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Dr. Ignacio Peñarrocha Alós

Castellón de la Plana, June 2019





Escuela de Doctorado de la Universitat Jaume I
Programa de Doctorado en Tecnoloǵıas Industriales y Materiales
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Abstract

Fault diagnosis (FD) has emerged as an effective tool to meet the increasing demands on re-
liability and safety of modern control systems. Among FD techniques, the strategies based on
fault estimation (FE) appear as advanced monitoring methods that give information not only
about the moment of appearance and the location of a fault but also about its size and shape,
which is of paramount importance for both real-time decision and active fault tolerant control.
Fruitful results have been obtained in FE; however, the existing FE methods still posses certain
difficulties which limit their application scope.

This thesis addresses some issues arisen from the application of estimation-based FD strate-
gies to different practical systems such as industrial pipe networks, multistage manufacturing
processes, wind turbines and wind farms. With this aim, we present different fault estimators
relying on model-based augmented observers and, also, various fault evaluators that process the
fault estimates provided by the observers in threshold-based decision mechanisms.

The thesis devotes an important effort to the design of these estimation-based FD strategies.
The thesis presents the design of fault estimators, the design of fault evaluators and the co-design
of fault estimators and evaluators which allow specifying requirements over FD parameters. We
use performance parameters which are typical in practice but uncommon in theoretical designs.
In the fault estimation step, we present optimal designs which deal with the cumulative squared
error due to abrupt faults, the delay in tracking incipient faults, the variance due to noises
and the degree of interfault and unknown input (UI) decoupling. Practical UI decoupling is
in fact achieved in single-step optimization design problems dealing with other performance
requirements. In the fault evaluation step, we introduce optimal designs and co-designs which
deal with the minimum isolable fault, the isolation time and the false isolation rate. These
proposed optimal designs are mainly formulated using matrix inequalities.

The thesis also deals with the structure of augmented observers for FE. First, we present an
enhanced form of augmented observers —proportional multiple-integral and multiple-resonant
observers— with an improved performance w.r.t. faults with periodic components. Second, we
present a probabilistic design approach that optimally deals with the trade-offs arisen from the
structural complexity of augmented observers.

Finally, the methods developed in this thesis are extended to schemes of banks of model-
based augmented observers and threshold-based decisions mechanisms. The proposed schemes
allow achieving estimation-based FD in systems with non-isolable faults at the expense of some
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mild fault simultaneity restrictions. These schemes are also utilized in the thesis for ameliorating
the fault estimation and evaluation performance in groups of comparable systems operating
under similar conditions.



Resumen

El diagnóstico de fallos (FD, del inglés Fault Diagnosis) ha emergido como una herramienta efi-
caz para responder a las crecientes demandas de fiabilidad y seguridad en los sistemas de control
modernos. Entre las técnicas de FD, las estrategias basadas en la estimación de fallos (FE, del
inglés Fault Estimation) son métodos avanzados de monitoreo que proporcionan información no
sólo sobre la aparición y ubicación de un fallo, sino también sobre su tamaño y forma, lo que
es de suma importancia para la toma de decisiones en tiempo real y para el control tolerante a
fallos activo. Muchos resultados interesantes se han obtenido en el campo de FE; sin embargo,
los métodos existentes de FE presentan todav́ıa ciertas limitaciones que dificultan su aplicación.

Esta tesis aborda algunos de los problemas derivados de la aplicación de estrategias de
FE a diferentes sistemas prácticos como redes de tubeŕıas industriales, procesos de fabricación
multietapa, aerogeneradores y parques eólicos. Con este objetivo, presentamos diferentes esti-
madores de fallo basados en observadores aumentados y, también, varios evaluadores de fallo
que procesan las estimaciones proporcionadas por los observadores en mecanismos de decisión
con umbrales.

La tesis se centra en el diseño de estas estrategias de FD basadas en estimación. Aśı, pre-
sentamos diferentes diseños de estimadores, diseños de evaluadores y co-diseños de estimadores
y evaluadores que permiten especificar requisitos sobre parámetros que describen el desempeño
de la estrategia de FD. En concreto, utilizamos parámetros de desempeño que son t́ıpicos en la
práctica pero poco comunes en los diseños teóricos. Para la estimación de fallos, presentamos
diseños óptimos que tratan con el error cuadrático acumulado ante fallos abruptos, el retraso en
el seguimiento de fallos incipientes, la varianza debida a los ruidos y el grado de desacoplamiento
de otros fallos y de entrada desconocidas (UIs, del inglés Unknown Inputs). En un único prob-
lema de optimización, el desacoplamiento práctico de UIs se consigue junto a otros requisitos de
desempeño. Para la evaluación de fallos, introducimos diseños y co-diseños óptimos que utilizan
el fallo mı́nimo aislable, el tiempo de aislamiento y la tasa de falsos aislamientos. Los diseños
óptimos que se formulan en la tesis se basan, principalmente, en desigualdades matriciales.

La tesis también estudia la estructura de los observadores aumentados para FE. Primero,
presentamos una forma mejorada de observadores aumentados — observadores proporcionales
múltiple-integrales y múltiple-resonantes — con un comportamiento mejorado frente a fallos
con componentes periódicas. En segundo lugar, presentamos un enfoque de diseño probabiĺıstico
que aborda de manera óptima los compromisos derivados de la complejidad estructural de los
observadores aumentados.
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Finalmente, los métodos desarrollados en esta tesis se extienden a esquemas de bancos
de observadores aumentados y de mecanismos de decisión. Los esquemas propuestos permiten
lograr FE en sistemas con fallos no aislables a costa de algunas restricciones leves sobre la
simultaneidad de los fallos. Estos esquemas también se utilizan en la tesis para mejorar las
prestaciones de la estimación y la evaluación de fallos en conjuntos de sistemas comparables
que operan bajo condiciones similares.



