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Abstract

The accurate prediction of turbulent fluid-particle behaviour has been a complex

and elusive topic for researchers for several decades. The momentum and energy

exchange between the fluid and particles, across the whole spectrum of spatial and

temporal scales, leads to an abundance of rich physical behaviour which has ensured

that significant advances in the area have proven challenging. This contribution

seeks to shine a small ray of light on a vast and murky abyss in which the true

nature of turbulent fluid-particle flows may allude us for some time still.

This thesis presents a multi-scale continuum approach to modelling fluid-particle

flows i.e. Eulerian-Eulerian (E-E). A fully-coupled Reynolds-Averaged Two-Fluid

Model (RA-TFM) for turbulent fluid-particle flow, with particular emphasis on the

near-wall region, is developed. The coupling is provided both mathematically i.e.

the fluid-particle momentum and energy coupling across all spatial and temporal

scales and numerically i.e. the RA-TFM governing equations are solved within a

block-coupled matrix.

The RA-TFM is derived, applied and validated against a plethora of benchmark

experimental and Direct Numerical Simulation data in which a wide range of phys-

ical processes are present. Finally, the RA-TFM’s implementation within the open-

source CFD toolbox OpenFOAM is detailed.
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Nomenclature

Greek letters

αi volume fraction, [−]

αp,max maximum particle volume fraction, [−]

β momentum exchange coefficient, [kgm−3s−1]

εi turbulent kinetic energy dissipation, [m2s−3]

εij fluid-particle dissipation velocity covariance, [m2s−3]

η Kolmogorov length scale, [m]

Γi generic diffusive term w.r.t each phase, [m2s−1]

κp particle fluctuation energy, [m2s−2]

κΘs diffusion coefficient for granular energy, [kgm−1s−1]

µi shear viscosity, [kgm−1s−1]

µi,t turbulent shear viscosity, [kgm−1s−1]

νi kinematic viscosity, [m2s−1]

νi,t turbulent kinematic viscosity, [m2s−1]

xi



xii

σf fluid phase stress tensor,[kgm−1s−2]

σp particle phase stress tensor, [kgm−1s−2]

φ specularity coefficient, [−]

φi generic flux term w.r.t each phase, [ms−3]

Πij mixed turbulent energy production w.r.t each phase, [m2]s−3]

Πi turbulent energy production w.r.t each phase, [m2]s−3]

ρi density, [kgm−3]

σpk turbulent Prandtl number, [-]

τf characteristic flow time, [s]

τp particle response time, [s]

τη turnover time of Kolmogorov eddy, [s]

Θ granular temperature, [m2s−2]

Θf pseudo-turbulent kinetic energy, [m2s−2]

uη velocity of Kolmogorov eddy, [ms−1]

Roman letters

(·)f cell to face interpolation

Ai main diagonal of coefficients obtained from the discretisation procedure, [s−1]

Hi off-diagonal of coefficients obtained from the discretisation procedure, [ms−2]

n unit vector normal to the wall, [−]

Sf surface area vector

u′′′f fluid velocity fluctuation w.r.t PA velocity, [ms−1]

u′′2p,i particle Reynolds stress component in direction i, [ms−1]

u′′p particle velocity fluctuation w.r.t PA velocity, [ms−1]



xiii

ui velocity, [ms−1]

up,w particle slip velocity parallel to the wall, [ms−1]

ur relative velocity between phases, [ms−1]

uw wall velocity, [ms−1]

v mesoscale instantaneous velocity, [ms−1]

x location of control volume’s arbitrary cell centre

xp location of control volume’s cell centre

A Fluid momentum coupling, [kgm−3s−1]

dp particle diameter, [m]

Rep particle Reynolds number, [−]

Scfp dispersion correction term, [−]

Pi pressure stress tensor w.r.t each phase, [Pa]

v2
ij fluid-particle wall normal velocity covariance, [m2s−2]

v2
i wall normal component of the Reynolds-stress tensor w.r.t each phase, [m2s−2]

q total granular energy flux, [m3s−3]

CD drag coefficient, [−]

Dp pressure diffusivity matrix, [kg−1sm3]

e total granular energy, [m2s−2]

f elliptic relaxation function, [s−1]

f(x,v, t) particle velocity distribution function, [−]

fx interpolation factor

g0 radial distribution coefficient, [−]

ki turbulent kinetic energy, [m2s−2]



xiv

kij fluid-particle turbulent kinetic energy velocity covariance, [m2s−2]

pi pressure w.r.t each phase, [Pa]

St Stokes number, [−]

t time, [s]

Vp Control volume of interest

d,i numerical coefficient ratio

Lp particle turbulent length scale, [m]

Tp particle turbulent time scale, [s]

D pipe diameter, [m]

g gravity, [ms−2]

Kn Knudsen number, [−]

L fluid turbulent length scale, [m]

L pipe length, [m]

N control volume’s neighbouring cell centre

P control volume’s cell centre

P phases

T fluid turbulent time scale, [s]

Subscripts

f face value

f fluid

i cell i

j cell j

k general index denoting a phase



xv

N control volume’s neighbouring cell centre

P control volume’s cell centre

p particle

r relative

T total

x x direction

y y direction

z z direction

i general index

Superscripts

∗ predicted

⊥ surface normal gradient

φ generic variable

k − 1 values at previous iteration

k values at current iteration

t− 1 old time step

t current time step

Acronyms

BBO Basset-Boussinesq-Ossen

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy number

DNS Direct Numerical Simulation

E-E Eulerian-Eulerian



xvi

PA phase average

PDE partial differential equation

RA Reynolds average

RA-TFM Reynolds-Averaged Two-Fluid Model

RANS Reynolds-Averaged Navier-Stokes

RHS right hand side

TFM Two-Fluid Model

VFM Finite Volume Method

Special notation

〈·〉 Reynolds averaging operator

〈·〉i phase averaging operator w.r.t phase i
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1 Introduction

1.1 Overview

In this chapter the theoretical background of turbulent fluid-particle flow is pre-

sented. The equation for singular particle motion is given in which the governing

physical mechanisms, that are present in this study, are described. Within this

picture, the numerical prediction of the turbulent fluid-particle flows is presented

with a particular emphasis on Eulerian-Eulerian (E-E) modelling. A literature re-

view detailing several shortcomings within the current E-E modelling approaches

of turbulent fluid-particle flows is then provided.

This chapter comprises:

• Background and theory of turbulent motion;

• Characterisation of fluid-particle interaction and motion;

• Literature review of Eulerian-Eulerian modelling for fluid-particle turbulence

and near-wall interaction;

• Literature review of Eulerian-Eulerian numerical solution algorithms.

1
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1.2 Background

A whole range of turbulent flows can be seen in everyday life. From running a

bath, blending food, smoke from a cigarette or visible vortices in the sky from a

passing plane. It is evident from this eclectic mix that the chaotic and random

behaviour gives rise to a wide spectrum of spatial and temporal scales. This broad

range of flows can be described by a set of partial differential equations (PDEs)

called the Navier-Stokes equations [142]. The equations are an extension of the

Euler equations which are inviscid, by including viscosity. Under limiting 2D cases,

solutions to the equations were found by George Stokes. Owing to the Navier-

Stokes’ inherent non-linear nature a general solution to the complete Navier-Stokes

does not exist for turbulent flows [1] i.e. high Reynolds number. Thus, numerical

approximation is necessary.

If one considers the natural and engineering occurrences of turbulent flows, one is

struck by the abundance of fluid-particle flows. There are numerous examples of

this e.g. dust clouds on the planet Mars, sediment transport, sand storms, fluidised

bed combustion processes, volcanic ash, dispersion of pollutants and pneumatic

transport. If one thinks more abstractly we can even consider the transportation

of blood cells in ones own blood stream. In fact it is this analogy between the micro-

and the macro-scales that will provide some crucial insights into the modelling of

fluid-particle flows. A well anchored example of this analog between scales is the

Boussinesq eddy-viscosity assumption [19]. The assumption employs a result from

kinetic theory i.e. molecular motion can be described by a molecular stress (defined

by mean flow gradients), and applies it at the turbulent macroscale. This results

in a closure for turbulence induced stress.

In single-phase flow, the flow is characterised by the Reynolds number [142] and the

smallest turbulent scales can be described with the Kolmogorov time and length

scales. This framework, used for understanding and describing turbulent single-

phase flow is used as a basis for turbulent fluid-particle flow. The complexity is
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increased with the addition of particles. The characteristics of the turbulent fluid-

particle flow now become dependent on the particles diameter, density and volume

fraction.

Differing particle diameters and densities influence the particle response times,

which dictates how quickly the particles react to the surrounding fluid. Varia-

tions in the particle volume fraction results in drastically different behaviour in a

turbulent flow, comprising of: one-way, two-way and four-way coupling. One-way

coupling is when the particles behave as flow tracers and have no influence on the

carrier flow. Two-way coupling is when there is a momentum exchange between the

fluid and the particles. Lastly, four-way coupling is when the volume fraction is so

high that the particle interactions begin to take place influence the flow. The afore-

mentioned characteristics of turbulent fluid-particle flow are not mutually exclusive

and as we will see later can influence one another.

The prediction of turbulent fluid-particle interaction is of significant interest for a

variety of industrial flows e.g. spray drying that is used for foods, detergents and

pharmaceuticals [123] a process in which liquid material is atomised in a chamber

subject to hot gases and dried into a powder. A major aspect of this is predicting the

correct drying of the powder to ensure impingement and accumulation is avoided.

Another example is the removal of particulates from industrial effluents [98] in

which several devises are used to separate particles from gases. Finally, pneumatic

transport is widely used to transport cement, metal powders, grains, ores, etc.

[102]. It is clear that there is considerable motivation for developing a numerical

framework for the correct prediction of fluid-particle behaviour.

The governing equations of the fluid and particle behaviour are known (presented

in Chapter 2) and these equations can be resolved across all scales. From this,

the particle paths can be tracked and their interaction with the fluid ascertained

(Eulerian-Lagrangian). As with Direct Numerical Simulation (DNS) in single-phase

flow, the Reynolds number provides a constraint on the viability of its solution.

This level of description in two-phase flow, resolving both the smallest eddies and
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the boundary layer around a particle, for high Reynolds number flow is computa-

tionally very expensive. Even if this level of description was sought it is largely

redundant when applied to engineering applications as only a handful of flow char-

acteristics are of interest.

For solving challenging industrial problems the Reynolds-Averaged Navier-Stokes

(RANS) equations are often employed. The effect of turbulence fluctuations are

modelled instead of being explicitly solved for, which greatly reduces the computa-

tional cost. This methodology can also be applied to multiphase flows. Typically,

two Eulerian fields are assumed in which both the fluid- and particle-phase are

treated as inter-penetrating continua i.e. the Eulerian-Eulerian (E-E) approach

[7]. This approach gives rise to increased versatility and flexibility akin to the

RANS vs DNS pay-off in single-phase flow. Unlike in single-phase flows this ap-

proach leads to complicated inter-phase energy exchange terms, multi-scale closure

of the particle stress and a more complicated energy cascade process that has

proved challenging to researchers. It is this aspect in particular that concerns this

thesis. Throughout we put a particular emphasis on how the fundamental physical

processes can be modelled within the E-E approach.

1.2.1 Fundamentals of turbulence

Turbulent motion is extremely common in nature and engineering applications.

Its exact nature has eluded researchers, scientists and engineers alike for centuries

[68]. Its intrinsically chaotic and random nature has made its successful prediction

elusive but not without progress. One prevailing (and contested [95, 96]) picture

of turbulence is the energy cascade of Richardson [155] with the Kolmogorov hy-

potheses.

The energy cascade was first proposed by Richardson [155] and marks an important

step forward in our understanding of turbulent flows. The underpinning philosophy

is that the turbulent kinetic energy is produced by the largest scales of motion.

Beyond this, the turbulent kinetic energy is transmitted via decreasing eddy size
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through inviscid processes until the energy is finally dissipated by viscous forces i.e.

heat. Essentially, the large eddies continue to break-up into smaller and smaller

eddies thus creating a cascading effect of energy. The large eddies are assumed to be

inherently anisotropic and unstable, this continues until they reach stability which

marks the end of the cascade process. Once a sufficiently small scale is reached

the molecular viscosity can dominate, which finally dissipates the turbulent kinetic

energy.

Kolmogorov added to and formalised this theory of turbulence through his hy-

potheses and in particular identified the smallest scales of turbulence [103, 142].

The formalising was facilitated by the introduction of and relationship between the

velocity, u the eddy timescale, τ eddy size, η and their characteristic length, l. This

comprises three hypotheses [103]:

Kolmogorov’s hypothesis of local isotropy: At sufficiently high Reynolds num-

ber, the small-scale turbulent motions (l < l0) are statistically isotropic.

Kolmogorov’s first similarity hypothesis: In every turbulent flow at suffi-

ciently high Reynolds number, the statistics of the small-scale motions (l < lEI)

have a universal form that is uniquely determined by ν and ε.

Kolmogorov’s second similarity hypothesis: In every turbulent flow at suffi-

ciently high Reynolds number, the statistics of the motions of scale l in the range

l0 ≥ l ≥ η have a universal form that is uniquely determined by ε and independent

of ν.
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Figure 1.1: Eddy sizes l at very high Reynolds number, showing a spectrum of length

scales and ranges [Adapted from Pope [142]].

The first hypothesis states that as the large, anisotropic eddies dissipate energy

and decrease in size until they lose their directional dependency and reach an

equilibrium amongst the velocity components and become isotropic. This theory

is universal and applies to all small scale motion. The second hypothesis explains

by which mechanisms this dissipation is occurring. It states that at the dissipative

range to the inertial sub-range the turbulent kinetic energy dissipation is in balance

with the energy transfer rate. Finally, the third states that the turbulent kinetic

energy dissipation is in balance with the production and determines the rate of

dissipative transfer i.e. how quickly the large eddies will shorten in length.

The Kolmogorov scales are determined by two prevailing parameters, the kinematic

viscosity (ν) and the turbulent kinetic energy dissipation (ε) [142]:

η = (ν3/ε)1/4, (1.1)

where η is the scale of the smallest dissipative eddies. The velocity of the Kol-

mogorov eddies is

uη = (εν)1/4, (1.2)

with the turnover time over the smallest eddies given as

τη = (ν/ε)1/2. (1.3)
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A Reynolds number based on the Kolmogorov scales can be written as, ηuη/ν = 1,

which corroborates the idea that as the cascade proceeds to smaller and smaller

scales the Reynolds number is small enough for the dissipation to be effective.

Finally, the turbulent kinetic energy dissipation is

ε = ν(uη/η)2 = ν/τ 2
η . (1.4)

The separation of the scales across the range of eddy sizes can be seen in Fig.

1.1. At the energy containing range the transfer of energy, if the eddy sizes are

comparable, can be determined through the turbulent kinetic energy dissipation

rewritten as:

ε = u(l)2/τ(l). (1.5)

Hence we have a purely dissipative process from the large scale production of turbu-

lence to the small scale dissipation of turbulence. This acts across the whole range

of eddy sizes and is usually in balance, meaning that production and dissipation

are approximately in equilibrium.

1.2.2 Classification of turbulent fluid-particle flow

The classification of turbulent fluid-particle flows can be complex, largely due to

the abundance of differing physical interactions occurring dependent on the various

properties of the turbulent flow. When considering the classification of turbulent

fluid-particle flow one must build on the concepts grounded in single-phase flows.

As mentioned previously, single-phase flows can be characterised by the Reynolds

number:

Re = ul

ν
. (1.6)

In addition to this, the characterisation of the particles and their interaction with

the fluid must be ascertained. Elghobashi [59] provides a classification of the fluid-

particle interactions based on particle volume fraction, αp and the Stokes number,
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St. The Stokes number is the ratio between the particle response time, τp and the

characteristic flow time, τf . This number along with the particle Reynolds number

(defined later) are two of the most important characteristics of fluid-particle flow.

The Stokes number reads:

St = τp
τf
, (1.7)

the particle response time, τp is a measure of the how quickly the particle can

respond to the surrounding fluid velocity. This quantity is essentially a drag time

scale - the formulation of which will be presented later. The correct modelling

of this term is essential for predicting the correct Stokes dependant behaviour as

seen in Fig. 1.2. This has important consequences as the fluid- and particle-

phase turbulent kinetic energy can be very similar for low Stokes numbers and

vastly different for high Stokes number. Some physical intuition can be built by

examining Fig. 1.2 in which particles in a plane wake are shown. The particles are

discreetly modelled in a numerical simulation and are coupled to the flow through

their inter-phase drag. It is evident across all four plots that quite clear and distinct

differing behaviour can be seen.

For, St� 1 the particles behave as passive scalars and closely follow the fluid wake

behaviour. St = 1 is a somewhat special case as particles fall in-between the eddies

and the surrounding fluid showing global focusing. This term is used to describe

particles that are forced into thin regions of the flow characterised here by the

boundaries of the vortex structures. As the Stokes number is increased it becomes

clear that it takes longer and longer for the particles to react to the surrounding

fluid. Looking at, St = 100 it can be seen that the particles are convected some

way downstream (x/s ≈ 9) before the momentum of the particles is changed by

the carrier flow.
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Figure 1.2: Instantaneous particle dispersion patterns with varying Stokes number

[Adapted from Tang et al. [187]]

Plotting the Stokes number vs particle volume fraction, αp, Elghobashi [59] pro-

duced a schematic detailing several distinct regions that make up turbulent fluid-

particle interaction, this can be seen in Fig. 1.3. The characteristic time scale,

τf is given here as the eddy turnover time. For small particle volume fractions,

αp � 10−6, the fluid-phase is unaffected by the presence of the particles i.e. the

so-called one-way coupled regime where by the particles can be treated as passive

scalars. In the regime, 10−6 < αp < 10−3 momentum transfer between the particles

and the fluid-phase becomes relevant and can either enhance turbulence or atten-

uate it. This is the so-called two-way coupling regime and is very complex with

the cause of turbulence modulation having a range of contributing factors: fluid-

particle, particle-particle or particle-wall interaction. Moving to denser regimes,

αp > 10−3 particle-particle collisions begin to affect the flow. This is the so-called

four-way coupling regime and can have significant effects on the carrier flow.
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The challenges of modelling this behaviour, especially within wall-bounded flows,

will be explored in §1.5 & §1.6.

Negligible effect
on turbulence

Particles enhance
turbulence production

Particles enhance
turbulence dissipation

Figure 1.3: Classification of flow regimes given by Elghobashi [59]

When examining Fig. 1.3 one must be careful to not think entirely in terms of

statics (as schematics often do) but in terms of dynamics. As particles are being

carried by a turbulent flow they can be constantly fluctuating into and out of these

classifications. There can be clustering of particles affecting their effective diameter

and consequently their particle response time. Additionally, there can be near-wall

effects in wall-bounded flows in which the particle response time increases dramat-

ically resulting in an extremely high Stokes number and particle-wall collisions.

Moreover, the classifications may not be so clear cut. For example, Wu et al. [214]

found experimentally for particle volume fractions as low as 6 x 10−7 two-way cou-

pling effects were present. Despite this, within a Reynolds-Averaged framework the

schematic provides an adequate basis for understanding the expected fluid-particle

interaction.

1.2.3 Singular particle motion

The Basset-Boussinesq-Ossen (BBO) equation [170] describes the motion of a sin-

gle particle subject to an unsteady flow at Rep < 1. The equation is essentially
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Newton’s second law for a single particle with explicit forces on a particle that

govern its motion. Introducing the BBO for single particle motion enables the

dominant forces determining its motion to be ascertained. The BBO equation is

presented to elucidate some of the critical physical mechanisms investigated in this

work and is not explicitly solved for. First, the particle Reynolds number reads:

Rep = ρfdp|up − uf |
µf

, (1.8)

where dp is the particle diameter, ui is the velocity of the each respective phase, ρf
is the density of the fluid and µf is the dynamic viscosity of the fluid. The BBO

equation reads:

π

6ρpd
3
p

dup
dt

= π

6d
3
p∇p︸ ︷︷ ︸

Pressure gradient

− 3πµfdp(uf − up)︸ ︷︷ ︸
Stokes drag

− π

12ρfd
3
p

d

dt
(uf − up)︸ ︷︷ ︸

Added mass

+ 3
2d

2
p

√
πρfµf

∫ t

−t0

1√
t− τ

d

dτ
(uf − up)dτ︸ ︷︷ ︸

Basset force

+ Fg︸︷︷︸
Buoyancy and/or gravity

.
(1.9)

The first term on the right-hand-side (RHS) is the force exerted on the particle

due to the pressure gradient. The second term is the Stokes drag and dictates the

momentum exchange between phases. The third term represents the acceleration or

deceleration of the surrounding fluid in which the particle displaces as it accelerates

or decelerates. The fourth term represents the Basset force [11] which accounts for

the lagging boundary layer development due to a change in relative velocity, a

term that is often relevant when the particle is being accelerated at a high rate.

The final term represents buoyancy and a body force of gravity. The former is

mainly prevalent in low-density ratios (one may think of a marble in oil) and the

latter is relevant for capturing the correct physical behaviour in the majority of

fluid-particle flows.

The relative velocity between the particle and the surrounding fluid-phase results

in a pressure gradient and viscous drag, the so-called Stokes drag. This force

represents the fluids effect through momentum on the particle’s motion. As the

particle Reynolds number increases beyond 1, the Stokes drag approximation is
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no longer valid. Thus, just considering the drag force in the BBO equation and

rewriting the equation considering a generic form of the drag around a spherical

particle [170] as:

FD = π

6ρpd
3
p

dup
dt

= 1
2Cd

πd2
p

4 ρf |uf − up|(uf − up). (1.10)

Defining the particle Reynolds number and dividing through by the particle mass

gives:
dup
dt

= 18µf
d2
pρp

CdRep
24 (uf − up), (1.11)

where in the Stokes flow limit the factor CDRep/24 approaches unity and the

remaining terms define a particle response time as:

τp =
d2
pρp

18µf
, (1.12)

as it can be seen the particle response time is defined by the material properties of

each phase. Therefore, we can now write:

dup
dt

= 1
τp

(uf − up). (1.13)

For larger particle Reynolds number, the factor CD is no longer at unity and needs

to be adjusted. Schiller and Naumann [167] introduced a multiplicative drag factor,

absorbing the Rep into the formulation, which is valid up to particle Reynolds

numbers of 1000, and is written as:

Cd = 24
Rep

[
1 + 0.15Re0.287

p

]
. (1.14)

Since this development, variations to account for correlations due to particle Reynolds

numbers higher than 1000 have been proposed. In this work both Schiller and Nau-

mann [167] and Wen and Yu [211] are employed. The drag force,

FD = β(uf − up), (1.15)

with the drag time scale, β as,
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β = 3
4Cd

ρf
dp
|uf − up|, (1.16)

with the drag coefficient as,

Cd =


24
Rep

[
1 + 0.15Re0.287

p

]
if Rep < 1000

0.44 if Rep ≥ 1000.
(1.17)

The drag coefficient (or factor) is then used to provide a multiplicative factor in

front of the drag law depending on the particles Reynolds number. This term

has important ramifications as it dictates the energy transfer between each phase.

Note that the derivation of these models is concerned with single particles and as

such can not capture the effects of clustering. The interested reader is referred

to the energy minimisation multiscale drag model (EMMS) method of Li et al.

[111], Yang et al. [218] and the DNS filtered equations of Agrawal et al. [3], Ozel

et al. [131], respectively as this phenomenon remains outside the scope of this study

as it requires expensive modelling techniques.

For the particles investigated in this work, we concern ourselves with high density

ratios ρp/ρf � 1, the so-called small heavy particle regime. Looking at the BBO

equation, this results in two dominant forces on the particle - drag and gravity.

In a fully turbulent regime, the relative motion between the phases can result

in the production of turbulent kinetic energy, leading to a mixture of production

mechanisms [30], although in this work the only production mechanism is the

mean shear. With an understanding of the governing mechanisms of the particle

behaviour we now concern ourselves with the fundamental aspects of the numerical

modelling.

1.3 Modelling approaches for fluid-particle flows

There are two main approaches for predicting turbulent fluid-particle flows: the

Euler-Lagrange (E-L) and the Euler-Euler (E-E) method. Both of which rely on
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the same underlying principles. Fig. 1.4 shows a schematic detailing the modelling

approaches available.

Kinetic theory
+ density-function closures

Mesoscale Model

Microscale Model

Macroscale Model

Moments of density
+ moment closures

Volume or ensemble averages
+ closures for "fluctuations"

Hydrodynamic description
Eulerian-Eulerian models

Kinetic equation

Direct numerical simulation

Mesoscale Model
    Kinetic equation
Euler-Lagrange models

    Moments of density
    + moment closures

Figure 1.4: Modelling approaches for fluid-particle flows [122].

We define the microscale as the level of description in which the no-impermeability

constraint and the no-slip boundary condition is imposed at the surface of each

particle [9, 10, 188, 216], this is often referred to in the literature as ‘true’ DNS.

These equations resolve the whole range of length and time scales as well as the

inter-phase coupling term. The mesoscale denotes a description in which the dis-

crete particle elements are replaced by a point-particle approximation, typically

used when the particle diameters are smaller than the Kolmogorov length scale.

The momentum transfer between the fluid and particle is then modelled as a point

source [27] reducing the computational cost. Finally, the macroscale is used to

denote models that employ a hydrodynamic description and contain two averaged

continuum equations of continuity, momentum and energy with constitutive equa-

tions used for the closure of unclosed terms. The inter-phase transfer is accounted

for through an averaged force coupling term.
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1.3.1 Euler-Lagrange methods

The E-L method relies on solving the fluid-phase in an Eulerian approach and the

particle-phase in a Lagrangian approach i.e. particle tracking [55]. The microscale

or ‘true’ DNS simulations are often conducted to record hard-to-access quantities

such as instantaneous drag, lift and virtual mass forces [5, 153, 189, 219]. Addi-

tionally, it has been employed to ascertain the effects of turbulent energy exchange

between phases [6, 181, 191]. This method provides key insights but due to their

computational cost and reliance on simulating small-scale interactions the approach

is unfeasible for large particulate systems. There also exists a hybrid approach in

which the microscale model i.e. discrete particles are coupled with the macroscale

model in the fluid-phase [74, 194, 195]. These models have had some success with

the mesoscale approach receiving more attention [70] as there is a clear distinction

between time and length scales.

Within the context of the mesoscale model, each point-particle is a statistical rep-

resentation of its underlying kinetic equation (presented in §2.2.1), similar to sim-

ulations carried out in the direct-simulation Monte-Carlo method [15]. Essentially,

the kinetic equation is discretised into a number of individually tracked stochastic

particles. This is then coupled with the carrier flow through momentum exchange

terms. This is the overwhelming popular approach in the literature [69, 122] as this

provides a reasonable trade-off between physical and statistical approximation. The

approach has been used for understanding fundamental phenomena e.g. clustering

[27, 186], transition [30] and verifying experimental observations [80, 115]. Again,

for large particulate systems in which the macroscale effects e.g. turbulence, dom-

inate the system these simulations are still computationally expensive. This is

exacerbated by the fact that a large number of stochastic particles are required in

order to control the statistical errors [15].
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1.3.2 Euler-Euler methods

The E-E approach models both the fluid- and particle-phase as interpenetrating

continua resulting in both phases acting as ‘fluids’. This results in two sets of

momentum and continuity equations for the fluid- and particle-phase and a shared

pressure field, respectively. This reduces the computational cost considerably, as

the range of fully resolved scales in E-L simulations are modelled. This approach

then relies on constitutive relations to close the unclosed terms in the governing

equations and leads to a computationally flexible approach to modelling turbulent

fluid-particle flows.

Microscale based macroscale models

As seen in Fig. 1.4, two approaches for deriving an E-E model exist. The first

E-E models were found by either ensemble- or volume-averaging [7, 53, 88] the

microscale model i.e. local instantaneous NSE. The fundamental idea behind this

approach is as follows: at a fixed time and location in a multiphase flow field, the cell

or point will contain either the pure phase or a mixture of each. To arrive at such

a description then, the microscopic governing equations are multiplied by a phasic

indicator function, and then averaged to find governing equations i.e. continuity

and momentum for each respective phase. This then leads to unclosed terms in the

fluid-phase i.e. velocity fluctuations which are typically closed using the Boussinesq

approximation, as well as unclosed terms in the particle-phase i.e. the pressure-

stress tensor and the velocity fluctuations, which are closed using kinetic theory

(KT).

Historically, E-E models were developed for dense fluidised bed applications [7, 59,

76, 198] owing to their industrial relevance. This encapsulates a whole plethora

of physics including bubbling beds [197], reactions [133], transition from bubbling

to circulating [8], drag force [225], etc. Under these dense conditions in which

the particles are highly collisional, an analog with the KT of molecular gases [17,
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38] was drawn. This behaviour, the velocity fluctuations being the analog of the

temperature of a molecular gas, leads to a balance equation through a normal

solution to the Boltzmann equation [93, 94], through which constitutive relations

can be found for the pressure-stress tensor and heat-flux. Under the conditions

found in a dense fluidised bed the particle fluctuations are well represented by this

analogy as they belong to a largely uncorrelated random velocity field. Once these

models were extended to more dilute or turbulent regimes e.g. the chamber of a

circulating fluidised bed, it was found that the approach was inadequate [141].

As the particles, under high Re and/or dilute conditions, are influenced by the

large scale turbulence of the fluid-phase the particles are no longer in uncorre-

lated random motion as the analog suggests. The kinetic contributions increase

dramatically which render the dense constitutive relations inaccurate i.e. kinetic

contributions are neglected, and as such the constitutive models were revised for

dilute conditions [3, 85, 224]. Moreover, ad-hoc coupling terms were introduced in

order to capture the macroscale turbulence [141, 174, 198]. Even so, in high Re

number flows this still did not provide satisfactory results [16, 52, 118, 175]. It was

only recently that the underlying physical basis of the approach was found to be

conceptually inadequate and efforts have been made to rectify this [70].

As mentioned previously, the constitutive equations and particle fluctuations are

closed using KT. This closure represents the Achilles’ heel of the approach in the

context of high Re number flow. As shown by Février et al. [67], two contributions

to the particle fluctuation energy exist. These are the turbulent kinetic energy and

the kinetic collisional energy and neglecting the former results in the breakdown

of the particles behaviour where macroscale correlated motion is relevant [67, 71].

In the microscale-based approach then, the particle fluctuations at the macroscale

(from the unclosed momentum equation) are equated to the particle fluctuations

at the microscale. The particle fluctuations of individual particles is analogous to

the KT of molecular gases Boltzmann [17], Chapman and Cowling [38] in which

the pressure tensor arises due to velocity fluctuations of individual gas molecules
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i.e. internal energy. This then does not represent the macroscale turbulence of

which the model’s governing equations now represents. To be more precise, in the

particle phase, the particle fluctuations can arise from more than one source i.e.

both kinetic collisional energy and turbulent kinetic energy. This approach, using

the KT closure at the macroscale, has been applied by many authors (to name but

a few) [13, 48, 49, 61, 84, 141, 179, 183, 198, 201, 226] in high Re flow, with varying

degrees of success.

Upon further investigation, the source of the particle fluctuation energy in these

models suffer from a further problem, as first identified by Fox [71]. For this dis-

cussion it is useful to bear in mind that the unclosed fluctuations in the macroscale

model are being equated to the energy derived from a collisional Boltzmann equa-

tion (see §2.2.1) to describe stochastic small-scale particle behaviour.

The distribution of particles in KT are described using a kinetic equation (i.e. col-

lisional Boltzmann equation). The velocity distribution then represents an instan-

taneous field of varying particle velocities. Linearising the collisional operator and

employing an appropriate mathematical approximation, the hydrodynamic equa-

tions can be found. These comprise of the volume fraction, velocity and granular

temperature which then appear as random variables in a one-point p.d.f model.

When modelling turbulence a one-point probability density function (p.d.f) repre-

senting the velocity distribution is used [142]. This represents an infinite number of

realisations of the turbulent flow, each of which contains a unique particle number

density and velocity at a time and location. This is used to describe the velocity

fluctuations in turbulent flow. In effect, the p.d.f used in KT belongs to a com-

pletely different realisation of the flow than the p.d.f used to describe turbulence.

In the literature these two are often equated, using the notation used later in this

work, we denote the granular temperature as 〈Θ〉p, particle turbulent kinetic energy

as kp, and the fluctuating kinetic energy as 1
2〈u

′′
p · u′′p〉p. The statement following

Peirano and Leckner [141] is as follows, 3
2〈Θ〉p = 1

2〈u
′′
p · u′′p〉p. This then omits the

contribution of the correlated macroscale turbulence as the granular temperature
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is used in its stead. As previously touched upon, there exist two contributions

to the fluctuation energy which will be explored in more detail in the subsequent

section. This closure then makes modelling high Re number flows challenging as

the macroscale energy is omitted.

In this work, the model of Peirano and Leckner [141] hereby denoted Modified

Peirano Model (MPM), is compared and contrasted against a model in which the

separation of particle fluctuation energy is made in Chapter 5. The model is tested

on a challenging high Re case and it will be shown how omitting the particle

turbulent kinetic energy results in the breakdown of the particle mean statistics.

Kinetic theory based macroscale models

Looking again at Fig. 1.4, an alternative approach to arriving at a macroscale

model exists. Recently, Fox [71] has shown that this two-step process can result in

a clear distinction between the contributions that make up the particle fluctuation

energy. Beginning with the kinetic (mesoscale) equation [73], the particle-phase is

coupled with the fluid-phase through a momentum coupling term. Then the low

order moments of the kinetic equation are found and closed using the the Chapman-

Enskog expansion (see §2.2.1) which leads to the hydrodynamic description of the

system. The resulting system of equations for volume fraction, momentum and

granular energy can then be Reynolds-Averaged (RA) to find the macroscale tur-

bulence model. Once the equations have undergone RA the appropriate closures

are adopted and the full set of equations that make up the Reynolds-Averaged

Two-Fluid model (RA-TFM) are found.

This approach leads to separate transport equations for the particle turbulent

kinetic energy kp and the granular temperature 〈Θ〉p which represent correlated

macroscale and uncorrelated mesoscale energy, respectively. Moreover, through

the derivation of the macroscale turbulent kinetic energy, the particle turbulent

kinetic energy dissipation εp is defined. This in turn appears as a source term

in the transport equation of the granular temperature. This introduces a cascade
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of energy meaning that as macroscale correlated energy is dissipated it produces

mesoscale uncorrelated energy. This distinction is crucial and will be shown to be

very advantageous to its numerical solution in subsequent chapters.

This approach then leads to the particle fluctuation energy being written as κp =

kp + 1.5〈Θ〉p. Février et al. [67] found that even for non-collisional flow, separate

transport equations for kp and 〈Θ〉p were essential, a direct result of the energy cas-

cade outlined previously. Vance et al. [199] also corroborated these findings but for

collisional flow; in their work the particles were found to preferentially concentrate

their energy into uncorrelated energy with increasing particle response time. Given

these recent advances in the field, the modelling of previously challenging turbulent

fluid-particle interactions in the Eulerian-Eulerian framework has become clearer

and their successful prediction more likely.

As a final note it should be stressed that when working with either E-E or E-L

models that have been derived from the mesoscopic model, their predictions for

the moments should be the same if the statistical and mathematical errors are

reduced [51, 135, 137]. This enables the E-E model to be validated against the

E-L methods, thus resulting in more accurate hydrodynamical models. This is not

possible with a microscale-based-macroscale model due to the lack of physical and

mathematical basis for the velocity fluctuations.

1.4 Partitioning effect of particle inertia

Looking again at the equation for the particle fluctuation energy, κp = kp+1.5〈Θ〉p
it can be seen that there are two contributions: macroscale turbulent kinetic energy

and mesoscale kinetic collisional energy. The underlying mechanism for this particle

fluctuation energy separation is the particle’s inertia. Sommerfeld [178] describes

how important particle inertia is in fluid-particle flows, revealing how it dictates

the interaction between the particles and the whole spectrum of time and length

scales in turbulent flow. Typically, this has been investigated to ascertain its effect
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on preferential concentration (particle volume fraction distribution), even in the

absence of wall-bounded flow, which can be induced by regions of low vorticity

and/or high strain rate. This can have a substantial influence on the collisional

rate of particle flows [148, 181, 206].

It has been shown by Février et al. [67] that particle inertia not only leads to prefer-

ential concentration but also results in a correlation of the velocities in neighboring

particles and can be seen in Figs. 1.5 & 1.6. Two distinct behaviours, which pertain

to correlated and uncorrelated motion are displayed. In Fig. 1.5, the St is small

i.e. small-inertia particles, the neighboring particle velocity field becomes spatially

correlated through the inter-phase interaction e.g. drag with the fluid velocity field.

The energy contained in the correlated particles is represented by the macroscale

turbulent kinetic energy.

In Fig. 1.6, St is large i.e. large-inertia particles with response times much larger

than the integral time scale of the fluid. The neighboring particle velocity field

remains uncorrelated with the surrounding velocity field as the particles tend to

contain ‘memory’ effects with long distant and independent eddies. For the simu-

lations conducted in Février et al. [67] inter-particle collisions were absent, despite

this the particle fluctuation energy still needed to be separated into two separate

types of energy in order to correctly account for correlated motion. This is due to

the the uncorrelated motion containing both collisional and kinetic energy [38]. The

energy contained within the large-inertia particles, of which collisions are typically

included [199], is then described by 〈Θ〉p.

It has been shown that there exists a two-particle velocity distribution with asymp-

totic behaviour [2] in each inertial limit. In the large-inertia limit the p.d.f of

the particle velocity distribution satisfies the assumption of molecular chaos and

thus KT can be employed as suggested by Reeks [150]. This suggests that in the

large-inertia limit the particle velocity distribution cannot be assumed to remain

correlated with the fluid. This further strengthens the theory that there exists a

separation of correlated and uncorrelated velocity fields due to particle inertia.
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In the small-inertia limit, the spatial correlation function between any two velocities

should be accurately modelled by a decaying exponential, analogous to the corre-

lation describing the fluid turbulence [83]. In the large-inertial limit, the motion of

the particle becomes stochastically similar to Brownian motion with independent

random velocities [2, 150] i.e. random spatially uncorrelated velocity. This corrob-

orates the presence of correlated particle turbulent kinetic energy and the particle

collisional energy, the rigorous derivation of which will be presented in Chapter 2.
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Figure 1.5: Instantaneous fluid and particle velocity vectors with particle relaxation time

of 0.13τf . Adopted from Février et al. [67].

