean contact angle variations with time for single drops (black and 

blue circles) and the interacting drops during drying (black and blue stars). Black symbols are for 

humidity 70 ± 2°, blue symbols are for lesser humidity (53 ± 2°). 

We have also observed that when the gap between two drops is ≥ 350 µm, the structures inside 

the dried double drops are very similar to a dried single drop. The evaporation rate is different in 

double drops from the single drop as evident from the measurement of the contact angle with time. 

Interestingly, it is clearly evident from Figure 7 that, the contact angle is higher for interacting drops 

at the proximity region than for the single drop. The evaporation flux is not uniform at the TPCL for 

interacting drops, unlike the single drop. 
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Region (b) (interacting region) of the Figure 8(A) contains more water vapour (vapour 

concentration Ca) than the region (a) and (c) (vapour concentration C∞) at the same time. Therefore, 

the diffusion of vapour from the surface (vapour concentration Cs) to ambient air is less at (b) in 

Figure 8(A). So, the crystals get more time to aggregate. It is similar to the case of a single drop 

drying in a closed chamber where the aggregates are bigger in size in the aggregated region. We have 

observed the widths of interacting and rear regions are uniform throughout the dried single drop but 

we have found different widths for the case of interacting drops.  

 

Figure 8: (A) Image of two interacting drops with separation distance 176μm, (B) schematic diagram 

shows how the width of the outer regions changes with distance x, (C) Variation of the difference 

between the widths of the outer most regions in the proximity part of the drops with the separation x 

between the two drops.  

 

Figure 9: Broken blister like structures from the interacting part of the double drops. Needle crystal 

aggregations inside the broken blisters are also evident. However the four subpanels show same 

region of different drops. Variation of the size and shape of the blisters are noticed but the crystals 

inside seem to be similar which are analysed later using the SEM image statistics. 
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The width of the 1st and 2nd regions at the point (b) is lower than that at the point (a) and (c) in the 

drops as shown in Figure 8. The outer regions are very thin and nearly transparent at the point (b). 

Figure 8(c) shows that the difference in width decreases with increasing separating distance x<350 

µm. As x increases, i.e. the patterns appear similar to a single drop. This confirms the non-uniformity 

in the widths of the regions in the proximity part of the drops due to interaction. We tried to control 

the spacing between the drops by depositing more than 50 pairs of drops manually and selecting those 

pairs of drops which were separated by the distance less than 350μm. Since the drop spreads after 

deposition the distance between edges of the drops could not be controlled. Here we made an effort to 

find the relation between theses spacing between the drops with the width of outer ring of the drops as 

shown in Figure 8. The width of the ring increases with decreasing distance and it also controls the 

salt flocculation at the edge. Basically the spacing is the key factor for controlling the humidity 

between the regions of two drops. It was reported in (Pradhan & Panigrahi 2015) that diffusion of the 

vapour from the outermost surface of the drops during evaporation reduces if the space between the 

drops are reduced. 

We have come across interesting features in dried interacting drops when the relative humidity 

varies from 46% to 86% at temperature ~25°C as in Figure 5. When relative humidity is quite high 

(86%) needle shaped crystals get more time to accumulate, but the underlying mechanism is very 

different when humidity is low (46%) enough. During fast drying i.e. at low RH, the needle crystals 

(the primary structure of Na2SO4 salt) do not get time to combine and most of them are left isolated 

(Choudhury et al. 2016). Even in this case, the small needles could be noticed inside the circular parts 

in salt aggregated region. For slow drying process, i.e. at high RH, larger aggregates are noticed. 

These observations fully support our proposed mechanism of formation of larger aggregates of needle 

crystals in the nearer periphery of the drop in the presence of another drop. 

It is apparent that the evaporation occurred at the base edge of the drop. The fluid flows towards 

the Three Phase Contact Line (TPCL) to maintain the constant contact radius (CCR) mode. But 

during this time, the liquid is a sol of gelatin and salt. It was observed earlier in (Shahidzadeh-Bonn et 

al. 2008) that needle like crystal is the basic structure of Na2SO4. But fast evaporation leads 

oversaturated Na2SO4 at the periphery and we observe only needle structures at the outermost region 

(~100μm). Since Na2SO4 salt drop creates prominently mesoscopic film at the periphery of a drop, the 

presence of another drop plays an important role in the formation of crystals at the nearer end of the 

two drops, as shown in Figure 6 and Figure 9. Sol-gel transformation occurs after formation of the 1st 

outer thin region. Gel transformation changes the viscosity of the fluid remarkably (Choudhury et al. 

