
Zurich Open Repository and
Archive
University of Zurich
Main Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2019

Radiation dosimetry of [F]-PSS232-a PET radioligand for imaging mGlu5
receptors in humans

Sah, Bert-Ram; Sommerauer, Michael; Mu, Linjing; Gonzalez, Gloria Pla; Geistlich, Susanne; Treyer,
Valerie; Schibli, Roger; Buck, Alfred; Warnock, Geoffrey; Ametamey, Simon M

Abstract: PURPOSE (E)-3-(pyridin-2-ylethynyl)cyclohex-2-enone O-(3-(2-[F]-fluoroethoxy)propyl) oxime
([F]-PSS232) is a new PET tracer for imaging of metabotropic glutamate receptor subtype 5 (mGlu5),
and has shown promising results in rodents and humans. The aim of this study was to estimate the radi-
ation dosimetry and biodistribution in humans, to assess dose-limiting organs, and to demonstrate safety
and tolerability of [F]-PSS232 in healthy volunteers. METHODS PET/CT scans of six healthy male
volunteers (mean age 23.5 ± 1.7; 21-26 years) were obtained after intravenous administration of 243 ± 3
MBq of [F]-PSS232. Serial whole-body (vertex to mid-thigh) PET scans were assessed at ten time points,
up to 90 min after tracer injection. Calculation of tracer kinetics and cumulated organ activities were
performed using PMOD 3.7 software. Dosimetry estimates were calculated using the OLINDA/EXM
software. RESULTS Injection of [F]-PSS232 was safe and well tolerated. Organs with highest absorbed
doses were the gallbladder wall (0.2295 mGy/MBq), liver (0.0547 mGy/MBq), and the small intestine
(0.0643 mGy/MBq). Mean effective dose was 3.72 ± 0.12 mSv/volunteer (range 3.61-3.96 mSv; 0.0153
mSv/MBq). CONCLUSION [F]-PSS232, a novel [F]-labeled mGlu5 tracer, showed favorable dosimetry
values. Additionally, the tracer was safe and well tolerated.

DOI: https://doi.org/10.1186/s13550-019-0522-9

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-172188
Journal Article
Published Version

 

 

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0)
License.

Originally published at:
Sah, Bert-Ram; Sommerauer, Michael; Mu, Linjing; Gonzalez, Gloria Pla; Geistlich, Susanne; Treyer, Va-
lerie; Schibli, Roger; Buck, Alfred; Warnock, Geoffrey; Ametamey, Simon M (2019). Radiation dosimetry
of [F]-PSS232-a PET radioligand for imaging mGlu5 receptors in humans. EJNMMI Research, 9(1):56.
DOI: https://doi.org/10.1186/s13550-019-0522-9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZORA

https://core.ac.uk/display/224783418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1186/s13550-019-0522-9
https://doi.org/10.5167/uzh-172188
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s13550-019-0522-9


ORIGINAL RESEARCH Open Access

Radiation dosimetry of [18F]-PSS232—a PET
radioligand for imaging mGlu5 receptors in
humans
Bert-Ram Sah1,2†, Michael Sommerauer1,3†, Linjing Mu1, Gloria Pla Gonzalez4, Susanne Geistlich4, Valerie Treyer1,
Roger Schibli4, Alfred Buck1, Geoffrey Warnock1,5* and Simon M. Ametamey4

Abstract

Purpose: (E)-3-(pyridin-2-ylethynyl)cyclohex-2-enone O-(3-(2-[18F]-fluoroethoxy)propyl) oxime ([18F]-PSS232) is a new
PET tracer for imaging of metabotropic glutamate receptor subtype 5 (mGlu5), and has shown promising results in
rodents and humans. The aim of this study was to estimate the radiation dosimetry and biodistribution in humans,
to assess dose-limiting organs, and to demonstrate safety and tolerability of [18F]-PSS232 in healthy volunteers.

