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Electronic fluids bring into hydrodynamics a new setting: equipotential flow sources embedded inside
the fluid. Here we show that the nonlocal relation between the current and electric field due to momentum-
conserving interparticle collisions leads to a total or partial field expulsion from such flows. That results in
freely flowing currents in the bulk and a boundary jump in the electric potential at current-injecting
electrodes. We derive a new type of boundary conditions, appropriate for the case. We then analyze current
distribution in free flows, discuss how the field expulsion depends upon the geometry of the electrode,
and link the phenomenon to the breakdown of conformal invariance.
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We experience now a rare moment of intense interaction
between the fields of solids and fluids. This is due to the
appearance of new high-mobility materials where current
carriers exchange momentum faster than lose it to the
lattice, so that their collective motion is a viscous fluid flow
[1–14]. Ideas from fluid mechanics can solve problems of
nanoscale electronics: in particular, decrease resistance
below the ballistic limit and make the current flow against
the electric field [10,15–17]. As we show here, no less
remarkable is what electronics can do for fluid mechanics:
150 years after Stokes, it can reveal new fundamental
phenomena in laminar flows, never predicted or observed
before. The reason is that electronics brings a new setting not
regularly considered in low-Reynolds hydrodynamics—
equipotential (metallic) electrodes serving as flow sources
embedded inside the fluid. We show below that the con-
ditions on the electric potential (pressure) imposed by
sources could be in conflict with those of a viscous flow,
which leads to anomalies at the boundaries and novel flow
properties; see Fig. 1.
Electronic fluids (e fluids) are characterized by an

unusual response of the electric current to electric field
E. Instead of the usual Ohm’s law, nev ¼ σE, charge flows
at the scales exceeding the electron-electron (e-e) mean
free path lee are described by the combined Ohm-Stokes
equation, stating that the electric field must now overcome
both Ohmic and viscous friction:

ðηΔ − n2e2=σÞv ¼ −neE: ð1Þ
Here n, e, and v are the number carrier density, charge, and
mean velocity, respectively, and σ is the medium conduc-
tivity. The nonlocal first term in (1) represents momentum
diffusion due to momentum-conserving scattering between
carriers and is proportional to the viscosity η.

The simultaneous action of momentum loss and diffu-
sion described by (1) leads to phenomena novel for
both hydrodynamics and electronics. Consider an incom-
pressible flow, ∇ · v ¼ 0, and a potential field: E ¼ −∇ϕ.
In that case, solving Eq. (1) appears deceptively simple:
Any solution with η ¼ 0 (purely Ohmic flow) also provides
a solution for η ≠ 0, since the viscous force vanishes
identically: Δv ∝ ∇Δϕ ¼ 0. This suggests a paradoxical
conclusion: The flow pattern vðrÞ is not affected by viscous

FIG. 1. Streamlines (black), velocity (white arrows), and
potential color map for current from an elliptic source
(b ¼ 0.3a) in (a) viscous and (b) Ohmic regimes. The current
near the tips is enhanced for the Ohmic and suppressed for the
viscous flow. Viscous drag near the tips results in a negative
voltage whose magnitude exceeds the driving voltage.
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friction, and the electric field driving the flow vanishes in
the purely viscous limit σ → ∞.
Vanishing of the viscous force, however counterintuitive,

can be verified explicitly in the simplest case of a spherical
electrode ejecting a radial current. The velocity field is
readily obtained from current conservation:

nevðrÞ ¼ Ier=Ωdrd−1: ð2Þ

Here r is the distance to the source center, I is the total
current, and Ωd is the area of a unit sphere in d dimensions.
Since v is a gradient of a harmonic function, the viscous
forceΔv vanishes everywhere (this remains true if one adds
uniform circulation, for instance, vθ ∝ 1=r in 2d). The
electric field outside is indeed independent of viscosity:
∇ϕ ¼ Ier=Ωdrd−1σ. We therefore conclude that an electric
field is not required within the system bulk to drive a purely
viscous flow, i.e., when σ ¼ ∞. Yet the paradox remains:
The viscous stress tensor σij ¼ ηð∂jvi þ ∂ivjÞ is nonzero
as well as the energy dissipation rate due to viscous friction,