Figure 1.6: Instantaneous fluid and particle velocity vectors with particle relaxation time

of 2.17τf . Adopted from Février et al. [67].
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1.5 Fluid-particle turbulence interaction

Fluid-particle turbulence interaction constitutes the exchange of momentum and

energy across both fluid- and particle-phases, the classification of which has been

presented in §1.2.1. This accounts for the coupling between the phases and can

be caused by drag, lift, virtual mass, buoyancy or the Basset force. Owing to the

effect of the particle’s inertia the turbulence of the carrier phase can be augmented

- this is turbulence modulation.

Modulation of turbulence is a complex two-way coupled phenomenon [59] and can

be caused by several processes including fluid-particle interaction, particle-particle

interaction and particle-wall interaction. Modulation of turbulence is primarily

dominated by the reduction of the fluid-phase fluctuating velocities, i.e. attenuation

of the turbulence. Attenuation is especially prevalent in the presence of small heavy

particles and is well established in the literature [60, 77, 82, 106, 192, 203, 217].

This can be further influenced by the inhomogeneity of wall-bounded flow [202],

leading to more complex mechanisms governing turbulence attenuation. In contrast

to this, the fluid-phase turbulence kinetic energy can be increased due to coupling

[77], for example when the particle Reynolds number is high, resulting in particle

vortex shedding [141].

A particular issue in capturing this two-way coupled phenomenon is the fluid-

particle covariance term, the so-called cross-correlation term. This term appears

in the turbulence transport equations of both respective phases and dictates the

energy transfer between the two. Essentially, it accounts for the turbulent kinetic

energy exchange between phases through drag. This should be correlated in St < 1

and uncorrelated in St > 1.

Due to the lack of particle inertia induced energy separation this term has proven

challenging to model correctly. As such, this term has received considerable atten-

tion by researchers with various model forms being suggested [4, 13, 37, 40, 48, 79,

141, 145, 216, 226]. Writing the unclosed covariance term as, 〈u′′p ·u′′′f 〉p (defined in
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App. B) we see that it incorporates the fluctuating component from of each phase.

In the literature, a standard form Peirano and Leckner [141], Sinclair and Mallo

[176] 〈u′′p · u′′′f 〉p =
√

Θkf is often adopted. The form of this term models energy

exchange between large-scale turbulent kinetic energy and small-scale collisional

energy - the ramifications of this are explored in Chapter 5.

Recently, with the energy separating effect of particle inertia a new form has been

proposed by Fox [71] and reads 〈u′′p · u′′′f 〉p =
√
kpkf , in which both variables rep-

resent the large-scale turbulent kinetic energy of each respective phase. This form

was validated for isotropic homogeneous turbulence showing the correct decaying

behaviour. In Chapters 5, 6 and 7 we show that the form of the velocity covariance

shows the correct behaviour for two-way coupled phenomena.

As the volume fraction increases, the likelihood of particle collisions increases,

giving rise to inter-particle collisions. The effect of this so-called four-way coupled

phenomenon has been studied by numerous authors [129, 181, 185, 204, 205, 217].

Vreman et al. [204] found that the inclusion of the inter-particle collisions enabled

to particles to diffuse the particle kinetic energy in the wall-normal direction. This

results in a flattening of both the fluid- and particle-phase velocity profile, this

finding is also consistent with that of Yamamoto et al. [217] and Tanaka et al.

[186]. With a flattening of the particle velocity profile the numerical predictions

were able to closely align with the experimental observations of Kulick et al. [106].

With this redistribution of particle kinetic energy the spatial distribution of the

particle volume fraction is also changed which can impinge on predicting crucial

particle behaviour i.e. particle deposition in the boundary layer. In Chapter 6, this

four-way coupled type behaviour is explored on the experimental data of Kulick

et al. [106].

The collisional frequency has also been investigated in isotropic turbulence, through

two- [181] and one-way [205] coupled DNS simulations of isotropic turbulence to

study turbulence modulation. Results suggest that the rate of viscous dissipation

of turbulence energy is enhanced by particles - similar to the case in the two-way
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coupled regime. Owing to its isotropic nature any direction dependent phenomena

were not recorded. This suggests that the fluid turbulence dissipation transport

equations may need adjusting in the presence of particles through an adjustment of

the turbulence model constants or the presence of an extra dissipative term. This

type of behaviour is out of the scope of this work but it is important to note that

this is another area requiring investigation.

1.6 Near-wall fluid-particle behaviour

It is well established that in turbulent wall-bounded flow particles tend to accumu-

late in the near-wall region. This phenomenon, known as turbophoresis, was first

identified by Caporaloni et al. [31], Reeks [149], Young and Leeming [220], and is

responsible for particles drifting from regions of high turbulence intensity to low

turbulence intensity. The form of the turbophoretic velocity proposed reads as:

up,y = − 1
τp

du′′p,y
dx

(1.18)

where up,y is the velocity in the wall normal direction and u′′p,y is the wall-normal

stress component. In inhomogeneous flow the particles will migrate from regions

of high to low turbulence intensities i.e. wall-drift. Additionally, a dependence on

the particles relaxation time is present. This means that for low St number the

velocity should be higher in magnitude.

In low St, wall-bounded flow with particles tightly coupled to the fluid through

drag the region of highest turbulence intensity variation is in the near-wall region.

There is a band of low turbulence intensity just below the peak of production in

the boundary layer (y+ ≈ 11.6), with a slow decay in turbulent kinetic energy as

the core of the flow is approached. As the particles are closely correlated with

the carrier flow, through the covariance term, the inhomogeneity of the turbulent

kinetic energy close to the wall results in a net drift of the particles towards the

wall [177]. This wall-induced drift results in an accumulation of particles in the
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near-wall region. The particles are then trapped in the near-wall viscous region

and can not migrate back into the core of the flow. This phenomenon is called

particle deposition.

The effects of turbophoresis and particle deposition has been investigated by nu-

merous authors; almost exclusively in the context of E-L modeling [112, 119, 126,

132, 177]. Largely due to its ability to resolve turbulent scales to a high resolution

the simulations can provide crucial insights into fundamental phenomena and its

appropriate modelling. The prevailing physical explanation suggests that particles

are pushed towards the wall and into the viscous sublayer by the span-wise motion

of turbulence (vortex) and as a result the particles experience a net transverse drift

which concentrates them in the near-wall region [23, 132]. This behaviour is of

significant interest for a number of applications, ranging from new gas cleaning

devices to sizing and control of surface chemical reactions [119] and its successful

prediction can exert stark changes to the particle turbulence kinetic energy and

particle viscosity predictions.

Strömgren et al. [180] investigated the effect of the turbophoresis force within an

E-E framework and found that even for small volume fractions, αp = 2x10−4, two-

way coupling effects are non-negligible in the near-wall region and require special

attention. This is due to the concentration of particles being at its largest in the

near-wall region - a phenomenon caused by turbophoresis. Due to the accumulation

of particles in the boundary layer, inter-particle and particle-wall collisions then

become more relevant. This leads to an increase in skin friction [204] as the particle-

wall interaction behaves as an additional drag source on the fluid-phase.

In E-E model, turbophoresis and particle deposition presents two challenges: the

first, being that typically in the fluid-phase where the mean velocity gradients are

steepest wall functions are often employed. Secondly, the phenomenon is governed

by the wall-normal fluctuating velocity, meaning that the particles move down the

wall-normal gradient towards the wall. In standard RA modelling the kinematic

blocking of the wall is not explicitly modelled and we close the term by modelling
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the pressure redistribution (along with the triple correlation) by a gradient-diffusion

hypothesis [142], combined with the Boussinesq approximation, assuming that the

deviatoric Reynolds stress is proportional to the mean rate of strain. This limits

the turbulent viscosity due to the y-wall dependence i.e. turbulent viscosity does

not actually depend on k2
f/εf , which is known to lead to an over-prediction in the

near-wall region (Durbin and Reif [58]) causing further limitations.

To correctly model the turbophoresis and particle deposition in the boundary layer

these constraints need to be alleviated, which is the concern of Chapters 6 & 7.

It will be shown that the inter-particle collisions and the explicit modelling of the

fluid-phase wall-normal stress component allows the particles to drift to the wall.

To complicate the picture further, as particles deposit in the near-wall region, the

particles begin to affect the fluid-phase through two- and four-way coupling effects,

as the volume fraction increases.

In the near-wall region there exists a strongly inhomogeneous region which requires

special attention to model in a Reynolds-Averaged framework. Due to the no

impermeability constraint, a kinematic blocking effect is introduced that leads to

image vorticity [86, 190] (discussed in Chapter 2 - §2.5). This non-local effect on

the Reynolds-Stress i.e. the no-flux condition on the normal component of velocity

u · n = 0, results in an anisotropic distribution amongst the fluctuating velocity

components in the vicinity of a wall, mainly felt as a suppression of energy transfer

into the wall-normal component. This is not accounted for in standard turbulence

modelling as the Reynolds stress is closed using a one-point closure i.e. a turbulent

viscosity and symmetric velocity gradient.

The isotropic limitation is introduced in the definition of the turbulent viscosity

which comprise of a velocity and length scale. The velocity and length scale (that

represent the size of the eddies transporting momentum and their respective ve-

locity) are chosen to represent the fluctuating quantities of the flow. This results

in the turbulent kinetic energy, k = 0.5(ux · ux) being used as a velocity scale by

taking the square root and then defining a length scale to complement this choice.
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The definition of k, that is used as a measure of the averaged turbulence inten-

sity, relies on assuming all the fluctuating components in each direction are equal.

This introduction of isotropy results in an overestimation of the turbulent kinetic

energy in the near-wall region as in general the statement, 〈u′′xu′′x〉 > 〈u′′yu′′y〉 is

true as the stream-wise components dominate the wall-normal. Therefore, there

is a suppression of momentum transfer in the wall-normal direction and without

accounting for this, a large over-prediction of the turbulent viscosity is experienced

in the near-wall region Durbin and Reif [58]. This phenomenon is present in both

phases, within a E-E framework, and this aspect of modelling forms the basis of

Chapters 6 & 7.

1.7 Numerical solution of E-E models

In Computational Fluid Dynamics (CFD), the coupling of pressure and velocity has

proven to be one of the major challenges when solving the Navier-Stokes equations

(NSE) [64, 138]. Traditionally, this problem has been tackled by solving the NSE in

a decoupled manner [7, 64]. First, an estimate for the velocity field is found by the

momentum equation using an initial guess of the pressure field. Then a Poisson

equation for pressure is solved for by taking the divergence of the momentum

equation. After its solution, the velocity field is corrected to ensure continuity is

satisfied.

This pressure-based (meaning a pressure-correction equation is formulated) ap-

proach make up two of the most widely used algorithms in CFD; SIMPLE [138] and

PISO [89]. As the latter is employed in this work we shall focus our attention on its

general procedure in a Finite-Volume framework. As the Finite-Volume-Method

(FVM) is used throughout this work we assume it’s notation and discretisation

procedures throughout. A full treatise of the FVM is provided in Chapter 3.

We start by writing the NSE for single-phase incompressible flow,

∇ · u = 0, (1.19)
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∂u
∂t

+∇ · (uu)−∇ · (ν∇u) = −∇p. (1.20)

where p is the kinematic pressure. First, we discretise the implicit contributions of

the temporal, convective and diffusive terms and denote them, A. Then grouping

the neighbouring coefficients (multiplied by the velocity) and the source terms

from the explicit contributions of the aforementioned terms into the H operator

(full details are given in Chapter 4). The semi-discretised form of the momentum

equation can then be written as:

Au = H−∇p, (1.21)

with the pressure gradient being omitted from the discretisation in line with a Rhie-

Chow like procedure [154]. Then an expression for the velocity can be written as:

u = H
A
− 1

A
∇p. (1.22)

Velocities on the cell face i.e. flux can be found by interpolating Eq. 1.22 (details

of which will be shown in Chapter 4) which reads as:

uf =
(H

A

)
f
−
( 1

A

)
f
(∇p)f . (1.23)

Then the flux form of the predicted velocities Eq. 1.23 is inserted into the discre-

tised continuity equation which then leads to the Poisson-like equation for pressure,

∇ ·
( 1

A
∇p

)
= ∇ ·

(H
A

)
. (1.24)

The solution of this equation then leads to an updated pressure field but the ve-

locities (both fluxes and cell centered velocity values) do not currently contain the

influence of the pressure gradient and need to be updated. This is then achieved

by updating the face flux with Eq. 1.23 and then correcting the velocity field with

Eq. 1.22, this then results in a velocity field that satisfies continuity.

These steps are some of the essential ingredients that make up the PISO algo-

rithm. In short, the momentum equation, with a predicted pressure field, is used
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to estimate a velocity field. The field is then interpolated onto cell faces to find the

predicted mass flux which is then inserted into the continuity equation to formulate

a Poisson-like equation for pressure. Once solved the velocity fluxes are updated

and the cell centre velocities are corrected to satisfy the new pressure field i.e.

conservation. This procedure is then repeated until some user defined tolerance is

found and then the solution is advanced in time.

The velocity and pressure are decoupled within the solution matrix with each

variable being solved separately. The unknowns in each respective equation i.e.

pressure in the momentum equation and momentum in the pressure equation, are

treated explicitly. The computational overhead required to store and operate on

a single variable matrix is relatively cheap and this lead to its widespread use as

when these algorithms were developed computational memory was at a premium.

As the matrices are solved sequentially the emphasis is then put on the time taken

to do repeated operations as opposed to storage. Two of the major drawbacks of

these algorithms is the use of arbitrary under-relaxation factors, due to high rates

of change in dependent variables and the slow convergence rates, due to the decou-

pling of velocity and pressure. In transient flows, the time-step size is used as an

effective under-relaxation method in order to cope with abrupt rates of change in

the dependant variable as it represents actual physical time.

Owing to the rapid increase of computational power an alternative to the decoupled

solution algorithm has received renewed interest. These methods were available

around the same time as the segregated solution [200] but received little attention

due to their high computational memory requirements. In particular, methods that

employ a pressure-correction equation have been employed within FVM frameworks

[39, 46, 47, 215] - here denoted as block-coupled. Alternatives to this approach rely

on the type of grid used i.e. staggered, in which a direct method on the primitive

form of the NSE are employed [20, 34, 99, 124, 125, 200] or co-located grids within

a control volume finite element framework (CVFEM) [20, 34, 99, 124, 125, 200].

Within the block-coupled framework the system of equations are solved within
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one single block-matrix in which the influence of velocity-pressure coupling can be

introduced through inter-equation coupling terms. This ensures that the system

of equations are solved implicitly using the current iteration values. As a single

block-matrix of coefficients needs to be solved for, the computational overhead is

high, unlike in the segregated approach. This then puts an emphasis on the com-

putational memory in order to store the matrix of coefficients. This approach has

significant advantages over the segregated formulation as arbitrary under-relaxation

is no longer needed and dramatic improvements in convergence, stability and ro-

bustness are experienced.

The pressure-based approach was first applied to co-located grids in the CVFEM

framework by Webster [208, 209]. The approach shows dramatic improvements in

convergence on both structured and unstructured grids in comparison to the SIM-

PLE algorithm and shows superior performance on denser meshes. This framework

[87, 147, 208, 209] has since been extended to multiphase applications - namely the

two-fluid model [25]. In this approach the entire system is coupled i.e. two mo-

mentum equations and a pressure field leading to tighter inter-equation coupling.

The coupled solver showed far superior performance over its segregated counterpart

with improvements in the number of iterations and computational time.

The two-fluid model is particularly well placed for such an extension due to the for-

mulation of the governing equations. Two phase-momentum equations are coupled

via a shared pressure field with inter-phase coupling through drag. When solved

within a segregated framework the system of equations are solved in a decoupled

manner in which the decoupled phase-velocity-pressure and inter-phase drag terms

are treated explicitly, putting a computational constraint on the solution time and

adversely affecting convergence.

In a FVM framework, Darwish et al. [45] has recently proposed a two-fluid fully-

coupled pressure-based solver in which their single-phase framework [46, 47] is

extended to a multiphase framework. The governing equations are solved within

a fully conservative formulation i.e. the volume fraction and density are left in
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the momentum equations, typically used to capture compressibility effects. They

derived their model in a 2D framework and verify their results on 1D laminar test

cases showing a rate of solution acceleration between 1.3 and 4.6.

More recently, Ferreira et al. [63] proposed a fully-coupled pressure-based multi-

fluid framework. In their work they solve the phase-intensive formulation i.e. di-

viding out by volume fraction and density and employing the Compact Momentum

Interpolation (CMI) practice of Cubero et al. [44] and guess-and-correct procedure

shown in Darwish et al. [45]. Overall, this treatment was shown to enhance stabil-

ity and convergence through the correct treatment of the temporal, drag and body

force interpolation especially when a large drag force was present. The multi-fluid

solver is verified on 2D laminar test cases showing superior performance when com-

pared to the segregated solver reporting computational speedups from 4.6 to 9.3

times.

In Chapter 4, the two-fluid methodology in this work will be derived and imple-

mented in a pressure-based segregated and block-coupled manner. Both algorithms

will be compared in terms of performance and convergence in Chapter 8.

1.8 Present Contributions

The following contributions to the field of Eulerian-Eulerian numerical modelling

that are presented in this thesis:

• An E-E (RA-TFM) framework is presented that accounts for the particle

inertia induced energy separation in wall-bounded turbulent particle-fluid

flows. This is particularly relevant for high Re number flow in which the

fluid- and particle-phases energy can be correlated in the main core of the

flow;

• A segregated solution algorithm is derived and implemented within the open-

source CFD tool-box OpenFOAM;
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• A fully-coupled solution algorithm is derived and implemented within the

open-source CFD tool-box OpenFOAM;

• Boundary conditions to incorporate the particle-wall interaction of the new

particle-phase turbulence energy statistics have been derived following John-

son and Jackson [97];

• The model has been compared against the conventional model found in ex-

isting open-source and commercial CFD codes [141]. This particular aspect

highlights the inherit shortcomings in the existing methodology;

• A elliptic relaxation model is derived and presented. It was found to be an

effective modelling approach for the near-wall region within E-E simulations.

This provided the resolution of the fluid boundary layer and incorporated the

suppression of the wall-normal fluctuating component. This model was de-

rived within the current RA-TFM methodology but it is a generic formulation

and can be applied to existing E-E model;

• A elliptic relaxation model for the particle-phase was validated against DNS

data;

• A comparison of the implemented segregated and coupled solution algorithms

within the E-E framework was presented and their behaviour contrasted;

• The RA-TFM was validated on a range of benchmark experimental data

including DNS. This comprises of a range of particle classifications, coupling

mechanisms and geometric configurations;

• Finally, the CFD codes developed throughout this work are made available

online (see Appendix D). This comprises of two main solvers: ratfmFoam and

ratfmCoupledFoam. They are used throughout Chapters 5-8 and Chapter 8,

respectively.



2 Multiphase turbulence modelling

2.1 Overview

In this chapter both Eulerian-Eulerian (E-E) frameworks and modelling method-

ologies are presented. The two-step E-E framework is presented first. We begin at

a collisional Boltzmann equation and follow the derivation of Garzó and Santos [72]

to arrive at the hydrodynamic balance equations. We then follow Fox [71] in which

this system of equations are Reynolds-Averaged to arrive at a set of Reynolds-

Averaged E-E equations. The second modelling methodology is then presented.

We follow the derivation of Anderson and Jackson [7] which begins at a microscale

model for fluid-particle flows. This is then volume-averaged to arrive at the hydro-

dynamic governing equations at the macroscale. These models are then contrasted

to highlight the key underpinning differences between them. Finally, two novel

elliptic relaxation models are derived within the RA E-E framework to account for

the near-wall region in multiphase simulations. The particle wall-boundary con-

ditions that are required to capture the correct particle-wall interaction are also

detailed.

This chapter comprises of:

35
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• Derivation of the two-step E-E methodology;

• Details of the mathematical modelling and appropriate closures are presented;

• Description of the microscale-to-macroscale E-E model methodology;

• Presentation of both the two-step and one-step E-E model equations.

• Derivation/presentation of the elliptic relaxation models for both the fluid-

and particle-phase.

• Presentation of the particle wall boundary conditions used in E-E simulations.

2.2 Euler-Euler modelling

As shown in Section 1.3 there exist two main approaches for deriving an Euler-

Euler model (see Fig. 1.4). This section will present both approaches and compare

their fundamental differences.

2.2.1 Mesoscale modelling

Throughout this section we present the fundamental governing equations for colli-

sional fluid-particle multiphase flows by starting at the mesoscale level. The first

step, deriving the mesoscale model, involves physical modelling and physics-based

simplifications in order to arrive at a closed and complete kinetic equation i.e. col-

lisional Boltzmann equation. As indicated by the schematic (Fig. 1.4) this is a

model of the microscale model in which modelling decisions can be discerned from

the overall picture once arriving at the macroscale model.

The second step, deriving the macroscale model from the mesoscale model, involves

mathematical approximations (Chapman-Enskog) to find a normal solution to the

kinetic equation [93] i.e. the hydrodynamic equations. Then, applying Reynolds-

Averaging to the hydrodynamic equations to find the macroscale turbulence model.

This approach has a distinct advantage over the one-step average as there is a
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clear distinction between the physical and mathematical errors. In addition, the

mesoscale model can be compared, term-by-term, to the microscale model a feature

that provides invaluable validation [29, 71].

Boltzmann equation

We begin then by first deriving the Boltzmann equation using classical heuristic

arguments similar to those made by Boltzmann [17] himself and follow the proce-

dure found in Garzó and Santos [72]. A more thorough exposition can be found in

Cercignani et al. [35], Chapman and Cowling [38].

We begin by considering a dilute monatomic gas of N identical particles of mass

m interacting through a pair-wise central interaction potential of finite range. At

the kinetic level the state of the system can be described by a one-particle velocity

function f(x,v; t), defined in a such a way that f(x,v; t)dxdv is the average number

of particles which at time t reside in the volume dx centred at the point x and

moving with velocities in the range dv about v. The average number of particles

per unit volume is then the number density, n(x, t), related to f through the

integral,

n(x, t) =
∫
dvf(x,v; t). (2.1)

The average velocity of the particles located around point x at time t defines the

local flow velocity u(x, t) as

u(x, t) = 1
n(x, t)

∫
dvvf(x,v; t). (2.2)

The average kinetic energy measured moving with the flow velocity defines a

nonequilibrium local temperature Θ(x, t) as

3
2n(x, t)kBΘ(x, t) = m

2

∫
dv[v− u(r, t)]2f(x,v; t), (2.3)

where kB = 1.38054× 10−23J/K is the Boltzmann constant which throughout the

derivation is typically neglected [93]. The approach then is to arrive at an equation
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that describes the rate of change of f in time. The derivative can be expressed,

recognising the two sources of temporal change: free streaming and collisions, in

the form,

∂f

∂t
= ∂f

∂t

∣∣∣∣
str

+ ∂f

∂t

∣∣∣∣
coll
, (2.4)

where the RHS represents the change of f due to the free motion of particles under

the action of an external force, F. It is important to note that F represents any

external force, in this work for example it will contain the drag force from the fluid

phase. The second term refers to the change due to collisions among the particles.

To arrive at an equation for the free streaming contribution it is assumed that

the interactions are absent i.e. low density gas. In such a case, the particles that

at time t are located at point x and moving with velocity v will be located at

x′ = x + vδt having a velocity v′ = v + m−1Fδt at a later time t′ = t + δt, where

δt represents an infinitesimal time interval. This leads to

f(x,v; t)dxdv = f(x′,v′; t′)dx′dv′. (2.5)

Then recognising that,

f(x′,v′; t′) = f(x,v; t) + v · ∇fδt+ F
m
· ∂f
∂v
δt+ ∂f

∂t
δt+O(δt2), (2.6)

and that the Jacobian of the transformation (x,v)→ (x′,v′) yields

dx′dv′ =
[
1 + ∂

∂v
· F
m
δt+O(δt2)

]
dxdv. (2.7)

Thus subbing Eq. 2.7 into Eq. 2.5 leads to

∂f

∂t

∣∣∣∣
str

= −v · ∇f − ∂

∂v
·
(F
m
f
)
. (2.8)

Then finally inserting Eq. 2.8 into Eq. 2.4 leads to,

∂f

∂t
+ v · ∇f + ∂

∂v
·
(F
m
f
)

= ∂f

∂t

∣∣∣∣
coll
. (2.9)
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The collision term on the RHS is difficult to deal with as it is nonlinear through f

therefore we omit its treatment here. The term, ∂f
∂t

∣∣∣∣
coll

is typically replaced with the

expression J [v|f, f ] and would make up the Boltzmann equation. The collisional

term represents a bilinear operator acting on the velocity distribution function. To

summarise then, the equation is a nonlinear equation for f and is a function of

three spatial coordinates, three velocity components and time. In order to arrive

at the hydrodynamic equations, a necessary requirement in describing the system

as a continuum, simplifications are sought. The first simplification is linearising

the collisional operator through the Boltzmann hypothesis of molecular chaos i.e.

the collisions of particles do not start in a correlated state. This means that the

collisional operator can be expressed through a one-particle velocity distribution

function, the one employed in this work is the Enskog collisional operator [38] and

is presented without derivation.

We thus present the Enskog kinetic equation [21, 22, 73], in which the external

force in Eq. 2.9 has been neglected and the right hand side has been replaced with

the Enskog collisional operator, which reads:

∂f

∂t
+ v · ∇f = JE[x,v|f, f ]. (2.10)

Here the terms, moving from left to right, represent accumulation, free transport

and finally particle-particle collisions. In which the last term is expressed as:

JE[x,v|f, f ] =dd−1
p

∫
dv2

∫
dσ H(σ · g12)(σ · g12)

×
(
e−2χ(x,x− σ)f(x,v′1; t)f(x− σ,v′2; t)

− χ(x,x + σ)f(x,v1; t)f(x + σ,x2; t)
)
,

(2.11)

is the Enskog collision operator [73]. Here, d is dimensionality of the system (d=2

for disks and 3 for spheres), e is the coefficient of restitution, σ = dpσ, with σ

being a unit vector pointing in the direction from the centre of particle 1 to the

centre of particle 2, H is the Heaviside step function, g12 = v1− v2 and χ = 1−0.5φ
(1−φ)3
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which is a shape factor for spheres. The primes on the velocities denote the initial

values {v′1,v′2} that lead to {v1,v2} following a binary collision:

v′1 = v1 − 0.5(1 + e−1)(σ · g12)σ, v′2 = v2 − 0.5(1 + e−1)(σ · g12)σ. (2.12)

Chapman-Enskog expansion

From here the macroscopic equations for the system can be found, bearing in

mind the definitions of each hydrodynamic variable given in Eqs. 2.1 - 2.3, by

multiplying Eq. 2.10 by {1,mv, 1
2mv2} and integrating over the phase velocity, v

respectively. This then leads to three balance equations for continuity, momentum

and temperature, which read as:

∂(αpρp)
∂t

+∇ · (αpρpup) = 0, (2.13)

∂(αpρpup)
∂t

+∇ · (αpρpupup + αpρpPp) = 0, (2.14)

∂(αpρpΘ)
∂t

+∇ ·
(
αpρpΘup + 2

3αpρpq
)

= −2
3αpρpPp : ∇up, (2.15)

where αp is the volume fraction, up is the particle mean velocity and Θ is the

granular temperature i.e. the hydrodynamic variables. Noting that mn = ρp and

the collisional operator vanishes as momentum is conserved and finally multiplying

through by the phase indicator αp. The difficulty now arises as the pressure-stress

tensor, Pp and the heat flux q are expressed as a function of f leaving them

unclosed. To circumvent this then the equations need to be fully described by

the hydrodynamic fields, this can be achieved through the Chapman-Enskog (CE)

approximation. The approach assumes a normal solution to the Eq. 2.10 such

that all space and time dependence of the distribution function occurs through the

hydrodynamic fields.

f(x,v, t) = f [v|n,u,Θ]. (2.16)
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The RHS shows that there exists a functional dependence on the density, flow

velocity and temperature. Therefore, if we are to determine f at any given point

x knowledge of the hydrodynamic fields in the whole system are required.

For small spatial variations i.e. low Knudsen numbers, The dependency can be

localised in space via an expansion in the gradients of the hydrodynamic fields. This

essentially says that the system can be completely described by the hydrodynamic

fields as the velocity distribution is assumed to have reached an equilibrium. To

realise this, f is written in a series expansion in a formal parameter ε measuring

the non-uniformity of the system

f = f (0) + εf (1) + ε2f (2) + . . . , (2.17)

where each factor of ε means an implicit gradient of a hydrodynamic field and is

mainly used for book-keeping to label the orders of magnitude of different terms.

This expansion also generates similar terms for the momentum and heat fluxes. To

obtain the hierarchy of equations pertaining to each approximation of order f (k)

from the Eq. 2.10, the operator ∇ is replaced with ε∇ and the time derivative is

expanded to read

∂t = ∂
(0)
t + ε∂

(1)
t + ε2∂

(2)
t . (2.18)

Since f = f (0), εf (1), ε2f (2), . . . only depend on time through the hydrodynamic

fields, the operator ∂(k)
t is

∂
(k)
t = (∂(k)

t n) ∂
∂n

+ (∂(k)
t u) · ∂

∂u
+ (∂(k)

t Θ) ∂
∂Θ . (2.19)

The macroscopic equations up to the Navier-Stokes order can then be found by

expanding the terms in Eq. 2.10 up to the first order, collecting terms of the

same order in ε, multiplying through by {1,mv, 1
2mv2} and integrating over the

phase velocity, v respectively. After lengthy algebra one then arrives at the same

equations arrived at at the top of the section but this time the pressure-tensor and

heat flux can be closed in terms of the hydrodynamic fields.
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This then leads to:

∂(αpρp)
∂t

+∇ · (αpρpup) = 0, (2.20)

∂(αpρpup)
∂t

+∇ · (αpρpupup + αpρpPp) = 0, (2.21)

∂(αpρpΘ)
∂t

+∇ ·
(
αpρpΘup + 2

3αpρpq
)

= −2
3αpρpPp : ∇up. (2.22)

As their functional dependence on the distribution function f has been removed

due to the CE approximation, constitutive relations for both the pressure tensor

and heat flux can be derived. Both the pressure-tensor and heat flux comprise a

kinetic and collisional contribution and constitutive relations will be provided for

both later on.

This system of macroscopic equations then represent continuity, momentum and

granular energy (temperature), respectively and make up the kinetic-theory-based

continuum model [73, 93, 94].

2.2.2 Complete kinetic-theory-based continuum model

The kinetic-theory-based continuum model presented in §2.2.1 was derived without

any coupling with the fluid-phase. In order to couple the model to the fluid-

phase there are two options: one can couple the model at the continuum level

or include the coupling term at the kinetic level. The former has been shown

to lead to mathematical inaccuracies and can not be directly compared with E-L

simulations [71, 73]. The latter approach provides a more mathematically exact

approach and theoretically leads to the same solution as an E-L simulation if the

mathematically and statistical errors are reduced accordingly [70]. Here, we follow

the latter approach but omit a rigorous derivation and provide the main conceptual

changes to the approach carried out in the previous section. The interested reader

is refereed to Garzó et al. [73] for a rigorous derivation.
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We begin by presenting the Enskog kinetic equation for a single particle velocity

distribution function and include both a fluid force coupling term and a body force

term leading to the form

∂f

∂t
+ v · ∇f + ∂

∂v
[Af ] + g · ∂f

∂v
= JE[x,v|f, f ]. (2.23)

The fluid-phase momentum coupling is provided through the force term, A and

include the dominant physical mechanisms as highlighted in §1.9. The term is

then written as:

A = 1
τp

(uf − v)− 1
ρp
∇pf , (2.24)

where uf is the instantaneous fluid velocity, τp is the particle relaxation time and

pf is the fluid pressure. The particles are assumed large enough to have their own

inertia which allows the particle to deviate from the fluid velocity. The change in

granular energy (temperature) due to the same forces [71, 73, 189] can be written

as

E = 1
τp

v · (uf − v)− 3
τp

(Θf −Θ)− 1
ρp

v · ∇pf , (2.25)

where Θf is the pseudo-turbulent kinetic energy of the fluid i.e. fluid velocity

fluctuations due to particle wakes. This contribution is neglected due to the low

particle Reynolds number investigated in this work. The drag term comprises

of two separate contributions: the first is due to the exchange of kinetic energy

between the phases and the second is due to the granular energy between the two

phases.

From here the hydrodynamic model for the particle-phase can be derived by fol-

lowing an identical procedure to the one outlined in §2.2.1. This procedure then

leads to a set of hydrodynamic equations that are coupled to the fluid-phase.

The continuity, momentum and granular energy transport equations for the com-

plete kinetic-theory-based continuum model [73, 93, 94] reads:
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∂(αpρp)
∂t

+∇ · (αpρpup) = 0, (2.26)

∂(αpρpup)
∂t

+∇ · (αpρpupup + αpρpPp) = αpρp(A+ g), (2.27)

∂(αpρpΘ)
∂t

+∇ ·
(
αpρpΘup + 2

3αpρpq
)

= −2
3αpρpPp : ∇up + αpρp(E + up · g).

(2.28)

From KT, the constitutive relations for the pressure tensor Pp and the total gran-

ular energy flux q can be derived - these closure models can be found in §A.5.1 &

§A.5.2. The relations directly rely on the three instantaneous values of the hydro-

dynamic variables and are a function of αp, Θ and the rate of deformation tensor

∇up +∇uTp due to the CE expansion.

Now we can introduce the total granular energy:

e = 1
2(up · up + 3Θ). (2.29)

Then rewriting Eq. 2.28 into its conservative form:

∂(αpρpe)
∂t

+∇ ·
(
αpρpupe+ αpρpPp · up + αpρpq

)
= αpρp(E + up · g). (2.30)

This ensures that the naturally conserved variables of the particle-phase are αp,

up and e. We simply find Θ by invoking Eq. 2.29. Finally, the whole system of

equations for the particle-phase read:

∂(αpρp)
∂t

+∇ · (αpρpup) = 0, (2.31)

∂(αpρpup)
∂t

+∇ · (αpρpupup + αpρpPp) = αpρp(A+ g), (2.32)

∂(αpρpe)
∂t

+∇ ·
(
αpρpupe+ αpρpPp · up + αpρpq

)
= αpρp(E + up · g). (2.33)

The corresponding equations for the fluid-phase can be found by invoking conser-

vation of the volume fraction, αp + αf = 1. Thus, the continuity, momentum and

energy for the fluid-phase read:
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∂(αfρf )
∂t

+∇ · (αfρfuf ) = 0, (2.34)

∂(αfρfuf )
∂t

+∇ · (αfρfufuf + αfρfPf ) = −αpρpρfA+ αfρfg, (2.35)

∂(αfρfef )
∂t

+∇ · (αfρfufef + αfρfPf · uf + αfρfqf ) = −αpρpρfE + (αfuf ) · g.
(2.36)

The RHS contain the momentum coupling through drag and buoyancy. Here we

define the fluid-phase pressure tensor as,

Pf = 1
ρfαf

(pfI− σf ), (2.37)

where the closure for the viscous stress tensor can be found in Table C.2. In this

work the flow is assumed to be incompressible and therefore within the numerical

implementation of the balance equations the density is divided out. In the fluid-

phase, the energy equation is only required for compressible flows as the equation

of state is required to formulate pressure. As this is not the case in this work, the

equation is not solved nor is it presented in the further derivation of the Reynolds-

Averaged model. From this full set of equations the final step of RA can be applied

to find the macroscale turbulence model. Looking back briefly at Fig. 1.4, it can be

seen that this makes up the necessary first step to arrive at a conceptual adequate

model for the prediction of turbulent fluid-particle flows.

The full set of hydrodynamic equations are first RA (see Appendix A for the

derivation) and then re-expressed in their Phase-Average (PA) or conditionally

averaged form (Appendix B) in order to express the equations in their most compact

form.

2.3 Reynolds-Averaged Two-Fluid Model

In this section the RA-TFM equations first presented by Fox [71] are given. The

RA transport equations are presented in their conservative form and for clarity
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the PA notation has been dropped. The full definition of the variables and the

constitutive equations can be found in Appendix C and Tables C.1 & C.2.

The particle-phase continuity equation reads:

∂(αpρp)
∂t

+∇ · (αpρpup) = 0, (2.38)

where αp is the volume fraction of particles, ρp is the density of the particles and

up is the particle-phase velocity.

The momentum balance equation for the particulate phase is given as:

∂(αpρpup)
∂t

+∇ · (αpρpupup) = ∇ · (αpρpReff,p) + β
[
(uf − up)−

νft
Scfsαpαf

∇αp
]

−∇pp − αp∇pf + αpρp

[
1− Cpαf

(
1− ρf

ρp

)]
g,

(2.39)

where the first term on the RHS contains the particle Reynolds stress tensor that

comprises two components: the particles laminar viscosity i.e. from uncorrelated

granular temperature and the particles turbulent viscosity i.e. correlated turbulent

kinetic energy. The second term is the momentum transfer term and contains both

the slip velocity and a turbulent dispersion term. Through the denominator of the

dispersion term Scfp = (kf/kp)1/2 a Stokes number (St) dependency is introduced,

which accounts for dispersion for moderate to large St. The form of this equation

enforces the correct behaviour, when there is a small St the particle turbulent

kinetic energy kp → kf meaning Scfp is unity; for a large St, where kp is deviates

from kf can either reduce or enhance dispersion through Scfp.