Resum

El diagnòstic de fallades (FD, de l’anglès Fault Diagnosis) ha emergit com una eina eficaç per
respondre a les creixents demandes de fiabilitat i seguretat en els sistemes de control moderns.
Entre les tècniques de FD, les estratègies basades en l’estimació de fallades (FE, de l’anglès Fault
Estimation) són mètodes avançats de monitorització que proporcionen informació no només
sobre l’aparició i la ubicació d’una fallada, sinó també sobre la seua mida i forma, el que és molt
important per a la presa de decisions en temps real i per al control tolerant a fallades actiu.
Molts resultats interessants s’han obtingut en el camp de FE; tanmateix, els mètodes existents
de FE presenten encara limitacions que dificulten la seua aplicació.

Aquesta tesi aborda alguns dels problemes derivats de l’aplicació d’estratègies de FE a difer-
ents sistemes pràctics com xarxes de canonades industrials, processos de fabricació multietapa,
aerogeneradors i parcs eòlics. Amb aquest objectiu, presentem diferents estimadors de fallades
basats en observadors augmentats i, també, diversos avaluadors de fallades que processen les
estimacions proporcionades pels observadors en mecanismes de decisió amb llindars.

La tesi se centra en el disseny d’aquestes estratègies de FD basades en estimació. Aix́ı,
presentem diferents dissenys d’estimadors, dissenys d’avaluadors i co-dissenys d’estimadors i
avaluadors que permeten especificar requisits sobre paràmetres que descriuen el comportament
de l’estratègia de FD. En concret, utilitzem paràmetres de comportament que són t́ıpics en la
pràctica però poc comuns en els dissenys teòrics. Per a l’estimació de fallades, presentem dissenys
òptims que tracten amb l’error quadràtic acumulat davant fallades abruptes, el retard en el
seguiment de fallades incipients, la variància prodüıda pels sorolls i el grau de desacoblament
d’altres fallades i d’entrades desconegudes (UIs, l’anglès Unknown inputs). En un únic problema
d’optimització, el desacoblament pràctic d’UIs s’aconsegueix conjuntament amb altres requisits
d’execució. Per a l’avaluació de fallades, introdüım dissenys i co-dissenys òptims que utilitzen la
fallada mı́nima äıllable, el temps d’äıllament i la taxa de falsos äıllaments. Els dissenys òptims
que es formulen en la tesi es basen, principalment, en desigualtats matricials.

La tesi també estudia l’estructura dels observadors augmentats per a FE. En primer lloc, pre-
sentem una forma millorada d’observadors augmentats — observadors proporcionals múltiple-
integrals i múltiple-ressonants — amb un comportament millorat davant de fallades amb compo-
nents periòdiques. En segon lloc, presentem un enfocament probabiĺıstic de disseny que aborda
de manera òptima els compromisos derivats de la complexitat estructural dels observadors aug-
mentats.
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Finalment, els mètodes desenvolupats en aquesta tesi s’estenen a esquemes de bancs d’obser-
vadors augmentats y de mecanismes de decisió. Els esquemes proposats permeten aconseguir
FE en sistemes amb fallades no äıllables a canvi de algunes restriccions lleugeres sobre la simul-
tanëıtat de les fallades. Aquests esquemes també s’utilitzen en la tesi per millorar les prestacions
de l’estimació i l’avaluació de fallades en conjunts de sistemes comparables que operen en condi-
cions similars.
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gracias al Prof. Ron J Patton por haberme acogido durante mi estancia de investigación en la
Universidad de Hull, Reino Unido.

En segundo lugar, quiero acordarme de todos los compañeros con los que he podido inter-
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Chapter 1

Introduction

1.1 Background

1.1.1 Fault diagnosis objectives

Many engineering systems such as chemical processes, manufacturing systems, engines, power
networks, wind energy conversion systems and aerospace systems are subjected to abnormal
events or faults. Sensor, actuator or process faults may drastically change the system behavior,
resulting in a performance degradation or even danger. As a result, it is of paramount importance
to recognize the presence of faults as early as possible and to implement fault tolerant operation
for minimizing performance degradation and avoiding dangerous situations [100,143].

Traditionally, the task of diagnosing and responding to abnormal events in a process has
relied on human operators. However, this task has significantly increased in difficulty due to
several factors: the increasing complexity and size of modern process plants, the increasing
demands on diagnostic activities and the fact that process measurements are often insufficient or
incomplete. Hence, a grand challenge for control engineers is the development of fault diagnosis
(FD) and fault tolerant control (FTC) strategies. In fact, people in the process industry view
this as the next major milestone in control systems research and application [290].