P ¼ 1

2η

Z X
i;j

ðσijÞ2dV > 0: ð3Þ

In other words, even though the net viscous force (diver-
gence of the stress tensor) acting on any fluid element is
zero, there are nonzero forces acting on the opposite sides
of the element and deforming it, which must lead to
dissipation. The energy loss P in the bulk must be
compensated by the work ϕ0I performed by the current
source. This requires a finite electrode potential relative to
sink at infinity: ϕ0 ¼ P=I ¼ 2ηðd − 1ÞI=ðneÞ2Ωdad (a is
the electrode radius). The contribution of the infinite
viscous medium to the total resistance of the system is
thus determined by the electrode size: R ¼ ϕ0=I ¼
2ηðd − 1Þ=ðneÞ2Ωdad. To reconcile finite ϕ0 with vanish-
ing ϕðrÞ in the bulk, we conclude that the potential
distribution must exhibit a sharp viscosity-dependent drop
across a thin Knudsen layer of thickness ∼lee, where the
Stokes equation is not applicable. Note that the jump of the
potential (pressure) at the boundary gives the momentum
flux ðneÞϕ0, which is exactly equal to the normal compo-
nent of the viscous stress tensor, σnn ¼ −2η∂rvr. In other
words, the potential discontinuity can be paraphrased as the
continuity of the normal flux of normal momentum.
Indeed, viscous stresses are absent inside the electrode
but present outside, so that the potential jump compensates
the jump in the stress. That potential jump is similar to the
Kapitza temperature jump upon heat transfer through a
solid-liquid interface [18].
The electric field is thus expelled from the bulk and is

concentrated in the boundary layer in a viscous flow.
Potential jump is proportional to the viscosity, that is to
the mean free path. That means that the electric field inside
the ballistic layer is independent of the mean free path.

When one goes deep into the hydrodynamic regime (say, by
increasing the temperature in graphene), the mean free path
shrinks but the electric field stays finite.
Stokes encountered a similar phenomenon of bulk

dissipation equal to the surface work in his analysis of
the decay of water waves: The flow in the bulk is potential,
while the viscous forces only perform work on the surface
[19]; see also [20].
The expulsion of the field from the bulk and its concen-

tration at microscopic scales can be verified by analyzing the
kinetics of momentum-conserving e − e collisions [21,22]
for a pointlike electrode, a ≪ lee. Neglecting Ohmic
momentum losses, such an approach yields a potential
that in the ballistic domain r ≪ lee decays slowly: ϕðrÞ ∝
1=r in d ¼ 2. The potential falls rapidly at large distances,
ϕðrÞ ∝ expð−r=leeÞ. In otherwords, a point source produces
a radial flow having a constant potential at r ≫ lee. By
superposition, this is also true for an arbitrary combination of
point sources and sinks. However, field expulsion is only
approximate for finite-size sources and sinks, because they
impose boundary conditions.
How is the above picture of field expulsion modified

for an electrode of an arbitrary shape? A purely Ohmic flow
in 2d can be found via conformal mapping that deforms
one electrode into another and also transforms streamlines
and potential contours. The naive reasoning outlined above
suggests that, when viscosity is present, the transformation
of the potential might still be possible due to conformal
invariance of the Laplacian. Below, we demonstrate that
this conformal equivalence does not hold for viscous flows,
since the field distribution depends nontrivially upon the
shape of the electrode; in particular, for nonsymmetric
electrodes the flow, in general, is not potential and the
electric field partially penetrates the fluid.
Indeed, to determine the flow, one needs to solve Eq. (1)

supplemented with boundary conditions, which must fol-
low from the same variational principle that gives Eq. (1),
i.e., minimization of the dissipated energy (3). Let us
minimize the dissipation rate P½v� as a functional of the
velocity field vðrÞ, for a given total current emitted by the
electrode. Variation with respect to the bulk velocity gives
(1), while variation with respect to the normal velocity on
the source confirms the boundary condition (b.c.) in the
form of the normal flux continuity (see Supplemental
Material [23]):