The third term is the gradient of particle pressure which is determined from the

solution of the granular temperature equation (defined in App. C). The fourth term

represents the coupling with the fluid-phase through its pressure gradient. The last

term contains the body forces (i.e. gravity) and the velocity-fluid-pressure-gradient

covariance term. This term represents the correlations between the velocity and

pressure gradients which arise from buoyancy.
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The particle Reynolds stress tensor is modelled by grouping the kinematic and

turbulent viscosity into an effective viscosity, νeff,p = νp + νpt and employing the

Boussinesq hypothesis [19]. Now, we can write the Reynolds stress tensor in the

form:

Reff,p = −2νeff,pSp + 2
3Ikp. (2.40)

The drag force defined as FD and the drag transfer coefficient defined as β in

Chapter 1 - Eq. 1.16 an expression for the inter-phase momentum coupling through

drag can be written as:

FD = ρpαp
τp

(uf − up), (2.41)

β = ρpαp
τp

= 3
4
αpαfρfur

dp
Cd, (2.42)

Cd =


24
Rep

[
1 + 0.15Re0.287

p

]
if Rep < 1000

0.44 if Rep ≥ 1000,
(2.43)

where the expression, β has been multiplied by the fluid-phase volume fraction.

This was shown in Rusche [164], Weller [210] to ensure that the drag term did not

tend to 0 during its numerical implementation as the equations are implemented

in their phase-intensive form i.e. divided by volume-fraction.

The fluid-phase continuity equation reads:

∂(αfρf )
∂t

+∇ · (αfρfuf ) = 0. (2.44)

The momentum balance equation for the fluid-phase is given as:

∂(αfρfuf )
∂t

+∇ · (αfρfufuf ) = ∇ · (αfρfReff,f) + β
[
(up − uf ) + νft

Scfsαpαf
∇αp

]
−αf∇pf + αp∇pf + αfρf

[
1 + Cpαp

(
ρp
ρf
− 1

)]
g.

(2.45)
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The particle- and fluid-phase momentum equations are almost symmetric but with

some key differences. The second term on the RHS includes the turbulence dis-

persion with an opposite sign, to ensure an exchange of forces between them. The

third term is the mean fluid pressure gradient and the fourth term represents the

buoyancy coupling with the particle-phase.

The fluid Reynolds stress tensor is modelled by grouping the kinematic and tur-

bulent viscosity into an effective viscosity, νeff,f = νf + νft and employing the

Boussinesq hypothesis. Now, we can write the fluid Reynolds stress tensor in the

form:

Reff,f = −2νeff,fSf + 2
3Ikf . (2.46)

The turbulent kinetic energy transport equation for the fluid-phase takes the form:

∂(αfρfkf )
∂t

+∇ · (αfρfkfuf ) = ∇ ·
[(
µf + µft

σfk

)
∇kf

]
+ αfρfΠf − αfρfεf

+2β(kfp − kf ) + αpρpΠfp + αpρpΠρf ,

(2.47)

where the first term on the RHS is the fluid-phase turbulent kinetic energy flux.

The second term Πf represents kinetic energy production due to mean shear, with

the third term being the turbulent kinetic energy dissipation. The remaining three

terms are the coupling terms: velocity correlations, mean slip and volume-fraction-

velocity correlations, respectively.

The turbulent kinetic energy dissipation transport equation for the fluid-phase

reads as:

∂(αfρfεf )
∂t

+∇ · (αfρfεfuf ) = ∇ ·
[(
µf + µft

σfk

)
∇εf

]
+ εf
kf

[
C1αfρfΠf − C2αfρfεf

]
+2C3β(εfp − εf ) + C4

εp
kp
αpρpΠfp + C5

εp
kp
αpρpΠρf ,

(2.48)

where the first term on the RHS is the fluid-phase turbulent kinetic dissipation

energy flux. The second term Πf is kinetic energy production due to mean shear

with the third term is dissipation. The remaining three terms are the coupling
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terms: velocity correlations, mean slip and volume-fraction-velocity correlations,

respectively. The forms of these are as follows:

Πf = 2νftSf : Sf + 2
3kf∇ · uf , (2.49)

Πfp =
[
Cg(up − uf )−

νft
Scfpαpαf

∇αp
]
·
[
β(up − uf ) + 1

ρp
∇pf

]
, (2.50)

Πρf = Cρ

(
1− ρf

ρp

)[
Cgαpαf (up − uf )−

νft
Scfp
∇αp

]
· g, (2.51)

where Πf is the production of the turbulent kinetic energy, Πfp is due to mean slip

and Πρf is due to volume-fraction-velocity correlations.

The co-variance or cross-coupling terms take the form of kfp = βk
√
kfkp and εfp =

βε
√
εfεp, where the correlation coefficients are 0 < βk, βε ≤ 1. These terms

represent the fluid-velocity covariance and their exact closure is still uncertain, a

detailed discussion on this point can be found in [71]. This form is adopted as it

shows correct limiting behaviour for large St as well as diminishing to zero in the

absence of the particulate phase.

The particle-phase turbulent kinetic energy, which represents the correlated macroscale

energy, reads as:

∂(αpρpkp)
∂t

+∇ · (αpρpkpup) = ∇ ·
[(
µp + µpt

σpk

)
∇kp

]
+ αpρpΠp − αpρpεp

+2β(kfp − kp) + αpρpΠρp,

(2.52)

where the first term on the RHS is the particle-phase turbulent kinetic energy flux.

The second term Πp is kinetic energy production due to mean shear with the third

term being the particle turbulent kinetic energy dissipation. The remaining two

terms are the coupling terms: velocity correlations, and the combination of the

buoyancy induced and mean slip terms.

The particle-phase turbulent kinetic energy dissipation transport equation reads:



50 2. Multiphase turbulence modelling

∂(αpρpεp)
∂t

+∇ · (αpρpεpup) = ∇ ·
[(
µp + µpt

σpk

)
∇εp

]
+ εp
kp

(C1αpρpΠp − C2αpρpεp)

+2C3β(εfp − εp) + C5
εp
kp
αpρpΠρp,

(2.53)

where the first term on the RHS is the particle-phase turbulent kinetic dissipation

energy flux. The second term Πp is kinetic energy production due to mean shear

with the third term being its dissipation. The remaining two terms are the coupling

terms: velocity correlations, and the combination of the buoyancy induced and

mean slip terms. The second term contains, Πp which is the production of the

turbulent kinetic energy and is expressed as:

Πp = 2νptSp : Sp + 2
3kp∇ · up. (2.54)

It should be noted here that the final term on the RHS is a compressive term that

appears in compressible turbulence modelling and plays a similar role to the bulk

viscosity found in the typical granular temperature formulations in the literature

[141], [198]. Finally, the buoyancy-induced source term Πρf is added to the mean

slip Πfp to be reformulated as Πρp which is read as:

Πρp = CρCpαf

(
1− ρf

ρp

)
(up − uf ) · g. (2.55)

The granular temperature equation, which represents the uncorrelated collisional

energy, reads:

3
2

[
∂(αpρpΘ)

∂t
+∇ · (αpρpΘup)

]
= ∇ ·

[(
κΘ + 3µpt

2Prpt

)
∇Θ

]
+ 2µpSp : Sp

−pp∇ · up + αpρpεp − 3βΘ− γ,
(2.56)

where the first term on the RHS is the granular temperature flux which is made

up of two contributions, the granular conductivity flux and the turbulent granular

flux. The former consists of a constitutive closure that is given by Syamlal and

O’Brien [184] and is used as it correctly tends to zero in the dilute limit [198]. The

latter term is the turbulent flux and includes the particle turbulent viscosity. The
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second term is a laminar source term due to viscous stresses. The third term is

a pressure dilation term which accounts for compressibility. The fourth term is of

particular interest, as it represents the turbulent particle kinetic energy dissipation

which appears here as a source term. The physical interpretation of this means that

as large scale particle turbulent kinetic energy is dissipated, small scale granular

temperature is produced. The two remaining terms represent decrease of granular

temperature due to drag and decrease of granular temperature due to inelastic

collisions.

The full form of the equations have been presented here with no mention of their

relevance to the flow regime being simulated in this work. As the density ratio

is high the buoyancy induced terms are expected to be negligible. The coefficient

Cg → 0 and Cp → 0 due to the small mass loading and high density ratios respec-

tively, used in this work, a more thorough discussion on this topic can be found in

[27, 28, 71]. Similarly, the compressible turbulence correction terms depend on the

particle-phase Mach number, which is expected to be large for large St. Given the

St numbers used in this study this is not expected to be the case. In general these

terms are neglected throughout this work unless otherwise stated.

Figure 2.1: Schematic showing the energy cascade between each variable within the

multiphase model [71]. The interaction between each quantity is shown along with their

respective energy transfer mechanisms. The dashed line represents the energy flow in the

(mesoscale) laminar model.

Fig. 2.1 shows an overall picture of the RA-TFM. As can be seen the energy

cascade is almost identical in both phases. Starting with the mean particle kinetic
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energy 1
2up · up, the energy transfer to the turbulent particle kinetic energy is

given by the production term which is Πp i.e. the shear. This then generates kp
and is dissipated by the turbulent kinetic energy dissipation equation. Finally,

this dissipation term εp appears in the granular temperature Θ as a source term,

meaning that as the particle turbulent kinetic energy dissipates, granular energy is

produced. Both turbulent quantities interact via drag and buoyancy terms in the

same way the governing equations do. If there is dissipation due to collisions, the

granular temperature is reduced due to particle heating.
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2.4 Microscale-based-macroscale model

In the literature many two-fluid models have been derived by applying an averaging

procedure to the microscale model to arrive at a macroscale model [7, 54, 88]. For

the sake of brevity the basic idea behind the approach will be outlined with the

crucial modelling decisions being highlighted. For a full treatise the interested

reader is referred to [7, 54, 62, 141].

The most commonly used derivation for fluid-particle flows is that of Anderson and

Jackson [7]. In their work a local spatial average of the variables in the system of

interest, taken over regions small compared with the length scale of the problem

considered i.e. volume-averaging. Although alternatives exist in which one can

average at each point over an ensemble of macroscale equivalent systems. Both

lead to a very similar system of equations Zhang and Prosperetti [223].

Firstly, a mathematical definition of local mean variables is defined in order to

translate the local instantaneous Navier-Stokes equations for the fluid-phase and

Newton’s equation of motion for a single particle into continuum equations. These

then represent the continuity and momentum of each phase, respectively. The local

instantaneous variables are first volume-averaged over regions that are larger than

the particle diameter to arrive at expressions for the average of a point property

e.g. velocity. These averaging rules are then applied to the point continuity and

momentum balances resulting in a macroscale system of equations that has been

derived from a local average of the microscale.

From here the particle-pressure tensor is closed using an analogy from kinetic the-

ory Chapman and Cowling [38]. This constitutes a kinetic and collisional contri-

bution and are largely based on the relations derived by Lun et al. [117]. The

exact closures can be found in Appendix C. As described previously (see §1.3) a

direct analogy between the thermodynamic temperature for gases in introduced.

The granular temperature is introduced as a measure of the particle velocity fluc-

tuations, 3
2〈Θ〉p = 1

2〈u
′′
p · u′′p〉p. From here the temperature equation derived from
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the collisional Boltzmann equation can be used to describe the particle fluctuation

energy.

We begin at the E-E equations presented by Anderson and Jackson [7], Peirano and

Leckner [141] which will be hereafter labelled the Modified Peirano Model (MPM).

Note here that we compare against the form of the RA-TFM equations that have

been simplified i.e. neglecting buoyancy correlation terms. These are presented in

Chapter 5 and as such will be forward referenced.

The continuity equations for each phase read:

∂(αpρp)
∂t

+∇ · (αpρpup) = 0, (2.57)

∂(αfρf )
∂t

+∇ · (αfρfuf ) = 0. (2.58)

The momentum balance equation for the particle-phase:

∂(αpρpup)
∂t

+∇ · (αpρpupup) = ∇ · (αpρpReff,p) + β
[
(uf − up)−

νft
Scfsαpαf

∇αp
]

−∇pp − αp∇pf + αpρpg.
(2.59)

In the momentum equation for the particle-phase it can be seen that when compar-

ing term-by-term with Eq. 4.2 there is one main differences - the effective viscosity

within the particles Reynolds stress tensor. The effective viscosity just contains

the granular contribution i.e. νp as the turbulent viscosity contribution does not

exist within this methodology.

The momentum balance equation for the fluid-phase:

∂(αfρfuf )
∂t

+∇ · (αfρfufuf ) = ∇ · (αfρfReff,p) + β
[
(up − uf ) + νft

Scfsαpαf
∇αp

]
−αf∇pf + αfρfg.

(2.60)

In the momentum equation for the fluid-phase it can be seen that the equations

are identical with Eq. 4.4 as the buoyancy contribution has been neglected.
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In order to close the particle-phase momentum equation the particle fluctuation

energy is closed using KT. The temperature is defined such that

Θ = 1
3(u′′p · u′′p), (2.61)

where u′′p is the particle fluctuation velocity which represents the uncorrelated en-

ergy. The derivation of the temperature transport equation is identical to the

one followed in §2.2.1. The form here is slightly different due to the inclusion of

covariance terms. The granular temperature equation [76, 141] is then:

3
2

[
∂(αpρpΘ)

∂t
+∇ · (αpρpΘup)

]
= ∇ · (κΘ∇Θ) + σ : ∇up + ppI : ∇up

+Jvis + Jslip − γp,
(2.62)

where the first term on the RHS is the granular temperature flux (dissipation) which

is the granular conductivity or heat flux in the terminology used in §2.2.1. The

second and third terms fluctuation energy created by the shearing and pressure

in the particle-phase i.e. kinetic and collisional contributions. The remaining

terms are energy source/sink terms due to viscous damping, drag and inter-particle

collisions.

The particle pressure and inter-particle collision term are defined in Appendix. C.

We write the particle stress tensor as

σ = µp[∇up +∇Tup] + (λ− 2
3µp)(∇ · up)I. (2.63)

Finally, Jvis and Jslip are dissipation of granular temperature due to viscous damp-

ing and creation of granular temperature from the energy exchange between the

fluid- and particle-phases. Both terms can be written more intuitively to read:

Jvis + Jslip = β(u′′p · u′′p − u′′p · u′′′f ). (2.64)

The first term can be modeled as 3Θ according to Gidaspow [76] and the last term

can be modeled as kpf , which is the fluid-particle covariance term and its closure

will be presented later.
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Comparing Eq. 2.62 with its counterpart in the RA-TFM - Eq. 2.56 highlights

some conceptual differences. Firstly, the dissipative term contains a secondary con-

tribution in the latter equation from the turbulent viscosity. Secondly, the source

term εp does not exist in the current methodology as the macroscale correlated

energy is not accounted for. Lastly, velocity covariance, kpf term exists in the

granular temperature equation meaning that the granular temperature exchanges

energy with both the mean momentum equations through, 3βΘ and the fluid-phase

energy through kpf = cpf
√
kfΘ [176].

The transport equations for the fluid-phase turbulence model kf − εf reads as

follows:

∂(αfρfkf )
∂t

+∇·(αfρfkfuf ) = ∇·
[(
µf+µft

σfk

)
∇kf

]
+αfρfΠf−αfρfεf+Πkf , (2.65)

∂(αfρfεf )
∂t

+∇·(αfρfεfuf ) = ∇·
[(
µf+

µft
σfk

)
∇εf

]
+εf
kf

[
C1αfρfΠf−C2αfρfεf+C3Πkf

]
,

(2.66)

where all the terms have an identical meaning to those presented in §2.3 except

for the final term, Πkf which introduces the particle velocity covariance term.

This physically represents the velocity fluctuation correlation of each phase and is

written as,

Πkf = −β(2kf − kpf − |ur|ud), (2.67)

where the term ud accounts for turbulence dispersion and is also known as the drift

velocity. Here it is given from the formulation of Simonin [173].

ud = −νft
( 1
αp
∇αp −

1
αf
∇αf

)
. (2.68)

Comparing the macroscale turbulence modelling in the MPM with the RA-TFM

i.e. Eqs. 2.47 & 2.48 reveals some interesting differences. Firstly, the coupling term

due to velocity correlations has a different characteristic energy i.e. Θ in MPM and

kp in RA-TFM. This has some important ramifications that are explored within
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Chapter 5. Both contain a production term due to mean slip i.e. dispersion,

although the adopted form is slightly different.

The most fundamental difference between the modes is the fact that in the MPM

the energy exchange mechanisms occur across the the granular energy equation and

the fluid-phase momentum and turbulent kinetic energy i.e. Θ with the kf − εf

equation. These exchange energy through drag. As discussed in §1.3 the granular

energy represents mesoscale interactions i.e. kinetic collisional energy that is con-

ceptually on a different scale to the mean fluid-phase equations. Omitting this leads

to a granular temperature equation in which two energy exchange mechanisms are

present.

When the MPM equations are solved, numerically artificial bounding is common

as the granular temperature equation can only dissipate energy through inelastic

collisions or drag. The drag coupling is provided through Πkf which couples the

macroscale turbulence of the fluid-phase with the mesoscale granular temperature

- two physically different mechanisms. Usually, from the author’s experience, this

ensures that a large spike of production is experienced throughout the simulation

as the mean momentum and energy contribute to the granular/fluctuation energy

production. Conversely, in the RA-TFM a dissipative length scale exists, εp that

ensures the energy cascades towards viscous heating (see Fig. 2.1). This acts

as its own “soft” limit throughout the simulation as the energy is produced and

dissipated through physically and mathematically similar sources. This has the

auxiliary benefit of increasing the robustness of the numerical solution as the terms

evolve “naturally” resulting in less iterations e.g. high spikes in source terms require

smaller time steps.
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2.5 Fluid-phase elliptic relaxation model

In this section the elliptic relaxation model of Durbin [56] is derived within the

RA-TFM framework in order to circumvent the near-wall region issues highlighted

in §1.6. The model provides two additional transport equations which are solved in

conjunction with the kf − εf transport equations and will be investigated further

in Chapter 6.

As discussed in §1.6 there exists an adverse effect on the single-point closure em-

ployed in RA turbulence modelling due to the presence of the wall. Figure 2.2

offers two ways of interpretation the effect of the wall. The first suggests that there

is an additional source i.e. wall echo that adds a reflected pressure wave. The

incorporation of this methodology into the Reynolds stress transport equation is

tricky and results in a wall sensitive model [75] that retains the same issues as

damping functions. The second approach, seen on the right, suggests that image

vorticity exists that accounts for the blocking effect of the wall.

Figure 2.2: Schematic representation of nonlocal wall influences. The left shows pressure

reflection characterised as a pressure wave. On the right, image vorticity characterises the

blocking effect of a solid wall Durbin and Reif [58].

This kinematic blocking constraint arises due to the no-flux condition, u · n = 0
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and is a continuity effect and thus can not be found via manipulation of the Navier-

Stokes equation. It ultimately results in the solution of Laplace’s equation which

holds the attractive quality of being wall-independent. This does not depend on

Reynolds stress dynamics but works to suppress momentum transfer into the wall-

normal component as the wall is approach which seems intuitive when examining

the right hand side of Fig. 2.2.

The effect of this process indirectly enters the Reynolds stress transport equation

via the velocity-pressure gradient. As the wall is approached the gradient is altered

in the wall-normal direction. The term of interest is the pressure-strain in the exact

RA Reynolds Stress transport Eq. 2.69. From this equation the elliptic relaxation

model of Durbin [56] can be derived within a RA-TFM methodology.

We begin with the exact RA Reynolds Stress transport equation for the fluid-phase

which is found by Reynolds-Averaging the PA velocity tensor transport equation

and subtracting the PA fluid-phase mean velocity tensor transport equation. The

derivation of which can be found in Appendix A - Eq. A.32.

∂〈αf〉〈u′′′f ⊗ u′′′f 〉f
∂t

+∇ · 〈αf〉〈uf〉f ⊗ 〈u′′′f ⊗ u′′′f 〉f = −∇ · 〈αf〉〈u′′′f ⊗ u′′′f ⊗ u′′′f 〉f

−〈αf〉(〈u′′′f ⊗ u′′′f 〉f · ∇〈uf〉f )︸ ︷︷ ︸
Production

+ 1
ρf
∇ · 〈σf ⊗ u′′′f 〉 −

1
ρf
∇〈pfu′′′f 〉

+ 1
ρf
〈pf∇u′′′f 〉︸ ︷︷ ︸

pressure strain, φf,yy

− 1
ρf
〈σf · ∇u′′′f 〉︸ ︷︷ ︸

dissipation, εf,yy

+〈αf〉β(〈u′′′f ⊗ u′′p〉p − 〈u′′′f ⊗ u′′′f 〉p︸ ︷︷ ︸
velocity correlations

)

(2.69)

Many of these terms are familiar from the compressible Reynolds stress transport

equations. The first term on the right hand side is the transport due to turbu-

lent flux term with the second responsible for turbulence production. The terms

of particular interest are the pressure strain, responsible for redistribution, and

dissipation.

The velocity correlations which arise due to phase coupling are modelled analo-

gously to those terms found in the kf − εf transport equations. We set the covari-

ance of the fluctuations 〈u′′′f ⊗u′′p〉p = v2
fp = βv

√
v2
pv

2
f , where v2

p = 2/3kp owing to its
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definition. The correlation factor, βv = 1 along with the correlation factors found

in the transport equations for turbulent kinetic energy and dissipation are all set

to 1. This is a crude first approximation and the correlation factor should depend

on both mass loading and Stokes number. This is out of the scope of this work as

only a weak dependency through the relatively low mass loadings is expected.

Following the approach used in classic eddy-viscosity turbulence models, the diver-

gence terms appearing in the transport equation are closed by the eddy-viscosity

approximation [142]. This reads as:

∇ ·
[
µft
σfk
∇〈u′′′f ⊗ u′′′f 〉f

]
≈ −∇ · 〈αf〉〈u′′′f ⊗ u′′′f ⊗ u′′′f 〉f + 1

ρf
∇ · 〈σf ⊗ u′′′f 〉

− 1
ρf
∇〈pfu′′′f 〉.

(2.70)

Finally, the terms left to close are the pressure strain and dissipation terms. These

terms are explicitly modelled in the v2
f − f model equations and are grouped into

a source term denoted kff ,

kff = φf,yy︸ ︷︷ ︸
pressure strain

− εf,yy︸ ︷︷ ︸
dissipation

+ αfρf6
v2
f

kf
εf . (2.71)

The source term effectively redistributes turbulence energy from the stream-wise

Reynolds stress component to the wall-normal component. This is intuitive as

previously discussed, when one considers a fully developed turbulent boundary

layer as the wall-normal Reynolds stress component’s production is zero due to

the mean stream-wise flow gradient. Therefore, turbulent kinetic energy can only

enter the wall-normal component through redistribution. The original form of the

source term has been shown to overproduce in regions relatively far away from the

wall and the correction of Davidson et al. [50] is thus employed, this then reads:

v2
f source

= min
{
kff, −

1
T

[
(C1 − 6)v2

f −
2kf
3 (C1 − 1)

]
+ C2Πf

}
. (2.72)

Finally, setting the wall-normal component of the fluid-phase Reynolds stress tensor

〈u′′′f ⊗ u′′′f 〉f to v2
f a transport equation can be written as:
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∂(αfρfv2
f )

∂t
+∇ · (αfρfv2

fuf ) = ∇ ·
[(
µf + µft

σfk

)
∇v2

f

]
+ αfρfv2

f source
− αfρf6

v2
f

kf
εf

+2β(v2
fp − v2

f ).
(2.73)

The reader should note that the third term on the RHS is a sink term that is

used to balance the source term kff . This is a modification proposed by Lien and

Kalitzin [114] and ensures that the source term kff → 0 as it approaches the wall.

Equation 2.73 contains no sensitivity to the wall, this is introduced through a

modified Helmholtz equation which forms an elliptic relaxation equation. The

form of this equation accounts for anisotropy close to walls and is also independent

of Reynolds number and y+ value which reads:

L2∂
2f

∂x2 − f = C1

T

v2
f

kf
− 2

3


︸ ︷︷ ︸

φf,yy,S

−C2
Πf

kf︸ ︷︷ ︸
φf,yy,R

− 1
T

6
v2
f

kf
− 2

3

.
(2.74)

The terms φf,yy,S and φf,yy,R are the so-called slow and rapid pressure-strain terms

[108, 142]. It’s important to recall here that the modified Helmholtz equation is

a re-expression of the Poissons equation of the exact pressure-rate-of-strain tensor

[142]. The form of the slow pressure-strain term is similar to Rotta’s return to

isotropy model [160] in which the rate of the return to isotropy is related to the

anistropy of the flow via a linear relationship. Physically this model suggests that

as the turbulence decays it has a tendency to become more isotropic. The rapid

term contains the mean-flow gradients through the production of turbulent kinetic

energy and as such can respond to immediate changes in the flow. The final term

being used to ensure far field behaviour i.e. that the elliptic relaxation function

diminishes away from walls.

In the original formulation of this equation as given by Durbin [56] the boundary

condition for f contains the wall distance to the fourth power in its denominator.

This lead to computational stiffness and numerical oscillations in the near-wall

region. This issue was resolved by Lien and Kalitzin [114] by introducing the

terms: 6 v
2
f

kf
as a sink and source in the kff source term, the v2

f transport equation
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and the elliptical relaxation equation, f . This ensures that f tends to 0 at the wall

enabling a Dirichlet boundary condition to be prescribed. The turbulent viscosity is

calculated from the solution of the v2
f−f model and due to the near-wall behaviour

of kf a correction is employed to avoid singularities. The correction of Davidson

et al. [50] is employed and the definition of the turbulent viscosity now reads

νft = min
{
Cfµk

2
f/εf , Cµv

2
fT
}
, (2.75)

where the turbulent time and length scales are defined as

T = max
(
kf
εf
, 6
√
νf
εf

)
, (2.76)

L = max
(
k

3/2
f

εf
, Cη

ν
3/4
f

ε
1/4
f

)
. (2.77)

Both time and length scales are limited in regions close to the wall. This is achieved

by introducing a dependency on Kolmogorov scales which are only active in regions

very close to the wall i.e. y+ < 5. This ensures that a singularity is not introduced

into the solution matrix and that the scales collapse at the wall. Another mod-

ification close to the wall is to modify the “constant” Cε1 by damping it in the

near-wall region by employing the following formulation

Cε1 = 1.4
(

1 + 0.05
√
kf/v2

f

)
. (2.78)

Wall boundary conditions for εf can be found by a Taylor expansion around the no-

slip condition at the wall [142] and the employing the aforementioned modifications

from Lien and Kalitzin [114] which reads as

εf → 2νf
kf
y2 . (2.79)

For the remaining variables the following boundary conditions at the wall are pre-

scribed, kf = v2
f = f = 0.
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2.6 Particle-phase elliptic relaxation model

In this section we propose a elliptic relaxation model for the particle-phase. Within

the E-E framework we assume continuous inter-penetrating phenomena and both

phases share their pressure field. Additionally, we assume the presence of corre-

lated particle-phase turbulent kinetic energy thus ensuring that the macroscale i.e.

integral scale, exists. Recognising this is crucial for justifying the modelling deci-

sions. We propose that the pressure reflection caused by the wall is felt in both

phases and as a result a elliptic relaxation model can be relevant for each phase.

In an analogous manner to the fluid-phase, the transport equation for the Reynolds

stress tensor can be found by Reynolds-Averaging the PA velocity tensor transport

equation and subtracting the PA particle-phase mean velocity tensor transport

equation, a derivation of which can be found in Appendix A - Eq. A.22.

∂〈αp〉〈u′′p ⊗ u′′p〉p
∂t

+∇ · 〈αp〉〈up〉p ⊗ 〈u′′p ⊗ u′′p〉p = −∇ · 〈αp〉〈u′′p ⊗ u′′p ⊗ u′′p〉p

−〈αp〉(〈u′′p ⊗ u′′p〉p · ∇〈up〉p)︸ ︷︷ ︸
Production

+ 1
ρp
∇ · 〈σp ⊗ u′′p〉 −

1
ρp
∇〈ppu′′p〉

+ 1
ρp
〈pp∇u′′p〉︸ ︷︷ ︸

pressure strain, φp,yy

− 1
ρp
〈σp · ∇u′′p〉︸ ︷︷ ︸

dissipation, εp,yy

+〈αp〉β(〈u′′′f ⊗ u′′p〉p − 〈u′′p ⊗ u′′p〉p︸ ︷︷ ︸
velocity correlations

)

(2.80)

We postulate that an imaginary particle-phase wall normal component transport

equation can be derived with adequate closure to the terms presented in Eq 2.80.

Firstly, we recognise that the production term is a function of the mean flow gra-

dients in the stream-wise direction therefore it is dropped.

The velocity correlations which arise due to phase coupling are dominant in this

work and have been shown to display the correct behaviour in one-way coupled

flow Fox [71]. We therefore adopt the same form for their closure by setting the

co-variance of the fluctuations 〈u′′′f ⊗ u′′p〉p = v2
fp =

√
v2
pv

2
f , and as we now have

access to both wall normal components this is the form adopted.

Following the standard approach used in classic eddy-viscosity turbulence models,
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the divergence terms appearing in the transport equation are closed by the eddy-

viscosity approximation [142].

∇ ·
[
µpt
σpk
∇〈u′′p ⊗ u′′p〉p

]
≈ −∇ · 〈αp〉〈u′′p ⊗ u′′p ⊗ u′′p〉p + 1

ρp
∇ · 〈σp ⊗ u′′p〉

− 1
ρp
∇〈ppu′′p〉

(2.81)

Finally, the terms left to close are the pressure strain and dissipation terms. These

terms are explicitly modelled in the v2
p−f transport equation and are grouped into

a source term denoted kpf .

kpf = φp,yy︸ ︷︷ ︸
pressure strain

− εp,yy︸ ︷︷ ︸
dissipation

+ αpρp6
v2
p

kp
εp. (2.82)

The source term effectively redistributes turbulence energy from the stream-wise

Reynolds stress component to the wall-normal component close to walls. This

means that particle turbulence energy can only enter the wall-normal component

through redistribution. The source term has been shown to overproduce in regions

relatively far away from the wall and the correction of Davidson et al. [50] is

employed.

v2
psource

= min
{
kpf, −

1
T

[
(C1 − 6)v2

p −
2kp
3 (C1 − 1)

]
+ C2Πp

}
. (2.83)

Now setting the wall-normal component of the fluid-phase Reynolds stress tensor

〈u′′p ⊗ u′′p〉p to v2
p a transport equation can be written as:

∂(αpρpv2
p)

∂t
+∇ · (αpρpv2

fup) = ∇ ·
[(
µp + µpt

σpk

)
∇v2

p

]
+ αpρpv2

psource
− αpρp6

v2
p

kp
εp

+2β(v2
fp − v2

p).
(2.84)

The reader should note that the third term is a sink term that is used to balance

the source term kpf . This is a modification proposed by Lien and Kalitzin [114]

and ensures that the source term kpf → 0 as it approaches the wall.

Equation 2.84 contains no sensitivity to the wall distance and thus a modified

Helmholtz equation is constructed to form an elliptic relaxation equation. The
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form of this equation accounts for anisotropy close to walls and is also independent

of Reynolds number and y+ value which reads

L2
p

∂2f

∂x2 − f = C1

Tp

v2
p

kp
− 2

3


︸ ︷︷ ︸

φp,yy,S

−C2
Πp

kp︸ ︷︷ ︸
φp,yy,R

− 1
Tp

6
v2
p

kp
− 2

3

.
(2.85)

The terms φp,yy,S and φp,yy,R are the so-called slow and rapid pressure-strain terms

[108, 142] with the final term being used to ensure far field behaviour i.e. that

the elliptic relaxation function diminishes away from walls. The eddy viscosity is

calculated from the solution of the v2
p − f model, again the correction proposed by

Davidson et al. [50] is used.

νpt = min
{
Cpµk

2
p/εp, Cµv

2
pTp

}
, (2.86)

where the turbulent time and length scales are defined in analogy to those in

the fluid-phase, we can define a characteristic length and time scale based on the

particle turbulent flow variables as:

Tp = max
(
kp
εp
, 6
√
νf
εf

)
, (2.87)

Lp = max
(
k3/2
p

εp
, Cη

ν
3/4
f

ε
1/4
f

)
. (2.88)

Both time and length scales are limited in regions close to the wall. In regions close

to the wall kp need not be zero but due to one-way coupling (which will be used to

validate the model in Chapter 7) the mean slip → 0 therefore the particles remain

correlated. In regions close to the wall the particle characteristic time scale can

reduce below the Kolmorgorov scale, hence limiting is applied. It is instructive to

note that as the particle relaxation time increases closer to the wall and the particles

become less responsive to the main flow, uncorrelated energy Θ is created. Hence,

at the correlated macro-scale kp, the production due to the velocity covariance is

dominant but as the particle response time increases uncorrelated mesoscale energy
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Θ is produced. As the fluid-particle flow remains correlated the scaling is retained.

Therefore, we set a Neumann wall boundary condition for each turbulence statistic

variable.

2.7 Particle wall boundary conditions

The wall boundary conditions for the particle-phase require additional modelling

due to the fact that the velocity need not be zero on the wall. Recently, Capecelatro

et al. [28] started from the Johnson and Jackson [97] wall boundary conditions and

derived wall boundary conditions for the particle turbulence quantities kp, εp and

Θ. Here we present the boundary conditions in their implemented form applicable

for FVM codes and begin with the wall boundary condition for the particle velocity

up.

µp∇up,w · Sf = −π6
αp

αp,max
φspecρpg0

√
3Θup,w (2.89)

Here we define up,w as the particle slip velocity parallel to the wall, up,w = up−uw
and Sf as the surface area vector. Then Eq. 2.89 is recast into a more compact

form

µp∇up,w · Sf = −Dwup,w (2.90)

where the term Dw = φspecVw representing φspec, the specularity coefficient and the

term Vw = π
6

αp

αp,max
ρp
√

3Θg0 which contains the tangential momentum π
6

αp

αp,max
ρp

(omitting the particle slip velocity parallel to the wall up,w) and the collisional

frequency
√

3Θg0. This boundary condition prescribes a particle partial-slip velocity

at the wall. From this condition it follows that the components of the Reynolds

stress tensor 〈u′′pu′′p〉p need not be zero at the wall unlike in the fluid-phase. As we

are interested in modelling the particle-wall interaction of the particle turbulent

kinetic energy kp we assume isotropy in the fluctuating components.
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kp = 1
2(u′′2p,x + u′′2p,y + u′′2p,z) (2.91)

Equating the principal Reynolds stress components (u′′2p,x ≡ u′′2p,y ≡ u′′2p,z) one arrives

at kp = 1.5 u′′2p and substituting into Eq. 2.90 by employing the PA decomposition

(see Appendix B) the wall boundary condition for kp reads

µp∇kp · Sf = −2Dwkp (2.92)

Following on from this a condition for the particle turbulent kinetic energy dissi-

pation rate εp can be prescribed:

µp∇εp · Sf = −2Dwεp (2.93)

Finally, the wall boundary condition for the granular temperature can be found

by Reynolds averaging the wall boundary condition of Johnson and Jackson [97]

which reads as
3
2qΘ · Sf = φDw|up,w|2 −

3
2DκΘ (2.94)

where qΘ is the granular temperature flux and with Dκ = (1 − ew)2Dw and ew
is the restitution of coefficient with the wall. It follows from this that this term

represents the energy loss through particle collisions with the wall. The first term

on the RHS represents the increase of the granular temperature due to the relative

slip velocity with the wall. This means that the slip condition at the wall is capable

of increasing the granular temperature.

2.8 Closure

This chapter presented the derivation of the two-step E-E begin at a collisional

Boltzmann equation. From the kinetic equation the Chapman-Enskog method is

employed to arrive at the hydrodynamic model in the small Knudsen limit. This

comprises of continuity, momentum and energy for the particle and fluid-phase.

From this description of the mesoscale, the equations are then Reynolds-Averaged
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to find the macroscale turbulence model. The fully closed RA hydrodynamic model

is then presented with an explanation of the physical mechanisms of each term.

Additionally, the energy cascade effect that results from this approach is presented.

Lastly, the second approach for deriving E-E models, microscale-based-macroscale

models, is presented with the main differences between the methodologies detailed.

Two novel elliptic relaxation models were derived within the RA E-E modelling

framework, these models are proposed in order to account for the near-wall region

in multiphase simulations. Lastly, wall boundary conditions for the particle phase

were detailed and presented.



3 Finite Volume discretisation

3.1 Overview

In this chapter the Finite Volume discretisation practices adopted in this work are

presented. The continuous PDEs associated with the E-E model are discretised

into a system of algebraic equations. This then enables a numerical solution to be

sought, the solution of which is the concern of Chapter 4.

This chapter comprises of:

• Discretisation of the computational domain into non-overlapping sub-domains.

• Equation discretisation of the governing PDEs into a system of algebraic

equations.

• A description of the discretisation schemes used throughout this work.

69
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3.2 Discretisation in a Finite Volume framework

The PDEs presented in the preceding chapter describe the behaviour of their con-

tinuous dependant variables. For a solution or approximation to the system of

PDEs to be achieved they need to be replaced with a discrete approximation to

their solution. This discrete approximation can be achieved by a two-step process

of domain and equation discretisation.

The former requires the generation of a computational mesh. In the finite volume

framework this consists of a subdivision of the computational domain into control

volumes. The control volumes are non-overlapping and fill the domain entirely.

We can then seek a discretisation procedure that describes how the solution varies

between cell centroids. The latter, equation discretisation, requires an assumption

about the variation of the dependant variable, φ = φ(x, t) in space and time at the

cell centroid. These will be discussed later but for a more comprehensive treatment

see Ferziger and Peric [64].

Figure 3.1: Polyhedron control volume adapted from Jasak [92].
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A arbitrary control volume can be seen in Fig. 3.1. The computational point P is

located at the cells centroid of the control volume, xP such that:

∫
Vp

(x− xP )dV = 0. (3.1)

The face area vector Sf is normal to the face of each cell and its magnitude is

equal to the area of the face. It is orientated out of the cell of interest P into

the neighbouring cell N . The normal unit vector n is defined as n = Sf/|Sf |. d

denotes the vector between the centre of the cell of interest P and the centre of

the neighbouring cell N , i.e. d = x − xP. A computational mesh is orthogonal

when d is parallel to the surface face vector Sf . The topology of the mesh cell is

completely arbitrary within a FVM framework and is one of the major benefits on

the approach.