Methods: PET/CT scans of six healthy male volunteers (mean age 23.5 ± 1.7; 21–26 years) were obtained after
intravenous administration of 243 ± 3 MBq of [18F]-PSS232. Serial whole-body (vertex to mid-thigh) PET scans were
assessed at ten time points, up to 90 min after tracer injection. Calculation of tracer kinetics and cumulated organ
activities were performed using PMOD 3.7 software. Dosimetry estimates were calculated using the OLINDA/EXM
software.

Results: Injection of [18F]-PSS232 was safe and well tolerated. Organs with highest absorbed doses were the
gallbladder wall (0.2295 mGy/MBq), liver (0.0547 mGy/MBq), and the small intestine (0.0643 mGy/MBq). Mean
effective dose was 3.72 ± 0.12 mSv/volunteer (range 3.61–3.96 mSv; 0.0153 mSv/MBq).

Conclusion: [18F]-PSS232, a novel [18F]-labeled mGlu5 tracer, showed favorable dosimetry values. Additionally, the
tracer was safe and well tolerated.
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Introduction
Positron emission tomography (PET) is a powerful im-
aging modality that enables imaging and quantitative
measurement of tracer activity in vivo. [18F]-FDG is
currently the most widely used tracer [1]. In spite of its
high background and low selectivity in the brain, FDG is
widely used in clinical routine in the diagnostic work up
of neurodegenerative diseases [2, 3].
In recent years, a plethora of receptor-selective brain

tracers were developed and some of them have already
entered the clinical arena [4–6]. An interesting target for
brain studies is the metabotropic glutamate receptor

(mGlu), a heterogeneous family of eight G-protein-
coupled receptors, which are linked to multiple second
messengers and modulation of ion channel activity in
the central nervous system (CNS). The metabotropic
glutamate receptor subtype 5 (mGlu5) is implicated in
several brain disorders including schizophrenia, depres-
sion, anxiety, and Parkinson’s disease, in which [18F]-
FDG is of limited use [7]. [11C]-ABP688 is a widely used
PET radiotracer in the clinic and shows selective binding
to mGlu5 receptors [7, 8]. The main limitation of [11C]-
ABP688 is the short physical half-life of carbon-11
(20 min), which limits its wider application. For the pur-
poses of centralized radiotracer production, a PET tracer
labeled with fluorine-18 is desirable. Therefore, several
fluorinated analogs of [11C]-ABP688 were investigated.
[18F]-PSS232 (Fig. 1) showed favorable in vitro and in
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vivo properties and high selectivity for mGlu5 [9, 10];
therefore, it was selected for translation into humans.
The aim of this study was to evaluate the radiation

dosimetry of [18F]-PSS232 and to determine its safety
and tolerability in healthy volunteers.

Materials and methods
Ethics approval, consent to participate, and volunteers
All procedures performed in studies involving human
participants were in accordance with the ethical stan-
dards of the institutional and/or national research com-
mittee and with the 1964 Helsinki declaration and its
later amendments or comparable ethical standards. The
institutional review board approved this study (KEK-ZH
Nr. 2013-0100). Six healthy male volunteers were pro-
spectively selected for the study and gave written in-
formed consent prior to inclusion into the study.

Preparation of 18F-PSS232
The radiosynthesis of [18F]-PSS232 was performed as re-
ported previously [9]. Briefly, [18F]-PSS232 was prepared
via aliphatic nucleophilic substitution by reacting the
mesylate precursor with [18F]fluoride in the presence of
Kryptofix-222® in anhydrous dimethylsulfoxide at 95 °C
for 10 min. After HPLC purification, the product was
collected and trapped on a Light C18 cartridge and eluted
with EtOH (1.5 mL) in a sterile vial containing 16.5 mL
saline and 450 mg sodium ascorbate. The radiolabeled
product was confirmed by co-elution with unlabeled
PSS232. Molar radioactivity ranged from 70 to 150 GBq/
μmol at end of the synthesis, and purity was ≥ 98%.