In the last three decades, significant efforts have been made in the field of FD. FD is the
procedure to obtain fault information and it includes fault detection and isolation (FDI) and
fault identification or analysis (FA). Especially, a lot of attention has been paid to FDI meth-
ods; for instance, the review papers by Frank (1990) [95]; Isermann (1997) [138]; Venkatasub-
ramanian, Rengaswamy, Yin & Kavuri (2003) [290]; Isermann (2005) [139]; Zhang & Jiang
(2008) [330]; Yin, Ding, Xie & Luo (2014) [315]; Gao, Cecati & Ding (2015) [100, 101]; Yu &
Jiang (2015) [318]; Tidriri, Chatti, Verron & Tiplica (2016) [284]; and the books by Himmel-
blau (1978) [131]; Gertler (1998) [111]; Blanke, Kinnaert, Lunze and Staroswiecki (2006). [29];
Isermann (2006) [140]; Witczak (2007) [301]; Ding (2008 and 2014) [70, 71]; Chen and Patton
(2012) [44]; Patton, Frank & Clark (2013) [227].
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Figure 1.1. Stable systems affected by faults.

On a parallel path, research on FTC has increased progressively. FTC is a control strategy
to ensure that a system can continue its operation with satisfactory performance in the presence
of faults. Several survey papers and books on FTC are available in the literature. For instance,
the survey papers by Rauch (1994) [236] Blanke, Izadi-Zamanabadi, Bøgh & Lunau (1997) [28];
Polycarpou & Vemuri(1998) [232], Zhang & Jiang (2008) [330]; Benosman (2010) [21]; Yu &
Jiang (2015) [318]; and the books by Mahmoud, Jiang & Zhang (2003) [193]; Blanke, Kinnaert,
Lunze and Staroswiecki (2006). [29]; Zhang, Jiang & Shi (2012) [325]; Hamayun, Edwards &
Halim Alwi (2016) [125].

FDI strategies aim to provide information about the appearance (fault detection) and the
location (fault isolation) of a fault. However, in FTC designs, not only the information about
the appearance and the location of a fault is necessary. The information about its size and shape
(fault analysis) is also important. Hence, it seems that most FDI techniques are developed as
a diagnostic or monitoring tool, rather than for FTC purposes. Different from FDI methods,
fault estimation (FE) aims to provide information about the magnitude and the form of the
fault. Hence, as stated in [326], FE appears as a promising bridge between FDI and FTC.

In the FD context, FE is evidently more challenging than FDI and fruitful results were ob-
tained during the past two decades. Commonly, advanced observer-based techniques are utilized
for FE [100,326]. These techniques mainly include augmented observers [102,103,163,306,339],
sliding mode observers [84,298,316], adaptive observers [98,177,241,312] and iterative learning
observers [50,136]. However, as detailed by Zhang, Jiang & Shi [325], the existing FE methods
posses certain difficulties which limit their application scope. This thesis addresses some issues
of the FE problem from a FD practical perspective.

1.1.2 Fault diagnosis architectures

Practical control systems are affected by different kinds of disturbances including unknown
inputs (UIs), process disturbances, high-frequency noises and different kinds of uncertainties
such as model uncertainties. This thesis considers the case of stable (controlled or uncontrolled)
disturbed systems that may be also affected by faults (Fig. 1.1).
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FDI strategies are based on the generation of residuals, which are signals representing in-
consistencies between the measurements and the knowledge from the system. In the absence of
all kinds of disturbances, these inconsistencies derive from the presence of faults. However, the
presence of disturbances (UIs, process disturbances, noises or model uncertainties) affect the
FDI residuals. To face this problem, robust residual generation techniques are utilized. In most
cases, however, it is not possible to completely eliminate the effect of all the disturbances on
the residuals. Hence, the residuals are generally evaluated in decision mechanisms in order to
discern the faults from the disturbances that affect the system [44,70] (Fig. 1.2.a).

FE strategies, for its part, consist on estimating the value of the faults (Fig. 1.2.b). Some
authors consider that robust FE includes detection and isolation because an accurate estimation
of the faults implies FDI [170]. However, as in the previous case, it is not always possible to
achieve completely error-free fault estimates. Without any further decision mechanism, the
decision of whether a specific fault has occurred is delegated to human operators. From a FTC
perspective, feedforwarding erroneous fault estimates to a fault tolerant controller in fault-free
scenarios also causes a misleading effect that may significantly degrade the system performance.

Motivated by this background, in this thesis, fault analysis is performed by means of FE. The
fault estimates are then evaluated in decision mechanisms (which we denote as fault evaluators)
in order to reach FDI and decide whether to feed or not a FTC mechanism with these fault
estimates (Fig. 1.2.c). Specifically, each fault estimate is independently evaluated from the
others; thus, fault detection and fault isolation are addressed simultaneously. Provided that
fault isolation (FI) is more involved than fault detection, throughout the thesis, we indistinctly
refer to estimation-based FDI or estimation-based FI.
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1.2 Challenging problems

This thesis deals with the problems related to the design of fault estimators and evaluators
in a FD practical framework. In the following, we briefly describe the major concerns of the
thesis which are mainly related to the performance-based optimal design of fault estimators and
evaluators with practical FD performance parameters. The results are extended for systems
affected by complex uncertain fault forms, systems affected by multiple faults and complex
systems with complex disturbances.

Most continuous-time control systems being implemented digitally, discrete-time cases are
more meaningful in practice and have a strong engineering background [325]. However, compared
with continuous-time systems, fewer and more recent results have been reported for FE in
discrete-time systems [323]. Thus, this thesis is devoted to FE and FD in the discrete-time
framework.

Performance-based fault estimation

Robust generation techniques in FD (FDI or FE) aim to simultaneously achieve sensitivity to
faults and robustness against nuisances [10,277] through the accomplishment of certain trade-off
between these properties [241,302]. This issue continues to present significant challenges to both
academic and industrial practitioners [228].