3.3 Equation discretisation

Equation discretisation replaces the exact continuous PDE with a discrete system

of algebraic equations, the solution of which produces the approximate behaviour of

the dependant variables at fixed predetermined positions in time and space. Most

of the equations in CFD, and all of those in the proceeding chapter, take the form

of a generic transport equation which can be written as:

∂ρφ

∂t
+∇ · (ρuφ) = ∇ · (γ∇φ) + Sφ, (3.2)

where ρ, u, φ and γ is the density, velocity, generic scalar and diffusivity respectively

with Sφ representing source terms. The equation can be represented in its integral

form by integrating over the control volume P as shown in Fig. 3.1 and time.

∫ t+∆t

t

[
∂

∂t

∫
VP

ρφ dV +
∫
VP

∇ · (ρuφ)dV−
∫
VP

∇ · (γ∇φi)dV
]
dt

=
∫ t+∆t

t

( ∫
VP

SφdV
)

dt.
(3.3)
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In the remainder of this chapter the discretisation practices utilised to approximate

the volume integrals in Eq. 3.3 are presented. The procedures shown here are by

no means exhaustive and readers are referred to texts such as Ferziger and Peric

[64], Jasak [92] for a full treatise.

3.3.1 Face Interpolation

Interpolation of the cell-centred values onto the face centres is a crucial component

of the finite volume method - largely due to the need to evaluate the mass flux

coming in and out of a cell. Satisfying continuity is pivotal to any numerical

solution of the Navier-Stokes and this fundamental property is satisfied by the

geometric and numerical approach of the finite volume method.

As previously mentioned a function of the variation of the flow property needs

to be assumed in order to approximate the face centre value. In a finite volume

approach the cell neighbours are used to create a stencil around the face centre

and then interpolate on to the face. A variety of approaches are available - in this

work the central difference and upwind method are used unless stated otherwise.

For the sake of brevity we therefore restrict our discussion to the central difference

and upwind method.

If we introduce the discretised form of the flux, ∑Fφf which will be defined later,

we now have a mass flux F and a face flux. φf . In the central differencing scheme

a linear variation of φ between P and N is assumed and the expression can be

written as:

φf = fxφP + (1− fx)φN . (3.4)

The interpolation factor fx is defined by the topological information and reads

fx = |xf−xN |
|xf−xN |+|xf−xP |

. This scheme is second order accurate due to the spatial

linear variation.

The upwind differencing scheme uses the direction of the flow to ensure bounded-

ness of the solution but is only first-order accurate. The formulation is given:
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φf =


φP for F ≥ 0

φN for F < 0.
(3.5)

3.3.2 Gradient

Green-Gauss gradient can be used to evaluate the gradient of the function φi.∫
VP

∇φdV =
∫
∂VP

φdS ≈
∑
f

φfSf , (3.6)

where the variation of the face flux, φf can be evaluated by a number of schemes

- here we use the central differencing scheme.

The face normal gradient is the inner product of the face gradient and the unit

normal vector to the face, i.e. ∇⊥f = n · ∇⊥f φ. Where ∇⊥f φ is the gradient at the

face. The face normal gradient can be evaluated using:

∇⊥f φ = φN − φP
|d|

. (3.7)

This approach is second order accurate when the vector d is orthogonal to the face

plane i.e Sf . For non-orthogonal meshes a correction can be introduced, of which

there are a few options, the method adopted in this work will be presented later.

3.3.3 Convection term

The convective term is discretised by integrating over the control volume and em-

ploying the Gauss’ theorem to transform the volume integral into a surface integral.

This reads: ∫
VP

∇ · (ρuφ)dV =
∑
f

(ρuφ)f · Sf

=
∑
f

(ρu)f · Sfφf

=
∑
f

Fφf ,

(3.8)
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where the mass flux through the face is defined as, F = (ρu)f ·Sf and φf is the face

flux. These quantities can be evaluated using the interpolation schemes outlined

in §3.3.1.

3.3.4 Diffusion term

The diffusion terms are discretised in a similar way to convection. Employing the

linear variation of the function φ, it can be written as:

∫
VP

∇ · (γ∇φ)dV =
∫
∂V

(γ∇φ) · dS ≈
∑
f

γf (∇⊥f φ · Sf ). (3.9)

On orthogonal meshes, the face normal gradient ∇⊥f φi is a second order accurate

approximation due to the linear variation assumed. The vectors, d and Sf , that

are defined in the schematic below, are parallel and then the following expression

can be used:

∇⊥f φ|∆| = |Sf |
φN − φP
|d|

. (3.10)

As mentioned previously, for non-orthogonal grids a correction can be introduced to

preserve the second order accuracy. The corrected face normal flux approximation

can be written as

∇f φ · Sf = ∇⊥f φ|∆|+ (∇φ)f · k, (3.11)

where |∆| and k are vectors that are defined in the schematic below.
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Figure 3.2: Over-relaxed approach adapted from Jasak [92].

In general each vector must satisfy the condition,

Sf = ∆ + k, (3.12)

where in the over-relaxed approach of Jasak [92] we define,

∆ = d
d · Sf

|Sf |2. (3.13)

If the mesh is orthogonal the equation reduces to the first term on the RHS regard-

less of the non-orthogonality approach. In this work non-orthongonal mesh cells

are not employed but if they were the over-relaxed approach of Jasak [92] would

be used.

3.3.5 Source term

Any term that is not written as convection or diffusion are treated as a source or

sink. Before employing a discretisation approach its physical behaviour should be

assessed to ensure the correct approach is used. Qualities such as boundedness,

positive-definiteness (e.g. energy) and accuracy should ascertained. Here we follow

a relatively generic approach to source terms:

Sφ(φ) = φSp + Su, (3.14)
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where Sp & Su can depend on φ. Then integrating the term over the control volume:

∫
VP

Sφ(φ)dV = φSpVP + SuVP , (3.15)

the source term has been linearised to enhance convergence - this is achieved by

splitting the source term into an implicit and explicit contribution. Here the first

term on the RHS is treated implicitly and the second term is treated explicitly. This

enhances convergence by the implicit part of the source being negative enhancing

diagonal dominance in the solution matrix.

3.3.6 Time derivative

The time derivative is discretised by integrating over the control volume. In this

work the Euler implicit time differencing is used. Again, assuming a linear variation

of φ within a time step reads:
∫
VP

∂ρφ

∂t
dV ≈ ρnPφ

n
P − ρoPφoP

∆t VP , (3.16)

where φn = φ(t+ ∆t) denotes the value at the time step that is being solved for i.e

updated value and φo = φ(t) which is the value from the previous time step. This

scheme is first order accurate and is unconditionally stable.

3.4 Boundary conditions

The system of PDEs and consequently the system of algebraic equations require

suitable initial and boundary conditions to solve. The two main types of boundary

conditions, from which most are derived, are Dirichlet or Neumann boundary con-

ditions. The former prescribes the value of the dependent variable on the boundary

and is termed a ‘fixed value’ boundary condition. The latter prescribes the gradi-

ent of the variable that is normal to the boundary and is termed a ‘fixed gradient’

boundary condition.
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Figure 3.3: Schematic of a finite volume discretisation in the presence of a boundary

When discretising a convective or diffusive term for example an operation is carried

out that sums over the faces of that particular control volume. When a sum

operation, ∑f includes the boundary face then the boundary condition is invoked

and it follows that this condition must be specified for each boundary face that is

discretised.

Fig. 3.3 shows a control volume sharing one face with a boundary. Here the cell

centre is labelled P, the face is labelled b, the vector connecting the cell centre P

and the centre of the boundary face is d and its corresponding component normal

to the boundary is denoted dn.

When one prescribes a fixed value at the boundary i.e. φB.

• It is substituted in cases where the discretisation procedure requires the value

on a boundary face e.g. φf = φB in the convection discretisation;

• In the diffusive terms where the face gradient ∇⊥φ is required the boundary

value replaces the neighbour like so:

∇⊥f φ · Sf = φB − φP
|d|

|Sf |. (3.17)

This method is second order accurate if the variation of φB is constant along the
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face. It reduces to first order if it varies across the face and the mesh is non-

orthogonal - again a correction can be included to improve this.

When one prescribes a fixed gradient condition at the boundary, then the face

normal gradient gB = ∇⊥f φ is specified at the boundary

• When the discretisation requires the value φf on a boundary face the cell

centre is extrapolated to the boundary:

φf = φP + dn · ∇⊥f φ

= φP + |dn|gB;
(3.18)

• gB can be directly substituted into cases where the discretisation requires the

face gradient i.e. the diffusive term and be written as:

∇⊥f φ · Sf = gB|Sf |. (3.19)

The discretisation for a fixed gradient is second order if gB is constant along the

face. Again, it reduces to first order accuracy if φB varies and the mesh is non-

orthogonal.

Finally, the ‘zero-gradient’ boundary condition is essentially a fixed gradient bound-

ary condition with gB = 0 which means that the boundary face value is replaced

with the cell centre value.

3.5 Temporal discretisation

Looking at generic multiphase transport Eq. 3.3 in its volume integral form once

again:

∫ t+∆t

t

[
∂

∂t

∫
VP

ρφ dV +
∫
VP

∇ · (ρuφ)dV−
∫
VP

∇ · (Γ∇φ)dV
]
dt

=
∫ t+∆t

t

( ∫
VP

SφdV
)

dt.
(3.20)
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Assuming fixed control volumes with an incompressible system and employing the

discretisation practises presented in the proceeding sections the equation can be

re-written in a ‘semi-discretised’ form.

∫ t+∆t

t

[
ρP
φnP − φoP

∆t VP +
∑
f

Fφf −
∑
f

γf (∇⊥f φi · Sf )
]
dt

=
∫ t+∆t

t

(
φSpVP + SuVP

)
dt.

(3.21)

From this form of the multiphase transport equation the time integrals need to

be evaluated. The temporal variation of the cell centre value φ, face values and

gradient terms are assumed to be constant during a time step. Although their

formulation in terms of new and old values needs to be addressed.

In this work the Euler implicit scheme is employed. This scheme uses implicit

discretisation of the spatial varying terms i.e. their new values are expressed as:

φP = φnP , (3.22a)

φf = φnf , (3.22b)

∇⊥f φ · Sf = ∇⊥f φn · S = ∇⊥f φn|∆|+ (∇φo)f · k, (3.22c)

which gives a first order accurate time discretisation. It guarantees boundedness

of the solution and is unconditionally stable. For boundedness to be ensured the

non-orthogonal correction has to be treated explicitly i.e. by using the old time

step value.

Finally, the discretised generic transport equation now reads:

ρP
φnP − φoP

∆t VP +
∑
f

Fφf −
∑
f

γf (∇⊥f φ · Sf ) = φSpVP + SuVP . (3.23)

The previous equation produces a linear algebraic equation for an arbitrary control

volume, VP . Given a system of control volumes a generic form of the equation can

be written as:

apφ
n
P +

∑
N

aNφ
n
N = bP . (3.24)
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The value φnN depends on the neighbouring cells, given by the discretisation stencil,

which creates a system of linear algebraic equations with each row representing each

cell centre in the domain. As a control volume can only share faces with a finite

number of other cells, depending on its shape, the system of equations will be

sparse. The system of linear algebraic equations can then be rewritten in matrix

form

Ax = b, (3.25)

where A is a sparse matrix with coefficients aP and aN on the diagonal and off-

diagonal respectively. x is the vector of variables to solve for and b is the source

vector. From this point a number of approaches are available to solve the system

although they broadly fall into two categories: direct or iterative. The direct

method hinges on the matrix inversion of A and gives the solution to the system of

equations in a finite number of arithmetic operations. The number of operations

necessary to reach the solution scales with the cube of the number of equations thus

making a solution computational very expensive. Iterative methods begin from an

initial guessed solution and begins to iterate towards a more accurate solution until

a user defined tolerance is reached.

In this work two main matrix solvers are employed which fit broadly into the

categories of basic matrix solvers and multigrid algorithms. In both the system

Ax = b is solver for to find a series of approximations to xn. The iterations are

stopped after some user defined or solver defined tolerance. Throughout this work

the matrix solvers based on the method of steepest descent [90] are employed. The

biconjugate gradient stabilised solver (BiCGSTAB) [196] is used for asymmetric

matrices and the Incomplete Cholesky preconditioned Conjugate Gradient (ICCG)

[81] solver for symmetric matrices is used.

When the size of the algebraic system increases dramatically the rate of conver-

gence is adversely affected in the aforementioned methods. In these situations

mulitgrid methods are often sought as they are capable of solving the large sys-

tem of equations efficiently. Typically, the basic matrix solver is used to smooth
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out high frequency sources of errors and then the coarsening of the mesh forming

multiple ‘grids’ the low frequency errors are reduced resulting in a more efficient

and convergent solution technique [162, 165]. This technique is often called the

generalised algebraic multi-grid (GAMG) and is used throughout this work. For a

full treatise on the solution procedure within the linear matrix solvers readers are

refereed to Ferziger and Peric [64], Press et al. [143], Ruge and Stüben [162], Saad

[165] .

3.6 Closure

In this chapter the basis for the finite volume discretisation used throughout this

work have been described. The continuous PDEs were first presented and then

discretised term by term. Additionally, the boundary condition discretisation has

been outlined. Finally, the discretised generic transport equation was presented as

a system of linear algebraic equations.
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4 Solution algorithms for the E-E

model

4.1 Overview

In this chapter the numerical implementation and solution algorithm of the RA-

TFM governing equations are detailed. Both the segregated and coupled imple-

mentations are provided in which a pressure-correction approach is employed. For

the coupled implementation the block-coupled matrix architecture is given. Lastly,

the discretisation practices for the phase-energy system are described.

This chapter comprises of:

• Solution algorithm for the segregated solution of the governing equations;

• Solution algorithm for the coupled solution of the governing equations;

• Block-coupled matrix architecture;

• Discretisation practices for the phase-energy system.
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4.2 Segregated solution algorithm

In this section the segregated implementation of the RA-TFM is presented, this

constitutes the CFD code ratfmFoam and can be found in Appendix D.

4.2.1 Phase intensive momentum equations

It is important to note that in the formulation used throughout this work that the

volume fraction of the particle phase is solved everywhere in the domain. This

is achieved by prescribing a small value of αp of O(10−6) and is chosen to be

several orders of magnitude less than the mass loading. For alternative methods,

such as the semi- and fully-conservative formulations where the volume fraction

is not divided out the reader is refereed to Li and Christian [110], Park et al.

[134], Passalacqua and Fox [135].

The continuity and momentum equations for the particle and fluid-phase are pre-

sented below. Throughout, the simplifying assumptions shown in §2.3 have been

employed and these represent the governing equations that are used throughout

this work. They read:

∂(αpρp)
∂t

+∇ · (αpρpup) = 0, (4.1)

∂(αpρpup)
∂t

+∇ · (αpρpupup) = ∇ · (αpρpReff,p) + β
[
(uf − up)−

νft
Scfsαpαf

∇αp
]

−∇pp − αp∇pf + αpρpg,
(4.2)

∂(αfρf )
∂t

+∇ · (αfρfuf ) = 0, (4.3)

∂(αfρfuf )
∂t

+∇ · (αfρfufuf ) = ∇ · (αfρfReff,f) + β
[
(up − uf ) + νft

Scfsαpαf
∇αp

]
−αf∇pf + αfρfg.

(4.4)
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Here we follow the phase intensive formulation of Rusche [164], Weller [210]. For

simplicity the turbulent dispersion term is now denoted as D = νft/(Scfsαpαf ),

then separating the drag contributions into explicit and implicit terms and dividing

by both the phase fraction and density we are left with:

∂up
∂t

+∇ · (upup)− up∇ · up + ∇αp
α∗p
·Rc

eff,p +∇ ·Rc
eff,p −∇ · (νeff,p∇up) + βup

αpρp

−∇ ·
(
νeff,p
∇αp
α∗p

up
)

+ up∇ ·
(
νeff,p
∇αp
α∗p

)

= βuf
αpρp

− βD∇αp
αpρp

− ∇pp
α∗pρp

− ∇pf
ρp

+ g,

(4.5)

∂uf
∂t

+∇ · (ufuf )− uf∇ · uf + ∇αf
α∗f
·Rc

eff,f +∇ ·Rc
eff,f −∇ · (νeff,f∇uf ) + βuf

αfρf

−∇ ·
(
νeff,f
∇αf
α∗f

uf
)

+ uf∇ ·
(
νeff,f
∇αf
α∗f

)

= βup
αfρf

+ βD∇αp
αfρf

− ∇pf
ρf

+ g,

(4.6)

where α∗p = αp + δ and α∗f = αf + δ, and δ is introduced to avoid a division by zero

and is O(10−6). It is important to clarify the behaviour of terms with the volume

fraction in their denominator. The drag terms containing the phase-velocities i.e.

β in which the numerator contains αpαf which ensures the correct behavior of the

function as αp → 0. The turbulent dispersion term contains the gradient of volume

fraction which in the limit αp → 0 means that the ratio approaches zero. This

ensures that the momentum equations are able to be solved everywhere within the

domain despite diminishing particle volume fractions.

From the original system of equations presented in Chapter 2 - Eqs. 2.39 & 2.45

contain no diffusive flux that can be treated implicitly. This can have advantages

when solving the equations i.e enhanced diagonal dominance. Therefore, following

Rusche [164], Weller [210] the Reynolds stress term can be rewritten into a diffusive

and corrective component:
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Reff,i = Reff,i + νeff,i∇ui − νeff,i∇ui

= −νeff,i(∇ui +∇Tui) + 2
3νeff,iI∇ · ui

+ νeff,i∇ui − νeff,i∇ui

= (−νeff,i∇Tui + 2
3νeff,iI∇ · ui)− νeff,i∇ui

= Rc
eff,i − νeff,i∇ui.

(4.7)

4.2.2 Discretisation of the intensive momentum equations

First, we discretise the left hand side of the equation which contains the convective,

diffusive and implicit-drag transport terms:

Tp :=
1∂vupw

∂t

9

+
1

∇ · (upvupw)
9

−
1

(∇ · up)vupw
9

+ ∇αp
α∗p
·Rc

eff,p +∇ ·Rc
eff,p

−
1

∇ · (νeff,p∇vupw)
9

−
1

∇ · (νeff,p
∇αp
α∗p

vupw)
9

−
1

∇ · (νeff,p
∇αp
α∗p

)vupw)
9

+
1βvupw
αpρp

9

,

(4.8)

Tf :=
1∂vufw

∂t

9

+
1

∇ · (ufvufw)
9

−
1

(∇ · uf )vufw

9

+ ∇αf
α∗f
·Rc

eff,f +∇ ·Rc
eff,f

−
1

∇ · (νeff,f∇vufw)
9

−
1

∇ · (νeff,f
∇αf
α∗f

vufw)
9

−
1

∇ · (νeff,f
∇αf
α∗f

)vufw)
9

+
1βvufw

αfρf

9

,

(4.9)

where v·w is the implicit dicretisation of the term, Tp & Tf represents the numerical

coefficients of each respective algebraic system given by the discretisation. The

second and third terms on the RHS represent convection and have been split up

into a convection term minus a divergence terms as it enhances boundedness of the

solution i.e. the third term represents a source term.

The discretised momentum equations, Tp & Tf represents the system of algebraic

equations which are written in the form,
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(Tp)coeffsup = (Tp)s, (4.10a)

(Tf )coeffsuf = (Tf )s, (4.10b)

where ()coeffs represents the diagonal and off-diagonal coefficients and ()s repre-

sents the source terms i.e. explicit terms. This discretised form of the momentum

equations will be revisited once the source terms on the RHS have been addressed.

Now addressing the RHS of Eq. 4.5 & 4.6 which read,

... = βuf
αpρp

− βD∇αp
αpρp

− ∇pp
α∗pρp

− ∇pf
ρp

+ g, (4.11a)

... = βup
αfρf

+ βD∇αp
αfρf

− ∇pf
ρf

+ g. (4.11b)

Following the solution procedure of Weller [210] all terms on the RHS are evalu-

ated at cell faces. In order to avoid checker-boarding in the solution, which is a

prevalent problem on collocated grids due to the storage of values at cell centres

and interpolating onto the face, the group of terms on the RHS are treated in a

Rhie-Chow like manner [154].

4.2.3 Phase momentum flux correction equations

Now a semi-discretised formulation of both the particle- and fluid-phase can be

written. Invoking Eqs. 4.10 and splitting up the total coefficients appearing in

each system into a diagonal, Ai and an explicit, Hi [92] contribution. The latter

consisting of two parts, the neighbouring coefficients, ()N multiplied by its respec-

tive phase velocity and the source terms, Hi = −(Ai)Nui + (Ai)S. The equations

can then be written as:

Apup = Hp + βuf
αpρp

− βD∇αp
αpρp

− ∇pf
ρp
− ∇pp
α∗pρp

+ g, (4.12a)

Afuf = Hf + βup
αfρf

+ βD∇αp
αfρf

− ∇pf
ρf

+ g. (4.12b)
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Rearranging Eqs. 4.12 gives the phase momentum correction equations, note these

equations are not used in the solution algorithm, but are required to derive a flux

predictor and corrector:

up = Hp

Ap

+ βuf
αpρpAp

− βD∇αp
αpρpAp

− ∇pf
ρpAp

− ∇pp
α∗pρpAp

+ g
Ap

, (4.13a)

uf = Hf

Af

+ βup
αfρfAf

+ βD∇αp
αfρfAf

− ∇pf
ρfAf

+ g
Af

. (4.13b)

4.2.4 Construction of the pressure equation

In order to derive a pressure equation the continuity equation is enforced globally.

The global continuity equation thus reads:

∇ · [(αp)fφp + (αf )fφf ] = 0, (4.14)

where the subscript ()f denotes the face value which is found through linear in-

terpolation i.e. central differencing and φi = ui,f · Sf is the volumetric face flux

where subscript f is used to denote variables that are evaluated at the control

volume’s face. From here the face fluxes are found by interpolating the momentum

correction equation (Eqs. 4.13) onto face centres using Rhie-Chow interpolation

[154]. The interpolation increases pressure-velocity coupling by introducing cell-

to-cell pressure coupling by evaluating the gradient of pressure on cell faces using

the neighbouring cell centre contribution. Using central differencing and denoting

the gradient at a face as, ∇f , we can write

φp = φ∗p −
1

ρp(Ap)f
∇⊥f pf |Sf |, (4.15a)

φf = φ∗f −
1

ρf (Af )f
∇⊥f pf |Sf |, (4.15b)

where ∇⊥f φi is the face normal gradient which is the inner product of the face

gradient, n · ∇fφi.
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The flux prediction terms, φ∗p & φ∗f are written as:

φ∗p =
Hp

Ap


f

· Sf + (β)f
(αp)fρp(Ap)f

φf −
(β)f (D)f

(αp)fρp(Ap)f
∇⊥f αp|Sf |

− 1
(α∗p)fρp(Ap)f

∇⊥f pp|Sf |+
g

(Ap)f
· Sf ,

(4.16)

φ∗f =
Hf

Af


f

· Sf + (β)f
(αf )fρf (Af )f

φp −
(β)f (D)f

(αf )fρf (Af )f
∇⊥f αp|Sf |

+ g
(Af )f

· Sf .
(4.17)

Now the pressure equation can be constructed by substituting Eqs. 4.15 into Eq.

4.14 which reads:

1

∇ ·
(
Dp∇fvpfw · Sf

)
9

= ∇ ·
(

(αp)fφ∗p + (αf )fφ∗f
)
, (4.18)

where

Dp = (αp)f
ρp(Ap)f

+ (αf )f
ρf (Af )f

, (4.19)

is the pressure diffusivity matrix and the pressure gradient has been discretised

implicitly on the LHS as a diffusion term i.e. Laplacian. Essentially a shared or

mixture pressure field is solved for, this ensures that continuity is obeyed through-

out as the coupling is provided through the pressure equation.

Once this equation has been solved, the phase fluxes need to be updated to satisfy

continuity, as in the predictor step the influence of the pressure gradient is removed,

this can be achieved by solving Eqs. 4.15. From this stage the solution does not

completely satisfy continuity as the velocities, which are stored at the cell centres,

need to be corrected with the influence of the pressure gradient.

This is achieved by invoking:

up = Hp

Ap

+
φ∗p − 1

ρp(Ap)f
∇⊥f pf |Sf |


f→c

, (4.20a)

uf = Hf

Af

+
φ∗f − 1

ρf (Af )f
∇⊥f pf |Sf |


f→c

, (4.20b)
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where the subscript f → c denotes a vector field reconstruction from face flux values

to cell centre values. The influence of the gradient of pressure is incorporated into

the reconstruction of the phase velocity - this ensures the phase velocity obeys

continuity.

4.2.5 Solution of the phase-mixed continuity equation

In practice the phase-mixed continuity equation is solved first based on the initial

conditions but for the sake of logical progression is given here. Following Weller

[210] the particle-phase continuity equation Eq. 4.14 can be reformulated as:

∂αp
∂t

+∇ · (uTαp) +∇ · (urαpαf ) = 0, (4.21)

where uT = αpup + αfuf is the mixture velocity and ur = up − uf is the relative

velocity. This equation can then be discretised as

1∂vαpw

∂t

9

+
1

∇ ·
(
φvαpw

)9

+
1

∇ ·
(
φr,pvαpw

)9

= 0, (4.22)

where φr,p = (αf )fφr and φr = φp − φf . The second term on the LHS is ensured

to be bounded between 0 and 1 due to the mixture flux, φ = up,f · Sf + uf,f ·

Sf satisfying the mixture continuity equation. The third term is now non-linear

and requires a Total Variation Diminishing (TVD) scheme to ensure the term is

bounded between 0 and 1. As an aside the particles volume fraction should be

bounded at a much lower value i.e. its maximum packing limit ≈ 0.62. This can

be achieved by including the particle pressure calculation directly in the continuity

equation. Interested readers are referred to Passalacqua et al. [136].
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An overview of the numerical procedure can be found below:

The numerical procedure adopted in the segregated algorithm:

1. Solve the volume fraction (Eq. 4.22).

2. Construct Ai in each phase (Eqs. 4.10).

3. Enter PISO-Loop:

(a) Predict fluxes using Eqs. 4.16 & 4.17.

(b) Construct and solve the pressure equation (Eq. 4.18).

(c) Correct the phase fluxes using Eqs. 4.15.

(d) Reconstruct the phase velocities using Eqs. 4.20.

4. Solve the system of phase energy equations.

5. Advance in time.
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4.3 Coupled solution algorithm

In this section the coupled implementation of the RA-TFM is presented, this con-

stitutes the CFD code ratfmCoupledFoam and can be found in Appendix D.

4.3.1 Semi-discretised momentum equations

First, we start at the semi-discretised equations as presented previously:

Apup = Hp + βuf
αpρp

− βD∇αp
αpρp

− ∇pf
ρp
− ∇pp
α∗pρp

+ g, (4.23a)

Afuf = Hf + βup
αfρf

+ βD∇αp
αfρf

− ∇pf
ρf

+ g. (4.23b)

From here we follow Cubero et al. [44] and separate out the temporal and drag coef-

ficients from the semi-discretised equations. Additionally, the turbulent dispersion

and gravity are absorbed into the Hi operator as well as the particle pressure for

the particle-phase. Which now reads as:

[Ap + ATp + ADp]up = Hp + HTp + βuf
αpρp

− ∇pf
ρp

(4.24a)

[Af + ATf + ADf ]uf = Hf + HTf + βup
αfρf

− ∇pf
ρf

(4.24b)

where the time coefficient for each phase, considering a first-order Euler scheme

with a fixed time step, and the drag coefficient is defined as:

ATp = HTp

ut−1
p

, ADp = β

αpρp
(4.25a)

ATf = HTf

ut−1
f

, ADf = β

αfρf
(4.25b)

Now we divide each side of Eq. 4.24 by the diagonal coefficient, Ai that contains

the advection and the implicit contribution of the shear stress terms, which now

reads:
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[1 + dTp + dDp]up = ũp + dTput−1
p + dDpuf −

∇pf
ρpAp

(4.26a)

[1 + dTf + dDf ]uf = ũf + dTfut−1
f + dDfup −

∇pf
ρfAf

(4.26b)

with the pseudo-velocities defined as:

ũp = Hp

Ap

, ũf = Hf

Af

(4.27)

and the coefficients for time, which give a ratio of the temporal to steady coeffi-

cients, are defined as:

dTp = ATp

Ap

, dTf = ATf

Af

(4.28)

and the coefficients for drag, which give a ratio of the drag to steady coefficients,

are defined as:

dDp = ADp

Ap

, dDf = ADf

Af

(4.29)

Then the approximations for each phase velocity can be obtained as:

up = 1
1 + dTp + dDp

ũp + dTput−1
p + dDpuf −

∇pf
ρpAp

 (4.30a)

uf = 1
1 + dTf + dDf

ũf + dTfut−1
f + dDfup −

∇pf
ρfAf

 (4.30b)
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4.3.2 Momentum interpolation

Following Cubero and Fueyo [43], Cubero et al. [44], the velocities at the cell faces

can be written as:

ui,f = (ui)f + 〈ui〉 (4.31)

where (ui)f is the linearly interpolated velocity at the face and 〈ui〉 is the velocity

correction term. The correction term can be obtained by rewriting Eq. 4.31 as:

〈ui〉 = ui,f − (ui)f (4.32)

From here, Eqs. 4.30 can be substituted into the above equation to give:

〈up〉 = ũp,f
1 + dTp,f + dDp,f

−

 ũp
1 + dTp + dDp


f

+
dTp,fut−1

p,f

1 + dTp,f + dDp,f
−

 dTput−1
p

1 + dTp + dDp


f

+ dDp,fuf,f
1 + dTp,f + dDp,f

−

 dDpuf
1 + dTp + dDp


f

− ∇pf,f
[1 + dTp,f + dDp,f ]ρpAp,f

+
 ∇pf

[1 + dTp + dDp]ρpAp


f

(4.33)

〈uf〉 = ũf,f
1 + dTf,f + dDf,f

−

 ũf
1 + dTf + dDf


f

+
dTf,fut−1

f,f

1 + dTf,f + dDf,f
−

 dTfut−1
f

1 + dTf + dDf


f

+ dDf,fup,f
1 + dTf,f + dDf,f

−

 dDfup
1 + dTf + dDf


f

− ∇pf,f
[1 + dTf,f + dDf,f ]ρfAf,f

+
 ∇pf

[1 + dTf + dDf ]ρfAf


f

(4.34)

which leads to exact corrections of each face value. However, due to the linear

interpolation of many of these variables their respective face values already con-

tain their best approximation. As shown in Cubero et al. [44], approximating the
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pseudo-velocities through a linear interpolation reduces them to zero. The cell face

values of the momentum-weighted coefficients and the numerical coefficients can

be approximated as:

dT i,f = (dT i)f ; dDi,f = (dDi)f ; Ai,f = (Ai)f (4.35)

The face pressure is calculated from the cell centre assuming central differencing,

so that

∇pf,f = ∇⊥f pf (4.36)

In Finite Volume CFD codes we can simplify the face interpolation by writing

(Aiφi)f = Ai(φi)f essentially taking the independent variables outside of the in-

terpolation and leaving the dependant variable. This is utilised throughout each

correction term.

Applying the above simplifications and invoking Eq. 4.33 & Eq. 4.34, which now

reads as:

〈up〉 = 〈up〉T + 〈up〉D + 〈up〉∇pf
(4.37a)

〈uf〉 = 〈uf〉T + 〈uf〉D + 〈uf〉∇pf
(4.37b)

where the shared coefficients in each phase are 〈ui〉T , temporal corrections are:

〈ui〉T =
(dT i)f [ut−1

i,f − (ut−1)f ]
1 + (dT i)f + (dDi)f

, (4.38)

and 〈ui〉D, drag corrections are:

〈ui〉D = (dDi)f [uj,f − (uj)f ]
1 + (dT i)f + (dDi)f

, (4.39)

and 〈uf〉∇pf
, pressure correction are:

〈ui〉∇pf
=

−∇⊥f pf + (∇pf )f
[1 + (dT i)f + (dDi)f ]ρi(Ai)f

, (4.40)
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4.3.3 Construction of implicit pressure equation

Analogous to the segregated implementation an equation for the mixture pressure

can be found by inserting the phase-fluxes into the continuity equation (Eq. 4.14).

Here we introduce the velocity-corrected flux to read:

φi,f = [(ui)f + 〈ui〉] · Sf (4.41)

then inserting the relation into the continuity equation (Eq. 4.14) reading:

∇ ·
(

(αp)f [(up)f + 〈up〉] · Sf + (αf )f [(uf )f + 〈uf〉] · Sf
)

(4.42)

then inserting the corrections velocities in Eqs. 4.37 results in the full pressure

equation:

∇ · [Dp∇⊥f pf |Sf |] = ∇ ·
 P∑
k=1

(αk)f (uk)f · Sf

+∇ · [Dp(∇pf )f · Sf ]

+∇ ·
 P∑
k=1

(αk)f

(dTk)f [φt−1
k − (ut−1

k )f · Sf ]
1 + (dTk)f + (dDk)f

+
∑P
m=1(dmi)f [φm − (um)f · Sf ]

1 + (dTm)f + (dDm)f


(4.43)

where the pressure diffusivity coefficient reads as

Dp =
P∑
k=1

(αk)f
[1 + (dTk)f + (dDk)f ]ρk(Ak)f

(4.44)
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4.3.4 Discretised momentum equations

Here we present the phase-momentum equations in their implemented form as they

will be referenced later when discussing the block-coefficients.

1∂vupw
∂t

9

+
1

∇ · (upvupw)
9

−
1

(∇ · up)vupw
9

−
1

∇ · (νeff,p∇vupw)
9

−
1

∇ · (νeff,p
∇αp
αp + δ

vupw)
9

−
1

∇ · (νeff,p
∇αp
α∗p

)vupw)
9

+
1βvupw
αpρp

9

−
1βvufw

αpρp

9

+
1 1
ρp

v∇pfw

9

= − ∇αp
αp + δ

·Rc
eff,p −∇ ·R

c
eff,p −

βD∇αp
αpρp

− ∇pp
α∗pρp

+ g

(4.45)

1∂vufw

∂t

9

+
1

∇ · (ufvufw)
9

−
1

(∇ · uf )vufw

9

−
1

∇ · (νeff,f∇vufw)
9

−
1

∇ · (νeff,f
∇αf
αf + δ

vufw)
9

−
1

∇ · (νeff,f
∇αf
α∗f

)vufw)
9

+
1βvufw

αfρf

9

−
1βvupw
αfρf

9

+
1 1
ρf

v∇pfw

9

= − ∇αf
αf + δ

·Rc
eff,f −∇ ·R

c
eff,f + βD∇αp

αpρp
+ g

(4.46)

4.3.5 Discretised pressure equation

The final implemented pressure equation is presented below. The approach outlined

in Cubero and Fueyo [43], Darwish et al. [46], Ferreira et al. [63] is followed to ar-

rive at a pressure equation for the implicit solution of the phase-velocity-pressure

coupling. The implicit divergence of the phase-velocities are corrected with the

addition of the opposing drag contribution, as shown in Ferreira et al. [63]. Addi-

tionally, the whole equation is multiplied by −1 to force all the coefficients along

the main diagonal to have the same sign which is advantageous when employing a

linear matrix solver. The implemented pressure equation thus reads:
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−∇ · vDp∇⊥f vpfw|Sf |w +∇ ·
3

(αk)f −
P∑

m=1

(αm)f (dDm)f
1 + (dTm)f + (dDm)f

(vukw)f · Sf

;

= ∇ · [Dp(∇pf )f · Sf ]

+∇ ·
 P∑
k=1

(αk)f

(dTk)f [φt−1
k − (ut−1

k )f · Sf ]
1 + (dTk)f + (dDk)f

+
∑P
m=1(dDm)fφm

1 + (dTk)f + (dDk)f


(4.47)

4.3.6 Correction of the phase fluxes

From the solution of the block-coupled matrix, we find new values for the phase-

velocity and pressure. Then the face fluxes need to be updated by including the

corrections to the phase-velocity that were added to the pressure equation.

φp = (up)f · Sf +
(dTp)f [φt−1

p − (ut−1
p )f · Sf ]

1 + (dTp)f + (dDp)f
+

(dDp)f [φn−1
f − (unf )f · Sf ]

1 + (dTp)f + (dDp)f

+
[−∇⊥f pnf |Sf |+ (∇pn−1

f )f · Sf ]
[1 + (dTp)f + (dDp)f ]ρp(Ap)f

(4.48)

φf = (uf )f · Sf +
(dTf )f [φt−1

f − (ut−1
f )f · Sf ]

1 + (dTf )f + (dDf )f
+

(dDf )f [φn−1
p − (unp )f · Sf ]

1 + (dTf )f + (dDf )f

+
[−∇⊥f pnf |Sf |+ (∇pn−1

f )f · Sf ]
[1 + (dTf )f + (dDf )f ]ρf (Af )f

(4.49)

where the superscripts n and n− 1 denote the value from the present iteration and

the previous iteration, respectively. The outline of the solution procedure can be

found below.
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The numerical procedure adopted in the coupled algorithm:

1. Solve the volume fraction (Eq. 4.22).

2. Construct Ai and Hi in each phase.

3. Update the temporal and drag coefficients in Eqs. 4.25.

4. Update the momentum-weighted coefficients in Eq. 4.28 & 4.29.

5. Update the correction velocities in each phase using Eq. 4.37.

6. Assemble and solve the 7x7 block-coupled matrix.

(a) Feed in the phase momentum equations.

(b) Feed in the pressure equation.

(c) Remove cross-coupling source and place in implicit off-diagonal.