Safety monitoring
Vital signs (blood pressure, body temperature, and heart
rate) and adverse effects were assessed in all patients.

Data acquisition
After bolus injection of 243.4 ± 2.6 MBq of [18F]-PSS232
into a cubital or antebrachial vein, all volunteers under-
went standardized serial whole-body PET/CT imaging
(vertex of skull to mid-thigh) using an integrated PET/CT
system (DiscoveryTM VCT; GE Healthcare, Milwaukee,

Wisconsin, USA), which is under routine maintenance
and cleared for clinical use. Subjects were encouraged to
hydrate well and void their bladder before and after the
scan. They were asked to lie on the examination table for
the entire acquisition. In total, ten emission scans were ac-
quired at time points 0, 10, 20, 30, 40, 50, 60, 70, 80, and
90 min after injection of [18F]-PSS232. Scan duration at
each time point was 6 min. Before the beginning of the
serial PET series, a standard low-dose CT was performed
for attenuation correction of the PET scan and assistance
in organ delineation.

Data analysis
The ten emission scans were merged into a dynamic series
and tracer kinetics were quantified using the coregistered
dynamic PET and CT (PMOD 3.7 Fusion, PMOD Tech-
nologies LLC, Zurich, Switzerland). Volumes of interest
(VOIs) were placed in the brain, thyroid, thymus, heart
wall, heart content, liver, gall bladder, small intestine, pan-
creas, kidneys, spleen, muscles, urinary bladder, and bone
marrow (proximal humerus). It was taken care to delin-
eate whole organs. This was done manually and visually
by an experienced nuclear physician and radiologist, con-
sidering the anatomical edge as shown in the CT scan, as
well as manually adjusting the VOIs in each PET scan sep-
arately. For bone marrow, we delineated the proximal hu-
merus, and scaled that kBq/mL average to the “standard
human” full organ mass as given by OLINDA. There is no

Table 1 Subject characteristics and injected radioactivity of
[18F]-PSS232

Volunteer Sex Age (years) Injected dose (MBq) Effective dose
(mSv/patient)

1 M 25 243.2 3.96

2 M 21 240.5 3.66

3 M 22 240.6 3.73

4 M 24 246.6 3.65

5 M 23 247.2 3.73

6 M 26 242.4 3.61

Mean ± SD 23 ± 1.7 243.4 ± 2.6 3.72 ± 0.12

Fig. 1 Chemical structure of [18F]-PSS232
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information available about specific binding of the tracer
to any components of the bone marrow.
The x-axis for each time activity curve was adjusted to

account for the time difference between individual PET
fields-of-view in construction of whole body images.
Analysis of the PET-derived organ time-activity curve
(TACs) to Bq, incorporating radioactive decay, was per-
formed automatically in PMOD (Kinetic Modeling mod-
ule). Following conversion, the cumulated organ activity
(Bq-hr/Bq) was calculated using trapezoidal integration
for the duration of the PET data, and analytical integration
of the decay to infinity from the end of the PET data.
Total organ cumulated activity was calculated using the
standard organ volumes reported in the OLINDA/EXM
documentation. The remainder fraction was calculated by
subtracting the summed organ residence times from the
radionuclide theoretical whole body residence time, which
for [18F] is 2.6401 h [11]. Effective dose, and individual

organ doses, was calculated for each patient using
OLINDA/EXM Version 1.0 (Version OLINDA/EXM 1.0,
Vanderbilt University, Nashville, TN, USA). ICRP 60
method was used. No bladder-voiding model was used be-
cause of the lipophilic structure and dominantly excretion
through the biliary system. ICRP 30 gastrointestinal model
was used for simulation of 15% of liver and 50% of gall
bladder activity entering the small intestine.