2013), (Dutta et al. 2013). That is why the latter regions take more time to dry. Also at the middle, we 

found more occurrences of gelatin influenced salt aggregations. Most of the gel containing gelatin and 

Na2SO4 congregates at the centre of the drop because of its convex shape as shown in the EDX 

spectra in Figure 3.  

It was found that some layers reside on the slide if we wash it lightly after allowing the drop to 

dry for 2-3minutes. These micro films of the dried liquid contain gelatin as well as small quantity of 

salt (Dutta et al. 2013)(Choudhury et al. 2015). The process of mixing salt in the polymer gel or the 

formation of polymer sol in saltwater decides the ‘crystal’ amorphous structures. Several concentric 

rings are observed for preceding case (Roy et al. 2015), no large deposition at the centre was 

observed. But in the latter case, we observed quite different aggregations. It has been established in 

(Choudhury et al. 2013)(Choudhury et al. 2015)(Zang et al. 2019) that the aggregation changes with 

changing polymers in the droplet. Also EDAX spectra in Figure 3 confirm the presence of gelatin on 

the solid aggregates. 
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We have also investigated the effects of pH of the solutions and salt type on the pattern formation 

of drying drops. The pH of the solutions were varied as 6.47, 7.18, 8.60 and 9.27. We did not find any 

significant change in the pattern of the dried single and interacting drops at these pH. However, we 

indeed find a significant change in the patterns for some alkali metal salts, such as, such as NaCl, 

KCl, NaBr, KBr, NaI, KI. Unlike the pattern formation described in the present study, faceted crystals 

and dendritic crystals in the dried drops of these salt-gelatin solutions have been observed, but they do 

not interact significantly in presence of another drop. The mechanism of the crystal growths of NaCl 

with varying RH have been explained qualitatively in earlier literatures (Choudhury et al. 2016; 

Choudhury et al. 2013). In the Na2SO4 gelatin solution, the sulfur plays a crucial role in the process of 

pattern formation. It is reported that for salting out of hydrophilic colloids, like gelatin, from watery 

solution, sulphates are more efficient than chlorides regardless the pH of the gelatin solution (Loeb & 

Loeb 1921).  

5. Statistical Analysis of the FESEM Images 

Next using the FESEM images of the single and interacting drops, we now quantify the 

experimental pattern formation in terms of few statistical features. It was made sure that the 

magnification factors of the FESEM images were the same as 20,000x for analysing all the patterns at 

the same scale. The statistical analysis reported in this section has been inspired from earlier FESEM 

image analysis methods proposed in (Dutta Sinha et al. 2017). Here we mainly report three types of 

statistical analysis viz. image texture, fractal and statistics of the number and shape of the objects in 

an FESEM image. Using these measures, we then carry out several hypothesis tests to find out the 

similarity and difference between these patterns which is quantifiable via the most significant 

features. 

5.1 Texture Analysis 

First, we calculate textural features from each FESEM images for different areas of the drops and 

under different conditions. This includes first and second order statistics of the pixel intensities. The 

first order statistics essentially capture various aspects of the pixel intensity histograms as shown in 

Figure 10 for the different parts of single drop, then single drop with humidity effects and for the 

interacting drops. The pixel intensities of a FESEM image can be used to calculate the shape 

parameters or higher moments of the underlying distributions e.g. mean (µ), standard deviation (σ), 

skewness (γ), kurtosis (β), energy (E), entropy (H), smoothness texture (SM) etc. A more skewed 

distribution is observed in the central region of Figure 10(a) and for the interacting drops in Figure 

10(c) indicating the abundance of brighter pixels than darker ones. All these features together 

characterise the pattern formation due to drop drying under various scenario. Next, we also calculate 

the second order statistics of the images which capture the spatial correlation structure of the FESEM 

images. These features of second order statistics include – contrast, spatial correlation, homogeneity, 

uniformity or 2D energy. These feature scan be calculated from the gray level co-occurrence matrix 