Structural methods such as the well-known unknown input observer (UIO) approach [45,106,
120, 163] are used to achieve complete decoupling from disturbances. However, the conditions
for complete disturbance decoupling are strong and they are not always verified, at least not
for all the nuisances that affect the FD outputs. Alternatively, numerical approaches based on
optimization methods can be utilized to attenuate the effect of the disturbances on the FD
signals and maximize their fault sensitivity. For instance, the optimization problems based on
the well-known H∞/H− index [133,142,241,296].

In order to give further physical interpretation to the indices involved in the FD optimization
problem, the authors of [49, 327] propose to use the trade-off between the fault detection rate
(FDR) and the false alarm rate (FAR). This trade-off has been used in recent works as [331,334]
and it is of practical importance in FDI applications. However, although the FAR and the FDR
are suitable for FD strategies based on residuals, these indices give little information about
other important issues in estimation-based FD methods such as the size of the faults which can
be diagnosed, the dynamic behavior or the steady-state accuracy of the results.

In this thesis, we wonder whether practical FE performance parameters from a FD or FTC
perspective (e.g., fault estimation delays or variances in steady state due to noises) can be
used to design model-based fault estimators. Effectively, as stated in [325], more research on
designs considering the performance of FE is needed. Hence, the first challenging problem to be
addressed in this thesis can be formulated as follows.

P1. To design optimal fault estimators taking into account the trade-offs between practical FE
performance parameters.
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Generally, in most FE designs, the performance is jointly fixed for all the FE channels
(e.g. [106, 302]). However, from a practical perspective not all the faults to which a system
is prone impose equal diagnosis demands (e.g. [118, 216]). Designs dealing individually with
the performance of each single FE channel would increase the design flexibility. It would also
allow handling the coupling effect that appears when faults in other channels appear in the
system, which is a rarely studied issue in the literature. This background motivates the following
challenging problem of the thesis.

P2. To independently set the behavior of each FE channel w.r.t. nuisances: UIs, noises and
faults in other channels.

The FD designs including both complete decoupling from certain disturbances and optimal
attenuation from the others usually follow a two-steps procedure. For instance, the well-known
design of UIOs requires algebraic constraints to achieve UI decoupling [44]. These constraints
are generally solved using a particular solution to the problem. Then, the remaining design
freedom is used in a numerical second-step design to achieve certain requirements over other
performance criteria [180,190,302]. A single-step multiobjective numerical design simultaneously
guaranteeing UI decoupling and other performance requirements would reduce the conservatism
imposed by the particular solutions to the algebraic constraints and would reduce the complexity
of the design procedure. Hence, the challenges P1 and P2 are complemented with the following
challenging problem P3.

P3. To present single-step designs of optimal fault estimators guaranteeing full UI decoupling
and other performance requirements.

Performance-based fault evaluation

In analogy to the challenging problem P1, we wonder whether practical FDI (to which we
simply refer as FI) performance parameters can be used to design the decision mechanisms for
evaluating the fault estimates (e.g., minimum isolable faults or false isolation rates). We thus
introduce the following challenging problem to be tackled in this thesis.

P4. To design optimal evaluation strategies of fault estimates taking into account the trade-offs
between practical FI performance parameters.

As stated by Ding in [70], the efforts for achieving an optimal diagnosis performance with-
out simultaneously considering the generation and the evaluation function may result in poor
diagnosability. Motivated by the integrated designs of residual generators and evaluators in the
observer-based approach presented in [327] (extended in works as [1, 49, 294, 295]) and in the
set-membership approach presented in [319], we formulate the following promising problem.

P5. To co-design optimal fault estimators and evaluators taking into account the trade-offs
between practical FI performance parameters.
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Many practical applications have explicit FD requirements over time indices (e.g., the FD
time requirements in the wind turbine benchmark [216] and in the wind farm benchmark [216]).
However, the integrated design becomes specially delicate when it considers isolation time pa-
rameters [137,229]. Hence, we specifically detail this issue in the following problem.

P6. To introduce isolation time parameters in the co-design of optimal fault estimators and
evaluators.

Fault estimation of complex uncertain fault forms

The essence of augmented observers for FE is to construct an augmented system in which
the faults are introduced as an additional state [100, 326]. As an extension of the Luenberger
observer, proportional and integral (PI) observers, which have received much attention [163,
305,339], assume that the faults are constant or step signals. Their applicability is thus limited
to the estimation of faults whose variations are slow with respect to the dynamics of the system.
By supposing the considered faults to be in the more general form of a polynomial of the time,
proportional multiple-integral (PMI) observers were discussed in many works as [102, 103, 156,
306,322].

As stated in [104], an issue related to the use of PMI observers is that pure high-frequency
fault signals cannot be covered by them. On another note, in many practical applications,
the faults are periodic signals which can be decomposed into sinusoids of known frequencies
(e.g., [157,240]). The following problem arises from these observations.

P7. To extend the formulation of PMI observers for FE in order to include resonant terms of
known frequency.

In practice, it is possible to forecast some information about the (polynomial or sinusoidal)
order of the faults which are prone to occur. Yet, no exact a priori knowledge of this order is
available. Hence, the authors in [103,104] propose to “choose a large order for safety”. However,
choosing a large order of the faults, increases the order of the corresponding augmented PMI
observer and it may degrade its behavior towards faults of lower order. It is then reasonable to
study the influence of the complexity of the augmented observer on its tracking ability w.r.t.
different types of faults and to take the resulting trade-offs into account in the design:

P8. To design complex augmented observers taking into account the performance trade-offs
derived from their structural complexity.