ne½ϕ0 − ϕðrÞ� ¼ −σijninj ≡ σnn; ð4Þ
where n is the unit vector normal to the boundary and ϕðrÞ
is the boundary value of the potential satisfying Eq. (1).
The second boundary condition depends on the nature of
the interface between the source and the fluid. In particular,
one can consider either a momentum-relaxing no-slip
interface with vt ¼ v × n̂ ¼ 0 or a smooth no-stress inter-
face with σnt ¼ 0. In what follows, we restrict ourselves to
the no-slip case for simplicity. In this case, using
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incompressibility ∇ · v ¼ 0, one can rewrite (4) via the
signed extrinsic curvature K of the boundary:

ne½ϕ0 − ϕðrÞ� ¼ 2ηKðv · n̂Þ: ð5Þ

This novel boundary condition is our main technical result
and the basis of the subsequent considerations. It can be
interpreted as a universal, viscosity-dependent contribution
to contact resistance which cannot be ignored for a nonflat
electrode. It is remarkable that this contribution can be both
positive and negative depending on the curvature sign.
Indeed, to balance the viscous stress, the electric field in the
ballistic layer is directed along (against) the current for a
positive (negative) curvature. For example, consider the
viscous flow in an annulus between two concentric circular
electrodes of radii r1 and r2 > r1, known as the Corbino
disk geometry (see Fig. 2). The resistance of such a system
is determined by the two potential jumps each given by
Eq. (5):

R0 ¼ ηðr−21 − r−22 Þ=πðneÞ2: ð6Þ
Since the Stokes equation is symmetric under v → −v,
ϕ → −ϕ, reversal of the current reverses the jumps.
If the curvature K varies along the interface, the potential

ϕðrÞ, in general, is not a constant, which results in a
nonvanishing field in the bulk. Therefore, Eq. (4) provides
an example of a conformal anomaly in classical physics:
Phenomena at microscopic length scale lee affect the flow
at however large distances in a universal way, invalidating
conformal invariant solutions to Eq. (1).
To demonstrate explicitly the breakdown of conformal

invariance and partial penetration of the field into the flow,
we consider an ellipse as the simplest nontrivial source with
a variable curvature. We introduce elliptic coordinates ρ, θ:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
cosh ρ cos θ; y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
sinh ρ sin θ;

where a > b are the semiaxes, 0 ≤ θ ≤ 2π is the polar
angle, and ρ ≥ ρ0 ¼ tanh−1ðb=aÞ is the radial variable,
ρ ¼ ρ0 at the electrode. This yields orthogonal coordinates
in which the scaling factors hi ¼ j∂x=∂ij are equal:
hρ ¼ hθ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 − b2Þðsinh2ρþ sin2θÞ

p
, so that the varia-

bles ðρ; θÞ are related to ðx; yÞ by a conformal map, which
facilitates the calculation of Laplacians. We seek a solution
of the Stokes equation, that is, (1) with σ ¼ ∞, supplied
with the b.c. (5) with the curvature K ¼ ðhρhθÞ−1∂ρhθ.
We also assume zero tangential velocity vθ ¼ 0 at ρ ¼ ρ0,
electrode potential ϕ0, and zero potential at infinity.
Interestingly, the velocity field is radial everywhere (the
details are in Supplemental Material [23]):

vðρ; θÞ ¼ neϕ0ða2 − b2Þ
ηhθðρ; θÞ

ðsin2θ þ sinh2ρ0Þeρ: ð7Þ

The potential outside the source is nonuniform:

ϕðρ; θÞ
ϕ0

¼ 1 −
sinh 2ρ

2ðsin2θ þ sinh2ρÞ ; ð8Þ

which gives a nonvanishing electrical field inside the
viscous domain. At large distances, the potential is a
quadrupole proportional to the eccentricity of the ellipse:
ϕðx; yÞ ∝ ða2 − b2Þðy2 − x2Þ=r4. It changes sign on the
lines x ¼ y, as for a point source in a half-plane [24].
It is instructive to compare the viscous flow (7) to the

