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Abstract The North Atlantic Oscillation (NAO) has a dominating influence on wintertime weather in
the North Atlantic region, and therefore, it is of great interest to predict the NAO several months ahead.
While state‐of‐the‐art dynamical forecast models appear to be increasingly skillful in predicting the NAO,
statistical methods with comparable or higher predictive skill are still often used. An inherent problem with
statistical methods is that any empirical relationship between predictors and the NAO may be valid for
some periods but subject to change over time. Here we use a set of new centennial reanalyses and
large‐ensemble simulations with multiple climate models to discover clear evidence of nonstationarity in
the lagged correlation between autumn Barents‐Kara sea ice and the winter NAO. This nonstationarity leads
us to question the causality and/or robustness of the ice‐NAO link. We caution against indiscriminately
using Barents‐Kara sea ice to predict the NAO.

Plain Language Summary European winter weather is heavily influenced by the North Atlantic
Oscillation (NAO). The so‐called positive NAO bringsmild and wet conditions to northern Europe in winter,
and the negative NAO tends to be cold and dry. Scientists attempt to forecast the NAO in advance by
one of two ways: using complex weather forecast models or using relatively simple statistical equations.
Although statistical methods can outperform more complicated forecast models, they assume that predictor
relationships do not change over time. This assumption is not always valid. In this study we examined the
relationship over time between autumn sea ice in the Barents‐Kara Seas and the winter NAO. In recent
decades, a strong relationship has been observed whereby especially reduced autumn sea ice often precedes
negative NAO in the following winter. When we looked further back in time, however, we found that the
ice‐NAO relationship has been highly changeable and sometimes, the complete opposite to that seen
recently. An analysis of hundreds of simulations from multiple climate models confirms that the ice‐NAO
relationship varies a lot, just due to natural climate variability. Our results suggest it is unwise to make
predictions of the winter NAO based on autumn sea ice.

1. Introduction

Skillful forecasting of wintertime weather anomalies several months in advance appears attainable. As the
North Atlantic Oscillation (NAO) is the dominant mode of variations in atmospheric circulation anomalies
in the extratropical North Atlantic (Hurrell, 1995), it is often the benchmark target for seasonal prediction
studies in that region. Recently, dynamical seasonal forecasting models have shown skill in predicting
NAO anomalies a season to a year ahead (Baker et al., 2018; Dunstone et al., 2016). The source of this skill
is still not fully understood, but one potential factor of many is the autumn sea ice in the Kara Sea (Scaife
et al., 2014). By combining empirical predictors and dynamical models, Dobrynin et al. (2018) used a sub-
sampling approach to obtain very high NAO prediction skill. Statistical models often show even higher skill
than state‐of‐the‐art dynamical systems for forecasting the NAO. In a recent study by Wang et al. (2017),
anomalies of sea ice concentration, sea surface temperature (SST), and snow cover were used to predict
the NAO (and surface variables) several months ahead. In their empirical model, autumn Barents‐Kara
(BK) sea ice was the strongest predictor of the winter NAO. Hall et al. (2017) also identified autumn sea
ice as a key statistical predictor of the winter NAO over the period 1980–2016. It is worth noting that in
the analyses of Wang et al. (2017) and Hall et al. (2017), the skill of NAO predictions was highly sensitive
to the inclusion, or not, of the large downward trend in sea ice, with higher skill when using detrended time
series. This sensitivity raises potential concerns about the robustness of the ice‐NAO link.
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Key Points:
• The observed correlation between

autumn Barents‐Kara sea ice and
the winter NAO has not been
stationary over time

• An ice‐NAO correlation as high as in
recent decades is rare since 1865 but
within the possible range due to
internal climate variability

• According to a large ensemble of
climate models, external climate
drivers do not give rise to variations
in the ice‐NAO correlation
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An argument against relying on predictions based on past training data is that empirical relationships may
change over time. Kolstad and Årthun (2018) recently showed that seasonal anomalies of the NAO and
Central England Temperature were strongly linked to Northeast Atlantic SST anomalies several months
before during the satellite era (i.e., after 1979), but according to a twentieth century reanalysis, these rela-
tionships did not hold before that. Another example of nonstationarity of teleconnections is that the lagged
correlation between Eurasian snow cover and midlatitude weather (Cohen & Entekhabi, 1999) did not
emerge until the 1970s (Douville et al., 2017; Peings et al., 2013).