(GLCM) and have been thoroughly described in (Dutta Sinha et al. 2017)(Haralick et al. 1973). 
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(a)

(b) 
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(c) 

Figure 10: Intensity histograms for (a) single drop different parts, (b) single drop with humidity 

effects, (c) interacting drop. The x-axis of the histograms represent the pixel intensity and the y-axis 

represent the normalized frequency of occurrence for different pixel intensities. These figures show 

the grayscale images of single and interacting drops for different trials and regions. It also shows the 

distribution of the pixel intensities for these various cases where heavy tailed and skewed distributions 

are found. This helps in quantitative characterization of these images by extracting various statistical 

features of these pixel intensity histograms to allow comparison of various conditions. 

5.2 Fractal Analysis 

Next, we apply the fractal analysis method using box-counting to calculate the Hausdorff or 

fractal dimension (Df) of the images. First the grayscale FESEM images have been binarized using 

threshodling methods e.g. Otsu’s method (Otsu 1979). However, other studies have also suggested 

that an adaptive thresholding (Bradley & Roth 2007) or pixel intensity clustering-based methods 

(Arifin & Asano 2006; Pappas 1992) can also be used for this purpose. Using the converted binary 

images with only white and black pixels, now the number of black pixels are counted with increasing 

box size. This method yields the box-counting results plotted on a log-log graph of box size vs. 

number of black pixels. For each binary image’s box-counting data, a straight line was fitted whose 

slope can be used to estimate of the fractal dimension of the image. This method has been described 

in a greater detail in (Feder 2013; Tamas 1992). Apart from calculating, Df we also report the 

coefficient of variation (R2) values for each estimates of fractal dimension that indicate how closely 

the data points lie on a straight-line in the log-log graphs and are shown in Figure 11 for three cases of 

pattern formation due to drop drying. Previous similar experimental fractal pattern formation can be 

viewed in the context of viscous fingering and crack formation during drying of complex fluids in 

(Sinha & Tarafdar 2009; Tarafdar & Sinha 2008; Roy et al. 1999; Mal et al. 2006). In Figure 11, it is 

to be noted that the two thresholding methods have been used primarily for converting the grayscale 

images to the respective binary ones for fractal investigations which should not be directly interpreted 

to salt depositions in the white pixel areas. It is also evident that the Otsu’s thresholding method 

smears out many finer structures in the scene which makes it less robust for fractal dimension 

calculation which also gets reflected from a relatively lower R2
 value compared to the adaptive 

thresholding method. 
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One requirement while binarizing a grayscale image is that it should retain the fine structures in 

the scene in the binary version as close as possible to the original grayscale image. To explore this 

more we have compared the binary image conversion step using two different algorithms – Otsu’s 

method (Otsu 1979) and adaptive thresholding method (Bradley & Roth 2007). The respective fitting 

results for fractal analysis using the box-counting methods are shown in Figure 11 for the three cases 

of drop drying patterns. It is apparent from Figure 11 that the adaptive thresholding method is capable 

of retaining the finer structures of the converted binary image similar to the original grayscale image. 

Therefore, in the hypothesis testing reported in the next section, only the features calculated using this 

particular thresholding method have been used and not the features using Otsu’s method.  

 

(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

Figure 11: Fractal analysis (a) single drop with adaptive threshold, (b) single drop with Otsu’s 

method, (c) single drop with humidity effects for Figure 6 with both the method, (d) interacting drop 

with adaptive threshold, (e) interacting drop with Otsu’s method. These figures are the binary versions 

of the SEM images using two different thresholding methods – Otsu and adaptive thresholding. The 

corresponding fractal dimension estimation results are depicted in the bottom subpanels along with 

the goodness of fit (R2) between box counting vs. box size. Depending on the choice of thresholding 

method, the background of the blisters are more noisy which might affect the fractal dimension 

calculation. 