7. Apply the flux update using Eqs. 4.48 & 4.49.

8. Solve the system of phase energy equations

9. Advance in time.
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4.3.7 Block-coupled solver

The block-coupled system of linear algebraic equations discretised in a Finite Vol-

ume framework can be written as:

Ai,jxi = bi (4.50)

where Ai,j is the matrix representing diagonal and off-diagonal coefficients. xi is

the solution variable and finally bi is the source vector. This discretisation, within

a block-coupled solution, can be easier expressed in two steps [193]: the first level,

represents the spatial coupling across the computational domain (Eq. 4.51) and

the second level, which represents the inter-equation coupling i.e. phase-velocity-

pressure coupling. Expressing a system with N unknowns, in which N is denoted

as the number of cells, Eq. 4.50 can be written as:


a1,1 a1,2 . . . a1,N

a2,1 a2,2 . . . a2,N
... ... . . . ...

aN,1 aN,2 . . . aN,N





x1

x2
...

xN


=



b1

b2
...

bN


(4.51)

where ai,j represents a block-coefficient and is spatially coupled between cells i and

j, the solution vector, xi contains the unknowns at cell i and finally, bi is the source

vector for cell i. As mentioned previously, a second level of discretisation is present

within a block-coupled matrix.

The solution vector, at cell i now reads:

xi =



up,xi

up,yi

up,zi

uf,xi

uf,yi

uf,zi

pf,i



, bi =



bup,xi

bup,yi

bup,zi

buf,xi

buf,yi

buf,zi

bpf,i



(4.52)
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where uk,xi represents the x component of the respective phase velocity in cell

i, similarly, uk,yi and uk,zi represents the y and z components of the respective

phase velocity and finally pf,i represents the pressure field in cell i. In the source

vector, the source term for each variable is found following the same notation as

the solution vector.

Each block-matrix coefficient, ai,j is a sub-matrix representing the coupling between

the phase-velocity-pressure components which comprises of a 7x7 block matrix

which can be written as follows:

ai,j =



aup,xi,up,xj
0 0 aup,xi,uf,xj

0 0 aup,xi,pf,j

0 aup,yi,up,yj
0 0 aup,yi,uf,yj

0 aup,yi,pf,j

0 0 aup,zi,up,zj
0 0 aup,zi,uf,zj

aup,zi,pf,j

auf,xi,up,xj
0 0 auf,xi,uf,xj

0 0 auf,xi,pf,j

0 auf,yi,up,yj
0 0 auf,yi,uf,yj

0 auf,yi,pf,j

0 0 auf,zi,up,zj
0 0 auf,zi,uf,zj

auf,zi,pf,zj

apf,i,up,xj
apf,i,up,yj

apf,i,up,zj
apf,i,uf,xj

apf,i,uf,yj
apf,i,uf,zj

apf,i,pf,j


(4.53)

Given the structure of the block-coefficient, a description of the coefficients and

their physical meaning is required. We will now focus our attention on four sections

of the block-coefficient and for brevity concern ourselves with the particle-phase

coefficients.
aup,xi,up,xj

0 0

0 aup,yi,up,yj
0

0 0 aup,zi,up,zj

 ;


aup,xi,uf,xj

0 0

0 aup,yi,uf,yj
0

0 0 aup,zi,uf,zj

 (4.54)

The first 3x3 block represents the coupling between the velocity components. These

coefficients are filled by the implicitly discretised directional momentum equations

pertaining to the time derivative, convection, diffusion and drag in Eqs. 4.45 &

4.46. The explicitly discretised terms are moved to the source vector, Eq. 4.52

i.e. the terms found on the RHS of Eqs. 4.45 & 4.46. The second 3x3 block

introduces the cross-coupling coefficients. These represent the implicit treatment
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of drag which includes the phase-velocity of the opposing phase and is the eighth

term on the LHS of Eqs. 4.45 & 4.46. It is useful to note that in this work the

geometry is 2D and therefore the coefficients denoted by the z subscript are zero.


aup,xi,pf,j

aup,yi,pf,j

aup,zi,pf,j

 ;
[
apf,i,up,xj

apf,i,up,yj
apf,i,up,zj

.

]
(4.55)

The first 1x3 block in Eq. 4.55 denotes the phase-velocity-pressure coupling in

the momentum equation. This pertains to the implicit treatment of the pressure

gradient, the ninth term in Eqs. 4.45 & 4.46. The second block, 3x1 denotes

the phase-velocity-pressure coupling in the pressure equation. This pertains to

the implicit treatment of the terms inside in the divergence operator in Eq. 4.47

i.e. the second term, with explicit boundary contributions populating the source

vector, bpf,i
.

The implicitly treated pressure on the LHS of Eq. 4.47 is fed into the coefficient

apf,i,pf,j
with the explicit boundary contributions being fed into the corresponding

source vector bpf,i
. Finally, the explicit terms on the RHS of Eq. 4.47 are fed into

the source vector, bpf,i
.

Within the community driven branch of OpenFOAM called foam-extend several

numerical tools have been developed to house coupled solvers [33, 42, 91]. The

block-matrix machinery is extended in order to construct a 7x7 block matrix and

ensure the correct populating of matrix coefficients. The coupled matrix solvers

are then used to solve the phase-velocity-pressure coupled system.
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4.4 Solution of the phase energies

Upon completion of the phase-continuity and phase-velocity-pressure equations the

phase energy equations are then solved. The system of phase energies, like their

momentum counterpart, are put into a phase-intensive form although this is not

essential. Due to the form of the drag term the division by the volume fraction

does not cause any numerical issues, as outlined in previous sections. Thus, the

phase energies can be readily discretised.

kf − εf model equations:

1∂[kf ]
∂t

9

+
1

∇ · (φf [kf ]f )
9

−
1

∇ · (φf )([kf ])
9

−
1

∇ ·
[(
νf + νft

σfk

)
∇[kf ]

]
9

= Πf −
1εf
kf

[kf ]
9

+ 2 β

αfρf
kfp −

1

2 β

αfρf
[kf ]

9

(4.56)

1∂[εf ]
∂t

9

+
1

∇ · (φf [εf ]f )
9

−
1

∇ · (φf )([εf ])
9

−
1

∇
[
·
(
νf + νft

σfk

)
∇[εf ]

]
= C1Πf

εf
kf
−

1

C2
εf
kf

[εf ]
9

+ 2C3
β

αfρf
εfp −

1

2C3
β

αfρf
[εf ]

9

(4.57)

v2
f − f model equations:

1∂[v2
f ]

∂t

9

+
1

∇ · (φf [v2
f ]f )

9

−
1

∇ · (φf )([v2
f ])

9

−
1

∇ ·
[(
νf + νft

σfk

)
∇[v2

f ]
]
9

= v2
f source

−
1

6εf
kf

[v2
f ]

9

+ 2 β

αfρf
v2
fp −

1

2 β

αfρf
[v2
f ]

9

(4.58)

−
1

∇2[f ]
9

= −
1 1
L2 [f ]

9

− 1
L2

[
C1

T

v2
p

kf
− 2

3

− C2
Πp

kf
− 1
T

6
v2
f

kf
− 2

3

] (4.59)

kp − εp model equations:
1∂[kp]
∂t

9

+
1

∇ · (φp[kp]f )
9

−
1

∇ · (φp)([kp])
9

−
1

∇ ·
(
νp + νpt

σpk

)
∇[kp]

9

= Πp −
1εp
kp
εp

9

+ 2 β

αpρp
kfp −

1

2 β

αpρp
[kp]

9

(4.60)
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1∂[εp]
∂t

9

+
1

∇ · (φp[εp]f )
9

−
1

∇ · (φp)([εp])
9

−
1

∇ ·
(
νp + νpt

σpk

)
∇[εp]

9

= C1Πp
εp
kp
−

1

C2
εp
kp

[εp]
9

+ 2C3
β

αpρp
εfp −

1

2C3
β

αpρp
[εp]

9

(4.61)

v2
p − f model equations:

1∂[v2
p]

∂t

9

+
1

∇ · (φp[v2
p]f )

9

−
1

∇ · (φp)([v2
p])

9

−
1

∇ ·
[(
νp + νpt

σfk

)
∇[v2

p]
]
9

= v2
psource

−
1

6εp
kp

[v2
p]

9

+ 2 β

αpρp
v2
fp −

1

2 β

αpρp
[v2
p]

9

(4.62)

−
1

∇2[f ]
9

= −
1 1
L2
p

[f ]
9

− 1
L2
p

[
C1

Tp

v2
p

kp
− 2

3

− C2
Πp

kp
− 1
Tp

6
v2
p

kp
− 2

3

] (4.63)

An exception is made for the granular temperature equation. As the constitutive

relations for pp, µp, κΘ and γ are a function of volume fraction and density, dividing

by these would result in unnecessary division by small values as αp → 0. Therefore,

the equations are implemented in their multiphase form like so:

3
2

1∂(αpρp[Θ])
∂t

9

+
1

∇ · (αp,fρpφp[Θ]f )
9

−
1

∇ · (αp,fρpφp)([Θ])
9

+
1

3β[Θ]
9

+
1

γ[Θ]
9

−
1

∇ ·
[(
κΘ + 3µpt

2Prpt

)
∇[Θ]

]9
= 2µpSp : Sp − pp∇ · up + αpρpεp

(4.64)

Once the phase energy system is solved the algorithm is completed. It should be

noted that upon the solution of the granular temperature equation the variables

of interest are updated in their incompressible form to ensure the correct calcula-

tion for the particle pressure and viscosity is employed within the particle-phase

momentum equation.

4.5 Closure

This chapter has detailed the solution procedure adopted for solving the RA-TFM

system of equations. The governing equations were presented and recast into their

implemented form. A segregated and coupled implementation has been outlined
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with particular attention paid to the treatment of the solution algorithm on col-

located grids of which are used in OpenFOAM. Additionally, the numerical treat-

ment of the momentum coupling force and the mixed-phase continuity equation

was detailed. Finally, the discretisation practice for the phase-energy system was

presented.
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5 Prediction of fluid-particle flow

over a backward-facing step

5.1 Overview

In this chapter the Reynolds-Averaged Two-Fluid Model (RA-TFM) for modelling

of turbulent fluid-particle flow is applied to a vertically orientated backward-facing

step. The model is compared and contrasted against the Modified Peirano Model

[141]. Three particle classes with varying mass loadings (10-40%) and different

Stokes number are investigated. The prediction of mean flow statistics are in good

agreement with the benchmark experimental data of Fessler and Eaton [65, 66] and

show a distinct improvement over the MPM predictions - an implementation that is

rife in open-source and commercial CFD codes. This improvement was due to the

separation of the particle turbulent kinetic energy kp, and the granular temperature

Θ, in which the large scale correlated motion and small scale uncorrelated motion

are governed by separate transport equations. For each case simulated in this

work, turbulence attenuation was accurately predicted, a finding that is attributed

to separate coupling terms in both transport equations of kp and εp.

The contributions of this chapter are as follows:

107
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• The RA-TFM segregated implementation detailed in Chapter 4 is imple-

mented with OpenFOAM and applied to a vertically orientated backward-

facing step of Fessler and Eaton [65, 66];

• In order to accommodate the new particle turbulence statistics, kp, εp & Θ,

boundary conditions of Johnson and Jackson [97] (presented in Chapter 2 -

§2.7) that represent their interaction with the wall are implemented within

OpenFOAM;

• The modelling methodology is compared and contrasted against the current

methodology that is prevalent in open-source and commercial CFD codes i.e.

the Peirano model [141];

• The RA-TFM is validated on three different particle classes with increasing

mass loading. This enhances the influence of turbulence production terms

within the model and demonstrates the model is capable of capturing different

particle behaviours;

• Agreement across mean particle-phase velocities and the fluctuating intensity

of both the particle and fluid phases are found to be satisfactory with stark

improvements over the MPM model;

• The influence of the wall boundary conditions were ascertained through a

parametric study of the specularity coefficient.

• The separation of the particle fluctuation energy into two separate contribu-

tions was vital in predicting the presence of the shear layer in the backward-

facing step configuration;

• The particle-fluid velocity coupling terms, kfp and εfp were shown to be

capable of predicting two-way coupled effects resulting in a good agreement

with the experimental data.
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5.2 Introduction

To date, there have been numerous experimental studies investigating small heavy

particles in wall-bounded, high Reynolds number flow [18, 32, 106, 192]. One

valuable study is that of Fessler and Eaton [66] in which mean and turbulence

statistics of moderately dilute fluid-particle flow were recorded in a vertically orien-

tated backward-facing step. Velocities and their statistics were sampled with laser

Doppler anemometry (LDA) which is capable of recording the particles within its

field of view. They report turbulence attenuation across three particle classifica-

tions (different Stokes number and mass loadings) and provide valuable insights into

the particle behaviour in the free shear layer. Traditionally, the backward-facing

step has been used as a benchmark for validation of single-phase turbulence mod-

els, as flow separation, reattachment and redevelopment are common in engineering

applications. Due to the complex nature of turbulence attenuation, the challenging

physics in a backward-facing step configuration and high Reynolds number flow,

its successful prediction has proven difficult for E-E models [36, 127, 128, 198, 221].

These models are exclusively based on the MPM methodology presented in §2.4 in

which the distinction between the separating effect of the particles inertia is not

catered for within the particle-phase energy modelling.

In this chapter, the RA-TFM and its segregated implementation as detailed in

Chapters 2 & 4 are employed throughout. The model is applied to the experimen-

tal data of Fessler and Eaton [65, 66] in which a turbulent vertically orientated

backward-facing step is used to investigate two-way coupling effects with volume

fractions in the O(10−4). This case is often sought in the literature for validation

and as discussed previously represents a challenging case for E-E models. The pre-

dictions of the RA-TFM are contrasted and compared against the MPM Peirano

and Leckner [141] presented in §2.4. Additionally, in order to accommodate the

new particle-phase turbulent variables, kp, εp and Θ wall boundary conditions that

were presented in Chapter 2 - §2.7 are employed and their influenced ascertained.
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5.3 Geometry and case setup

H

h

60h 30H

Uf
gy

x

Figure 5.1: Schematic detailing the geometry used throughout, with h = 0.04 m and H

= 0.0267 m.

The computational domain is a two-dimensional channel section as seen in Fig. 5.1

which starts at 60h upstream of the step to allow the flow to fully develop and

extends 30H downstream. The material constants for each respective case can be

found in Table 5.1. As reported in the experiments the centreline velocity, U0 is

10.5 m s−1 at the step (x/H =0) and this corresponded to an inlet value of 9.4 m s−1.

Based on the reported centreline velocity and the channel half-height i.e. h/2, the

Reynolds number was 13, 800. Mass loading is given by a uniform particle volume

fraction across the inlet, this is achieved by assuming a constant particle-to-fluid

velocity ratio. Wall functions for the fluid-phase are used throughout and the effect

of the particles on the boundary layer is not considered. For the particle-phase, the

boundary conditions described in §2.7 are used for the turbulent quantities. At the

inlet a first estimate of the two turbulent quantities is determined as follows; kp =

1/3kf and ε = 1/3εf (for a more elaborate approach see [71]). For the granular

temperature a small value is specified; Θ = 1 x 10−10 m2 s−2 [198]. Calculations are

carried out on a fully structured hex dominated mesh consisting of 11,253 cells with

y+ > 30 along both walls. Lastly, the model constants can be found in Appendix

C - §C.3.
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Table 5.1: Table of simulated cases.

Case Material dp [µm] ρp [kg m−3] Mass loading St Rep

1 glass 150 2500 20% and 40% 7.9 10.1

2 glass 90 2500 20% 3.8 2.9

3 copper 70 8800 10% and 40% 7.4 4.4
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5.4 Results and discussion

The simulated results from the RA-TFM and the modified Peirano model (MPM)

are compared against two sets of experimental data given by Fessler and Eaton

[66] & Fessler and Eaton [65]. Mean quantities of particle velocity, fluid turbulence

intensity and particle turbulence intensity are presented across three cases focusing

on three particle classes (see Table 5.1). The measured velocity profiles start at the

recirculation region (x/H = 2), continue through to the reattachment zone (x/H

= 5), and finally the redevelopment region (x/H = 14) with measurements being

taken in between.
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Figure 5.2: Stream-wise particle mean velocity for case 1. Solid line showing the RA-

TFM and the dashed line showing the MPM. Data from Fessler and Eaton [65] with a

mass-loading of 40%.
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Figure 5.3: Stream-wise particle mean velocity for case 2. Solid line showing the RA-

TFM and the dashed line showing the MPM. Data from Fessler and Eaton [65] with a

mass-loading of 20%.
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Figure 5.4: Stream-wise particle mean velocity for case 3. Solid line showing the RA-

TFM and the dashed line showing the MPM. Data from Fessler and Eaton [66] with a

mass-loading of 10%.
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5.4.1 Mean particle stream-wise velocity

It is evident that across all three Figs. 5.2, 5.3 and 5.4 the prediction of the

RA-TFM mean particle velocity profiles are in good agreement with the measured

results. The model captures the affects of varying St and mass loading on the mean

velocity profile, especially in the recirculation region corresponding to locations

(x/H = 2) and (x/H = 5). The MPM shows a marked difference around the step

(0.5 < y/H ≤ 1) as it does not include the correlated particle turbulent kinetic

fluctuations. These stresses are responsible for forming the shear layer and leading

to the production of turbulent viscosity.

Figures 5.2, 5.3 and 5.4 show particle velocities with a flatter gradient across the

depth of the pipe when compared to the fluid velocities, a feature that is not

predicted by the MPM. This is attributed to the calculation of the particle-phase

viscosity. In the RA-TFM the calculation of the turbulent viscosity µpt appearing

in the momentum equation is given by the kp−εp turbulence model, which accounts

for the correlated turbulent kinetic particle fluctuations that are dominant due to

the shear layer. In the MPM the viscosity is calculated directly from the granular

temperature equation which relies on constitutive closures of particle pressure,

thermal conductivity and viscosity [141]. As a result, a small value of both is

predicted due to the dilute nature of the flow and this leads to a gross under-

prediction of the particle viscosity. This then allows the momentum coupling term

β to dominate in this region, which is why the mean velocity profiles tend to closely

follow the fluid-phase mean velocity profile.

Figures 5.2 & 5.4 reveal the largest variation between the predicted mean particle

velocity profiles in the shear layer. This is attributed to the particles St, which

varies considerably over the shear layer as shown in both Figs (y/H < 1). When

the particles St � 1 the particles tend to escape from the eddy they are in and

ignore the influence of external eddies. This can either unite small eddies to create

larger more energetic eddies or it can destroy large eddies which dissipate to smaller

eddies. As a consequence of this for St � 1 we can expect the particle to take
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longer to react to the fluid. Therefore, when considering the shear layer the fluid

response time, τf will be small in comparison with the channel flow resulting in a

much higher local St. As a result the particle mean velocity profile does not show

the sharp gradient across the (y/H > 1) and becomes much flatter.

Figure 5.2 shows the case denoting both a high St (7.9) and a large mass loading

(40%). It also corresponds to the largest over-prediction in the mean particle

velocities at locations (x/H = 9 & 14) for the RA-TFM. These locations correspond

to the redevelopment region which indicate that the energy in the particle-phase

is recovering too quickly in comparison to the measured data. This overestimation

is difficult to explain as the predictions for case 3 with a large St are in good

agreement. One potential source of error could be due to the distribution of the

particles across the width of the pipe. As the particles pass the step they are

redistributed inhomogeneously (clustered) which reduces the slip velocity and as

a result the drag. As the particles reach the redevelopment region they begin

to redistribute homogeneously which increases the drag in this region. However

neither model considers the effects of clustering in their drag model and are only

representative of one particle. This can cause the observed over-estimation of the

mean stream-wise velocities in the redevelopment region.
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Figure 5.5: Fluid turbulent intensity for case 1. Solid line showing the RA-TFM and the

dashed line showing the MPM. Data from Fessler and Eaton [66] with a mass-loading of

40%.
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Figure 5.6: Fluid turbulent intensity for case 2. Solid line showing the RA-TFM and the

dashed line showing the MPM. Data from Fessler and Eaton [66] with a mass-loading of

20%.
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Figure 5.7: Fluid turbulent intensity for case 3. Solid line showing the RA-TFM and the

dashed line showing the MPM. Data from Fessler and Eaton [66] with a mass-loading of

40%.
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5.4.2 Fluid-phase turbulence

As shown in the experiment of Fessler and Eaton [66], distinct turbulence atten-

uation was found for the two larger St cases (1 & 3). Over the region of (y/H

> 1) extensive turbulence attenuation is shown across all five plots (corresponds

to Fig. 9 in Fessler and Eaton [66]). Across locations (x/H = 2 & 5) there is

attenuation across the range (y/H > 1) which shows that as mass loading is in-

creased the turbulence is suppressed and below this range (y/H < 1) the turbulence

is unaffected. This behaviour of turbulence attenuation was accurately predicted

by the RA-TFM and the corresponding plots to those in [66] are Figs 5.5 & 5.7.

The predictions are in good agreement with the experimental measurements. The

turbulence attenuation for case 1 is as much as 35% showing a large reduction over

the region of (y/H > 1) at (x/H = 2) on Fig. 5.7.

Below (y/H < 1) very little turbulence attenuation was observed, this corresponds

to the shear layer and recirculation zone. From the simulations carried out, the

particle turbulent quantities kp & εp are produced and dissipated primarily near

and at the wall and step (shear layer), with the contribution in the recirculation

zone (y/H < 1) being several orders of magnitudes smaller. When considering the

form of the coupling terms (see §2.3) it is evident why the turbulence attenuation

is small in this region. This also follows from the lack of particles within the

recirculation region due to the large St of all cases (St > 1) as the particles are

not dragged into the eddy in the same way a particle of (St < 1) would.

The turbulence attenuation was accurately captured across all three particle classes

for the RA-TFM. For the MPM an over-prediction of the fluid turbulent kinetic

energy was observed. It was found that the form of the velocity correlation coupling

term posed two major problems, the first being that as the term kfp =
√
kfΘ

contains Θ directly the evolution of the term is adversely affected as the granular

temperature equation evolves too quickly. This behaviour is recognised in two fluid

model codes, and typically an upper limit is employed to constrain the initial stages

of the solution to increase robustness.
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Secondly, the source term of this form exists in both the kf & εf transport equa-

tions (Eq. 2.65 & 2.66), this leads to the formulation of the turbulent kinetic

energy dissipation equation given by Elghobashi and Abou-Arab [61], which has

been shown to yield incorrect behaviour [71], mainly as a consequence of failing

to differentiate between the correlated and uncorrelated turbulent kinetic energy.

Conversely, two coupling source terms for the macroscale energy exchange are used

within the RA-TFM, kfp and εfp respectively.

This has several benefits. Firstly, it allows the coupling of the turbulent kinetic

energy ki and dissipation εi equations of both phases to contain source terms that

are of the same physical attribute i.e. particle turbulent kinetic energy and par-

ticle turbulence kinetic energy dissipation both contain separate coupling terms,

which ensures conservation of energy between the two phases. Secondly, this es-

sentially means that the particles can become correlated with the carried phase at

the macroscale level i.e. turbulence scale and also dissipate its energy at a charac-

teristic length scale. Lastly, this dissipation appears as a source term within the

granular temperature equation thus ensuring an energy cascade across scales (Fig.

2.1). As this approach forms a physically correct treatise of the particles energy

the need for numerical limiting of the phase energy is alleviated. This increases

the numerical robustness and stability of the transient solution as the evolution of

the solution is limited by physical processes. Additionally, the linear solvers used

to solve the equations require fewer iterations to reach tolerance before advancing

the solution in time - thus decreasing the solution time.
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Figure 5.8: Particle turbulent intensity for case 1. Solid line showing the RA-TFM and

the dashed line showing the MPM. Data from Fessler and Eaton [65] with a mass-loading

of 40%.
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Figure 5.9: Particle turbulent intensity for case 3. Solid line showing the RA-TFM and

the dashed line showing the MPM. Data from Fessler and Eaton [66] with a mass-loading

of 10%.



5.4. Results and discussion 121

5.4.3 Particle-phase turbulence

From the experimental measurements it can be seen that the particles are being

heavily influenced by the fluid-phase’s shear layer. This is true for both cases

involving large St as shown in Figs. 5.8 & 5.9. Looking at the results from the MPM

the prediction of the shear layer can not be seen across each location. Conversely,

the RA-TFM is able to predict the presence of the shear layer and, crucially, convect

it downstream. This feature is difficult to predict as the particles disperse and their

fluctuating energy becomes more uniform across the profile. This result was almost

exclusively attributed to the solution of the kp − εp transport equation.

As shown in Février et al. [67] the decomposition of the particle fluctuation energy

into two components which reads, κp = kp + 3/2Θ was needed when accounting

for the particle’s overall motion. Due to the step, turbulent scales at the integral

scale are dominating the flow and as a result the large scale motions are the most

relevant. This is reflected in the predictions of this model and highlighted when

contrasted with the predictions of the MPM. Without the kp− εp transport model,

the influence of the step is not captured and an under-prediction of the turbulent

particle kinetic energy is seen.

Table 5.2 shows the integral time scales associated with both flow regimes. This

characteristic time scale associated with the particle turbulent kinetic energy en-

ables the prediction of the shear layer and allows for the successful prediction of

the predominant turbulent behaviour found in experiment across both Figs. 5.8 &

5.9.

Table 5.2: Table of integral time scales for each phase.

Flow regime Tp Tf

Channel flow centre line 0.04s 0.04s

Shear layer 4.09ms 5.12ms
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In the MPM this definition of the particle-phase time scale is not present. The cal-

culation of ‘turbulent kinetic energy’ (granular temperature Θ) is heavily reliant on

the constitutive relation of thermal conductivity, shear viscosity and bulk viscosity.

As shown in both Figs. 5.8 & 5.9 the absence of the shear layer is demonstrated.

The profiles are within the correct order of magnitude but the profile remains flat

and largely unaffected by the step.

The kp − εp transport equation is modelled in an analogous manner to the single-

phase k − ε turbulence model using similar closure relations [142]. As a result

some of the models well-known limitations are directly inherited. The Boussinesq

approximation is one such limitation of RANS models of this form and introduces

isotropy into the model; specifically the Reynolds stresses are assumed to be a

scalar function of the mean velocity gradients. This introduction of isotropy has

quite clear implications for the prediction of turbulent structures. The shear layer

simulated in this studied is dominated by both the production term, Πp and the

turbulent dissipation term, εp; the former is where the isotropy is introduced and

that is why it is so influential.

It has been shown by Simonin [173, 174] that the particle turbulence Reynolds

stresses are highly anisotropic and require transport equations for each term. This

is a clear limitation of the current model and from the performance of the current

RA-TFM an introduction of anisotropy for at least the particle-phase is vital in an

accurate prediction of the particle-phase energy behaviour.



5.4. Results and discussion 123

5.4.4 Particle wall boundary conditions
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Figure 5.10: Particle turbulent intensity for case 3. Solid line showing the φspec = 0.001,

thick dashed line showing φspec = 0.01 and the thin dashed line showing φspec = 0. Data

from Fessler and Eaton [66] with a mass-loading of 10%.

As noted in Fessler and Eaton [66], the particles tend to conserve almost all their

energy when interacting with the wall. As a consequence of this observation the

specularity coefficient was varied from 0-0.01 in order to ascertain its effect on the

numerical predictions.

Fig. 5.10 shows the particle turbulent intensity prediction of the RA-TFM with

varying specularity coefficients. Immediately a general observation can be made;

the particle-phase wall boundary conditions have a relatively small impact on the

prediction of particle fluctuation energy. This is to be expected as the particles

spend very little time interacting with the wall and the particle fluctuation energy

is dominated by the production in the shear layer.

The biggest difference can be seen by comparing φspec = 0 with φspec = 0.01−0.001,

and looking at locations (x/H = 5 - x/H = 12). The free slip condition exerts its

influence on the prediction immediately downstream of the shear layer, this results

in an underestimation in comparison with the larger φspec values. When comparing



124 5. Prediction of fluid-particle flow over a backward-facing step

this result with the experimental data it seems that the prediction lies closer to the

measured values, this is seen most clearly at location (x/H = 5) across (y/H > 1)

and across the whole profile at location (x/H = 12).

When comparing the near wall predictions of particle fluctuation energy it can

be seen that there is a slight under-prediction when comparing φspec = 0 and

φspec = 0.01− 0.001. This is to be expected as a higher specularity coefficient will

result in a higher value of particle fluctuation energy due to the production of mean

particle shear.

All three simulations under-predict the near wall behaviour. This result is at-

tributed to the lack of particle-phase fluctuation anisotropy, but put more explicitly

the experimental observations show that the particle fluctuation energy is stretched

in the wall-normal direction. This stretching continues up to the wall (at x/H = 7),

the RA-TFM used in this work can not predict this behaviour due to the inherit

assumptions made throughout.

A specularity coefficient value of 0.1 was tested but yielded unphysical results.

[14, 227] also found that a low specularity coefficient was representative of high

velocity, dilute fluid-particle flow. The unphysical results were due to the lowering

of the slip velocity near the wall. The mean velocity profiles for the fluid and

particle-phase tend to converge as the no slip condition (φspec = 1) is approached.

At the relatively high speed velocities used in this study this resulted in a gross

overestimation of the particle fluctuation energy. An explanation for this behavior

is as follows, the high specularity coefficient at the wall promotes "sticking" of the

particles. As these particles are stuck at the wall and then released they begin to

produce mean shear in the particle-phase momentum equation. This shearing which

is imposed by the boundary condition results in an overestimation of turbulence

production resulting in excessively large values of the particle-phase fluctuation

energy.
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5.4.5 RA-TFM limitations

As shown in §2.2.1 the hydrodynamic model (volume fraction. particle velocity

and granular temperature) is derived from the mesoscale model i.e the Boltzmann

equation, using a Chapman-Enskog expansion. It is owing to this mathematical

linearisation that the hydrodynamical model is not valid for large values of Knudsen

number (Kn > 1). The hydrodynamical model, as hinted at, is therefore most

accurate for small values of Knudsen number (Kn � 1), a feature of collisionally

dominated flows (see Appendix C for Kn).

The flow regime used in this study is characterized as moderately dilute where

collisions are expected. For the smallest mass loading (case 3), the Knudsen number

was found to be (Kn < 10−4) across the pipe, whilst for higher mass loadings the

Knudsen number was much lower. As this constraint is one across the whole domain

this can not always be fulfilled. When considering a fluidised bed for example, the

upper region of the chamber will not fulfill this criteria as no collisions are present

as there are no particles. For this study the recirculating region posed a problem

as only a small number of particles were present in the region. This meant that

in this region the Knudsen number would fluctuate, due to the vortex shedding,

and temporarily be O(1), compromising the validity of the solution. Although

as has been noted by others [152, 213] the hydrodynamic equations work well

beyond their range of validity. Violating the small Knudsen assumption is often

unavoidable throughout the whole domain. For a more flexible approach, kinetic-

based equations can be formulated in their high order moments and solved for using

an appropriate numerical technique (see [24, 104, 122, 137]).

5.5 Closure

The current chapter has investigated turbulent attenuation of fluid-particle flow in

a vertically orientated backward-facing step using a Reynolds-Averaged Two-Fluid

model. The model results were compared against benchmark experimental data
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of Fessler and Eaton [65, 66] and also against the model of Peirano and Leckner

[141]. The RA-TFM was validated against the experimental data as well as showing

marked improvements over the MPM model. The inclusion of the correlated kp and

uncorrelated Θ particle motion was crucial in accurately predicting the behaviour

of the turbulent shear layer. This was further highlighted when compared to the

turbulent particle kinetic energy predictions from the modified Peirano model. The

form of the velocity coupling terms proved crucial in a correct prediction of the

particle-phase mean, turbulence quantities and turbulence attenuation. Lastly,

changes in the specularity coefficient (φspec < 0.01) had very little effect on the

particle fluctuation energy prediction.



6 Near-wall modelling in Eulerian-

Eulerian simulations

6.1 Overview

The near-wall region in turbulent Eulerian-Eulerian (E-E) simulations has hitherto

received little to no attention. A standard approach to modelling this region is

through the employment of single-phase wall-functions in the fluid-phase although

it is uncertain whether such an approach is capable of capturing turbulent fluid-

particle behaviour. In order to both investigate and alleviate E-E models reliance on

single-phase wall-functions we propose an E-E elliptic relaxation model (presented

in Chapter 2 - §2.5) to account for the near-wall non-homogeneity which arises in

wall-bounded flows. The proposed model is derived within an E-E framework and

enables the full resolution of the boundary layer and arbitrary wall sensitivity. The

model is then compared against the conventional kf − εf turbulence model with

standard single-phase wall-functions. The elliptic relaxation model is implemented

within the open-source CFD toolbox OpenFOAM, applied to a vertical downward-

facing channel and validated against the benchmark experimental data of Kulick

et al. [106]. Model results show marked improvements over the conventional tur-

127
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bulence model across mean flow and turbulence statistics predictions. The use of

conventional single-phase wall functions were shown to negatively impede on the

prediction of the velocity covariance coupling term and as a result the particle

fluctuation energy. Moreover, this also lead to an underestimation of the near-wall

volume fraction accumulation.

The main contributions of the chapter are as follows:

• The elliptic relaxation model for the fluid-phase derived in Chapter 2 - §2.5

is implemented in OpenFOAM and compared against the benchmark exper-

imental data of Kulick et al. [106];

• Predictions for the elliptic relaxation model and the kf − εf model are com-

pared and contrasted to highlight the effect of the particles within the bound-

ary layer;

• The new modelling has been validated against benchmark experimental data

with differing mass loading and Stokes number as well as being corroborated

with Euler-Lagrange results;

• The elliptic relaxation model has shown a high level of validation, in line

with those from Euler-Lagrange, offering a viable way of achieving accurate

results at a lower computational cost;

• The elliptic relaxation model proposed in this chapter enables the prediction

of the correct near-wall behaviour of the mean and turbulence statistics -

paving the way for more advanced modelling of the complex boundary layer

fluid-particle behaviour;

• The use of single-phase wall functions in E-E simulations can result in an

under-prediction of the velocity covariance coupling term which impedes on

the particle fluctuation energy prediction. This is expected to be exacerbated

with increasing mass loading;

• The elliptic relaxation model enabled the migration of particles towards the

near-wall region, a result that was not replicated using the conventional tur-
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bulence model;

• The approach presented herein offers a novel way of accounting for the near-

wall region in E-E simulations.

6.2 Introduction

Many researchers have investigated turbulent wall-bounded fluid-particle flow through

experimentation [32, 66, 77, 106, 109, 192]. Owing to their turbulent nature such

flows exhibit complex physical behaviour giving rise to turbulence modulation

which can be caused by: particle-particle, fluid-particle and/or particle-wall in-

teractions. Thus, research has been ongoing to understand and model these phe-

nomena; most of which are common in engineering processes, e.g. pneumatic con-

veyance and coal particle combustion. The aforementioned experimental studies

provide invaluable physical insights and validation data for the development of pre-

dictive models. One notable study is that of Kulick et al. [106] which has received

considerable attention from researchers developing, predominantly Euler-Lagrange

(E-L), models [105, 113, 161, 180, 203, 207, 217]. This study is particularly at-

tractive as there are several particle classes giving rise to various particle-fluid and

particle-wall interactions which contribute to turbulence modulation.

Having identified the aspects of physical behaviour which are significant in these

flows, researchers can investigate them separately in a reductionist approach. We

now highlight some studies that contribute to the understanding of particle be-

haviour within the case of Kulick et al. [106]; starting with the so-called feedback-

force of the particle phase on the fluid turbulence in the flow. Vreman [203] recently

examined the effect of the mean feedback-force and how it is exacerbated by wall

roughness. An increase in wall roughness enhances turbulence attenuation i.e. a

reduction in fluid-phase velocity fluctuations. This explains the over prediction of

the mean particle velocities seen in previous studies Kubik and Kleiser [105], Wang

and Squires [207], Yamamoto et al. [217] as smooth walls were simulated.
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Another phenomenon that has been investigated is turbophoresis, which refers to

the tendency of particles in the flow to migrate towards regions of lower turbulence.

The turbophoresis force is responsible for particles drifting from regions of high

turbulence intensity to low turbulence intensity [120, 149], which often results in

particles accumulating in the near-wall region characterised by low-speed streaks

[140, 146]. This accumulation in the near-wall region is referred to as deposition

and has been researched numerically by [112, 120, 126, 132]. One of the first models

for particle deposition by Young and Leeming [220] showed that the turbophoretic

velocity depends on the gradient of wall-normal fluctuating velocities and provided

one of the first physical basis for explaining the turbophoresis force. Strömgren

et al. [180] investigated the effect of the turbophoresis force within an Eulerian-

Eulerian (E-E) framework and found that even for small volume fractions, αp =

2x10−4, two-way coupling effects are non-negligible and the near-wall region may

require special attention. This is due to the accumulation of particles in the near-

wall region i.e viscous sub layer, leading to higher volume fractions in which two-way

coupling effects become more relevant [76].

In turbulent single-phase simulations the near-wall region is typically modelled.

Wall functions are applied to turbulence quantities, εf & νft with a zero gradi-

ent condition given to kf . The near-wall region is then modelled to avoid the

computational overhead of resolving the flow. Such wall functions are based on

the so-called law-of-the-wall, which is that the dimensionless velocity, u+ varies

through some function expressed generically as, u+ = flog(y+). The function flog is

logarithmic representing the outer log-law region of the turbulent boundary layer.

This corresponds to the constant-stress layer in which the turbulent shear stress is

proportional to the friction velocity [168]. In turbulent quantity terms this means

that the production and dissipation of turbulent kinetic energy are equal.

The law-of-the-wall is assumed to be universal and is found through dimensional

reasoning, this then leads to a description of the near-wall region through dimen-

sionless variables i.e. velocity and wall-normal coordinates. The dimensionless

wall-normal coordinate is defined as y+ = yuτ/νf and the log-law is applicable
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in the range of 30 < y+ < 300, this then gives a universal relation that can be

applied to turbulent wall-bounded flows. This criterion places a requirement on

the first computational cell i.e. the distance of the cell centre must be further than

y+ > 30. As can already be deduced, the calculation of y+ depends on the fric-

tion velocity, which is not known a priori. Hence, this quantity is estimated prior

to calculation using standard skin friction relations and informs mesh generation.