The aim of this study is to investigate the stationarity of NAO predictability based on Arctic sea ice in the BK
Seas. Many studies have explored the influence of sea ice variations on the atmospheric circulation (e.g.,
Alexander et al., 2004; Herman & Johnson, 1978; Murray & Simmonds, 1995; Petoukhov & Semenov,
2010). More specifically, the link between autumn sea ice anomalies and subsequent winter weather has
been widely studied (e.g., Caian et al., 2018; Francis et al., 2009; García‐Serrano et al., 2015; Honda et al.,
2009; Hopsch et al., 2012; Jaiser et al., 2012; Koenigk et al., 2016; Kretschmer et al., 2016). One physical
mechanism that has been proposed is a stratospheric pathway linking low sea ice to negative NAO
(Dethloff et al., 2019; Nakamura et al., 2015; Sun et al., 2015). While many of the aforementioned studies
have observed a positive correlation between interannual variability in autumn BK sea ice and the winter
NAO over recent decades, this link is not robust in model simulations. Model experiments with specified
reductions in sea ice have yielded a full spectrum of NAO responses, from a significant positive shift
(Cassano et al., 2014; Screen et al., 2014), to no significant effect (Singarayer et al., 2006; Strey et al.,
2010), to a significant negative shift (Magnusdottir et al., 2004; Seierstad & Bader, 2009).

It is not clear why models diverge in this regard (Screen et al., 2018; Smith et al., 2019), but one possible
explanation could be that the relationship between autumn sea ice and winter NAO is nonstationary, per-
haps due to the response being dependent on the background climate state (Smith et al., 2017), or the
response could be nonlinear with respect to the magnitude or spatial pattern of sea ice loss (Chen et al.,
2016; McKenna et al., 2018; Overland et al., 2016; Peings & Magnusdottir, 2014; Petoukhov & Semenov,
2010; Semenov & Latif, 2015; Sun et al., 2015). Furthermore, causality of the observed relationship is still
questionable. Even in those model experiments that reproduce the observed relationship between reduced
sea ice and the negative NAO phase, it is often unclear what is the specific contribution from autumn sea
ice loss. Recently, Blackport and Screen (2019) performed model experiments to isolate the role of autumn
sea ice loss from that in other seasons. These authors found that although year‐round sea ice loss enhanced
the negative phase of the winter NAO, solely autumn sea ice loss had no discernable effect on the
winter NAO.

In summary, there are many open questions regarding the apparent link between autumn sea ice and the
winter NAO. Here we seek to address some of those questions, specifically: Has the observed correlation
between autumn sea ice and the winter NAO been stationary over time? Is the observed ice‐NAO correlation
in recent decades unprecedented or usual in a longer‐term context? According to large climate model ensem-
bles, how much variation in the ice‐NAO correlation arises due to external climate drivers versus internal
climate variability?

2. Data and Methods

For the period after 1979 we used the ERA‐Interim reanalysis (Dee et al., 2011). We also used longer reana-
lyses: version 2c of NCEP's Twentieth Century Reanalysis (Compo et al., 2011; 20CR henceforth), which cov-
ers 1850–2014, but as recommended, we only used the period after 1865 due to a bias in marine observations
between 1851 and 1865 (NOAA ESRL PSD, n.d.), and the ECMWF's CERA‐20C (Laloyaux et al., 2018) and
ERA‐20C (Poli et al., 2016), which end in 2010 and go back to 1901 and 1900, respectively. CERA‐20C is a
coupled reanalysis with 10 ensemble members, and we used each member individually. 20CR consists of
56 ensemble members, but we used ensemble means of each variable.

We also used all simulations from the following ensembles: the 40‐member Community Earth SystemModel
Large Ensemble Project (Kay et al., 2014), which covers 1920–2100 and is referred to henceforth as CESM
(we only used data up to 2080); the 100‐member Max Planck Institute Grand Ensemble (MPI hereafter),
which covers 1850–2100 (Bittner et al., 2016); the 50‐member Canadian Earth System Model Large
Ensemble (CanESM2 hereafter; Kirchmeier‐Young et al., 2017), covering 1950–2080; and a 30‐member
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ensemble based on the GFDL ESM2M model (GFDL hereafter; Rodgers et al., 2015), which starts in 1950
and ends in 2100. Up until 2005 the models used observed external forcing, and after that they followed
the RCP8.5 emissions scenario (Meinshausen et al., 2011).