Results
Safety
The injection of 243.4 ± 2.6 (range 240.5–247.2) MBq
[18F]-PSS232 was well tolerated. An overview over the
injected dose of [18F]-PSS232 is shown in Table 1. Mean
body temperatures during screening, before injection of
tracer, and after imaging were 36.6 °C (range 35.8–37.2),
36.6 °C (range 36.0–37.2), and 36.6 °C (36.2–37.1), respect-
ively. Mean systolic blood pressures during screening, before

Fig. 2 Maximum-intensity projection PET images of the sequential whole body PET-scans from 0 to 90 min after injection of [18F]-PSS232 in the
right cubital vein. All images are displayed with the same intensity scale

Fig. 3 Typical time–activity curves for selected organs (liver, gallbladder wall, small intestine, brain, kidneys, and urinary bladder after injection of
240.5 MBq [18F]-PSS232)
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injection of tracer, and after imaging were 120.3 mmHg
(range 107–130), 125.2 mmHg (range 95–140), and
113.2 mmHg (range 95–123), respectively. Mean dia-
stolic blood pressures during screening, before injection
of tracer, and after imaging were 66.5 mmHg (range
59–77), 74.7 mmHg (range 51–102), and 66.3 mmHg
(range 58–79), respectively. Mean heart rates at
screening, before injection of tracer, and after imaging
were 58 (range 43–86), 61 (range 43–80), and 66
(range 53–72), respectively. None of the volunteers re-
ported any discomfort with regards to the injection.

Radiation dosimetry estimates and biodistribution
An example of a typical serial whole-body PET (maximum
intensity projection) is presented in Fig. 2. Typical time-
activity curves of representative organs are shown in Fig. 3.
Cumulated organ activities are shown in Table 2. Activity
was secreted through the liver into the bile. Thus, the
highest radiation dose was received by the gallbladder wall
(0.2295 mGy/MBq), liver (0.0547 mGy/MBq), and the
small intestine (0.0643 mGy/MBq). Mean effective dose
was 3.72 ± 0.12 mSv/volunteer (range 3.61–3.96 mSv). All
calculated radiation dose estimates are summarized in
Table 3, and results using ICRP 30 gastrointestinal model
in Table 4.

Discussion
Since the identification of mGlu5 as a promising target,
a plethora of radiolabeled tracers have been evaluated
preclinically [8, 12–15]. Only a few have progressed to
the clinical setting [16–19]. Recently, [18F]-PSS232 was
identified as a new fluorinated derivative, which can be

reliably prepared in high radiochemical yields and with
high molar radioactivity. It was demonstrated to readily
cross the blood–brain barrier and to selectively bind to
mGlu5-rich regions in the rat brain [9, 10]. In order to
further investigate this promising tracer, an exploratory
clinical trial was performed.
PET imaging with [18F]-PSS232 was shown to be safe

and well tolerated in all volunteers. No adverse events
were observed in any studied subjects. The effective dose
of 0.0153 mSv/MBq is favorable and in the same range
as the reported dose of a recently published fluorine-18-
labeled mGlu5 tracer ([18F]-FPEB; 0.0149–0.0250 mSv/
MBq, depending on bladder voiding model [19]). Among
the six volunteers, the effective dose showed very low
inter-individual variability (SD = 0.0005). Radiation ex-
posure was lower than the reported dose for clinically
used fluorine-18-labeled tracers such as fluoromethyl-
choline (0.031 mSv/MBq) [20] and comparable to the

Table 2 Mean organ residence times. Data is presented as Bq-
hr/Bq administered (mean ± SD; n = 6)

Source organ Mean residence time

Brain 0.0527 ± 0.0066

Gallbladder contents 0.1348 ± 0.0811

Small intestine 0.2702 ± 0.0499

Heart contents 0.0096 ± 0.0018

Heart wall 0.0109 ± 0.0017

Kidneys 0.0174 ± 0.0024

Liver 0.3873 ± 0.0716

Muscle 0.7552 ± 0.0174

Pancreas 0.0039 ± 0.0009

Red marrow 0.0681 ± 0.0137

Spleen 0.0035 ± 0.0014

Thymus 0.0008 ± 0.0002

Thyroid 0.0005 ± 0.0001

Urinary bladder contents 0.0200 ± 0.0181

Remainder 0.9050 ± 0.3442

Table 3 Absorbed organ dose (mGy/MBq) and effective dose
(mSv/MBq) after injection of [18F]-PSS232. Coefficients of
variation (COV) (ratio of SD to mean)