purely Ohmic flow, vΩðρ; θÞ ∝ h−1θ êρ, ϕΩðρ; θÞ ∝ ρ, which
can be obtained by a conformal deformation of the flow
emitted by a circular electrode. The comparison can be seen
in Fig. 1. The Ohmic flow is also radial, with the current
concentrated near the tips θ ¼ 0; π, where the curvature is
maximal. In sharp contrast, the viscous current mainly
flows from flatter parts, while at the tips it is suppressed by
the sin2 θ factor in (7). The slow viscous current along the
directions around the minimum is dragged by the viscous
force from adjacent faster currents. That viscous force is
balanced by the electric field directed against the current
[17]. The potential jump at the electrode tip, according to
(8), is −ϕ0a=b, which for a sufficiently eccentric ellipse
can significantly exceed, by absolute magnitude, the driv-
ing voltage ϕ0.
The conformal invariance is indeed broken for nonzero

η: The solution for a noncircular electrode cannot be
obtained from the flow outside a circular electrode by a
conformal map, which gives the potential constant along
the electrode surface violating (5). Since (7) satisfies both
the no-slip and no-stress boundary conditions on the
source, our conclusions here are quite general.
The resistance of the medium depends on the source

shape and size. In the elliptic case, one finds from Eq. (7)

R ¼ ϕ0

I
¼ 2η

πðneÞ2ða2 þ b2Þ : ð9Þ

The limit b → a reproduces the resistance for a circular
source R ¼ η=πðneaÞ2. Comparing that with the kinetic
regime, where ϕ ∝ 1=r, we see that the voltage and
resistance grow with decreasing the electrode size as
1=a2 for a ≫ lee and as 1=a for a ≪ lee, according to
the general relation between viscous and ballistic regimes
[17,24]. The resistance of a flat electrode, b ≪ a, is
determined by its width a: R ¼ 2η=πðneaÞ2.
The Stokes equation together with the charge continuity

relates E to vorticity ω≡∇ × v of the flow: neE ¼
η∇ × ω. Hence, penetration of the electric field into the
fluid makes the flow nonpotential. One can quantify the
degree of field expulsion by the dimensionless parameter
ξ≡ 1 − η

R
ω2dV=P, 0 ≤ ξ ≤ 1, so that work ξeϕ0 is

performed per each particle crossing the Knudsen layer.
For an elliptic source, ξ takes a particularly transparent
form: ξ ¼ 2ab=ða2 þ b2Þ. In particular, ξ ¼ 1 for a circular
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source, b ¼ a, when the field is fully expelled from the
fluid, and ξ ¼ 0 for a flat source, b ≪ a, when the potential
jump vanishes according to (5).
So far, we considered vorticity generated by a nonuni-

form current through the electrode boundary with a
nonuniform curvature. Vorticity can be also generated by
nonpotential forces, such as the Lorentz or Coriolis force.
Applying magnetic field B results in B-dependent velocity
and induces an electric field in the bulk already in the
circularly symmetric geometry. Consider the above Corbino
geometry with two concentric electrodes. Adding B, we
account only for the Lorentz force and disregard Hall
viscosity assuming large enough scales [25,26]. The
Lorentz force gives rise to an angular velocity and vorticity
and generates the electric field in the bulk. The force acting
on the angular current affects the potential drop and the
resistance:

RðBÞ ¼ R0 þ
B2r22
16πη

�
1 −

4γ2ln2γ
ðγ2 − 1Þ2

�
; ð10Þ

where R0 is given by (6) and γ ≡ r2=r1 is the aspect ratio.
The second term in the rhs of (10) is the magnetoresistance,
which is positive. Themagnetoresistance quickly growswith
r2 and is inversely proportional to η ∝ lee, so that it may
easily exceed the boundary contribution as the system goes
deeper into the fluidity-dominated regime. Redistribution of
the field between the boundary and bulk is characterized by a
dimensionless number β≡ neBr22=η, which is the ratio of
Lorentz and viscous forces at the outer rim and determines
the number of turns the flow makes between the source and
the sink. Figure 2 illustrates thedependence of the field inside
the bulk for a varying β and its expulsion at β ¼ 0.
Note briefly that nonzero Ohmic resistivity always

dominates at sufficiently large distances for a zero magnetic
field; to see expulsion, we need lee ≪ a ≪ l�, where l� ¼ffiffiffiffiffi
ση