Following Hall et al. (2017), we computed time series for BK sea ice based on area averages from 70°N to
85°N and between 30°E and 90°E. Our results were not sensitive to the choice of boundaries. Sea ice data
were taken from all the reanalyses and models, and in addition, we used sea ice from the data set compiled
by Walsh et al. (2017) based on satellite data and historical sources. The sea ice data series are not consistent
across the observational‐based data sets. In 20CR version 2c, the sea ice is based on the COBE‐SST2 data set
(Hirahara et al., 2014), and the sea ice in ERA‐20C is taken from the Hadley Centre Sea Ice and Sea Surface
Temperature data set version 2.1 (HadISST2; Titchner & Rayner, 2014). As CERA‐20C is a coupled ocean‐
atmosphere reanalysis, its sea ice is simulated, but it is constrained by observations as both the ocean and
atmosphere were nudged toward observations.

The NAO index based on pressure data from Stykkisholmur, Iceland, and Lisbon, Portugal, was downloaded
from NCAR's Climate Data Guide (Hurrell & National Center for Atmospheric Research Staff, 2018) and
standardized. For the climate models and reanalyses, the NAO index was computed in several steps. First,
time series of sea level pressure (SLP) data for the nearest grid points to the two stations were compiled.
Second, these were standardized individually. Third, a new time series consisting of the difference between
the standardized SLP data from Lisbon and Stykkisholmur was created. Fourth, that time series
was standardized.

We define R as the interannual Pearson's correlation between area‐averaged BK sea ice in October and the
NAO index in the subsequent winter from December to February. When R refers to the correlation between
sea ice based on Walsh et al. (2017) and Hurrell's NAO index, we label it “H/W.”

Most of the analysis is based on 30‐year time series, none of which were detrended (see discussion in
section 4). To assess the statistical significance of R and other correlations, we created 10,000 pairs of time
series consisting of 30 random numbers drawn from the normal distribution and computed the correlations
between each pair. We then defined the 2.5th and 97.5th percentiles of the 10,000 correlation coefficients as
the thresholds for significance at the 5% level.

3. Results

Figure 1a shows standardized BK sea ice in October in blue and the station‐based NAO index in red. The sea
ice time series is based on ERA‐Interim and covers the 39 October months from 1979 to 2017, and the NAO
index is for the period from 1979/1980 to 2017/2018. The correlation is 0.34, and it is significant at the 5%
level (p = 0.04). The magnitude of the correlation is somewhat sensitive to the time period analyzed. In
Figure 1b, the black circles show R calculated from ERA‐Interim sea ice and Hurrell's NAO index for each
possible 30‐year period. The first of these 30‐year periods starts in 1979, and the last starts in 1988. The first
seven 30‐year periods yield significant correlations, with a maximum correlation of 0.62 in the period 1981–
2010. During the last three 30‐year periods, the correlations are not significant. Such significant positive cor-
relation has been reported numerous times before, but past studies have not considered the time period
before 1979.

To examine the evolution of R further back in time, we use Hurrell's NAO index and Walsh et al. (2017) BK
sea ice. The black line in Figure 1b shows R for each possible 30‐year period, now starting in 1865. We find
that R is significantly positive in the most recent period and in agreement with the values of R derived using
ERA‐Interim sea ice. Looking at the period before 1979, R is only significantly positive for 30‐year periods
starting in the late 1800s and is significantly negative or nearly so for some 30‐year periods starting in the
1940s. This suggests that R is highly nonstationary and can even assume negative values. This nonstationar-
ity is supported by all three reanalyses, although there are clear differences between the data sets. In parti-
cular, the coupled reanalysis CERA‐20C diverges from the other data sources, as it is the only one with
significantly negative R for periods starting in the 1910s. There is a marked shift in 20CR and ERA‐20C from
low sea ice variability before about 1960 to much higher variability after that, and this could be a reason for
the weak correlations in those data sets in the pre‐satellite era.
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To illustrate how the correlation between autumn BK ice and North Atlantic winter SLP has varied in
time and space, Figure 2 shows maps of grid point correlations for the three 30‐year periods for which
R was most negative, closest to zero, and most positive (according to CERA‐20C). For the 30‐year period
with the most negative R (starting in 1916), the pattern resembles the negative phase of the NAO
(Figure 2a). The correlations for the 30‐year period of neutral R (starting in 1933) bear little resemblance
to the NAO. For the 30‐year period with the most positive R (starting in 1980), the spatial pattern is con-
sistent with a positive NAO index, even if the northern center of action is far from Iceland (Figure 2c).
These results demonstrate that the temporal variability of R is associated with radical differences in the
circulation patterns linked to sea ice variability and is not just due to subtle changes in the NAO centers
of action (Pedersen et al., 2016).