5.3 Characterization of Objects and Their Shapes 

It is interesting to note that each FESEM image has got needle like and other objects of various 

shapes. One may be interested in finding out the shape statistics and the number distribution of these 

objects for different regions of the drop and varying with different experimental conditions. For the 

purpose of object detection and characterisation, we have used the adaptive thresholding method 

(Bradley & Roth 2007), to binarize the grayscale image first, followed by identifying moderately 

large objects in the scene that are connected to 8 neighbouring pixels. We found that adaptive 

thresholding method preserves the fine structures of the FESEM images compared to the Otsu’s 

method (Otsu 1979). Then using the binary images, several statistical parameters are extracted. 

Different regions or objects are attributed with different shape parameters e.g. area, perimeter, 

eccentricity etc.  

The eccentricity  2 2Ecc 1 b a   , is a measure of circularity while b and a being the major 

and minor axes of the detected objects. The distribution of area, perimeter, eccentricity and area-

perimeter relation are compared in Figure 12 for three drop drying conditions using the two 

thresholding methods – Otsu’s and adaptive method both of which show a similar nature of the 

distributions. It is observed from the distribution of eccentricity for most of the images that there are 

more objects with Ecc 1  rather than Ecc 0 , indicating the presence of many long circular objects 

compared to the number of circular objects.  

The shape parameter (S) involving the area vs. perimeter relation is an important parameter 

indicating the shape of the detected objects. For a circular object S can be represented as: 
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with r being the radius of the object. 

Previous studies on fractal objects like cloud and rivers in (Feder 2013) have shown P A  for fractal 

structures. Therefore, for fractal objects in the FESEM images we expect to get 
2

4
0

A
S

P


  , as 

evident from the distributions of area/perimeter relation in Figure 12(a)-(b). The eccentricity together 

with area/perimeter relation can be useful in discriminating compactness or roundedness vs. fractal 

nature of the objects. 

 

(a) 
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(b) 

 

(c) 

Figure 12: Distribution of objects for (a) single drop analysis, (b) single drop with change in humidity, 

(c) interacting drop. 

5.4 Feature Correlation Analysis and Resampling 

 

Figure 13: Correlation between the feature pairs for all the FESEM images.  

Next we calculate any potential redundant information in the calculated features in all the datasets 

of FESEM images using the sliding window feature extraction (Dutta Sinha et al. 2017)(Chatterjee et 

al. 2017). The calculated features are F1 = fractal dimension (Df), F2 = pixel intensity mean (µ), F3 = 

standard deviation (σ), F4 = skewness (γ), F5 = kurtosis (β), F6 = energy (E), F7 = entropy (H), F8 = 
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smoothness, F9 = contrast, F10 = spatial correlation, F11 = homogeneity, F12 = uniformity or 2D 

energy. Due to the lack of many independent experiments on pattern formation and FESEM imaging, 

previous studies like (Dutta Sinha et al. 2017)(Chatterjee et al. 2017) have used resampling 

approaches on large images or long signals with smaller windows to calculate features from different 

parts of the same data and consider them to be independent experimental datasets for statistical 

comparison. The above features from each FESEM images were resampled using a sliding window in 

x and y-direction by 10 pixels to calculate the sliding window statistics. The maximum size of the 

window is chosen as 2N with N = 9, since a larger power exceeds the length of the image in either x or 

y-direction. These are helpful in understanding potential correlation between the features in different 

datasets (when combined together) and also allows one to test several hypotheses based on the 

calculated features. The feature correlations between the FESEM images under consideration are 

shown in Figure 13 which shows there are significantly high correlation ( 0.9r  ) between pairs F9 

(contrast) and F11 (2D energy). Rest of the feature pairs show different complicated nonlinear 

correlation structures. 

5.5 Class Separability Analysis and Hypothesis Testing 

Next, we test the following three hypotheses to find out the significant features indicating the 

difference between the group of drop drying images: 

 Comparison of the 4 regions (outermost, intermediate, aggregates, central) of single drop 

using analysis of variance (ANOVA) and its non-parametric version  

 Comparison of the 2 humidity effects (86% and 46%) on single drop drying using t-test and 

its non-parametric version  

 Comparison of the 2 regions (rear and interacting) of the interacting drop using t-test and its 

non-parametric version  

In all the above tests, the null hypothesis is considered to be that there is no significant difference 

in the groups against the alternative hypothesis that there is significant difference and for all the cases, 

the significance level is set to 0.05 as default. Both parametric and nonparametric hypothesis tests are 

conducted for comparing three regions of the single drop’s 3 regions viz. analysis of variance 