Fault estimation and evaluation in systems with numerous faults

One of the main problems in FE arises when the faults affecting a system do not verify fault
isolability conditions (i.e., their effect on the measurements cannot be decoupled). Hence, most
FE works conservatively consider that the faults verify isolability conditions (e.g., [178, 302]).
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However, seldom does this condition hold in practice; specially, if it is protectively considered
that, besides possible actuator and process faults, all the sensors may be also affected by faults.

A solution to deal with non-isolable faults is the use of banks of residual generators and
evaluators [44,70]. However, these schemes are usually implemented from a residual-based per-
spective and each residual in the bank is made sensitive to a subset of faults and insensitive to
the other faults. Thus, the following problem states the existing need to extend the concept of
bank of residual generators and evaluators to the estimation framework.

P9. To achieve FE and FI in systems with non-isolable faults using a bank of fault estimators
and evaluators.

Intuitively, a bank-based FE/FI structure imposes some restrictions over the simultaneity
of the faults [70]. However, the design flexibility which is gained in each fault estimator and
evaluator of the bank make us ask about the possibility of ameliorating the performance of
FE/FI schemes (in terms of fault sensitivity and disturbance robustness) at the cost of some
simultaneity restrictions over the occurrence of faults. This question is particularly interesting
for sets of comparable systems which operate under similar conditions and which very rarely
become simultaneously faulty. Then, in this thesis, we address the following problem.

P10. To ameliorate the performance of FE and FI in replicated systems operating under similar
conditions.

Fault estimation and evaluation in complex practical applications

The application of estimation-based FD techniques becomes particularly difficult in the cases
where the system dynamics is complex (e.g., nonlinear time variant systems) or the disturbances
affecting the system are complex (e.g., their bounds significantly change along the system op-
eration region or their statistical properties are unknown). In such cases, it is complicated to
design tight FD strategies and the designed strategies may result in diagnosis systems with poor
diagnosability. Hence, the we formulate the following challenging problem to be addressed in
this thesis.

P11. To design tight FE and FI strategies for complex systems affected by complex disturbances.

The application of theoretical FD strategies to practical engineering cases also poses a great
challenge. It usually demands a considerable modeling effort, the utilization of complex FD
techniques and specific challenging performance requirements. Hence, many FD solutions to
practical cases in the literature are based on simplified, non-standardized, ad-hoc methods.

This thesis utilizes complex practical applications to motivate and introduce the proposed
theoretical contributions. Particularly, we deal with the faults in industrial pipe networks, mul-
tistage manufacturing processes, wind turbines and wind farms:

P12. To apply optimal performance-based FE and FI in complex practical applications: indus-
trial pipe networks, multistage manufacturing processes, wind turbines and wind farms.
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1.3 Thesis outline and contributions

The main goal of this thesis is to bridge the gap between theory and practice in optimal
estimation-based fault diagnosis. Inspired by the challenges posed by different practical ap-
plications, we develop different kinds of fault estimators and evaluators and we design them
using practical FD performance parameters.

The thesis follows a reasonable base line. First, Chapter 2 briefly introduces the basics of
FD. Second, Chapter 3, Chapter 4 and Chapter 5 include some initial analysis and comparisons
of estimation-based FD strategies. Chapter 6 studies the structure of augmented observers in
FE and Chapter 7 presents integral design approaches of fault estimators and evaluators. It
also presents structures of banks of fault estimators and evaluators. Chapter 8 and Chapter 9
extend the obtained results to more complex cases.

Throughout the thesis, we motivate the research and we and validate the obtained results
using practical applications. We consider the problem of estimation-based FD in industrial
pipe networks (Chapter 3), multistage manufacturing processes (Chapter 4), wind turbines
(Chapter 7) and wind farms (Chapter 8 and Chapter 9).

Note that each chapter is self-consistent and can be mostly read independently of the others.
Most of the content in the thesis derives from published material and, thus, there may be
repetitions of preliminary material and some differences in notation between chapters. Let us
now introduce an extended summary of the thesis with references to the publications related to
each chapter.

Chapter 2: Fault estimation and diagnosis

This chapter aims to give a common framework for the studied problems. First, we introduce
the concept of fault and we carefully present the FD terminology used in this thesis. Second,
we briefly explain the basics of model-based FD and we detail the advantages of estimation-
based schemes over residual-based schemes from a FTC perspective. Finally, we introduce some
performance parameters which can be utilized to describe the performance of FE and FI schemes
and we motivate the application of these schemes to different engineering applications.

Chapter 3: Comparison of leakage estimation strategies in a real industrial pipe
network

This chapter discusses the suitability of two different approaches to face the problems P1 and
P4 (i.e., the design of fault estimators and evaluators taking into account the trade-off between
practical performance parameters in the FD framework). First, we consider a multiplicative
approach based on the recursive least square (RLS) identification algorithm. Second, we con-
sider an additive approach based on single-input single-output (SISO) PI observers. In order to
examine the advantages and disadvantages of both methods, we consider an accessible practi-
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cal application: the problem of leakage estimation in real industrial networks of pipelines and
tanks (P12).