This approach then sacrifices near-wall resolution for a computationally cheaper

simulation. An important assumption about the nature of the law-of-the-wall has

been made throughout i.e. its universal nature. This is in fact not true as it has

been shown experimentally that the boundary layer is affected by adverse pressure

gradients and geometric changes [78].

The viability of single-phase wall functions applied to multiphase simulations has

attracted some interest from researchers. A theoretical study by Rizk and El-

ghobashi [158] showed that increasing volume fraction can adversely effect the

mean profile prediction. It was found that with increasing particle volume fraction

the log layer broke down resulting in an overestimation. Interestingly, a similar

relationship between an increasing mass loading and a reduction in the mean log-

layer momentum was recently found experimentally by Saber et al. [166]. Benyahia

et al. [14] included the effect of the particle phase directly into the wall function.

An additional term that contains the drag and velocity fluctuation covariance is

introduced in the log-law relation. This formulation allows the presence of the par-

ticles to influence the velocity profile, although when extended to more complex

geometries the short-comings of single-phase wall functions remain.

Attempts to circumvent the reliance on single-phase wall functions have been made

by several authors [16, 49, 158, 226] in which a low-Re number turbulence model

is used. This allows the transport equations to be integrated up to the wall. This

approach has proven fruitful for numerous authors as without the use of wall func-

tions, the presence of the particles within the boundary layer can exert their in-

fluence [158, 226]. The low-Re turbulence model uses a damping function and a

near wall correction of Kolmogorov scaling [139]. The damping of the viscosity can
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be somewhat arbitrary and validated on relatively simple flow leading to a range

of different models [41, 107, 159, 172] with an extensive summary found in Patel

et al. [139]. The damping functions used in [139] are often non-linear and can lead

to numerical stiffness further complicating their application.

Durbin [56], Durbin and Reif [58] propose another way of accounting for wall-

induced non-homogeneity. The quantity v2
f , which represents the turbulence-stress

normal to streamlines, is introduced. This quantity is derived from the exact

Reynolds-stress transport equation and contains a source term that accounts for

the redistribution of turbulence kinetic energy. This inclusion explicitly accounts

for the wall-induced non-homogeneity and enables the wall-normal component to be

dampened. The energy redistribution is governed by an elliptic relaxation equation

f , that is free of geometric dependence or arbitrary fitting. The v2
f − f elliptic

relaxation model has been validated across various challenging single-phase flows

[12, 50, 114, 130, 182] highlighting the benefit of such a modelling technique.

There are two closely linked issues with the current E-E modelling approaches:

the modelling of the near-wall region, through single-phase wall functions, and

the subsequent consequences of such an approach i.e. the prediction of turbulence

modulation and turbophoresis. In this work we seek to investigate this by carrying

out a side-by-side comparison of a conventional E-E simulation method with a

newly-derived elliptic relaxation model in which the near-wall region has been

resolved. The main aim then is to reveal the consequences of modelling the near-

wall region whilst proposing new modelling to circumvent these consequences.

In this chapter the elliptic relaxation model, presented in Chapter 2 - §2.5, is ap-

plied to the vertical downward facing channel of Kulick et al. [106]. The elliptic

relaxation model alleviates the use of wall functions and/or the use of ad-hoc damp-

ing functions as well as being geometry independent. To ascertain the consequences

of a conventional E-E simulation, the RA-TFM with the solution of the kf − εf

model, is compared and contrasted against the newly proposed elliptic relaxation

model, v2
f − f .
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6.3 Geometry and case setup

Table 6.1: Table of simulated cases.

Case Material dp [µm] ρp [kg m−3] Mass loading, φ St

1 glass 50 2500 2% 0.57

2 copper 70 8800 10% 3

The cases used throughout are based on two experiments from Kulick et al. [106]

which include separately both glass and copper particles, the details of which can

be found in Table 6.1. For both cases the the channel half-width is H = 0.02

m with a corresponding length of 5.2 m and a wall friction velocity uτ = 0.49

m s−1. The viscosity of gas is νf = 15.11 x 10−5 m2 s−1 with a density of ρf =

1.2kg m−3. At the inlet the velocity of both the fluid- and particle-phase are set at

9.4 m s−1. A Neumann boundary condition is used for f together with Dirichlet

boundary conditions for all turbulent statistics. At the outlet a Dirichlet boundary

condition for pressure is set whilst a Neumann boundary condition is prescribed

for all remaining variables.

At the wall, the wall boundary conditions for the elliptic relaxation model presented

in §2.5 are employed. For the particle-phase Neumann boundary conditions are

applied to all variables. For the kf−εf model, standard wall functions are employed.

Both kp and εp are initialised as 1/3rd of their fluid counterpart with Θ = 1.0 x

10−10m2 s−2. The flow is orientated vertically with a uniform body force of gravity

acting in the direction of the flow (g = 9.8 m s−2), this configuration resulted in a

centerline velocity of Ucl = 10.5 m s−1. The mass loading is defined as φ = αpρp

αfρf
,

and assuming uniform velocity at the inlet.

Table 6.3 shows the complete phase-energy system used in the elliptic relaxation

model. The main momentum equations of the RA-TFM presented in Chapter 2

are used throughout where the buoyancy induced terms have been neglected due
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to the high density ratio. Lastly, the model constants can be found in Appendix C

- §C.3 & §C.4.

Owing to the different modelling approaches used throughout two different meshes

are employed and are detailed in Table 6.2. Mesh 1 is associated with the v2
f − f

model and is resolved to y+ < 1 ensuring that the resolution of the boundary layer

is captured. Mesh 2 is associated with the kf − εf model and is resolved up to y+

> 30 ensuring that the wall functions can be applied across the correct section of

the boundary layer (i.e. log-layer). The final column refers to the computational

time spent for a typical run consisting of 30 seconds of real flow time. For ease of

reference the v2
f−f formulation will hereafter be referred to as V2F and the kf−εf

formulation as KE.

Table 6.2: Properties of each mesh, fx, fy refer to mesh stretching with Mesh 1 [fx =

1.1, fy = 1.1] and Mesh 2 [fx = 1.2, fy = 1.2].

Mesh ∆xmin,∆xmax[m] ∆ymin,∆ymax[m] Mesh size Comp time

1 1.2× 10−3, 0.02 1.2× 10−5, 1.2× 10−3 202,761 32 hrs

2 7× 10−4, 9× 10−4 7× 10−4, 9× 10−4 66,481 4 hrs
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Table 6.3: Phase energy equations.

Phase energy equations for the fluid-phase:

∂(αfρfkf )
∂t

+∇ · (αfρfkfuf ) = ∇ ·
[(
µf + µft

σfk

)
∇kf

]
+ αfρfΠf − αfρfεf

+2β(kfp − kf )
(6.1)

∂(αfρfεf )
∂t

+∇ · (αfρfεfuf ) = ∇ ·
[(
µf + µft

σfε

)
∇εf

]
+ εf
kf

[
Cε1αfρfΠf − Cε2αfρfεf

T

]
+2C3β(εfp − εf )

(6.2)

∂(αfρfv2
f )

∂t
+∇(·αfρfv2

f )uf = ∇ ·
[(
µf + µft

σfk

)
∇v2

f

]
+ αfρfv2

f source
− αfρf6

v2
f

kf
εf

+2β(v2
fp − v2

f )
(6.3)

L2∂
2f

∂x2 − f = C1

T

v2
f

kf
− 2

3

− C2
Πf

kf
− 1
T

6
v2
f

kf
− 2

3

 (6.4)

Phase energy equations for the particle-phase:

∂(αpρpkp)
∂t

+∇ · (αpρpkpup) = ∇ ·
[(
µp + µpt

σpk

)
∇kp

]
+ αpρpΠp − αpρpεp

+2β(kfp − kp)
(6.5)

∂(αpρpεp)
∂t

+∇ · (αpρpεpup) = ∇ ·
[(
µp + µpt

σpk

)
∇εp

]
+ εp
kp

[
C1αpρpΠp − C2αpρpεp

]
+2C3β(εfp − εp)

(6.6)

3
2

[
∂(αpρpΘ)

∂t
+∇ · (αpρpΘup)

]
= ∇ ·

[(
κΘ + 3µpt

2Prpt

)
∇Θ

]
+ 2µpSp : Sp

−pp∇ · up + αpρpεp − 3βΘ− γ
(6.7)
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6.4 Results and discussion

6.4.1 Mean fluid stream-wise velocity profiles
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Figure 6.1: C1 - Mean fluid velocity profile.
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Figure 6.2: C2 - Mean fluid velocity profile.

Figures 6.1 & 6.2 show the mean fluid velocity profiles for each case. It is evident

from both plots that the prediction of both V2F & KE models are in good agree-

ment with the experimental data of Kulick et al. [106]. For both C1 & C2 the mean

fluid velocity profile remains unchanged, behaviour that is consistent with the ex-

perimental observations. Moreover, the experimental uncertainty was reported by

the authors to be ≈ 2% and it can be seen that across both profiles the numerical

prediction lies well within this range.

When comparing both the V2F & KE model predictions there is only a small

discrepancy between each result. This disparity is at its most obvious at y+ < 30

in Fig. 6.1. Owing to the wall function the turbulence statistics are integrated

to the wall from the first computational cell at y+ ≈ 30 which results in an over-

prediction of turbulence viscosity. This over-prediction is felt in the mean velocity

profile as an under-prediction. This trend is seen across the profile for both plots

as the KE consistently under-predicts the mean velocity profile in comparison with
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V2F although this difference is small.

6.4.2 Mean particle stream-wise velocity profiles
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Figure 6.3: C1 - Mean particle velocity

profile.
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Figure 6.4: C2 - Mean particle velocity

profile.

The mean particle velocity profiles are shown in Figs. 6.3 & 6.4. Focusing on

the former it can be seen that both V2F & KE models accurately predict the

experimental behavior which is characterised by a flatter profile as it approaches

the wall. As the particle velocities need not be zero at the wall unlike the fluid-

phase, a large slip value exists. The particles deviate from the fluid-phase velocities

at around y+ < 100 and maintain their momentum, leading to a flattening of the

profile as the wall is approached.

In Fig. 6.3 the profile predicted by the V2F model is in good agreement with

the experimental data. This is also true for the KE model up until the near-wall

region is approached. Over the range y+ < 100 the KE prediction deviates from

both the experimental and V2F results as the momentum is over-predicted. The

cause of this overestimation is attributed to the lack of particle fluctuation energy

production resulting in a lack of momentum loss. This finding will be discussed at

length in §6.4.5 where the particle-phase fluctuation energy results are presented.
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Looking at Fig. 6.4 it can be seen that there is an over-estimation in the mean

particle velocities across both models. This discrepancy was also predicted in the

E-L results of Yamamoto et al. [217] and Wang and Squires [207]. A recent study by

Vreman [203] suggests that this global reduction in the particle velocities is due to

the so-called ‘non-uniform feedback force’ which is exacerbated by wall roughness.

This results in an additional drag force exerted on the particles leading to increased

turbulence attenuation.

This additional force would result in a much flatter profile as shown in Vreman

[203] and lead to results that closely align with the experimental data in Fig.

6.4. As wall roughness has not been modelled in this study, and similar results

have been reported by other researchers using higher resolution methods i.e. E-L

[207, 217], it is plausible to conclude that this is the source of the overestimation.

It is instructive to note that despite this, the qualitative behaviour of the profile

is captured by both numerical models resulting in a comparable trend across the

profile.

6.4.3 Fluid stream-wise turbulence intensity
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Figure 6.5: C1 - Fluid stream-wise turbu-

lence intensity profile.
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Figure 6.6: C2 - Fluid stream-wise turbu-

lence intensity profile.
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Figures 6.5 & 6.6 show the fluid-phase turbulence intensity for each case. When

comparing the V2F & KE model across both cases it is apparent that there is a

clear difference between the two. The V2F model is capable of predicting a strong

peak at y+ ≈ 20 and then dissipating off into the core of the channel. This is not

seen by the KE model as the first computational cell is placed at y+ > 30 with the

turbulence statistics being integrated up to the wall assuming a log-law variation.

This then omits the presence of the peak and results in a near constant value of

ufrms as the wall is approached. In the core of the flow, over the region (y+ > 70),

there is better agreement with the experimental data as the dominant transport

terms are correctly modelled.

The KE models dependency on the wall function results in a deterioration of the

turbulence intensity prediction. This will be shown to have important consequences

when predicting the particle fluctuation energy behaviour. The V2F model then

shows excellent agreement across both plots with the under prediction being con-

fined to the turbulence peak and dissipation towards the wall. It has been suggested

[56, 58] that the v2
f − f model performs best at high Re number. In this work a

relatively small Re number of 14,000 is simulated which could be the cause of the

under-prediction. This could be improved with a manipulation of the turbulence

constant i.e. C2 although this remains out of the scope of this study.

Kulick et al. [106] reports turbulence attenuation in C2. As discussed in §6.4.2

this is due to the lack of wall roughness modelled in this work. Across both Figs.

the behaviour is similar with the velocity covariance terms contributing little to

the prediction. This finding is also consistent with those of Wang and Squires

[207], Yamamoto et al. [217] in which negligible attenuation was reported.
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6.4.4 Fluid wall-normal turbulence intensity

0

0.01

0.02

0.03

0.04

0.05

100 101 102 103

v
2 f
/U

cl

y+

EXP
V2F

Figure 6.7: C1 - Fluid wall-normal turbu-

lence intensity profile.
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Figure 6.8: C2 - Fluid wall-normal turbu-

lence intensity profile.

Figures 6.7 & 6.8 show the fluctuating wall-normal component. This component is

explicitly modelled in the V2F model as v2
f and is crucial in enabling the resolution

of the boundary layer. As it can be seen from Fig. 6.7 the distribution is in

good agreement with the experimental predictions. The V2F model shows the

correct dampening of the wall-normal component through the elliptic relaxation

equation and enables a strong turbulence production peak as seen in §6.4.3. For

C2 the wall-normal intensity was also attenuated in the same way the stream-wise

intensity was. As previously discussed it is clear why no attenuation was reported

in these results.
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6.4.5 Particle fluctuation energy
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Figure 6.9: C1 - Particle fluctuation energy

profile.
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Figure 6.10: C2 - Particle fluctuation en-

ergy profile.

In the RA-TFM we explicitly account for two contributions to the particle fluctua-

tion energy [67], κp = kp+1.5Θ where Θ represents the small-scale kinetic collisional

energy i.e. uncorrelated energy and kp represents the large-scale turbulent kinetic

energy i.e. correlated energy. Broadly speaking Θ is relevant at high St number

and high mass loading, and kp is relevant at low St number and low mass loading.

This distinction has already proven crucial in the literature [67, 100, 156, 157, 199].

Figures 6.9 & 6.10 show the particle fluctuation energy for each case. As is evi-

dent from both plots the V2F model outperforms the KE model. This is a direct

consequence of the poor prediction in the fluid turbulence intensity. Owing to the

relatively low St number in the core of the flow the particles are tightly correlated

therefore they are governed by the velocity covariance term which arises due to

drag. The fluctuation energy distribution is dominated by kp up until the near-

wall region is approached - this is confirmed by comparing the distribution with

that of Fig. 6.5. For C2 this is not strictly true as the St number is larger in

the core of the flow resulting in a contribution acting across the half-width of the

channel, this can be seen by comparing the two figures.
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In the near-wall region the St number increases dramatically. This ensures that

the particles become uncorrelated with the main carrier flow and Θ is produced

in the region y+ < 10. Additionally, an energy cascade exists in which the large-

scale kp − εp equations dissipated energy into the Θ transport equation through

a source term. The particle turbulence kinetic dissipation energy is then highest

in the near-wall region thus contributing to the loss of correlation with the carrier

flow.

6.4.6 Volume fraction distribution
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Figure 6.11: C1 - Volume fraction distri-

bution normalised by mean values.
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Figure 6.12: C2 - Volume fraction distri-

bution normalised by mean values.

Figures 6.11 & 6.12 show the volume fraction distribution for both cases. It is

clear from both plots that the V2F model predicts an accumulation of particles

in the near-wall. The particles tend to drift across the channel width and reside

in the near-wall region - characteristic behaviour of turbophoresis. As the force

is determined by the fluctuating wall normal component, of which is explicitly

modelled in the V2F model and coupled to the particle-phase correlated energy,

the particles are able to drift down the gradients of turbulent kinetic energy.

The KE model predictions reveal a slightly different picture. In C1 an accumulation
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of particles in the near-wall region is seen but the sharp peak is not replicated,

instead these particles are found in the main core of the flow. The prediction for C2

reveals a breakdown in the volume fraction distribution in comparison to the V2F

model. The particles are nearly uniformly distributed with a higher concentration

in the main core of the flow. Due to the higher St number in C2 the particles are

less correlated with the carrier flow, therefore in order to migrate towards the wall a

larger dispersion is required. As the wall-normal component has not been explicitly

modelled the particles can not overcome the turbulent kinetic energy gradient and

remain in the main core of flow. Moreover, this can be a symptom of the mesh

resolution as the wall function constraint ensures the near-wall region can not be

resolved.

6.5 Closure

This current chapter has proposed a generic approach for accounting for near-

wall induced non-homogeneity in Eulerian-Eulerian simulations. An E-E elliptic

relaxation model, namely the v2
f − f model, has been derived with in a Reynolds-

Averaged Two-Fluid model framework and applied to a downward-facing vertical

channel. Predictions are validated against the benchmark experimental data of

Kulick et al. [106] and compared against the conventional kf−εf turbulence model.

It has been shown that the E-E elliptic relaxation model shows improved prediction

of fluid- and particle-phase turbulence statistics when compared with the conven-

tional kf − εf formulation. The new modelling has been validated against bench-

mark experimental data with differing mass loading and Stokes number as well as

being corroborated with Euler-Lagrange results.The elliptic relaxation model has

shown a high level of validation, in line with those from Euler-Lagrange, offering

a viable way of achieving accurate results at a lower computational cost. One of

the most significant findings was that the use of single-phase wall functions in E-E

simulations can result in an under-prediction of the velocity covariance coupling

term which impedes on the particle fluctuation energy prediction. This is expected
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to be exacerbated with increasing mass loading. Moreover, the elliptic relaxation

model enabled the migration of particles towards the near-wall region, a result that

was not replicated using the conventional turbulence model. Finally, the approach

presented herein offers a novel way of accounting for the near-wall region in E-E

simulations.



7 Inhomogeneity and anisotropy in

Eulerian-Eulerian modelling

7.1 Overview

This chapter tackles the issue of image vorticity in turbulent Eulerian-Eulerian

simulations. In Chapter 2 - §2.6 a pressure-velocity model to account for the no

permeability constraint on the particle-phase wall normal stress components was

proposed. Throughout this chapter we demonstrate that this approach is capable

of accounting for the strong near-wall inhomogeneity, a flow feature that hitherto

has been neglected in Eulerian-Eulerian modelling. Simulation predictions are

validated against benchmark Direct Numerical Simulation (DNS) data of Marchioli

et al. [121] in which turbulent channel flow at Reτ = 150 with one-way coupling

is presented. Mean and turbulent statistics for the stream-wise and wall-normal

components are also shown. The results in this chapter show a promising step

forward in near-wall modelling in Eulerian-Eulerian simulations. The predictions

reveal that the approach proposed herein can lead to a satisfactory agreement

across all turbulence statistics, stream-wise and wall normal, paving the way for

the correct prediction of more complex mechanisms. Additionally, the St dependant

145
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behaviour was predicted by the model, adding to the validity of the approach.

The main contributions of this chapter are:

• The elliptic relaxation model for the particle-phase derived in Chapter 2 -

§2.6 is implemented in OpenFOAM and compared with the benchmark DNS

data of Marchioli et al. [121];

• The combined solution of the elliptic relaxation models v2
p − f & v2

f − f

resulted in excellent agreement with the DNS data, showing agreement across

turbulence statistics that have hitherto eluded E-E frameworks;

• The co-variance coupling form showed the correct behaviour across the width

of the channel incorporating the Stokes dependant behaviour;

• Taking advantage of the shared pressure field and the correlated phase-energy

in turbulent E-E simulations can lead to advantageous modelling approaches;

• A mesh sensitive study was conducted to ascertain the influence of grid res-

olution, a restraint was placed on the refinement in the near-wall region due

to the aspect ratio of the mesh;

• The methodology presented herein has highlighted the potential for boundary-

layer resolved simulations within E-E frameworks leading to satisfactory re-

sults.
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7.2 Introduction

The near-wall behaviour of particle-laden fluid behaviour has been a challenging

topic for researchers over the preceding decades. Modelling the highly inhomoge-

neous near-wall region in a turbulent shear flow has proved difficult even in single

phase flows [142]. One phenomenon in particular that has proven challenging is

the so-called image vorticity [86, 190] that is caused by the kinematic blocking by

the wall. This non-local effect on the Reynolds stress arises due to the physical

inviscid boundary condition i.e. the no-flux condition on the normal component of

velocity u · n = 0. This effect results in a highly anisotropic distribution amongst

the Reynolds stress components in the vicinity of a wall, mainly it is felt as a

suppression of energy transfer into the wall-normal component.

To circumvent these issues Durbin [56] proposed a pressure-velocity model based on

the Reynolds-Stress wall-normal component and an elliptical relaxation function to

account for the kinematic blocking effect. In single-phase simulations this approach

has proven fruitful [12, 50, 56, 58, 114, 182], with results showing distinct improve-

ments over simulations with damping-functions and in particular wall-functions, as

neither can account for the so-called stagnation-point anomaly or imposed pressure

gradients.

Owing largely to its maturity and complexity, research in turbulent near-wall fluid-

particle modelling in an E-E framework has been sparse. One notably study is that

of Rizk and Elghobashi [158] in which a theoretical study was carried out to as-

certain the effects of increasing volume fraction on the mean velocity profile. They

found that the log-layer broke down in their model speculating that a standard

wall-function may not be representative of particle-laden flow. This postulation

was somewhat corroborated by Vreman et al. [204] who showed that the log-layer

was retained but resulted in an adjustment of the von Karman ‘constant’. In addi-

tion to this, Benyahia et al. [14] showed that the effect of the particle-phase could be

included in the wall-function in an ad-hoc manner which allows the particle-phase
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to influence the fluid-phase velocity when the particle-fluid co-variance remained

correlated. In Chapter 6 the consequences of employing single-phase wall functions

in wall-bounded high Re number E-E simulations were revealed. It was found

that its arbitrary employment can result in a breakdown of the phase-energy ex-

change mechanisms which impede on the particles fluctuation energy, co-variance

and volume fraction distribution.

The use of single-phase wall functions in E-E simulations are abundant in liter-

ature [13, 48, 151, 171, 180]. The wall functions are applied to the fluid-phase

regardless of the volume fraction in which complicated one- or two-way coupling

effects can play a role. Moreover, the universal form of the log-layer neglects

pressure gradients, with the addition of particles an induced hydro-static pressure

gradient can commonly be found in the boundary layer. Attempts to circumvent

this issue through damping functions have been used [16, 49, 158, 226]. This in-

troduces further complications with arbitrarily matching experimental/Direct Nu-

merical Simulation (DNS) in new or more complicated geometries. The drawbacks

of damping-functions are well known i.e. their arbitrariness and dampening the

incorrect scale [139].

In the literature E-E simulations in the near-wall region rarely predict the correct

turbulence statistics in the particle-phase. Moreover, the particle-phase wall normal

component can not be correctly predicted due to the k−εmodelling assumptions i.e.

the eddy-viscosity approximation for the pressure-velocity redistribution terms. In

the particle-phase this is particularly problematic as the wall-normal component is

known to govern segregation towards the wall [149, 217] and can inhibit the correct

volume fraction distribution.

A more fundamental explanation can be given when considering E-E (Two-Fluid

Models) models. In the current E-E the correlated fluctuating component of the

particle-phase is equated to the uncorrelated fluctuating energy of the particle-

phase. This error was first identified by Février et al. [67] in which the partitioning

effect of particle inertia was shown to give rise to two different contributions to the



7.2. Introduction 149

particle-phase energy, namely correlated and uncorrelated energy. This distinction

is crucial in both collisional and non-collisional flow Février et al. [67], Fox [71] and

has been shown to predict the correct physics in comparison with the current E-E

models in which the distinction is not made as shown in Chapter 5.

In the near-wall region this distinction can prove particularly crucial. As the St

number increases as the wall is approached the correlated particle-phase energy

kp is dissipated into uncorrelated particle-phase energy Θ. This Stokes dependent

behaviour is vital to predicting the correct distribution of particle-phase energy in

the near-wall region. Without accounting for this behaviour, in combination with

wall-functions or damping functions it is clear why the near-wall region has proven

particularly challenging and has received little attention Peirano and Leckner [141].

Within the context of near-wall modelling the turbulence constants may need to be

changed to account for the presence of the particles. Bolio et al. [16] reported no

significant changes in C1, C2, σk and σε. Despite this, Fox [71] has shown that there

in fact a small dependence of C2 on the Stokes number for homogeneous-shear flow.

In the near-wall region the picture is complicated further and no experimental or

DNS data exists. In this study we do not consider the influence of the turbulent

constants but it is recognised here that with increased mass loading and Stokes

number the constants may need to be changed. Within the near-wall region this is

particularly uncertain and more research needs to be done.

In this chapter the elliptic relaxation model for the particle-phase (proposed in

Chapter 2 - §2.6) is solved in tandem with the elliptic relaxation model for the

particle phase proposed in Chapter 2 - §2.5. Simulation predictions are validated

against benchmark Direct Numerical Simulation (DNS) data of Marchioli et al.

[121] in which turbulent channel flow at Reτ = 150 with one-way coupling is pre-

sented. Mean and turbulent statistics for the stream-wise and wall-normal compo-

nents are also shown. Additionally, the St dependant behaviour is determined via

an increase in particle diameter.
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7.3 Geometry and case setup

Table 7.1: Table of simulated cases.

Case dp [µm] ρp [kg/m3] St

1 20.4 1000 1

2 45.6 1000 5

The geometry comprises of two flat parallel walls. The computational domain of

size 16πh x 2h, with x-, y- axes in the stream-wise and wall-normal directions,

respectively. Four mesh resolutions are investigated with y+ = 0.5 kept constant

throughout with an inflation ratio of 1.1 in the y direction. The carrier flow has a

density of ρf = 1.3kg m−3 and kinematic viscosity of νf = 15.7x10−6m2 s−1. The

shear Reynolds number is defined as Reτ = uτh/νf where uτ is the friction velocity

and h is the half channel height. The shear velocity, uτh/νf = (τw/ρf )2 where τw is

the mean shear stress at the wall. All variables are reported in their dimensionless

form, denoted by the superscript +2 and expressed in wall units - these can be

obtained by combining uτ , ρf and νf .

The wall boundary condition for εf can be found in §2.5. For the remaining model

variables the following boundary conditions at the wall are prescribed, uf = kf =

v2
f = f = 0. For the particulate phase a Neumann boundary condition is prescribed

for the velocity and turbulence statistics. Both kp and εp are initialised as 1/3rd

of their fluid counterpart with Θ = 1.0 x 10−10m2 s−2. At the inlet a Dirichlet

boundary condition is prescribed for both phase velocities and a Neumann condition

for pressure. At the outlet a Dirichlet boundary condition is prescribed for pressure

and a Neumann condition for both phase velocities.

Details of the simulated cases can be found in Table 7.1. The full system of phase

energies used in this chapter is shown in Table 7.2. The main momentum equations

of the RA-TFM presented in Chapter 2 are used throughout, where the buoyancy
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induced terms have been neglected due to the high density ratio. Lastly, the model

constants can be found in Appendix C - §C.4.
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Table 7.2: Phase-energy equations.

∂(αfρfkf )
∂t

+∇ · (αfρfkfuf ) = ∇ ·
[(
µt + µft

σfk

)
∇kf

]
+ αfρfΠf − αfρfεf

+2β(kfp − kf )
(7.1)

∂(αfρfεf )
∂t

+∇ · (αfρfεfuf ) = ∇ ·
[(
µt + µft

σfk

)
∇εf

]
+ εf
kf

[Cε1αfρfΠf − Cε2αfρfεf
T

]
+2C3β(εfp − εf )

(7.2)

∂(αfρfv2
f )

∂t
+∇ · (αfρfv2

fuf ) = ∇ ·
[(
µf + µft

σfk

)
∇v2

f

]
+ v2

f source
− αfρf6

v2
f

kf
εf

+2β(v2
fp − v2

f )
(7.3)

L2∂
2f

∂x2 − f = C1
T

(
v2
f

kf
− 2

3

)
− C2

Πf

kf
− 1
T

(
6
v2
f

kf
− 2

3

)
(7.4)

∂(αpρpkp)
∂t

+∇ · (αpρpkpup) = ∇ ·
[(
µp + µpt

σpk

)
∇kp

]
+ αpρpΠp − αpρpεp

+2β(kfp − kp)
(7.5)

∂(αpρpεp)
∂t

+∇ · (αpρpεpup) = ∇ ·
[(
µp + µpt

σpk

)
∇εp

]
+ εp
kp

[C1αpρpΠp − C2αpρpεp
Tp

]
+2C3β(εfp − εp)

(7.6)

∂(αpρpv2
p)

∂t
+∇ · (αpρpv2

fup) = ∇ ·
[(
µp + µpt

σpk

)
∇v2

p

]
+ v2

psource
− αpρp6

v2
p

kp
εp

+2β(v2
fp − v2

p)
(7.7)

L2
p

∂2f

∂x2 − f = C1
Tp

(
v2
p

kp
− 2

3

)
− C2

Πp

kp
− 1
Tp

(
6
v2
p

kp
− 2

3

)
(7.8)

3
2
[∂(αpρpΘ)

∂t
+∇ · (αpρpΘup)

]
= ∇ ·

[(
κΘ + 3µpt

2Prpt

)
∇Θ

]
+ 2µpSp : Sp

−pp∇ · up + αpρpεp − 3βΘ− γ
(7.9)
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7.4 Results and discussion

7.4.1 Influence of mesh resolution
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Figure 7.1: Mean fluid stream-wise veloc-

ity convergence.
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Figure 7.2: Fluid stream-wise fluctuation

velocity convergence.
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Figure 7.3: Fluid wall-normal fluctuation

velocity convergence.
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To ascertain the influence of the mesh’s resolution four different mesh sizes are

compared; 1500, 3750, 7500 and 18750 cells pertaining to 25x50, 50x75, 75x100

and 1250x150 in the x- and y- direction, respectively. Simulations are run for 500

s of real flow time with all flow statistics being averaged through flow sampling.

Flow sampling takes place after 100 s and is used to ascertain temporal sensitivity

of the solution. It is expected that the steady state would be reached well before

this as 16πh/uf ≈ 27s and therefore the flow has travelled down the channel over

15 times.

Figures 7.1 - 7.3 show that with incremental increases in mesh resolution the results

tend towards a converged solution. The final two mesh resolutions reveal no change

across all three flow variables and lie on top of each other in each plot. These two

mesh resolutions indicate that the solution is mesh independent and no further

enhancement of the resolution will influence the solution. As the flow is one-way

coupled and the particles tend to remain correlated with the flow i.e. the drag

from the fluid-phase is main coupling mechanism, only the fluid-phase statistics

are shown here. In conclusion then, with a mind to reduce the computational

cost, and with no loss of accuracy, the mesh consisting of 7500 cells is employed

throughout this chapter.

It is worth noting that the solution of the RA-TFM momentum equations and the

full system of phase energies i.e. the solution of 12 transport equations is relatively

cheap on a grid for Reτ = 150. The average solution time on the selected grid was

between 60-120 seconds on a computer with 8GB of RAM and an i5-7200u processor

with base frequency 2.9GHz. With the increase in computing power relatively large

systems of algebraic equations become quite feasible. Although as processing power

seems to be peaking with only incremental advances, a RAM intensive coupled

matrix formulation may be a better alternative in the future. For more complex

and higher Re number flow this computational cost would indubitably increase,

perhaps out of feasibility. For the investigation of the near-wall behaviour, in a

certain section or geometric aspect of an application, of fluid-particle flow this

approach remains quite feasible and could elucidate the fluid-particle behaviour in
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the boundary layer without imposing a huge computational cost.

7.4.2 Fluid-phase statistics
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Figure 7.4: Mean fluid stream-wise veloc-

ity.

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120 140
U

+ f
x
,r
m

s

y+

DNS
Simulation

Figure 7.5: Fluid stream-wise fluctuation

velocity.
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Figure 7.6: Fluid wall-normal fluctuation

velocity.

Figure 7.4 shows the calculation of the mean fluid-phase velocity. There is a satis-

factory prediction of the mean velocity spanning from the viscous wall region to the

log-law region. This crucial region for predicting a number of phenomena i.e. heat



156 7. Inhomogeneity and anisotropy in Eulerian-Eulerian modelling

transfer, particle-wall interaction and compressible flows can be accurately mod-

elled with the vf−f model. From y+ < 1 there exists two mesh cells which explains

the perceived lack of gradient in this region, as mentioned in §7.3 a computational

limit is set for small values of y+, although the fluid-phase velocity components

do correctly tend to 0 as the wall is approached. It is an artifact of the lack of

resolution for very small values of y+ and the logarithmic scaling.

In Fig. 7.5 the stream-wise fluctuation velocity is shown. Qualitatively the model

is in good agreement especially for an E-E simulation. Despite this, two main

discrepancies can be seen: the under-prediction in the peak of fluid-phase turbulent

kinetic energy and the over-prediction of the turbulence decay in the free-stream.

Two explanations that perhaps feed into each other can be suggested. The first, if

one invokes continuity across the span of the channel it can be imagined that if the

production was increased the decay would increase. Thus we can postulate that if

the production was increased a larger peak would be displayed and as a result a

steeper gradient of decay would be shown.

The peak is governed by the production term, Πf which is a function of the fluid-

phase turbulent viscosity and mean velocity gradients. The latter can be influenced

through numerical schemes - in particular the calculation of the gradient [64].

Secondly, due to the relatively small Reynolds number of the flow, Reτ = 150 the

turbulence model can fail to capture the correct turbulent kinetic energy behaviour.

This is due to the model being calibrated for high Reynolds number. In Durbin [56]

it is shown that for low Reynolds number flow the model over-predicts turbulence in

the free stream - a finding that is consistent with damping functions. It should be

noted that they also over-predicted the peak which was not the case in this study.

It would seem that an element of both are at work, therefore with calibrating of

the turbulence constants a more accurate fit could be obtained. It is also worth

mentioning that in the data of Marchioli et al. [121] the peak is the region in which

the greatest variance was reported. This is true of both phases and highlights the

difficulty in predicting a reliable value.



7.4. Results and discussion 157

The near-wall behaviour of the wall-normal component has been accurately cap-

tured in Fig. 7.6. A slight underproduction is seen in the peak across the range

40 < y+ < 80 which is expected as the value of the stream-wise fluctuating com-

ponent is also under-predicted. As discussed the wall-normal component receives

turbulent kinetic energy through redistribution - therefore the under-prediction is

experienced in both components. Overall excellent agreement with the DNS data

is found, this provides promising evidence for the application of the v2 − f model

to E-E modelling.
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7.4.3 Particle-phase statistics
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tion velocity, St = 1.
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Figure 7.12: Particle wall-normal fluctua-

tion velocity, St = 5.

For the channel flow simulated in the work of Marchioli et al. [121] the fluid-

particle co-variance terms dominate the particle-phase energy by providing the

major contribution to their production via drag. As the particle-phase is one-way

coupled with the fluid-phase the particles will be dragged along by the fluid and

experience no feedback effect on the fluid-phase. Even in such a flow it has been

shown the need to partition the particle inertia into correlated and uncorrelated

motion Février et al. [67]. In the model used throughout this partitioning is denoted

by kp and Θ, respectively.

Figs. 7.7 & 7.8 shows the prediction of the particle-phase mean velocity of which

shows excellent agreement with the DNS data. The prediction of the mean veloc-

ity is well captured across the range of y+ with the main discrepancy coming from

the mesh resolution as discussed previously. Due to the close to non-existent slip

velocity, owing to the geometry and governing physics, it is apparent that the Neu-

mann wall boundary condition results in the correct near-wall behaviour. Owing

to the smoothness of the channel no effects due to roughness were incorporated,

for further discussion the reader is referred to Vreman [203].

Figs. 7.9-7.10 reveal that the model is capable of capturing the Stokes dependent
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behaviour, which manifests itself in an increase in the peak of turbulent kinetic

energy, although the increase is not as large as that seen in the DNS. We recognise

here that this increase of particle-phase turbulent kinetic energy is due to the

increase in uncorrelated energy, Θ. As the particle response time increases the

particles become uncorrelated with the main flow. This phenomenon has also been

reported by Février et al. [67], Vance et al. [199] who showed that with increasing

Stokes number an increasing fraction of the fluctuating energy was found in the

random-uncorrelated motion, Θ. We find that the increase in particle response

time coupled with the dispersion enhances the ‘de-correlation’ which is why the

main increase is seen across y+ < 60. The energy is re-partitioned into the near

wall region showing an increase in the peak of the turbulent kinetic energy. As a

result over the y+ > 60 there is an increase in the gradient of turbulent kinetic

energy decay, a feature that was not captured. It is interesting to note that this re-

partitioning of the particle-phase energy is not especially felt in the mean-velocity

profile.

In Fig. 7.10, even though an increase in the peak seen at y+ ≈ 11.6 is apparent

the behaviour approaching the free-stream is at odds with the DNS data. The lack

of turbulent kinetic energy decay is most apparent across y+ > 60. It is clear that

the distribution of the turbulence energy changes quite considerably with larger

response times and a sharper gradient of decay is shown. This suggests that an

adjustment of the the turbulent decay constant could be made a function of the

particle Stokes number.