(ANOVA) and Kruskal-Wallis test. This is due to the fact that not all of the distributions of features in 

the boxplots in Figure 14(b) do not look close to the normal distribution and the joint and marginal 

distributions are found to be multimodal in nature for Figure 15(a). For comparing two groups for the 

humidity effects (86% and 46%) and interacting vs. rear region of the interacting drops, we use the t-

test and its non-parametric version Wilcoxon rank sum test which is also equivalent to the Mann-

Whitney U-test (Gibbons & Chakraborti 2010). More details of these parametric and non-parametric 

tests can be found in (Field et al. 2012). As similar comparison has also been done using the for the 

interacting drop’s different regions.   

Using these tests, one can easily identify the prominent statistical features that shows significant 

difference between these groups viz. experimental conditions or different regions of the drops. For 

comparing more groups using some chosen features, usually the scatter matrix (J) is used: 

  1trace w bJ S S .  (5) 

 Here,  ,w bS S  indicate the within class and between class scatter matrix and can be calculated as: 
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In (6), m0 is the global mean over all classes, M is the number of class,  ,i im S  are the mean and 

covariance of class i. Also, Pi  is the a-priori probability of each class Ci i.e. 1iP M for balanced 

data and i iP n N for unbalanced data with  ,in N  being the number of data-points in a particular 

class and total number of data-points respectively. It has been shown in (Theodoridis et al. 2010) that 

for a two class problem the scatter matrix (J) can be interpreted as the Fisher’s discriminant ration 

(FDR): 
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where the covariances become variances of the two classes. 

Table 1: Non-parametric and parametric hypothesis tests for single drop comparison 

Feature Scatter Matrix 

Kruskal-Wallis test ANOVA 

χ2 statistic p-value F statistic p-value 

F11 = homogeneity 1058.16 7214.06 0 2765217.33 0 

F9 = contrast 695.61 7078.84 0 1804488.49 0 

F10 = spatial correlation 76.40 6492.73 0 195804.68 0 

F3 = standard deviation (σ) 47.23 7211.70 0 123060.14 0 

F7 = entropy (H) 29.47 6788.66 0 77609.69 0 

F8 = smoothness 28.10 7211.70 0 72383.03 0 

F6 = energy (E) 25.56 7112.14 0 67786.08 0 

F5 = kurtosis (β) 22.90 6704.09 0 58984.49 0 

F2 = mean (µ) 16.18 4552.80 0 41523.03 0 

F1 = fractal dimension (Df) 12.99 6388.12 0 33640.26 0 

F4 = skewness (γ) 6.55 6429.71 0 16972.35 0 

F12 = uniformity or 2D energy 1.98 5003.71 0 5168.67 0 

 

Using the scatter matrix the features are first ranked before they were used for the hypothesis 

testing which are shown in Table 1-Table 3 for the three different comparisons, discussed above. The 

most significant features for each hypothesis are also listed along with their p-values which shows the 

null hypothesis gets rejected and alternative hypothesis is favoured. To visualize these difference 

using the most significant features after ranked using scatter matrix and rejecting the null hypothesis, 

the corresponding joint distributions using the most significant feature pairs in each cases are shown 

in Figure 14(a), Figure 15(a) and Figure 16(a) respectively, along with the marginal distributions. 

However, a through comparison on individual features are shown in the respective boxplots in Figure 

14(b), Figure 15(b) and Figure 16(b).  
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Table 2: Non-parametric and parametric hypothesis tests for single drop with humidity effect 

comparison 

Feature Scatter Matrix 

Wilcoxon rank sum test Two sample t-test 

z statistic p-value t statistic p-value 

F2 = mean (µ) 57.35 -54.44 0 -476.09 0 

F11 homogeneity 18.36 -54.44 0 -269.38 0 

F4 skewness (γ) 10.42 54.44 0 202.92 0 

F5 kurtosis (β) 6.84 54.44 0 164.42 0 

F12 uniformity or 2D energy 2.78 -54.22 0 -104.85 0 

F1 fractal dimension (Df) 0.70 -44.32 0 -52.57 0 

F10 spatial correlation 0.53 -40.00 0 -45.87 0 

F7 entropy (H) 0.46 -34.27 2.56×10-257 -42.46 0 

F3 standard deviation (σ) 0.35 -30.73 2.34×10-207 -37.40 2.50×10-262 

F8 smoothness 0.34 -30.73 2.34×10-207 -36.59 1.05×10-252 

F9 contrast 0.04 9.12 7.42×10-20 12.33 2.52×10-34 

F6 energy (E) 0.01 4.49 7.14×10-06 4.89 1.05×10-06 

 