As discussed in further details in Chapter 3, unlike the multiplicative approach, the additive
approach does not impose any signal excitation requirement, the estimation performance is
a priori parametrizable and does not depend on the inputs. Hence, in this chapter, we show
how to algebraically design simple time-invariant SISO PI observers for a priori guaranteeing
certain trade-off between practical FE performance parameters: the convergence rate under
abrupt (step) faults and the variance due to noises (P1). Then, we design statistical-based FI
decision mechanisms that compare the FE outputs to constant thresholds. In this case, we use
the trade-off between the minimum isolable faults (MIFs) and the false isolation rates (FIRs)
(P4). Provided the application of the proposed strategy to the problem of leakage estimation,
we also introduce the concept of “leaked fluid mass until isolation” in the setting of the FI
performance trade-off.

Some real data of an industrial pipe network is utilized in the simulations. The real signals
are characterized by high noise levels. In order to give a first approximation to the problem P11,
we give some notes on the influence of the non-Gaussianity of the real measurement noises on
the FE and FI response.

The results of this chapter were mainly addressed in:

• Ester Sales-Setién, David Tena, and Ignacio Peñarrocha. Comparison of leakage esti-
mation strategies in a real industrial pipe network. IFAC-PapersOnLine, 50(1):13550–
13555, 2017. 19th World Congress of The International Federation of Automatic Con-
trol, IFAC World Congress 2017 (DOI:10.1016/j.ifacol.2017.08.2358).

• Ester Sales-Setién, David Tena, and Ignacio Peñarrocha. Estimación de fugas en un
sistema industrial mediante modelado por señales aditivas. In Actas de las XXXVIII
Jornadas de Automática (JJAA2017), pages 160—166, 2017.

Chapter 4: Estimation of non-stationary process variance in multistage manufactur-
ing processes

Motivated by the conclusions in Chapter 3 for FE and FI schemes based on SISO PI observers,
Chapter 4 gives a further insight on the problems P1 and P4 and it presents performance-
based designs of fault estimators and evaluators utilizing model-based multi-input multi-output
(MIMO) PI observers.

In this chapter, we consider a complex practical application: the problem of estimating
and isolating variance deviations in multistage manufacturing processes (MMPs). Variance es-
timation in MMPs is generally handled from a batch-based stationary perspective; hence, this
chapter devotes a considerable effort to suitably modeling non-stationary process variances in
MMPs from an observer-based perspective (P11-P12). A time-varying MIMO PI observer is
then applied to the model in order to achieve FE.
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The problem P1 is addressed with an approach based on the Kalman filter theory [152].
By considering the fault variations (i.e., the variance deviations) as uncertainties and their
covariance as a multivariate tuning parameter, we individually tune the estimation performance
of each variance deviation in the MMP. In this case, the design sets the individual trade-off
between the convergence rate under abrupt faults (utilizing parameters such as the cumulative
squared error or the settling time) and the variance due to noises.

The problem P4 is simply tackled by developing statistical confidence intervals for the esti-
mations, which fix the trade-off between the MIFs and the FIRs. The main difficulty encountered
in the FI step is related to the problem P11: the statistical properties of the disturbances are
complex. Hence, we first compute a loose confidence interval using the Chevyshev’s inequality.
Then, we show that the estimation errors approach a Gaussian behavior and we compute a
tighter confidence interval taking advantage of this property.

The results of this chapter were mainly addressed in:

• Ester Sales-Setién, Ignacio Peñarrocha-Alós, and José V Abellán-Nebot. Estimation
of nonstationary process variance in multistage manufacturing processes using a model-
based observer. IEEE Transactions on Automation Science and Engineering, 16(2):741–
754, 2019 (DOI:10.1109/TASE.2018.2856465).

Chapter 5: Performance-based design of proportional integral observers for fault
diagnosis

In Chapter 3 and Chapter 4, we gave some approximations to the problems P1 and P4 (utilizing
the practical background related to the problems P11 and P12). In these chapters we first
designed the fault estimators taking into account the trade-off between the convergence rate
under abrupt faults and the variance due to noises. Second, we designed the fault evaluators
taking into account the trade-off between the MIFs and the FIRs. In this chapter, we give an
initial approximation to the problem P5: we present two co-design strategies of fault estimators
and evaluators taking into account the trade-off between the convergence rate under abrupt
faults, the MIFs and the FIRs.

The fault evaluators consist on decision mechanisms that compare the fault estimates pro-
vided by a time-invariant MIMO PI observer with constant thresholds. Under the assumption of
Gaussian noises, the requirements over the MIFs and the FIRs are translated into requirements
over the constant value of the thresholds and the covariance of the steady-state estimates in
fault-free scenarios.

In line with the methods introduced in Chapter 4, the first co-design approach is based on
the Kalman filter theory. We consider the fault variations as uncertainties whose covariance can
be treated as a multivariate tuning parameter. The Lyapunov equations that give the covariance
of the estimates in steady state are utilized in an heuristic optimization problem that maximizes
the fault sensitivity and assures the required performance specifications.



1.3. Thesis outline and contributions 11

Alternatively, we formulate an optimization problem based on matrix inequalities. Inspired
by the advantages introduced by the previous Kalman-based method, we formulate matrix
inequalities that allow bounding the covariance matrix of the estimates due to noises. Then,
we bound the cumulative squared error (CSE) under abrupt faults through the H2 norm of
the error dynamics and we formulate it via matrix inequalities. These inequalities are utilized
in an optimization problem that minimizes the CSE and assures the required performance
specifications.

As discussed in further details in Chapter 5, the comparison of both methods draws some
conclusions over their suitability w.r.t. the problem P2: the design problem using matrix in-
equalities allows setting the behavior of each FE channel w.r.t. faults in other channels. In
contrast, the Kalman-based approach does not present this feature.