p
=ne is the Ohmic-to-viscous crossover scale [24]. For

the Ohmic-Stokes flow between the concentric electrodes,
extra resistance ð2πσÞ−1 logðr2=r1Þ is added to (6). The
viscous term saturates at r2 → ∞, while Ohmic resistance
slowly grows with increasing r2 and dominates when
r21 lnðr2=r1Þ ≫ ðenÞ2=ησ.
While both Ohmic and viscous flows are inherently

dissipative, there is a dramatic difference in the spatial
distribution of the work done to compensate this dissipa-
tion. In Ohmic flows, the momentum and the energy losses
are locally compensated by an electric field proportional to
the current at every point. On the contrary, momentum is
diffusively conserved by viscous flows, while the energy is
lost everywhere there is a velocity gradient. As we have
shown here, the electrical work compensating the viscous
energy loss can be partially or even fully done on the flow
boundaries. Although we used electronic terminology,
all the statements are valid for a general incompressible
viscous fluid via the replacement neϕ → p, with p being
the pressure.

Let us now discuss a possible experimental observation
of the phenomena predicted here for the transition to the
viscous regime: field expulsion and increase in magneto-
resistance. Distributions of the potential and current
described here could be probed, e.g., in graphene via
nanoscale imaging methods, such as scanning-gate micros-
copy [27,28]. The Corbino geometry offers a practical
setting where field expulsion can be observed. Indeed, the
potential in the viscous regime is dramatically distinct from
Ohmic or ballistic (see Fig. 2). Observe that a change of the
pattern (upon changing the temperature or concentration)
must be possible even when the potential jumps on the
electrodes are affected by a nonuniversal contact resistance
Rc exceeding the resistance of the medium R (see
Supplemental Material [23]). Another observable effect
in this geometry must be a sharp increase in magneto-
resistance upon passing to the viscous regime. To observe
the dramatic difference of the field patterns shown in Fig. 1
including the negative potential, it may be more practical to
use needle-shaped electrodes protruding into e fluid from
its edge. Most of our findings remain valid for such a setup:
Because of (4), the current is redistributed similarly near the
tip, and viscous drag results in a strong negative potential.
Here, as well, as large Rc affects current uniformly along
the contact, “wind shear” near the tip may still induce a
negative potential (see Supplemental Material [23]).
Finally, the enhancement of viscous effects at the onset
of fluidity observed recently [13] suggests that the negative
potential near the tip may be maximal in this crossover
regime, i.e., when lee ∼ b. A detailed analysis of this regime
is beyond the scope of this Letter.

FIG. 2. Potential for a constant current between two concentric
circular electrodes, r2 ¼ 3r1. Different colors indicate different
regimes and values of the dimensionless magnetic field β. Black
and red correspond to the viscous regime with β ¼ 0 and β ¼ 15,
respectively, green to the Ohmic regime, where ϕ ∝ log(r2=r),
and blue to the ballistic regime, where ϕ ∝ arcsinðr1=rÞ-
arcsinðr1=r2Þ. The potential in the viscous regime with and
without a magnetic field is quite distinct from those in the Ohmic
and ballistic regimes, which makes it amenable to experimental
observation. Inset: Streamlines in the viscous regime for β ¼ 0
(black) and β ¼ 15 (red).

PHYSICAL REVIEW LETTERS 123, 026801 (2019)

026801-4



In conclusion, we demonstrated how an electric field or
pressure gradient can be partially or even completely
expelled from viscous flows, so that some or all work
compensating viscous dissipation is done on the source. In
the electronic setting, when the electrodes are equipotential,
the field and the work are concentrated in the surface
ballistic layer. In the hydrodynamic setting (say, a vertical
tube injecting a fluid between horizontal plates), the
pressure gradient and the work are distributed inside the
source. Whether the viscous flow is totally or partially
force-free depends on the geometry, particularly on the
curvature of the source. It is interesting to compare the
boundary phenomena described here with those in viscous
boundary layers at high Re, such as the velocity slip in the
inviscid limits, turbulence, etc.; see, e.g., [20,29].
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