As shown in Marchioli et al. [121] preferential concentration is shown for Stokes

number 5, a feature that was also seen in the simulation. It was revealed in our

simulations that with increasing particle response time, particles tended to drift

towards the wall becoming preferentially concentrated. A phenomenon that is well-

established in the literature Reeks [149]. This behaviour was determined by the

drift velocity as expected, which is a function the gradient of volume fraction and

Stokes number. Figs. 7.11 & 7.12 show the particle-wall normal fluctuation velocity

components. A satisfactory prediction across both simulations can be seen. The
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main discrepancy is the lack of peak in the former although the trend is captured

elsewhere. The increase in St number tends to dampen this peak as it is felt as

an increase in the stream-wise component. This behaviour is present within the

current simulations but to a much less pronounced extent. As previously mentioned

this area provided the greatest variance in the DNS data and the magnitude of the

error may not be as pronounce as suggested here.

7.5 Closure

The current chapter presented a derivation of a pressure-velocity model for both the

particle-phase for use in Eulerian-Eulerian simulations. The turbulence model was

derived within a Reynolds-Averaged Two-Fluid Model framework and applied to

channel flow. Both pressure-velocity models derived within this thesis were applied

to a wall bounded turbulent flow. Throughout it has been shown that accounting

for the kinematic blocking effect leads to promising results. Across both fluid and

particle turbulence statistics a good agreement was shown, in particular the wall-

normal energy component of each respective phase was well produced. A result

that has hitherto alluded E-E simulations. The results were validated against

benchmark Direct Numerical Simulation of Marchioli et al. [121] and show good

agreement with the experimental data. The RA-TFM shows the correct Stokes

dependence behaviour exhibited in the particle-phase turbulence statistics. The

current predictions show encouraging results and efforts should be made to extend

the approach for more complex flow regimes i.e. two-way coupling.
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8 A fully-coupled pressure-based

two-fluid solver

8.1 Overview

In this chapter, the block-coupled solution algorithm, presented in Chapter 4 - Sec.

4.3, is verified against the segregated algorithm, presented in Chapter 4 - Sec. 4.2,

and validated against the benchmark experimental data of Tsuji and Morikawa

[192]. The coupled solver shows marked improvements in convergence, stability

and solution time. The coupled implementation is capable of solving to a tolerance

that is six orders of magnitudes smaller in residual error and 1.7 times quicker

than the segregated solver. The implicit treatment of phase-velocity-pressure and

inter-phase momentum transfer enabled the simulation to be accelerated as larger

time steps could be taken. Additionally, the sequentially solved system of phase-

energies experienced performance improvements when solved in conjunction with

the coupled solver.

163
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The main contributions of this chapter are:

• The coupled two-fluid implementation is verified against the segregated im-

plementation;

• The coupled two-fluid implementation is validated against benchmark exper-

imental data of Tsuji and Morikawa [192];

• The performance of the coupled implementation is contrasted and compared

against the segregated implementation.

• The coupled implementation, in general, provides superior performance:

– Solving to a tolerance that is six orders of magnitude smaller in residual

error;

– Completing the simulation 1.7 times quicker than the segregated solver;

– Able to increase the Courant number to 2.5 further accelerating the

simulation as opposed to 1.5 in the segregated solver.

• As an auxiliary benefit to the implicit treatment of the phase-velocity-pressure

coupling the system of phase-energy equations, of which are solved sequen-

tially, are solved to a tolerance that is seven times smaller in magnitude.
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8.2 Introduction

Traditionally, the governing equations in E-E simulations are solved in a sequential

manner. This essentially means decoupling the phase-velocity-pressure and inter-

phase drag and solving for them explicitly i.e. an equation for momentum and

pressure-correction as shown in Chapter 4. As discussed previously, this often

leads to slow convergence and arbitrary under-relaxation values. An alternative

approach to the solution of the E-E governing equations exists - the block-coupled

approach.

The approach relies on constructing a single block-matrix in which the influence

of the phase-velocity-pressure coupling can be introduced through inter-equation

coupling terms. The solution of which leads to dramatic improvements in conver-

gence, stability and robustness. Approaches that are based on the solution of the

single-phase governing equations have been proposed in the literature [20, 34, 39,

46, 47, 87, 99, 116, 124, 125, 147, 200, 208, 209, 215] and have been extended to

E-E models by Burns et al. [25], Darwish et al. [45] and Ferreira et al. [63].

Darwish et al. [45] has recently proposed a two-fluid fully-coupled pressure-based

solver in which their single-phase framework [46, 47] is extended to a multiphase

framework. The governing equations are solved within a fully conservative formu-

lation i.e. the volume fraction and density are left in the momentum equations,

typically used to capture compressibility effects. They derived their model in a

2D framework and verify their results on 1D laminar test cases showing a rate

of solution acceleration between 1.3 and 4.6. More recently. Ferreira et al. [63]

proposed a fully-coupled pressure-based multi-fluid framework. In their work they

solve the phase-intensive formulation i.e. dividing out by volume fraction and den-

sity and employ the Compact Momentum Interpolation (CMI) practice of Cubero

et al. [44] and guess-and-correct procedure shown in Darwish et al. [45]. Overall,

this treatment was shown to enhance stability and convergence through the cor-

rect treatment of the temporal, drag and body force interpolation especially when
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a large drag force was present. The multi-fluid solver is verified on 2D laminar test

cases showing superior performance when compared to the segregated solver.

In this chapter we verify and validate the fully-coupled pressure-based two-fluid

algorithm presented in Chap. 4 - §4.3. The framework is implemented within

the open-source tool-box foam-extend which is a community driven fork of Open-

FOAM. The algorithm is verified against the segregated implementation (see Chap.

4 - §4.2) and validated against the turbulent benchmark experimental data of Tsuji

and Morikawa [192]. Additionally, the performance of the coupled and segregated

solvers are compared and contrasted.
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8.2.1 Governing equations

We begin with a simplified set of equations from the RA-TFM. The coupling terms

through buoyancy have been neglected.

The continuity and momentum equations of the particle- and fluid-phases are as

follows:
∂(αpρp)
∂t

+∇ · (αpρpup) = 0, (8.1)

∂(αfρf )
∂t

+∇ · (αfρfuf ) = 0, (8.2)

∂(αpρpup)
∂t

+∇ · (αpρpupup) = ∇ · (αpρpReff,p) + β(uf − up)− β
νft

Scfsαpαf
∇αp

−∇pp − αp∇pf + αpρpg,
(8.3)

∂(αfρfuf )
∂t

+∇ · (αfρfufuf ) = ∇ · (αfρfReff,f) + β(up − uf ) + β
νft

Scfsαpαf
∇αp

−αf∇pf + αfρfg.
(8.4)

The accompanying phase-energy transport equations that make up the complete

RA-TFM can be found in Table 8.1. In this chapter they are treated sequentially

and are therefore not given special treatment here.
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Table 8.1: Phase-energy equations.

The fluid-phase energy transport equations:

∂αfρfkf
∂t

+∇ · (αfρfkfuf ) = ∇ ·
[(
µf + µft

σfk

)
∇kf

]
+ αfρfΠf − αfρfεf

+β(kfp − kf )
(8.5)

∂αfρfεf
∂t

+∇ · (αfρfεfuf ) = ∇ ·
[(
µf + µft

σfk

)
∇εf

]
+ εf
kf

[
C1αfΠf − C2αfρfεf

]
+C3β(εfp − εf )

(8.6)

The particle-phase energy transport equations:

∂αpρpkp
∂t

+∇ · (αpρpkpup) = ∇ ·
[(
µp + µpt

σpk

)
∇kp

]
+ αpρpΠp − αpρpεp

+β(kfp − kp)
(8.7)

∂αpρpεp
∂t

+∇ · (αpρpεpup) = ∇ ·
[(
µp + µpt

σpk

)
∇εp

]
+ εp
kp

[
C1αpρpΠp − C2αpρpεp

]
+β(εfp − εp)

(8.8)

3
2

[
∂αpρpΘ
∂t

+∇ · (αpρpΘup)
]

= ∇ ·
[(
κΘ + 3µpt

2Prpt

)
∇Θ

]
+ 2µpSp : Sp

−pp∇ · up + αpρpεp − 3βΘ
(8.9)
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8.3 Geometry and case setup

The geometry used in the experiment of Tsuji and Morikawa [192] comprises of a

vertically facing pipe with a diameter (D) of 0.035m and can be seen schematically

in Fig. 8.1. The length of the pipe (L) including the development section is,

L = 5.2m. The mesh size is 50 cells in the x direction and 20 in the y direction

with adequate spacing to ensure a y+ > 30 for the wall function. Due to the

computational power available and the number of coefficients that need to be stored

for each cell in the coupled solver, the mesh size had to be limited.

Inlet

walls

outlet

Figure 8.1: Schematic of the computational domain.

At the inlet a Dirichlet boundary condition is prescribed for both phase velocities

and a Neumann condition for pressure. At the outlet a Dirichlet boundary condition

is prescribed for pressure and a Neumann condition for both phase velocities. For

the particulate phase wall boundary conditions a Neumann boundary condition is

prescribed for the velocity and turbulence statistics. For the fluid-phase, the no

slip wall condition is prescribed for velocity and the standard wall functions are

employed for the turbulence statistics. Both kp and εp are initialised as 1/3rd of

their fluid counterpart with Θ = 1.0 x 10−10m2s−2.

Table 8.2 details the cases simulated in this work. For the majority of the cases the

centreline velocities were not recorded therefore the bulk velocities have been used.

The mean velocity (U+
i = ux/um) and turbulence intensity (u+

i = (0.5ki)1/2/um)

are normalised by the bulk velocity, um which is taken from the simulation due to

the lack of recorded values in the experiment.
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Table 8.2: Table of simulated cases.

Case Mass loading dp [µm] Density [kg m−3] Um [m s−1]

1 1 0.2 1020 15.6

2 2.1 ′′ ′′ 15.3

3 1.3 0.5 ′′ 10.8

4 2.9 ′′ ′′ 10.8

Both the coupled and segregated solvers solve the phase-energy system of equa-

tions in a sequential manner using generic relaxation factors of 0.7 and a PGiCG

solver. The coupled solver employs the ILU preconditioner and the biconjugate

gradient stabilised solver (BiCGSTAB) with no relaxation factors. For the segre-

gated system of equations the pressure equation was solved using the generalised

algebraic multi-grid (GAMG) with a relaxation factor of 0.3. The volume frac-

tion is solved using Multi-dimensional Universal Limiter with Explicit Solution

(MULES) [222] which is a flux-corrected transport algorithm which ensures ro-

bustness, stability and convergence. Time derivative terms are discretised using

the first order accurate implcit Euler scheme, gradients are discretised using the

Gauss linear scheme, convective terms are discretised using the first order upwind

scheme. Finally, Laplacians are discretised with the second order accurate central

differencing scheme.
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8.4 Results and discussion

8.4.1 Verification of the coupled solver
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Figure 8.2: Distribution of pressure across

the horizontal midsection of the pipe.
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the horizontal midsection of the pipe.

Fig. 8.2 shows a comparison of the pressure drop across the pipe in both the

coupled and segregated solver. Both solvers show identical behaviour with a linear

drop across the length of the pipe. From the authors experience, this was greatly

influenced by the momentum interpolation technique of Cubero et al. [44] and

implicit treatment of the drag correction in the divergence operator (Eq. 4.47).

In particular the behaviour of the pressure drop in cells close to the inlet proved

particularly challenging and could not be realised without the CMI of Cubero and

Fueyo [43].

Fig. 8.3 shows a comparison of the phase-velocities across the pipe in both the cou-

pled and segregated solver. To highlight the influence of the inter-phase momentum

transfer the inlet velocity for the particle-phase is a≈ 10% of the fluid-phase. Again

identical behaviour between solvers is demonstrated.



172 8. A fully-coupled pressure-based two-fluid solver

8.4.2 Validation of the coupled solver
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Figure 8.4: Mean fluid velocity. Symbols

Tsuji and Morikawa [192]; curves are predic-

tions for Case 1 & 2.
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Figure 8.5: Mean particle velocity. Symbols

Tsuji and Morikawa [192]; curves are predic-

tions for Case 1 & 2.

Figure 8.4 shows the mean fluid velocity profiles. Overall, the trend of the fluid

behaviour is captured, with the increase in mass loading resulting in a global reduc-

tion of fluid velocity (due to the direction of the body force) in both experimental

and numerical predictions. In Case 1, there is an almost global over-prediction of

the mean velocity albeit small. In the near-wall region (r/R > 0.75) the momen-

tum loss is difficult to capture correctly. The experimental results suggest that

the numerical model is not producing enough mean shear. This would result in a

higher rate of change in the near-wall region thus falling in line with the experi-

mental data. This lack of momentum loss can also be affected by the co-variance

coupling term. As the particles are tightly coupled with the fluid-phase the main

mechanism for momentum transfer is drag. An under-prediction in the co-variance

term will reduce momentum loss - which would result an over-prediction of mean

velocity.

For Case 2 this over-prediction is exacerbated and with an increased mass loading,

in particular across (r/R < 0.5). In the region (r/R > 0.75) a substantial rela-
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tive velocity between Case 1 and Case 2 was observed in the experimental data.

Throughout the simulations this behaviour was qualitatively predicted showing

reasonable agreement. It should be noted that the instrument used to measure the

flow statistics, namely the laser Doppler Velocimeter (LDV) can be an intrusive

way of measuring velocity and turbulence statistics. Additionally, in the near-wall

region it becomes particularly challenging to record reliably.

Figure 8.5 shows the mean particle velocity predictions for Case 1 & 2. In the near

wall region the slip condition enables a relative velocity between both phases to

develop. Experimentally this resulted in a negative, ur = uf − up in the region

(r/R > 0.75) and a positive ur in the (r/R < 0.75) region. The slip boundary

condition exhorts its influence over a quarter of the pipe - a finding that is consistent

with the numerical prediction. The main discrepancy between the experimental

and numerical results is across the near-wall region. The experimental results

indicate that the particles remain largely correlated with the fluid-phases boundary

layer. This is expected due to their tight coupling through drag and can be partly

predicted by the model as the influence of the fluid-phase is felt across the particle

velocities across (r/R > 0.75).

Two explanations for this lack of momentum loss can be offered. Firstly, this be-

haviour indicates that the turbophoresis force that is responsible for wall-normal

migration of particles is being under predicted. Without the redistribution of par-

ticles across the width of the pipe a more uniform velocity distribution is seen [157].

Secondly, the wall boundary condition was taking as slip assuming smooth walls.

This is a speculative assumption and with the inclusion of boundary conditions

that incorporate the effect of wall roughness the momentum loss in the boundary

layer would be enhanced resulting in a closer prediction.
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Tsuji and Morikawa [192]; curves are predic-

tions for Case 3 & 4.
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curves are predictions for Case 3 & 4.

Figures 8.6 & 8.7 show the results from Cases 3 & 4. In the former, the predicted

mean fluid-velocities are in relatively good agreement with the experimental data

with the main discrepancies being seen in the near-wall region. With increased

mass loading, the difficult to capture [118] reduction of fluid velocities in the core

region (r/R < 0.5) is reproduced. The increase in particle diameter and mass

loading results in an accumulation of particles within the core of the pipe which

are being dragged down by gravity. Due to the increase in Stokes number and

increased likelihood of particle collisions, the uncorrelated energy, Θ experiences

an increase in the core of the flow. This ensures that the particles are no longer

closely correlated with the carrier flow, i.e. increased dissipation in the correlated

energy equations kp − εp. Through the co-variance coupling terms, as well as the

inter-phase momentum transfer term, this behaviour can be captured. This results

in the fluid-phase velocity being ‘dragged’ by the particle-phase - a complex two-

way coupled mechanism that is apparent in the numerical prediction and in the

experimental observation. Due to the conservation of momentum across the pipe

this results in an increase in the velocities in the region (0.5 > r/R > 0.75).

For Case 3, good agreement is found with the centreline velocity but the main
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bulk of the velocities leading up to the near-wall region are under-predicted. This

behaviour can be better explained by looking at Fig. 8.7. The fluid intensity result

for Case 3 illuminates the situation. The over-prediction of the intensity across

the centreline would manifest itself in an over-prediction in the turbulent viscosity

calculation resulting in the predicted behaviour. Due to the non-linear profile of

the experimental turbulence intensity the behaviour is difficult to capture within

a Reynolds-Averaged methodology, in particular the use of the wall function also

limits the situation further. To this end a near-wall pressure-velocity model has

been recently proposed that can circumvent these problems in two-fluid simulations

- see Chapter 2.

8.4.3 Performance of the coupled solver vs segregated solver

In this section both the coupled and segregated solvers are run for 30 seconds of

actual flow time on Case 1 under identical conditions with the Courant number

kept constant at 0.5.

In order to ascertain the magnitude of the estimated error, the normalised residual

error estimate is calculated according to Jasak [92]. The residual is normalised

by the dominant diagonal coefficients in order to ascertain the behaviour of each

variable more readily. This enables the formulation of a relative error.

εr(φ) = |bi − Ai,jxi|
|Ani,jxki − An−1

i,j xn−1
i |+ |bki − An−1

i,j xn−1
i |

. (8.10)

A convergence criterion can be set as:

εr(φ) ≤ εres. (8.11)

Although we do not set a stop criterion in this study it should be noted that

conventionally residuals are set between εr < 10−3 − 10−6. If we take the latter

value as our convergence criterion the two-fluid coupled solver converges in 161s

whereas the segregated solver fails to reach values near εr(φ) = 10−6 and oscillate

in the order of εr(φ) = 10−3 − 10−4.
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Figure 8.8: Pressure residual behaviour for

coupled and segregated solver.

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 100 200 300 400 500
ε r
(u

i,
i)

Execution Time [s]

up,x

up,y

uf,x

uf,y

Figure 8.9: Velocity component behaviour

for the coupled solver.

Figures 8.8 and 8.9 show the normalised residual behaviour for pressure and phase

velocity components. Due to the segregated solution algorithm used the phase

velocity components are not explicitly solved for and are instead used to predict

and correct, hence no data is available for a comparison. Fig. 8.8 reveals some quite

striking behaviour about the residual behaviour. The coupled two-fluid solver’s

initial residual, due to the implicit treatment of the pressure correction, starts at

the εr(pf ) = O(10−4) - as the flow is driven by inlet condition for velocity, the

pressure coefficients do not contain a substantial source. This residual error is

driven down by several orders of magnitude within the first few iterations before

reaching an oscillatory steady state at εr(pf ) = O(10−11).

In the segregated solver, typical residual behaviour is observed, showing saw-

toothed behaviour, due to the relaxation factor. After some time, similar to the

coupled solver, the solution reaches a steady-state with the residual remaining os-

cillatory until the simulation ends. The main contributor to the extension in time

is the explicit calculation of the pressure equation. In the segregated solver crucial

terms, drag and gravity, are moved to the pressure calculation - this increases the

stability of the solution but puts a penalty on the computational time. This often

results in a hefty amount of iterations to drive the pressure residual down to its
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prescribed tolerance before advancing the solution in time.

Figure 8.9 shows the four phase velocity components. It can be seen how the nor-

malised residual behaviour follows the same qualitative behaviour of the pressure

residual - a natural consequence of the block-coupled solution. Throughout the

solution, small spikes and oscillatory behaviour were present, a feature that was

also apparent in Uroić and Jasak [193] and was shown to be an artifact of the linear

solver BiCGSTAB. The two largest residuals are the momentum variables in the

flow direction, this is expected due to their diagonal coefficients containing the dom-

inant momentum flux and implicit drag correction. It is evident that the implicit

treatment of the phase-velocity-pressure has positive benefits on the normalised

residual error showing substantial improvements over the explicit treatment.
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Figure 8.10: Turbulent dissipation resid-

ual behaviour.
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Figure 8.11: Turbulent kinetic energy resid-

ual behaviour.
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Figure 8.12: Particle turbulent kinetic en-

ergy execution time.
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Figure 8.13: Particle turbulent kinetic en-

ergy dissipation convergence.

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 100 200 300 400 500 600 700

ε r
(Θ

p
)

Execution Time [s]

Coupled Θp

Segregated Θp

Figure 8.14: Granular temperature con-

vergence.

Figures 8.10 - 8.14 show the residual behaviour for the phase-energy system. Over-

all, it can be seen that the coupled solver reduces the residual error across all tur-

bulence variables resulting in a comparative drop of several orders of magnitude.

The benefits of the implicit treatment of the phase-velocity-pressure coupling is

carried over into the solution of phase-energies despite them being solved using a

segregated solution algorithm. This auxiliary benefit can be best highlighted by

looking at the residual behaviour for the granular temperature, Fig. 8.14. In the
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segregated approach the residual fails to converge to a reasonable tolerance whereas

in the implicitly coupled solution the residual shows a dramatic reduction in line

with the accompanying phase-energy residuals. The reason for this relatively large

residual of granular temperature is due to the particle turbulent dissipation. εp

appearing as an explicit positive source term in its transport equation. Without

the particle turbulent dissipation residual being reduced this behaviour will always

be present, a feature that is alleviated within the coupled solution residual.

8.4.4 Courant number variation

One benefit of an implicitly coupled phase-velocity-pressure solution is that the so-

lution can be accelerated due to the implicit treatment of hitherto explicit terms,

unlike in the segregated solver. The implicit treatment of the phase-velocity-

pressure coupling and the inter-phase momentum transfer in particular enables the

Courant number to be increased beyond conventional limits. In this section the

simulations are rerun with incrementally increasing Courant number to ascertain

the performance of both solvers.

Table 8.3: Total execution time of the coupled and segregated solvers under increasing

Courant Number.

Courant No. Coupled Exe. [s] Segregated Exe. [s]

0.25 541 1022

0.5 377 641

1 235 320

1.5 216 255

2 176 N/A

2.5 149 N/A

Table 8.3 details the solution execution time of each solver under increasing Courant

number. Overall, it can be seen that the coupled solver out performs the segregated

solver across each increment of Courant number. In addition, the coupled solver is
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able to achieve higher Courant numbers due to its implicit solution. This results in

the coupled solver being 1.7 times quicker than than the segregated solver. Above

Courant numbers of 1.5 the segregated solution becomes unstable and the solution

is compromised. This is due to the explicit treatment of the phase-velocity-pressure

coupling and the semi-explicit implementation of the inter-phase momentum trans-

fer.

For the solution of the block-matrix a fairly conventional matrix solver is employed

i.e. ILU preconditioner with BiCGSTAB. Recently, a more sophisticated approach

has been developed: a block-selective algebraic multigrid algorithm [193]. We note

here that an aggregative algebraic multigrid algorithm exists within foam-extend

but its performance was found to be unsatisfactory in comparison to BiCGSTAB.

The block-selective algorithm has shown to provide substantial increases in the

performance of the linear solver. In some cases completing the solution within half

the time of the BiCGSTAB algorithm. This could further improve the results of

the coupled solver with a further reduction in execution time.

Simulations above Courant number 2.5 were not feasible due to the solution of

the phase-energy equations. This can be circumvented with the block-coupled

solution of the phase-energy equations as the the explicit terms that enforce the

time step dependency can be treated implicitly. The most obvious candidates would

be the production and dissipation of turbulent kinetic energy and the inter-phase

momentum transfer. Recently, Keser [101] has shown that single-phase turbulence

models can also benefit from such a block-coupled solution.
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8.5 Closure

The current chapter has verified and validated the fully-coupled pressure-based

two-fluid framework presented in Chapter 4 - §4.3. The coupled implementation

was verified against the segregated implementation, additionally the former was

validated against benchmark experimental data. The approach is directly con-

trasted with the segregated approach in order to compare key differences in the

solution algorithm. The coupled two-fluid solver shows far superior performance

in terms of solution time, stability and convergence, often converging to a residual

error of several magnitudes smaller than its segregated counterpart. Additionally,

the algorithm was capable of being accelerated due to the implicit treatment of the

phase-velocity-pressure and inter-phase drag.
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9 Closure

9.1 Summary and Conclusions

The overarching aim of this study has been to advance the current Eulerian-

Eulerian modelling methodologies for the solution of turbulent fluid-particle flows.

The underpinning philosophy of the approach was recognising the partitioning ef-

fect of particle inertia - this was shown, if neglected, to result in the incorrect

prediction of the particle’s behaviour in high Re number flows. As the particle’s

inertia increases from a non-zero value the particles can be broadly separated into

correlated and uncorrelated motion with the carrier phase.

When the inertia is small the particles are aligned with the turbulent kinetic en-

ergy in the carrier phase - as the particles inertia increases, depending on a range

of criteria e.g. αp and St, the particles begin to become uncorrelated with the

carrier flow and contain their own energy from inter-particle collisions, drag with

the carrier phase and dissipation from the correlated particles. This cascade of

particle energy has been proven to be vital for the correct prediction of the turbu-

lence statistics - showing validation across a range of particle classifications, flow

configurations and coupling mechanisms.

183
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The near-wall region within E-E modelling methodologies have been an often ne-

glected area. Throughout this work modelling advancements have been proposed

in order to resolve the near-wall region in E-E simulations. The approaches are

completely arbitrary and can be applied to any wall bounded flow and nor is the

approach confined to the E-E modelling used in this work. It was shown that the

elliptic relaxation models proposed herein resulted in a satisfactory approach to

resolving this region showing hitherto out of reach agreement with the available

experimental data. Following such an approach can open the way to new modelling

in the near-wall region as our understanding of this region expands.

Typical E-E solution algorithms have relied on the decoupling of phase-velocity-

pressure and inter-phase drag in order to solve the system of equations in a seg-

regated manner. This often leads to lengthy solution times and poor convergence,

even more so than in single-phase segregated algorithms due to the inter-phase

drag decoupling. In this work it has been shown that the implicit treatment of

the phase-velocity-pressure and inter-phase drag, through a block-coupled solu-

tion, can result in dramatic improvements in simulation solution time, stability

and convergence.

9.2 Current E-E modelling

It has been demonstrated how pivotal the partitioning effect of particle inertia

is to achieving an accurate prediction of the particle-phase turbulence statistics.

Starting from a mesoscale kinetic equation one can arrive at a Reynolds-Averaged

macroscale equation that can account for a distinction between the particle-phase

energies i.e. Θ and kp. These quantities provide separate contributions to the total

fluctuation energy and represent small scale uncorrelated energy and large scale

correlated energy, respectively. This proved crucial throughout and resulted in a

high level of validation across a range of flow regimes.

This study presented a Reynolds-Averaged Two-Fluid model for the solution of
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turbulent fluid-particle flows. Throughout the work, particular emphasis has been

placed on the derivation of the model from the kinetic equation through to the

RA transport equations for the E-E model. The coupling mechanisms and correct

separation of the phase energy has been detailed. The modelling methodology

has been implemented within the open-source CFD tool-box OpenFOAM. The

approach has been applied to numerous benchmark experimental cases which has

highlighted the modelling philosophies validity especially when compared to the

conventional E-E modelling methodologies. The breakdown in the prediction of

the conventional methodologies have been elucidated with the aid of the RA-TFM.

This breakdown was seen at its most stark in Chapter 5. Particle-phase turbu-

lence statistics of the RA-TFM were compared against the methodology of Peirano

[141], a model that has widespread use in open-source and commercial codes alike,

showing a disparity with the experimental data. This error was attributed to the

coupling of the mesoscale kinetic equation with the macroscale turbulence in the

Peirano model. It was revealed that the standard model was not capable of captur-

ing key flow features e.g. recirculating region. This had a dramatic impact on the

particle mean flow statistics resulting in an under prediction across the step. This

fed into the inter-energy transfer mechanism leading to an incorrect prediction of

the two-way coupling effect - attenuation.

9.3 Near-wall modelling in E-E simulations

Special attention has been paid to the near-wall region, in Chapters 6 & 7, re-

sulting in elliptic relaxation models for the fluid- and particle-phases, respectively.

The inclusion of this additional modelling has elucidated various aspects of E-E

modelling. An aspect of E-E simulations that has remained largely untouched.

In the near-wall region, where an accumulation of particles can occur, a correct

calculation of the fluid-phase turbulent kinetic energy is crucial. In order to predict

the particle deposition in the boundary layer, the turbophoresis force must be
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accounted for - this force is dependant on the wall-normal stress component [150].

As the wall-normal stress components are overestimated in conventional turbulence

modelling e.g. k − ε, the particles can not overcome the wall-normal gradient.

As the wall-normal component should be suppressed owing to image vorticity the

particles can reassemble themselves and overcome the relatively flat gradient in the

near wall region. Once trapped they rarely overcome the opposing gradient and

are deposed. With the use of the proposed elliptic relaxation model this behaviour

can be predicted as shown in Chapter 6.

It was also shown that without predicting this behaviour the particle physics can

be inhibited. Using wall-functions in conjunction with the conventional turbulence

model resulted in an incorrect prediction of the volume fraction across the width

of the pipe. It tended to force particles into the core of the flow and this aspect

was missed. The knock-on effect was the loss of two-way coupling effects in the

near-wall region. These issues were also shown to be alleviated with the elliptic

relaxation model as well as falling in line with the experimental data.

In Chapter 7, the elliptic relaxation model is applied to the particle-phase. As

the fluid- and particle-phase share a pressure field and both phases are tightly

coupled at the macroscale the approach remains valid. The modelling is validated

against benchmark DNS data and shows good agreement across particle mean flow,

turbulent kinetic energy and crucially wall-normal kinetic energy. The model was

applied to channel flow in the one-way coupled regime although it is applicable to

two-way coupling. Additionally, the boundary conditions provided in Chapter 5

can be employed to model particle-wall interaction which can also lead to two-way

coupling effects i.e. attenuation. The level of agreement is particularly satisfying

given that E-E modelling was used throughout this work.
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9.4 Numerical solution of E-E models

In Chapters 4 & 8, a block-coupled solution algorithm for the E-E governing equa-

tions was presented, verified and validated. The phase-velocity-pressure and inter-

phase drag terms were treated implicitly resulting in tight coupling between the

primary variables. In comparison to the segregated approach in which the primary

variables are decoupled by treating them explicitly as each variable is solved. The

implicit treatment of the phase-velocity-pressure and inter-phase drag was shown

to give far superior performance over the explicit treatment found in the segregated

implementation.

The block-coupled solution algorithm was shown to be capable of reaching residual

errors in ui - pf in the O(10−11). This was ≈ 7 orders of magnitude smaller

than the segregated solvers residual tolerance. In addition, the solution time was

found to be 1.7 times faster than its segregated counterpart. Due to the implicit

treatment of the phase-velocity-pressure and inter-phase drag the simulation could

be accelerated via the CFL criterion. This resulted in a further speed up of the

simulation. Due to the solution of the phase-energies i.e. segregated this was

limited at a CFL of 2.5 but with the block-coupled solution of the phase-energies

this could be increased further.

It was shown that with a block-coupled solution the phase-energy system of equa-

tions experienced an auxiliary benefit. Due to the presence of cascade effect in the

particles energy i.e. the correlated turbulence dissipation appearing as a source

term in the granular temperature equation, convergence can be adversely affected

due to cross-equation dependency. Within the block-coupled solution this was al-

leviated resulting in a residual error of several orders of magnitude lower showing

enhanced stability and robustness throughout the solution process. Moreover, the

whole-system of phase-energy showed enhanced stability and convergence reaching

residual errors in the O(10−10).
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9.5 Future work

The results of this work can be improved on in a number of ways, in particular

introducing more complex mechanisms such as virtual-mass, lift, heat transfer etc.

Given the approaches used herein, the inclusion of these additional physics would

be straight forward, and some of these advances could be applied to engineering

relevant cases and elucidate our current ‘toolbox’ for tackling these problems.

Another suggestion and perhaps most obvious is investigating more complex ge-

ometries. As the near-wall modelling is completely arbitrary it is applicable for

any wall-bounded flow of which there are a wide variety in industry. Currently

there is not a large database of experimental turbulent fluid-particle wall-bounded

flows making validation and modelling difficult. As the particle classes and physics

and vary widely it is challenging to develop a framework for how each system will

behave. Even at the discrete level i.e. E-L this results in a lot of difficulty.

More work to refute the current E-E models in which the partitioning effect of

particle inertia is not made needs to be carried out. Although efforts have been

made at recognising unresolved structures by using filtered equations [131, 144, 169]

although this is typically for dense flows. This will improve model predictions in

existing CFD codes and promote the use of the current methodology.

The block-coupled implementation was applied to a relatively simple and compu-

tationally cheap regime, largely due to to computational restraints. Moreover, a

standard matrix solver was employed for want of a better alternative. Exploration

of the implementation on denser and more complex meshes are required to so-

lidify its use and validity. The matrix solver used throughout was not optimised

for the solution of block matrices. Recently, more optimised and efficient block-

matrix solution algorithms have been presented [193]. It is thought that with these

additional factors the results reported here could be further improved.

Some suggestions for further work are as follows:
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• The coupling between both phases is given by the fluid-particle velocity co-

variance i.e. kfp and εfp. This term has been shown to give satisfactory

agreement with experimental and DNS data. This has only been shown in

a limited amount of flows, it would be particularly interesting to investigate

this term for more complex flows and more importantly for higher volume

fractions. This would accelerate the ‘decorrelation’ between the fluid- and

particle-phase and could lead to a slightly different form of the closure;

• The closure for the fluid-particle velocity covariance is used for point particles

which are well known to dissipate energy at a rate slightly higher than in true

DNS [181, 216]. This is another aspect of modelling that could be explored;

• Throughout high density ratios were employed which resulted in the exclusion

of the buoyancy terms. If this were not the case there would exist regimes

in which a mixture of turbulence production by shear and buoyancy would

occur - a particular interesting prospect;

• Application of the block-coupled implementation to more complex and chal-

lenging geometries. In particular with the use of more complex boundary

conditions;

• An avenue exists in which the E-E phase-energy system can be block-coupled

i.e. through inter-phase coupling of turbulence production, dissipation and

drag. Moreover, the co-variance coupling terms that provided cross-phase

coupling could also benefit from such a treatment;

• The modelling of both phases suffer from the classic eddy-viscosity assump-

tion constraint i.e. isotropy. This can be alleviated by the use of a Reynolds-

Stress Model (RSM) of which would be a reasonable next step as the par-

ticle Reynolds stress component have been shown to be highly anisotropic

[173, 174];

• A particularly interesting approach would be to use the elliptic relaxation

models proposed in this work with a Reynolds-Stress Model (as has been done
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in single-phase flows [57]). This does pose a challenge in terms of stability

and convergence due to the reliance of Reynolds-Stress components on each

other;

• In connection to the previous suggestion, a block-coupled approach to solving

the system of algebraic equations was shown in Chapter 4, if this approach

was successfully applied to a RSM, one of the main drawback of RSM (in

single-phase flow) would be alleviated. This approach would be best suited

to this type of model as the Reynolds stress components are implicitly cou-

pled - this would possibly pave the way to its wide spread use in industrial

applications.
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A Appendix

A.1 RA equations for fluid-particle flows

Beginning from the equations found in §2.2.2 Reynolds-Averaging is applied to find

the exact (unclosed) RA transport equations for each phase. This results in exact

(unclosed) RA transport equations for each statistic in each phase. These are:

• the RA particle-phase volume fraction 〈α〉;

• the PA velocities 〈u′′p〉p and 〈u′′f〉f ;

• the PA granular temperature 〈Θ〉p;

• the PA Reynolds stress tensors 〈u′′pu′′p〉p and 〈u′′′f u′′′f 〉f ;

• the PA total granular energy 〈e〉p = 1/2(〈up · up〉p + 3〈Θ〉p)

The PA turbulent kinetic energy for both phases are defined as:

kp = 1
2〈u

′′
p · u′′p〉p (A.1)

kf = 1
2〈u

′′′
f · u′′′f 〉f (A.2)
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where the fluctuations are averaged with respect to the PA mean. The PA total

granular energy can be rewritten as:

〈e〉p = 1/2〈up〉p · 〈up〉p + kp + 3/2〈Θ〉p (A.3)

The form of this equation is quite informative. It clearly demonstrates that total

particle turbulent kinetic energy can have two contributions i.e. correlated and

uncorrelated energy. The total particle turbulent kinetic energy can be defined as

κp = kp + 3/2〈Θ〉p which means that kp and 〈Θ〉p can be solved for to find the

energy - which is done in this model.

A.2 RA particle-phase equations

A.2.1 Particle-phase volume fraction

Taking the Reynolds average of Eq. 2.31 gives:

∂〈αp〉
∂t

+∇ · 〈αp〉〈up〉p = 0 (A.4)

with no unclosed terms appearing in the continuity equation.

A.2.2 Particle-phase velocity

Taking the Reynolds average of Eq. 2.32 gives:

∂〈αp〉〈up〉p
∂t

+∇ · (〈αp〉p〈up〉p〈up〉p + 〈u′′pu′′p〉p + 〈P〉p) = 〈αp〉(〈A〉p + g) (A.5)

There are several unclosed terms, the most recognisable is the particle-phase Reynolds

tress tensor 〈u′′pu′′p〉p. This can be combined with 〈P〉p by defining a particle-phase

turbulent stress tensor 〈P〉p = 〈P〉p + 〈u′′pu′′p〉p. Employing the definition of A, we

arrive at
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〈A〉p = 1
τp

(〈uf〉p − 〈up)−
1
ρp
〈∇pf〉p (A.6)

where 〈uf〉p and 〈∇pf〉p are mixed averages which arise due to phase coupling.