The results of this chapter were mainly addressed in:

• Ester Sales-Setién, Ignacio Peñarrocha, Daniel Dolz, and Roberto Sanchis.
Performance- based design of PI observers for fault diagnosis in LTI systems under
gaussian noises. In Proceedings of the 3rd Conference on Control and Fault-Tolerant
Systems (SysTol2016), pages 407—412, 2016 (DOI: 10.1109/SYSTOL.2016.7739784).

• Ester Sales-Setién, Ignacio Peñarrocha, Daniel Dolz, and Roberto Sanchis. Diseño
basado en prestaciones de observadores PI para el diagnóstico de fallos en sistemas lin-
eales con perturbaciones gaussianas. In Actas de las XXXVII Jornadas de Automática
(JJAA2016), 2016.

Chapter 6: Fault estimation via proportional multiple-integral and multiple-resonant
observers

Chapter 3, Chapter 4 and Chapter 5 showed the assets of using fault estimators and evaluators
based on augmented observers and of designing them with a formulation based on matrix
inequalities. Therefore, in the remaining chapters of the thesis, we follow these approaches.

Chapter 6 is focused on the influence of the form of an augmented observer on the FE
performance: it deals with the problems P7 and P8. First, we generalize the formulation of the
well-known proportional multiple-integral (PMI) augmented observer to enhance the estimation
of high-frequency fault signals. We present a novel proportional multiple-integral and multiple-
resonant (PMIR) observer for FE and we give its existence conditions (P7).

Second, we study the influence of the structural complexity of the augmented observer
on the existing trade-off between the steady-state tracking performance w.r.t. complex fault
forms and the transient tracking performance w.r.t. simpler fault forms. Motivated by the
conclusions of this study, we propose a design strategy that deals with this trade-off from a
probabilistic perspective: it takes account on the probability of appearance of each of the fault
forms considered by the augmented observer (P8).
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As the FE observer is applied to systems in environments with stochastic noises, the proposed
design is a multiobjective optimization problem based on matrix inequalities which fixes the
trade-off between the noise attenuation and the ability to track each fault term included in the
observer according to their relative probability of appearance. Bearing in mind the problem
P1, the noise attenuation is represented by the variance of the estimates in fault-free scenarios
(formulated through the H2 norm of the error dynamics due to noises) and the fault tracking
ability is represented by the CSEs w.r.t. each fault term (formulated through the H2 norm of
the error dynamics due to the appearance of these fault terms).

The results of this chapter were mainly addressed in:

• Ester Sales-Setién and Ignacio Peñarrocha-Alós. Fault estimation via proportional
multiple-integral and multiple-resonant observers for discrete-time systems. IET Con-
trol Theory & Application, 13(5):659–671, 2019 (DOI:10.1049/iet-cta.2018.5201).

Chapter 7: Multiobjective performance-based designs in fault estimation and isola-
tion and its application to wind turbines

The preceding chapters included some contributions on the performance-based design of fault
estimators and evaluators based on augmented observers and threshold-based decision mech-
anisms for systems affected by noises. Continuing with this issue, Chapter 7 considers both
the presence of noises (either Gaussian or non-Gaussian) and of UIs. This chapter develops an
all-encompassing approach for all the problems, P1-P6, devoted to the issue of performance
based designs of estimation-based approaches in the FD framework.

First, we present performance-based optimization design strategies of time-invariant MIMO
PI observers that individually set the performance of each FE channel (P1-P2). With a view to
the problem P6 (i.e., the inclusion of time isolation indices in the co-design of fault estimators
and evaluators), the fault sensitivity of the observer is characterized by its delay to track in-
cipient (ramp) faults. Hence, the proposed design sets the trade-off between the delays to track
incipient faults, the FE covariance due to noises, the degree of interfault decoupling and the
degree of UI decoupling. The requirements over these criteria are translated into requirements
over different H∞ norms and covariance bounds of the FE errors. These requirements are for-
mulated via matrix inequalities that we include in an optimization problem. In this chapter, we
desire to achieve UI decoupling; the proposed single-step design problem achieves numerical UI
decoupling together with other performance requirements (P3).

Second, we deal with the problem P4. We design the statistical-based constant thresholds
of FI decision mechanisms that process the fault estimates provided by the PI observer. In this
case, we guarantee certain requirement over one of the following FI indices: the FIRS, the MIFs,
the acknowledgement times (ATs) or the isolation times (ITs). For guaranteeing requirements
over more than one isolation index, the co-design of the PI observer and the decision mechanisms
becomes necessary; hence, we utilize the obtained results to address the problems P5-P6.
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In this chapter, we apply the proposed FE and FI methods to the systems in a wind turbine
(WT): the pitch system, the drive train system and the generator and converter system (P12).
To do so, we utilize a well-known WT benchmark [216], developed for this purpose, that includes
explicit requirements over the ITs and the FIRS. The WT systems are affected by numerous
faults and they do not verify fault isolability conditions. Hence, we address this problem (i.e.,
P9) by extending the proposed FE and FI approach to a scheme based on a bank of the previous
PI observers and statistical-based decision mechanisms. This bank allows achieving FE and FI
at the cost of some fault simultaneity restrictions.

The results of this chapter were mainly addressed in:

• Ester Sales-Setién and Ignacio Peñarrocha-Alós. Multiobjective performance-
based designs in fault estimation and isolation and its application to wind
turbines. International Journal of Systems Science, 50(6):1252–1274, 2019
(DOI:10.1080/00207721.2019.1598511).