Organ Mean COV Minimum Maximum

Adrenals 0.0138 2.2 0.0134 0.0143

Brain 0.0107 10.3 0.0089 0.0121

Breasts 0.0064 17.2 0.0050 0.0080

Gallbladder wall 0.2295 55.4 0.0567 0.4340

Lower large intestine wall 0.0130 7.7 0.0115 0.0145

Small intestine 0.0643 14.6 0.0510 0.0816

Stomach wall 0.0118 5.1 0.0111 0.0128

Upper large intestine wall 0.0217 6 0.0207 0.0246

Heart wall 0.0153 9.2 0.0129 0.0172

Kidneys 0.0209 11 0.0177 0.0249

Liver 0.0547 18.1 0.0440 0.0727

Lungs 0.0090 7.8 0.0081 0.0101

Muscle 0.0108 8.3 0.0093 0.0119

Ovaries 0.0156 6.4 0.0138 0.0169

Pancreas 0.0197 12.2 0.0175 0.0246

Red marrow 0.0140 4.3 0.0129 0.0145

Osteogenic cells 0.0136 11.8 0.0113 0.0154

Skin 0.0059 13.6 0.0048 0.0071

Spleen 0.0105 14.3 0.0092 0.0135

Testes 0.0071 14.1 0.0054 0.0088

Thymus 0.0121 10.7 0.0104 0.0147

Thyroid 0.0088 6.8 0.0077 0.0096

Urinary bladder wall 0.0188 43.1 0.0140 0.0368

Uterus 0.0151 4.6 0.0142 0.0164

Total body 0.0123 0.8 0.0121 0.0123

Effective dose 0.0153 3.3 0.0148 0.0163
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dose of [18F]-fluoroethyl-tyrosine (0.016 mSv/MBq) [21].
[18F]-FPEB is more lipophilic than [18F]-PSS232; [18F]-
PSS232 exhibits a logD value of 2.0, whereas [18F]-FPEB
shows a value of 2.8.
Due to the lipophilic properties of the tracer, it is pri-

marily excreted through the hepatobiliary system, and
consequently the highest radiation doses are received by
the gallbladder wall, the small intestine, and the liver.
Our results overestimate the dose received by the gall-
bladder wall and the liver due to incomplete clearance of
the tracer from the liver parenchyma at the end of the
imaging study, whereas for the calculation of cumulated
organ activities we assumed all activity to remain in the
organ from that point of time onwards. This predomin-
antly influences the gallbladder and small intestine
(Fig. 2) cumulated organ activities. Encouraging patients
to consume a fatty meal after imaging might reduce the
activity received by the gallbladder wall significantly,
since tracer secretion with the bile into the small

intestine could be accelerated. However, this has to be
proven in another study. Cumulated organ activity of
the gall bladder might be overestimated, and of the large
bowel underestimated, because it can be expected that
tracer is cleared from small to large bowel within hours
(Table 4 for results using ICRP 30 gastrointestinal
model). Beyond that, organ doses in our study are in
the same range as other lipophilic tracers [18]. The
dosimetry results for [18F]-PSS232 confirmed a low ra-
diation dose to the urinary system (Table 3). As ex-
pected for a lipophilic tracer, this is significantly lower
than reported doses for [18F]-FDG.

Conclusion
[18F]-PSS232 is a well-tolerated imaging probe for
mGlu5. Due to its high lipophilicity, the tracer is ex-
creted through the hepatobiliary system. It shows favor-
able dosimetry in humans, opening the possibility for
further studies in patients.
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