This refers to the primarily quantity being averaged with respect to the opposite

phase. For the former term (which is of great importance) this is a measure of how

“correlated” the particle-phase is with the fluid-phase. This is also described as

the fluid-phase seen by the particle. Using the properties of the Reynolds average

(see Sec. B.1) and phase average (see Sec. B.2), this can be rewritten as

〈A〉p = 1
τp

(
〈uf〉f − 〈up〉p +

〈α′pu′′′f 〉
〈αp〉〈αf〉

)
− 1
ρp
〈∇pf〉 −

1
ρp〈αp〉

〈α′p∇p′f〉 (A.7)

which leads to an extra term respective to each quantity that determines how

uncorrelated the statistic is. Ozel et al. [131] reports a similar term. The final form

of the PA particle-phase velocity thus reads

∂〈αp〉〈up〉p
∂t

+∇ · 〈αp〉(〈up〉p〈up〉p + 〈P〉p) = 〈αp〉
τp

(
〈uf〉f − 〈up〉p +

〈α′pu′′′f 〉
〈αp〉〈αf〉

)

−〈αp〉
ρp
∇〈pf〉 −

1
ρp
〈α′p∇p′f〉+ 〈αp〉g

(A.8)

A.2.3 Granular temperature

The Reynolds average of the granular temperature is

3
2

[
∂〈αp〉〈Θ〉p

∂t
+∇ · 〈αp〉

(
〈Θ〉p〈up〉p + 〈u′′pΘ〉p + 2

3〈q〉p
)]

= −〈αp〉〈P〉p : ∇〈u〉p − 〈αp〉〈P : ∇u′′〉p + 3〈αp〉
τp

(
〈Θf〉f − 〈Θ〉p +

〈α′pΘf〉
〈αp〉〈αf〉

)
(A.9)

In this equation, 〈u′′pΘ〉p is the turbulent granular temperature flux, which is com-

bined with the granular temperature flux 〈q〉p to recover the total granular temper-

ature flux. The first two terms on the right hand side are the granular source/sink

terms due to the mean flow gradients. The second term is particularly important as

it represents the production of the PA granular temperature due to the dissipation
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of turbulent kinetic energy. It will be shown that this term with an positive sign

arises in the transport equation for turbulent kinetic energy dissipation. The last

term is the momentum coupling term which exchanges energy with the fluid-phase,

exclusively due to drag.

A.2.4 Total granular energy

Taking the Reynolds average of Eq. 2.33

∂〈αp〉〈e〉p
∂t

+∇ · 〈αp〉(〈e〉p〈up〉p + 〈u′′pe〉p + 〈P〉p · 〈up〉p + 〈P · u′′p〉p + 〈q〉p)

= 〈αp〉(〈E〉p + 〈up〉p · g)
(A.10)

There are several unclosed terms, the most notable of which is the turbulent total

granular energy flux: 〈u′′pe〉p. Using the properties of the phase average (Sec. B.2)

this term can be rewritten as:

〈u′′pe〉p = 1
2〈u

′′
p(up · up + 3Θ)〉p

= 1
2〈u

′′
pup · up〉p + 3

2〈u
′′
pΘ〉p

= 1
2〈u

′′
p(u′′p + 〈up〉p) · (u′′p + 〈up〉p)〉p + 3

2〈u
′′
pΘ〉p

= 1
2〈u

′′
p(u′′p · u′′p + 2〈up〉p · u′′p + 〈up〉p · 〈up〉p)〉p + 3

2〈u
′′
pΘ〉p

= 1
2〈u

′′
pu′′p · u′′p〉p + 〈u′′pu′′p〉p · up + 3

2〈u
′′
pΘ〉p

(A.11)

where 〈u′′pu′′p · u′′p〉p is the particle-phase kinetic energy flux. From the definition of

E in Eq. 2.25 we arrive at

〈E〉p = 1
τp

(〈up · uf〉p − 〈up · up〉p) + 3
τp

(〈Θf〉p − 〈Θ〉p)−
1
ρp
〈up · ∇pf〉p

= 1
τp

(〈up〉p · 〈uf〉p − 〈up〉p · 〈up〉p + 〈u′′p〉p · 〈u′′f〉p − 2kp)

+ 3
τp

(
〈Θf〉f − 〈Θ〉p +

〈α′pΘf〉
〈αf〉〈αf〉

)
− 1
ρp
〈up〉p · 〈∇pf〉p −

1
ρp
〈u′′p · ∇pf〉p

(A.12)

There are several mixed averages in 〈E〉p. Using the definitions of the Reynolds

average (Sec B.1) and the phase average (Sec. B.2) it can be rewritten as:
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〈E〉p = 〈A〉p · 〈up〉p + 1
τp

(〈u′′p · u′′f〉p − 2kp) + 3
τp

(
〈Θf〉f − 〈Θ〉p +

〈α′pΘf〉
〈αp〉〈αf〉

)
− 1
ρp
〈u′′p · ∇p′f〉p

(A.13)

Combining the particle-phase Reynolds stress tensor and 〈P〉p, the final form for

the PA total granular energy is

∂〈αp〉〈e〉p
∂t

+∇ · 〈αp〉
(
〈e〉p〈up〉p + 1

2〈u
′′
pu′′p · u′′p〉p + 3

2〈u
′′
pΘ〉p + 〈P〉p · 〈up〉p + 〈P · u′′p〉p + 〈q〉p

)
= 〈αp〉〈A〉p · 〈up〉p + 〈αp〉

τp
(〈u′′p · u′′′f 〉p − 2kp) + 3〈αp〉

τp

(
〈Θf〉f − 〈Θ〉p +

〈α′pΘf〉
〈αp〉〈αf〉

)

−〈αp〉
ρp
〈u′′p · ∇p′f〉p + 〈αp〉〈up〉p · g

(A.14)

On the RHS of this equation there are three contributions due to drag: exchange

of mean kinetic energy, turbulent kinetic energy and granular energy.

A.2.5 Particle-phase mean kinetic energy

The particle-phase mean kinetic energy is defined as:

Kp = 1
2〈up〉p · 〈up〉p (A.15)

In order to derive the transport equation for kp one needs the mean kinetic en-

ergy owing to the definition of the Reynolds average. Clearly, these quantities do

not need their own transport equation as the particle-phase velocities are already

solved. Nevertheless, starting from Eq. A.5 an equation can be written as:

∂〈αp〉Kp

∂t
+∇ · 〈αp〉(Kp〈up〉p + 〈P〉p · 〈up〉p) = 〈αp〉[〈P〉p : ∇〈up〉p + 〈up〉p · (〈A〉p + g)]

(A.16)

The first term on the right hand side represent energy transfer from the mean

kinetic energy to the particle-phase fluctuation energy. This is inclusive of the



198 Appendix A. Appendix

turbulent kinetic energy and the mean granular temperature. From here a transport

equation for the particle-phase fluctuation energy can be found.

A.2.6 Particle-phase fluctuation energy

We can define the particle-phase fluctuation energy as

κp = kp + 3
2〈Θ〉p (A.17)

such that 〈e〉p = Kp+κp. The transport equation for κp is then found by subtracting

Eq. A.16 from Eq. A.14.

∂〈αp〉κp
∂t

+∇ · 〈αp〉
(
κp〈up〉p + 1

2〈u
′′
pu′′p · u′′p〉p + 3

2〈u
′′
pΘ〉p + 〈P〉p + 〈q〉p

)
= −〈αp〉〈〈P〉p : ∇〈up〉p + 〈αp〉

τp
(〈u′′p · u′′′f 〉p − 2kp)

+3〈αp〉
τp

(
〈Θf〉f − 〈Θ〉p +

〈α′pΘf〉
〈αp〉〈αf〉

)
− 〈αp〉

ρp
〈u′′p · ∇p′f〉p

(A.18)

The first term on the right hand side is the production due to mean flow gradients.

The remaining terms are a result of inter-phase coupling. These fluctuation energy

exchange terms are only governed by drag and buoyancy and thus the overall energy

in the system does not contain any viscous dissipation. This means that the overall

fluctuation energy can only be reduced through exchanges with the fluid-phase.

A.2.7 Particle-phase turbulent kinetic energy

The transport equation for the particle-phase turbulent kinetic energy kp can be

found by subtracting Eq. A.9 from Eq. A.17.

∂〈αp〉kp
∂t

+∇ · 〈αp〉
(
kp〈up〉p + 1

2〈u
′′
pu′′p · u′′p〉p + 〈P · u′′p〉p

)
= −〈αp〉〈〈u′′pu′′p〉p : ∇〈up〉p + 〈αp〉〈P : ∇u′′p〉p

+〈αp〉
τp

(〈u′′p · u′′′f 〉p − 2kp)−
〈αp〉
ρp
〈u′′p · ∇p′f〉p

(A.19)
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The first term on the RHS is the production term due to particle phase Reynolds

stresses and the particle phase mean velocity gradients. The second term con-

tains the turbulent kinetic energy dissipation rate εp. As noted this appears as a

production term in the PA granular temperature (see Eq. A.9). Therefore, it is

clear to see that as energy is produced in the large scale turbulent kinetic energy

it dissipates until it cascades down to the PA granular temperature. The final two

terms are the covariance coupling with the fluid phase through drag and buoyancy

respectively.

A.2.8 Particle-phase mean velocity tensor product

Starting from Eq. A.5 and invoking 〈P〉p = 〈P〉p + 〈u′′pu′′p〉p a transport equation

for the particle-phase mean velocity tensor product is given by

∂〈αp〉〈up〉p ⊗ 〈up〉p
∂t

+∇ · 〈αp〉[〈up〉p ⊗ 〈up〉p ⊗ 〈up〉p + (〈P〉p ⊗ 〈up〉p)]

= 〈αp〉[〈P〉p · ∇〈up〉p + 〈up〉p ⊗ (〈A〉p + g)]
(A.20)

As ultimately we want to derive an equation for the Reynolds stress tensor we

now present the transport equation for the particle-phase velocity tensor product.

Note this is prior to averaging, as invoking the decomposition, to find the Reynolds

stress tensor. Beginning at Eq. 2.32 we can multiply through by the cross product

of the particle phase velocity.

∂(αpup ⊗ up)
∂t

+∇ · (αpup ⊗ up ⊗ up) + [up ⊗∇ · (αpP)] = αp[up ⊗ (A+ g)]
(A.21)

A.2.9 Particle-phase Reynolds stress tensor

The transport equation is found by subtracting Eq. A.20 from the RA of Eq. A.21

resulting in
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∂〈αp〉〈u′′p ⊗ u′′p〉p
∂t

+∇ · 〈αp〉(〈up〉p ⊗ 〈u′′p ⊗ u′′p〉p + 〈u′′p ⊗ u′′p ⊗ u′′p〉p + 〈P⊗ u′′p〉p)

= −〈αp〉(〈u′′p ⊗ u′′p〉p · ∇〈up〉p) + 〈αp〉〈P · ∇u′′p〉

+〈αp〉β(〈u′′′f ⊗ u′′p〉p − 〈u′′p ⊗ u′′p〉p)
(A.22)

where the first term on the second line represents the production due to the particle-

phase Reynolds stress and the mean flow gradients. The second term is responsible

for redistribution and dissipation of the Reynolds stresses. Then finally terms are

the energy exchange processes through drag.

A.3 RA fluid-phase equations

A.3.1 Fluid-phase volume fraction

Taking the Reynolds average of Eq. 2.34 gives:

∂〈αf〉
∂t

+∇ · 〈αf〉〈uf〉f = 0 (A.23)

with no unclosed terms appearing in the continuity equation.

A.3.2 Fluid-phase velocity

Taking the Reynolds average of Eq. 2.35 gives:
∂〈αf〉〈uf〉f

∂t
+∇ ·

(
〈αf〉〈uf〉f〈uf〉f + 〈αf〉〈u′′fu′′f〉f + 1

ρf
〈σf〉

)
+ 1
ρf
∇〈pf〉

= ρp〈αp〉
ρfτp

(
〈up〉p − 〈uf〉f −

〈α′u′f〉
〈α〉〈αf〉

)
+ 〈α〉

ρf
∇〈pf〉+ 1

ρf
〈α′∇p′f〉+ 〈αf〉g

(A.24)

New unclosed terms are 〈αf〉〈u′′fu′′f〉f the fluid-phase Reynolds stress tensor and

〈σf〉 which is the RA fluid-phase viscous stress tensor. Using the definition of the

fluid-phase viscous tensor the RA fluid-phase viscous tensor can be written as

〈σf〉 = ρf

〈
(νf + ν∗f )

(
∇uf + (∇uf )t −

2
3∇ · ufI

)〉
(A.25)
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A.3.3 Fluid-phase turbulent kinetic energy

The transport equation for the fluid-phase turbulent kinetic energy has a similiar

form to that of the particle phase. It reads:

∂〈αf〉kf
∂t

+∇ ·
[
〈αf〉kf〈uf〉f + 〈αf〉

1
2〈u

′′′
f u′′′f · u′′′f 〉f + 1

ρf
(〈pfu′′′f 〉 − 〈σf · u′′′f 〉)

]
= −〈αf〉〈〈u′′′f u′′′f 〉f : ∇〈uf〉f + 1

ρf

(
〈pf∇ · u′′′f 〉 − 〈σf : ∇u′′′f 〉

)

+ρp〈αp〉
ρfτp

[
〈u′′′f · u′′p〉p − 〈u′′′f · u′′′f 〉p + 〈u′′′f 〉p · (〈up〉 − 〈u′′′f 〉f

]

+〈αp〉
ρf
〈u′′′f 〉p · ∇〈pf〉+ 〈αp〉

ρf
〈u′′′f · ∇p′f〉p

(A.26)

The terms in the first two lines are common to compressible turbulent flows and can

be modelled in a similar manner [163, 212]. The terms in the last two lines involve

coupling with the particle phase that are all nearly unclosed because they involve

mixed averages. The coupling terms in the fluid phase are rather cumbersome

due to their coupling through α′p - this physically means that the particles exhibit

preferential segregation.

A useful identity can be employed to re-express the particles-phase averages as

fluid-phase averages plus a term involving a correlation with the volume fraction

fluctuations. E.g.

〈uf〉p = 〈uf〉f +
〈α′pu′′′f 〉
〈αp〉〈αf〉

(A.27)

〈u′′′f 〉p =
〈α′pu′′′f 〉
〈αp〉〈αf〉

(A.28)

〈u′′′f · u′′′p 〉p = 2kf +
〈α′pu′′′f · u′′′f 〉
〈αp〉〈αf〉

(A.29)

and

〈u′′′f · ∇p′f〉p = 〈u′′′f · ∇p′f〉f + 1
〈αp〉〈αf〉

〈α′pu′′′f · ∇p′f〉 (A.30)
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The terms 〈α′pu′′′f 〉 and 〈α′pu′′′f · ∇p′f〉 require additional modelling and will be dis-

cussed later on.

Using these results one arrives at the exact (unclosed) transport equations

∂〈αf〉kf
∂t

+∇ ·
[
〈αf〉kf〈uf〉f + 〈αf〉

1
2〈u

′′′
f u′′′f · u′′′f 〉f + 1

ρf
(〈pfu′′′f 〉 − 〈σf · u′′′f 〉)

]
= −〈αf〉〈〈u′′′f u′′′f 〉f : ∇〈uf〉f + 1

ρf

(
〈pf∇ · u′′′f 〉 − 〈σf : ∇u′′′f 〉

)

+ρp〈αp〉
ρfτp

[
〈u′′′f · u′′p〉p − 2kf +

〈α′pu′′′f 〉
〈αp〉〈αf〉

· (〈up〉p − 〈uf〉f )−
〈α′pu′′′f · u′′′f 〉
〈αp〉〈αf〉

]

+ 1
ρf〈αf〉

〈α′pu′′′f 〉p · ∇〈pf〉+ 〈α〉
ρf

(
〈u′′′f · ∇p′f〉f + 1

〈αp〉〈αf〉
〈α′pu′′′f · ∇p′f〉

)
(A.31)

It is interesting to note that the coupling terms in the fluid-phase are asymmetric

with respect to those in the particle phase. This asymmetry enables alternative

turbulence generation mechanisms. One example is homogeneous gravity-driven

fluid-particle flows which exhibit volume fraction and velocity fluctuations with

turbulent like characteristics [3, 28].

A.3.4 Fluid-phase Reynolds stress tensor

An identical approach to how the transport equation was derived for the particle-

phase is followed. This results in

∂〈αf〉〈u′′′f ⊗ u′′′f 〉f
∂t

+∇ · 〈αf〉(〈uf〉f ⊗ 〈u′′′f ⊗ u′′′f 〉f + 〈u′′′f ⊗ u′′′f ⊗ u′′′f 〉f )

= −〈αf〉(〈u′′′f ⊗ u′′′f 〉f · ∇〈uf〉f ) + 1
ρf
∇ · 〈σf ⊗ u′′′f 〉 −

1
ρf
∇〈pfu′′′f 〉

+ 1
ρf
〈pf∇u′′′f 〉 −

1
ρf
〈σf · ∇u′′′f 〉+ 〈αf〉β(〈u′′′f ⊗ u′′p〉p − 〈u′′′f ⊗ u′′′f 〉p)

(A.32)

where the first term on the second line represents the production due to the fluid-

phase Reynolds stress and the mean flow gradients. The second term comprises the

first part of the fluid pressure and dissipative forces. The first two represent the

flux with the first two terms on the next line representing the source term. They
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are responsible for redistribution and dissipation of the Reynolds stresses. Then

finally terms are the energy exchange processes through drag.

A.4 Closure of fluid-phase turbulence terms

As the fluid-phase behaves like a (weakly) compressible gas the closure models are

adopted from turbulence models used for variable-density turbulence Pope [142],

Wilcox [212].

A.4.1 Fluid-velocity flux

In the fluid-phase velocity Eq. A.24, the unclosed flux terms are

〈u′′′f u′′′f 〉f −
1

ρf〈αf〉
〈σf〉 (A.33)

the unclosed term 〈σf〉 can be written in the form found in A.25. Using a turbulent-

viscosity model to close the fluid-phase stress tensor yields

〈u′′′f u′′′f 〉f −
1

ρf〈αf〉
〈σf〉

= − 2
〈αf〉

(νf + 〈ν∗f 〉+ 〈αf〉νft)
(
Sf −

1
3∇ · 〈uf〉fI

)
+ 2

3kfI
(A.34)

where

Sf = 1
2[∇〈uf〉f + (∇〈uf〉f )T ] (A.35)

where the turbulent viscosity is defined by

νft = Cfµ
k2
f

εf
(A.36)

The pseudo-turbulent kinematic viscosity, which is due to particle wakes, can be

modelled as

〈ν∗f 〉 = cµdp

(
φf(Rep)[

1
3(〈up〉p − 〈uf〉f )2 + 〈Θ〉p]

)1/2
(A.37)
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In this work this effect is neglected as the particle Reynolds number is below 10.

As the reader will not the closure adopted here is relatively simple. A plethora

of more advanced models are available in the literature which can account for the

anistropic nature of the Reynolds stresses [108, 159].

A.4.2 Fluid-phase turbulent kinetic energy flux

Consistent with the velocity flux, the turbulent flux term in Eq. A.31

1
2〈u

′′′
f u′′′f · u′′′f 〉f + 1

ρf〈αf〉
(〈pfu′′′f 〉 − 〈σf · u′′′f 〉) (A.38)

using the classic gradient-diffusion hypothesis

1
2〈u

′′′
f u′′′f · u′′′f 〉f + 1

ρf〈αf〉
(〈pfu′′′f 〉 − 〈σf · u′′′f 〉) = −

(νf + 〈ν∗f 〉
〈αf〉

+ νft
σfk

)
∇kf (A.39)

where σfk = 5/3 is a model constant Rumsey [163], Wilcox [212].

A.4.3 Fluid-phase kinetic energy production

The fluid-phase kinetic energy production terms are

− 〈u′′′f u′′′f 〉f : ∇〈uf〉f + 1
ρf〈αf〉

〈pf∇ · u′′′f 〉 (A.40)

where the first contribution is due to mean shear and the second is due to the

correlation between pressure fluctuations and the dilation of the fluctuating fluid

velocity. The mean-shear contribution is closed:

−〈u′′′f u′′′f 〉f : ∇〈uf〉f = 2νft
(
Sf −

1
3∇ · 〈uf〉fI

)
: ∇〈uf〉f −

2
3kf∇ · 〈uf〉f

= 2νftSf : Sf −
2
3kf∇〈uf〉f

(A.41)

where Sf is the traceless part of Sf :

Sf = Sf −
1
3∇ · 〈uf〉fI (A.42)

The pressure-dilation term depends on the fluid-phase Mach number and is usually

neglected in the fluid-phase kinetic energy equation Rumsey [163].
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A.4.4 Fluid-phase turbulent kinetic energy dissipation

1
ρf〈αf〉

〈σf : ∇u′′′f 〉 = 1
〈αf〉

〈
(νf + ν∗f )

[
∇uf + (uf )T −

2
3∇ · ufI

]
: ∇u′′′f

〉
≈ (νf + 〈ν∗f 〉)

〈[
∇uf + (uf )T −

2
3∇ · ufI

]
: ∇u′′′f

〉
f

(A.43)

where the second form comes from neglecting the correlations in ν ∗ ff and α′p at

small scales. By introducing the fluctuating vorticity vector ω′′′f which is defined

as ω′′′fi = εijkω
′′′
jjk where εijk is the Levi-Civita tensor and

ω′′′jjk = 1
2
(∂u′′′fi
∂xj
−
∂u′′′fj
∂xi

)
(A.44)

this term can then be rewritten as Canuto [26]

1
ρf〈αf〉

〈σf : ∇u′′′f 〉 = (νf + ν∗f )
(
〈ω′′′f · ω′′′f 〉f + 4

3〈(∇ · u
′′′
f )2〉f

)
+2(νf + 〈ν∗f 〉)∇ · (∇ · 〈u′′′f u′′′f 〉f − 2〈u′′′f ∇ · u′′′f 〉f )

(A.45)

where the inhomogeneous term, second term on the RHS, is assumed negligible

relative to the first term. The latter is decomposed into two parts:

• solenoidal turbulent dissipation rate, εfs = (νf + 〈ν∗f 〉)〈ω′′′f · ω′′′f 〉f ;

• dilatational turbulent dissipation rate, εfd = (νf + 〈ν∗f 〉)4
3〈(∇ · u

′′′
f )2〉f

However, as the turbulent dissipation rate is modelled using scaling arguments, in

the turbulence model methodology used in this work, both terms are not treated

separately i.e. the turbulent dissipation rate will dissipate at a singular rate Pope

[142]. Thus the fluid-phase kinetic energy dissipation can be closed as:

1
ρf〈αf〉

〈σf : ∇u′′′f 〉 = εf (A.46)

where εf is the fluid-phase turbulent dissipation rate.
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A.5 Closure of particle-phase turbulence terms

As the particle-phase behaves like a compressible gas the closure models are adopted

from turbulence models used for compressible turbulence [163, 212]. At the macroscale

level i.e. two-equation turbulence model level, the closures are very similar to the

fluid phase.

A.5.1 Particle-phase velocity flux

In the particle-phase velocity equation (Eq. A.5) the velocity flux is 〈P 〉p =

〈u′′pu′′p〉p + 〈Pp〉p. The particle-phase Reynolds stress tensor can be modelled as

〈u′′pu′′p〉p = −2νpt(Sp −
1
3∇ · 〈up〉pI) + 2

3kpI (A.47)

where

Sf = 1
2[∇〈up〉p + (∇〈up〉p)T ] (A.48)

where the turbulent viscosity is defined by

νpt = Cpµ
k2
p

εp
(A.49)

The granular contribution the velocity flux is defined by

Pp = 1
ρpα

(ppI− σp) (A.50)

where the particle-pressure can be found from Jenkins and Savage [94]

pp = ρpαpΘ + 2(1 + e)ρpα2
pg0Θ (A.51)

the first term on the right hand side is the kinetic contribution and the second term

is a collisional contribution. In the hydrodynamic limit, the particle-phase viscous

stress tensor is defined by
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σp = µp[∇u + (∇u)T ]− 1
3µp∇ · uI (A.52)

with the particle-phase viscosity

µp = αpρpνp = 2µpdil

(1 + e)g0

[
1 + 4

5(1 + e)g0αp

]2
+ 4

5α
2
pρpdpg0(1 + e)

(Θ
π

)1/2
(A.53)

and

µpdil
= 5
√
π

96 ρpdpΘ1/2 (A.54)

The terms involving the radial distribution function, g0 represent particle collisions.

Meaning that this term is near unity for dilute flow and very large for high collisional

flow. The viscosity given by the granular contribution is characterised by the

velocity, Θ1/2, this is due to granular contributions representing a particle-particle

collision, and is not k1/2
p as these contributions do not arise due to particle-phase

turbulence.

It is instructive to note then that in the particle-phase momentum equation there

exists separate contributions from the mesoscale granular contribution i.e. granular

pressure and viscosity, and the macroscale turbulence contribution i.e. Reynolds

stress.

A.5.2 Granular temperature flux

The PA granular temperature flux is 〈u′′pΘ〉p + 2/3〈q〉p where the first term is the

turbulent granular-temperature flux and the second is the granular-temperature

flux. The turbulent flux is closed using a gradient-diffusion model Pope [142]:

〈u′′pΘ〉p = − νpt
Prpt
∇〈Θ〉p (A.55)

where Prpt is the turbulent Prandtl number. The granular contribution is closed

in a similar manner:
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〈q〉p = −kΘ(〈αp〉, 〈Θ〉p)
ρp〈αp〉

∇〈Θ〉p (A.56)

where kΘ is the granular conductivity and is a function of both particle volume

fraction and granular temperature. An expression for which can be found for with

the KT of granular flow Jenkins and Savage [94] and is expressed as:

κΘ = 2
(1 + e)g0

[
1 + 6

5(1 + e)g0αp

]2
κΘ,dil + 2α2

pρpdpg0(1 + e)
(Θ
π

) 1
2

(A.57)

and

κΘ,dil = 75
384
√
πρpdpΘ1/2 (A.58)

A.5.3 Particle-phase turbulent kinetic energy flux

The particle-phase turbulent kinetic energy flux is modelled as

1
2〈u

′′
pu′′p · u′′p〉p + 〈Pp · u′′p〉p = −

(
νp + νpt

σpk

)
∇kp (A.59)

where σpk = 5/3 is a model constant Rumsey [163] and

νp = (〈αp〉, 〈Θ〉p)
ρp〈αp〉

(A.60)

is the particle-phase kinematic viscosity.

A.5.4 Particle-phase kinetic energy production due to mean

shear

The particle-phase kinetic energy production term due to mean shear is −〈u′′pu′′p〉p :

∇〈up〉p. This term is closed as

− 〈u′′pu′′p〉p : ∇〈up〉p = 2νptSp : Sp −
2
3kp∇ · 〈up〉p (A.61)

where Sp is traceless part of Sp:

Sp = Sp −
1
3∇ · 〈up〉pI (A.62)
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A.5.5 Particle-phase turbulent kinetic energy dissipation

The particle-phase turbulent kinetic energy dissipation results from

〈Pp : ∇u′′p〉p = 1
ρp〈α〉

〈pp∇ · u′′p〉 −
1

ρp〈α〉
〈σp : ∇u′′p〉 (A.63)

where the first term is due to pressure dilation and the second term is due to viscous

effects. The viscous term is modelled as

1
ρp〈α〉

〈σp : ∇u′′p〉 = εp (A.64)

In this work the pressure dilation is neglected as in other works Rumsey [163],

Wilcox [212].

A.6 Coupling terms

The coupling terms involve the Reynolds average with respect to both particle and

fluid properties. This leads to mixed averages that require closure.

A.6.1 Covariance of volume fraction and fluid velocity

This term is often described as the drift velocity, turbulent drag flux or dispersion

velocity. It is often modelled as a turbulent flux Zuber and Findlay [228]

〈α′pu′′′f 〉
〈αp〉〈αf〉

= νft
Scfp

(Cf∇ln〈αf〉 − Cp∇ln〈αp〉) (A.65)

Now setting both constants Cf and Cp to unity the closure simplifies to

〈α′pu′′′f 〉 = νft
Scfp
∇〈αp〉 (A.66)

where Scfp is a turbulent Schmidt number that depends on the particle Stokes

number. This closure has the added benefit that when τp → 0 the correct turbulent

diffusivity term is generated Fox [71].
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A.6.2 Covariance of volume fraction and fluid-pressure gra-

dient

This term represents the fluctuations in the buoyancy force, it can be rewritten as

a flux and source term 〈α′p∇p′f〉 = ∇〈α′pp′f〉 − 〈p′f∇α′p〉. For gravity driven flows,

the fluctuating fluid-pressure gradient can be decomposed into static and dynamic

components:

∇p′f = ∇pf −∇〈pf〉 = ρ′mixg +∇p′ (A.67)

where ρ′mix = (ρp− ρf )α′p. The static component of the mean pressure is 〈∇pf〉s =

〈ρmix〉g with 〈ρmix〉 = ρp〈αp〉 + ρf〈αf〉 and ∇pf = ∇p + ρmixg where the mean

dynamic pressure 〈p〉 is zero under static conditions.) Using this decomposition we

can write:

〈α′p∇p′f = (ρp − ρf )〈(α′p)2〉g + 〈α′p∇p′〉 (A.68)

where the first term involves the variance of the volume fraction through the non-

linear fluctuation. In large stokes number flows this is expected to be large.

A.6.3 Fluid-particle velocity covariance

The covariance appears in the drag term for the turbulent kinetic energy and is

one of the most important terms in E-E modelling. Using the definition of phase

average, we can write

〈u′′p · uf〉p = 〈u′′p · u′′′f 〉f +
〈α′u′′p · u′′′f 〉
〈α〉〈αf〉

(A.69)

in a statistically homogeneous system the latter term is null and thus we are left

with just the covariance between velocity fluctuations in the two phases. There is

much debate over the appropriate closure of this term - the one adopted in this

work is
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〈u′′p · u′′′f 〉p =
√

2kp〈u′′′f · u′′′f 〉p (A.70)

which in this work is denoted as kfp =
√
kfkp. For further discussion on this term

the reader is referred to Fox [71], Xu and Subramaniam [216? ].

A.6.4 Velocity-fluid-pressure-gradient covariance

These terms arise due to buoyancy and, using the decomposition in Sec. A.6.2 they

can be rewritten as

〈u′′′f · ∇p′f〉p = (ρp − ρf )〈α′pu′′′f 〉p · g + 〈u′′′f · ∇p′〉p (A.71)

〈u′′p · ∇p′f〉p = (ρp − ρf )〈α′pu′′p〉p · g + 〈u′′p · ∇p′〉p (A.72)

The terms involving p′ are likely to be negligible, wile the first term on the LHS of

each equation can be written as:

〈α′pu′′′f 〉p = 〈α′pu′′′f 〉+
〈(α′p)2u′′′f 〉
〈αp〉

(A.73)

〈α′pu′′p〉p = 〈α′pu′′p〉+
〈(α′p)2u′′p〉
〈αp〉

(A.74)

The fluxes 〈α′pu′′′f 〉 and 〈α′pu′′p〉 can be modelled analogous to the turbulent disper-

sion term in Sec. A.6.1.
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B.1 Reynolds averaging

As in single-phase turbulence modelling a Reynolds average is defined as an en-

semble average over multiple realisations of the same flow Pope [142]. A Reynolds

average of a quantity (·) will by denoted as 〈(·)〉.

The following decomposition of an arbitrary quantity A, e.g. scalar, vector tensor,

is as follows: RA decomposition: A = 〈A〉 + A′ where 〈A′〉 = 0 and the angle-

bracket operator 〈·〉 denotes the Reynolds average.

Within the context of this work the most important properties of the Reynolds

average are as follows.

1. The Reynolds average commutes with time derivatives: 〈∂(·)/∂t〉 = ∂〈(·)〉/∂t.

2. The Reynolds average commutes with space derivatives: 〈∇(·)〉 = ∇〈(·)〉.

3. The Reynolds average is used to decompose a quantity into its mean and

fluctuations: (·) = 〈(·)〉+ (·)′.

4. The Reynolds average of the fluctuations is null: 〈(·)′〉 = 0.

5. The Reynolds average of the mean is the mean: 〈〈(·)〉〉 = 〈(·)〉.

213
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6. The Reynolds average of a product can be decomposed as

〈AB〉 = 〈A′B′〉+ 〈A〉〈B〉 (B.1)

7. The Reynolds average of a product with a derivative can be rewritten in

terms of mean and fluctuating quantities.〈
A∂B
∂t

〉
= 〈A〉∂〈B〉

∂t
+ ∂〈A′B′〉

∂t
−
〈

B′∂A′
∂t

〉
(B.2)

B.2 Phase/Conditional averaging

In variable-density turbulent flows the Favre average is used to define density-

weighted statistics. The Favre average is related to the Reynolds average by 〈ρA〉 =

〈ρ〉〈A〉F where ρ is the density and 〈A〉F is the Favre average of A. In fluid-particle

flows, the phase volume fractions play the role of density. The decomposition

definitions as follows:

Particle-PA decomposition: A = 〈A〉p + A′′ where 〈A〉p ≡ 〈αpA〉/〈αp〉.

Particle-PA decomposition: A = 〈A〉f + A′′′ where 〈A〉f ≡ 〈αfA〉/〈αf〉.

We define the PA quantities as

〈A〉p = 〈αA〉
〈α〉

(B.3)

〈A〉f = 〈αfA〉
〈αf〉

(B.4)

Unlike the Reynolds average, the phase average does not commute with derivative:

〈∇A〉p 6= ∇〈A〉p. In addition there are two types of phase average with respect to

each phase. Using the above definitions it is trivial to show that

〈A〉 = 〈αp〉〈A〉p + 〈αf〉〈A〉f (B.5)

excluding derivatives, the phase average have similar properties to the Reynolds

average. The PA decomposition in each phase results in a PA mean and fluctuating
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quantity. Using the definition of the PA fluctuations, we can now write PA first-

derivative terms as

〈∇A〉p = ∇〈A〉p −
1
〈αp〉
〈A′′∇αp〉 (B.6)

where the last term is unclosed. Another useful identity is 〈α′A〉 = 〈α′pA′〉 =

〈α′pA′′〉 = 〈α′pA′′′〉 for any A. This identity holds because in each case the difference

between A and the primed quantities is an additive constant and 〈α′p〉 = 0. Thus, in

the RA transport equations, where primed quantities are present this is employed.

Another identity is relating the phase average of a quantity to its covariance with

respect to the volume fraction. First, using Eq. B.5 we rewrite it such that

〈A〉p = 〈A〉f + 1
〈αp〉

(〈A〉 − 〈A〉f ) (B.7)

Similarly, we find 〈αf〉〈A〉f = 〈αfA〉 = 〈(〈αf〉 − α′p)A〉 = 〈αf〉〈A〉 − 〈α′pA〉 so that

〈A〉 − 〈Af〉f =
〈α′pA〉
〈αf〉

(B.8)

Combining these two results to eliminate 〈A〉 yields

〈A〉p = 〈A〉f +
〈α′pA〉
〈αf〉〈αp〉

(B.9)

where A is arbitrary. Likewise, using 〈A′′〉p = 0 and 〈A′′′〉f = 0 to show that

〈α′pA〉 = 〈α′pA′′〉 = 〈α′pA′′′〉 = −〈αpA′′〉 = 〈αfA′′′〉 (B.10)

In the literature the phase average on the LHS of Eq. B.9 is referred to as the

average seen by the particles, with the RHS is the average seen by the fluid. The

second term on the RHS in Eq. B.9 dictates how correlated they are depends on

the fluctuations within the volume fraction. An example of this is the preferential

concentration exhibited by two way coupling effects Ahmed and Elghobashi [6].
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C Appendix

C.1 Tables of definitions and variables
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Table C.1: Definition of variables.

µf = ρfνf

µft = αfρfνft = αfρfCfµ
k2
f

εf

µp = αpρpνp = 2µpdil

(1 + e)g0

[
1 + 4

5(1 + e)g0αp
]2

+ 4
5α

2
pρpdpg0(1 + e)

(Θ
π

)1/2

µpdil
= 5
√
π

96 ρpdpΘ1/2

µpt = αpρpνpt = αpρpCpµ
k2
p

εp

pp = ρpαpΘ + 2(1 + e)ρpα2
pg0Θ

γ = 12(1− e2)go√
πdp

α2
pρpΘ3/2

κΘ = 2
(1 + e)g0

[
1 + 6

5(1 + e)g0αp
]2
κΘ,dil + 2α2

pρpdpg0(1 + e)
(Θ
π

) 1
2

κΘ,dil = 75
384
√
πρpdpΘ1/2

g0 =
[
1−

( αp
αp,max

) 1
3
]−1

Sp = 1
2[∇up + (∇up)T ]− 1

3∇ · upI

Sf = 1
2[∇uf + (∇uf )T ]− 1

3∇ · ufI

kfp = βk
√
kfkp

εfp = βε
√
εfεp

Kn =
√
πdp

12αpg0L

uprms =
√

(2/3)κp

ufrms =
√

(2/3)kf
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Table C.2: Definition of phase-averaged variables.

αp = 〈αp〉

αf = 〈αf 〉

up = 〈u〉p

uf = 〈u〉f

Θ = 〈Θ〉p

kp = 1
2〈u

′′
p · u′′p〉p

kf = 1
2〈u

′′′
f · u′′′f 〉f

εp = 1
ρpαp

〈σ̄p : ∇u′′p〉

εf = 1
ρfαf

〈σ̄f : ∇u′′′f 〉

σp = µp[∇up + (∇up)T ]− 1
3µp∇ · upI

σf = µf [∇uf + (∇uf )T ]− 1
3µf∇ · ufI

u′′p = up − 〈up〉p

qΘ = 〈qΘ〉p = κΘ
αpρp

∇Θp

u′′′f = uf − 〈uf 〉f

〈up〉p = 〈αpup〉/〈αp〉

〈uf 〉f = 〈αfuf 〉/〈αf 〉

u′′pu′′p = 〈u′′pu′′p〉p
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Table C.3: Turbulence model parameters for RA-TFM.

Cp Cg Cρ C1 C2 C3 C4 C5 βk βε Cfµ Cpµ

0 0 1 1.44 1.92 1 1 1 1 1 0.09 0.09

Table C.4: Turbulence model parameters for RA-TFM velocity pressure models.

Cε1 Cε2 Cµ C1 C2 CL Cη βε Cfµ Cpµ σk σε

1.6 1.9 0.22 1.4 0.3 0.23 70 1 0.09 0.09 1 1



D Appendix

D.1 Code repository

The source code of both ratfmFoam and ratfmCoupledFoam and supplementary

material can be downloaded from www.github.com/mjriella/RA-EE.

221
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