Figure 1. Correlation between Barents‐Kara (BK) sea ice concentration (SIC) in October and the North Atlantic oscilla-
tion (NAO) index in winter (December‐January‐February, DJF), based on ERA‐Interim (a) and longer time series (b).
The dashed lines in (b) indicate the thresholds for statistical significance at the 5% level for 30‐year periods.

Figure 2. Maps of correlation between area‐averaged Barents‐Kara sea ice in October and winter (December‐January‐
February) mean sea level pressure at each grid point, based on CERA‐20C data, for the 30‐year period when the
ice‐North Atlantic Oscillation correlation was most negative (a), closest to zero (b), and most positive (c). The white
contours show the thresholds for statistical significance at the 5% level.
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We now turn to the question of how much R varies due to internal climate variability, as depicted by
large ensembles of climate model simulations. Figure 3a shows the time evolution of R between 1920
and 2080 in 40 realizations of the Community Earth System Model, which differ from each other only
in their temporal depiction of internal climate variability. The ensemble‐mean R is close to zero in all
30‐year periods and shows no trend. Individual ensemble members, however, show significant (multi)
decadal variability, with R fluctuating between positive and negative values. This shows two things: first,
this model confirms the nonstationarity of R, and second, this nonstationarity appears to arise due to
internal climate variability and is not a forced response to external climate drivers. We note that
because the temporal variability of R is internally driven, we do not expect the simulated variability
of R to be in phase with the observed variability of R. However, if we preferentially select the ensemble
member that best matches the observations, we find that this individual ensemble member fairly well
captures the observed time evolution of R, suggesting the model is adequately capturing the magnitude
and time scales of variability in R. Other single‐member evolutions of R supported this finding
(not shown).

Figure 3. Correlation between Barents‐Kara sea ice in October and the North Atlantic oscillation index in winter
(December‐January‐February), based on data from CESM (a), MPI (b), GFDL (c), and CanESM2 (d). The thick black
lines are the same as the one in Figure 1b. The mixed black and colored lines show the ensemble member that has the
highest correlation with H/W during their overlapping periods. The bold colored lines show the ensemble median up to
the point where more than half of the ensemble members have invalid correlations (due to sea ice loss), and the dashed
lines indicate the positive and negative thresholds for statistical significance at the 5% level for 30‐year periods.
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Results based on simulations from three other large ensembles are shown in Figures 3b–3d. In each case we
observe (1) that there is no discernible forced trend in R; (2) that R fluctuates between positive and negative
values due to internal variability but is rarely significantly positive or negative for long time periods; and (3)
that individual ensemblemembers show internally driven variability of R on (multi)decadal time scales, con-
sistent with observations.

Last, Figure 4a summarizes the range of R‐values found in observations, reanalyses, and models. Given that
we find no forced variability (i.e., trends) in R, we combine all possible 30‐year periods, and for each model,
all ensemble members, into a single distribution. It is clear that the recent period, as depicted by ERA‐
Interim, is unusual in having a median value of R that is significant. The data sources covering longer time
periods all have median values of R that are far from significant. However, the positive values in ERA‐
Interim are not without precedent. All the reanalyses and models display occurrences of positive correlation
as high or higher than seen in ERA‐Interim. We note that the MPI model suggests R can reach as high as
almost 0.8, which is appreciably higher than observed in recent decades. With the exception of ERA‐
Interim, all the data sources suggest that R can assume significantly negative values.

4. Discussion

Our results indicate that R does not have consistent magnitude or even a preferred sign. Long‐term observa-
tions, reanalyses, and climate models all suggest that R is most often small and statistically insignificant;
however, large decadal variability can give rise to rare 30‐year periods of significantly positive or significantly
negative R values. While we found some minor differences in the frequency distributions of R between data
sets, this result is robust in each of the climate models and reanalyses. It appears that recent decades, parti-
cularly the 1980s, 1990s, and 2000s, are one such example of a rare 30‐year period with highly positive R.
Since around 2010, R has decreased.