Table 3: Non-parametric and parametric hypothesis tests for interacting drop comparison 

Feature Scatter Matrix 

Wilcoxon rank sum test Two sample t-test 

z statistic p-value t statistic p-value 

F12 uniformity or 2D 

energy 38.42 -68.86 0 -410.03 0 

F6 energy (E) 27.74 -68.86 0 -375.37 0 

F7 entropy (H) 15.71 68.86 0 258.38 0 

F4 skewness (γ) 10.38 -68.86 0 -246.91 0 

F5 kurtosis (β) 8.96 -68.85 0 -294.26 0 

F3 standard deviation (σ) 7.05 68.56 0 174.35 0 

F1 fractal dimension (Df) 5.56 68.44 0 156.56 0 

F8 smoothness 4.37 68.56 0 226.82 0 

F11 homogeneity 4.23 -68.86 0 -129.44 0 

F9 contrast 3.73 68.86 0 121.59 0 

F2 mean (µ) 0.09 20.73 2.01×10-95 18.66 2.09×10-76 

F10 spatial correlation 0.03 18.43 8.01×10-76 12.30 1.55×10-34 
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(a) 

 

(b) 

Figure 14: Comparison of the different parts of the single drop (a) using the top two ranked features, 

(b) using all the 12 features. 
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(a) 

 

(b) 

Figure 15: Comparison of the different parts of the single drop with humidity effects (a) using the top 

two ranked features, (b) using all the 12 features. 
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(a) 

 

(b) 

Figure 16: Comparison of the different parts of the interacting drops (a) using the top two ranked 

features, (b) using all the 12 features. 

6. Conclusions 

Here we show the pattern formation in crystals for drop drying with salts in presence of gelatin. 

We have studied the pattern formation of single isolated drying drop as well as two interacting drops 

of gelatin solution containing Na2SO4. We have shown that the deposition pattern of dried up drops of 

Na2SO4 differs significantly when gelatin is added to the solution. Many distinct concentric regions of 

different widths have been found. A possible mechanism of the formation of patterns in the drying 

drops is also proposed. Here we present a detailed study on the effect of a neighbouring drop on the 

deposition pattern, morphology and crystal growth of the adjacent drop. We find pronounced effect in 

the nature of the crystal growth of sodium sulfate in dried interacting drops when the drop separation 
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is less than 350 µm. The needles aggregate and form lumps or clusters in the close proximity region 

of the drops. But in the rear region, we have observed small needle crystals of sodium sulfate. These 

results are consistent and in agreement with our proposed mechanism. Non-uniformity in width of the 

outer most layer in drying interacting drops are found due to the non-uniform rate of evaporation from 

the drop surface. This non-uniformity observed in interacting drops fade away as the separating 

distance is increased. Hence, separating distance between drops controls the local relative humidity 

surrounding the drop. This affects the pattern formation inside the interacting drops. 

Thus, the regulation of the local ambient relative humidity of a drop in the presence of another 

drop might have implications in particle separation, protein separation and size distribution of the salt-

protein aggregates. The interacting drop configuration might also be a useful tool in the field of 

pathological and forensic diagnosis. An interesting outlook of this work would be to analyse 

theoretical studies of crystal growths of the salt in these interacting drops.  

The paper also identifies the most significant statistical features out of the textural (first and 

second order statistics) and fractal analysis. We also show the difference in the shape distributions for 

different objects and the number distribution of the objects in different regions of the drops and also 

their variation with humidity. In future, mathematical modelling of drop drying can be investigated 

and also using a larger volume of datasets with repeated experiments under similar conditions.  
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