Even though the climate models display no multidecadal trends in the mean value of R, the projected sea ice
decline through the 21st century may have an impact on the decadal variability of R. To investigate this pos-
sibility, we repeated the analysis after first removing the forced sea ice decline (by subtracting the ensemble

Figure 4. Box plots illustrating the range of correlations between Barents‐Kara (BK) sea ice concentration (SIC) in
October and the winter (December‐January‐February) North Atlantic Oscillation index for each data source. Each box
extends from the lower (Q1) to the upper quartile (Q3) of R, and the horizontal lines show the median. The upper
“whiskers” extend to the highest data points lower thanQ3 + 1.5 IQR, where IQR is the interquartile range defined as IQR =
Q3 –Q1 and the lower whiskers extend to the lowest data points greater thanQ1 – 1.5 IQR. The circles show outliers, and the
dashed lines indicate the positive and negative thresholds for statistical significance at the 5% level for 30‐year periods.
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mean). As shown in Figure 4b, the ranges of R were indistinguishable from those shown in Figure 4a. The
implication is that—insofar as the climate models are realistic—the loss of sea ice does not lead to a forced
change of the mean or variability of the ice‐NAO correlation.

There are several possible interpretations of the nonstationarity in R, which we briefly discuss here. First, the
nonstationarity could imply that the ice‐NAO relationship is noncausal and that R fluctuates simply due to
internal climate variability. To test this interpretation, we created another set of R for the climate models
where instead of using matching 30‐year periods for sea ice and NAO, we correlated random 30‐year periods
of sea ice data with other random 30‐year periods of NAO data. Figure 4c shows that the resulting ranges for
Rwere indistinguishable from those shown in Figure 4a. This suggests that the spread of R seen in Figure 4a
could arise purely from random sampling of two unrelated physical variables. Second, if there is a causal
relationship, it could be very weak andmasked by internal variability. An alternative third perspective is that
the ice‐NAO relationship is an example of necessary but insufficient causation, leading to intermittency in R
(Overland et al., 2016). A specific case of necessary causation that could explain the nonstationarity of R is
dependence on the background climate state. For example, the magnitude and even sign of the NAO
response to sea ice may depend on the background climatological flow via the refraction of planetary waves
(Smith et al., 2017). In such a way it is plausible that decadal variability in the North Atlantic climate could
control the magnitude and sign of R. Further work is required to ascertain which of these valid interpreta-
tions is/are correct.

The nonstationarity in R serves as a warning about the potential pitfalls of statistical predictions. Empirical
prediction models and machine learning based on a certain training period may fail when applied to a dif-
ferent prediction period. Such nonstationarity is an argument for using and improving dynamical models,
which might be able to simulate the processes that give rise to nonstationarity. Indeed, past studies have
found that the skill of dynamical NAO forecasts varies over time (Kumar & Chen, 2018; O'Reilly et al.,
2017; Weisheimer et al., 2019), which might indicate nonstationarity in the drivers of NAO variability.
Anecdotally, skill in predicting the NAO (Weisheimer et al., 2017) shows broadly consistent multidecadal
variability to that shown here for R. It is unclear whether the strength of R is important for the skill of
NAO predictions or whether both NAO prediction skill and R vary due a common influence, such as the
mean background state.

5. Conclusions

We have shown that the interannual correlation between autumn BK sea ice and the winter NAO is nonsta-
tionary and displays considerable (multi)decadal variability. The strong positive correlation observed in
recent decades is a rare occurrence in the historical record, but it is within the range of internal variability
as simulated by climate models. Large climate model ensembles suggest that internal climate variability
can give rise to infrequent periods of significant positive or significant negative correlation but that the cor-
relation is most often weak. We find no evidence for variability in the ice‐NAO correlation due to external
climate drivers, such as anthropogenic greenhouse gases. Although the recent observed high correlation
can be explained purely by internal variability, we cannot fully rule out a contribution from external forcing
superimposed on the internal variability, in part because it remains unclear whether or not climate models
can adequately represent physical links between sea ice and the NAO. Also, some modeling studies do sug-
gest a forced response of the NAO to sea ice loss, albeit weak compared to internal variability. Our results
reveal that the ice‐NAO correlation is nonrobust and raise further questions about the causality of this pro-
posed connection, or at least, the strength of any causal relationship. Given the clear nonstationarity of the
ice‐NAO relationship, we caution against the use of autumn sea ice as a statistical predictor of the NAO.
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