• Ester Sales-Setién and Ignacio Peñarrocha-Alós. Banks of estimators and decision
mechanisms for pitch actuator and sensor FE in wind turbines. IFAC-PapersOnLine,
51(24):1141—1148, 2018. 10th Symposium on Fault Detection, Supervision and Safety
for Technical Processes, SAFEPROCESS2018 (DOI:10.1016/j.ifacol.2018.09.715).

• Ester Sales-Setién, Ignacio Peñarrocha, Daniel Dolz, and Roberto Sanchis. Fault
detection in the blade and pitch system of a wind turbine with H2 PI observers. Jour-
nal of Physics: Conference Series, 659(1):012–033, 2015. 12th European Workshop on
Advanced Control and diagnosis, ACD2015 (DOI:10.1088/1742-6596/659/1/012033).

• Ester Sales-Setién, Ignacio Peñarrocha and Daniel Dolz. Detección de fallos en la
orientación de palas en aerogeneradores mediante observadores H2 tipo PI. In Actas de
las XXXVI Jornadas de Automática (JJAA2015), 2015.

Chapter 8: Estimation and adaptive diagnosis of decreased power in wind farms: a
Markovian jump system approach

Chapter 6 and Chapter 7 thoroughly delved into the problems P1-P9. The latter chapters of
this thesis aim to extend the obtained results in order to approach the problems P10-P12.

In Chapter 8, we consider a challenging practical application: the diagnosis of decreased
power generation in wind farms (WFs), and we utilize a well-known WF benchmark developed
for this purpose [215] (P12). Provided that a WT operates in different power modes and in
different wind speed zones, the power generation system of a WT is described by a nonlinear
parameter varying model. Taking advantage of the fact that the model parameters can be
justifiably considered as Markovian processes, we develop a Markovian jump system approach
to estimate power decreases in WTs using a switched PI observer (P11).

The properties of the disturbances that affect the system (UIs, uncertainties and noises)
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also differ among the operation modes (P11). These differences are taken into account in the
design of the PI observer, which is performed using a multiobjective optimization problem based
on matrix inequalities. The design problem optimally sets the trade-off between the robustness
against disturbances and the sensitivity to faults, which are characterized through different H∞
norms of the FE error.

As further detailed in Chapter 8, it is difficult to characterize the properties of the fault
estimates provided by the observer in fault-free scenarios, taking into consideration also that
these properties may differ along the operation modes (P11). Hence, a FI mechanism based
on basic constant theoretical thresholds would be characterized by a poor isolation capability.
In this chapter, we thus propose to evaluate the fault estimates in FI decision mechanisms
with adaptive thresholds. The time-varying threshold function is computed with an algorithm
designed following a data-driven approach.

The problem P10 is then addressed by extending the proposed algorithms, obtained for each
single WT, to the WF level. We group the WTs in the WF operating under similar conditions and
we build a bank of the previous observers and decision mechanisms. The isolation performance
is ameliorated at the cost of a restriction on the number of possible simultaneous faulty WTs.

The results of this chapter were mainly addressed in:

• Ester Sales-Setién and Ignacio Peñarrocha-Alós. A Markovian jump system approach
for the estimation and adaptive diagnosis of decreased power generation in wind farms.
Submitted for journal publication (IET Control Theory & Application), October 2018.

Chapter 9: Robust estimation and diagnosis of wind turbine pitch misalignments at
a wind farm level

Chapter 9 studies another application problem considered in the WF benchmark [215]: the
diagnosis of WT pitch misalignments in WFs (P12). As Chapter 9 is the last research chapter
of the thesis, it follows a detailed instructional procedure and it notably focuses on the issues
derived from the practical application.

Contrary to the power generation system of a WT, the pitch system of a WT can be modeled
using a linear model. However, the properties of the uncertainties that affect the pitch system
still depend on the operation conditions of the WT. In order to address the problem P11 and
ensure adjusted fault estimates in all operation modes, we use a switched PI observer for FE.
In Chapter 8, we considered that the mode switchings were governed by Markovian processes.
In this chapter, the conservativeness related to the consideration of arbitrary mode switchings
is reduced by alternatively considering that these switchings are infrequent.

In this fashion, we design the switched PI observer through an optimization problem ensuring
global stability for all possible switchings and certain local steady-state performance in each
operation mode. In this case, the local robustness against UIs is characterized through the
corresponding H∞ norm of the FE error in each mode. Similarly, the local robustness against
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Table 1.1. Thesis outline. Problems addressed per chapter.

Ch.3 Ch.4 Ch.5 Ch.6 Ch.7 Ch.8 Ch.9
P1 • • •
P2 • •
P3 •
P4 • • •
P5 • •
P6 •
P7 •
P8 •
P9 •
P10 • •
P11 • • • •
P12 • • • • •

noises and the local sensitivity to faults are characterized through different H2 norms of the
FE error in each mode. Taking advantage of the results obtained in the previous chapters w.r.t.
P1, some notes on the physical interpretation of these norms are also given in the chapter.

In this chapter, we build FI decision mechanisms that compare the fault estimates provided
by the observer to adaptive thresholds. In this case, we utilize a model-based statistical pro-
cedure to compute these thresholds that bound the FE error. Provided the consideration of
infrequent mode switchings, we separately bound the FE error due to UIs in each mode by
approximating its probability distribution function to a zero-mean uniform distribution. We
also bound the Gaussian FE error due to noises making use of its time-varying covariance.

Similarly to Chapter 9, Chapter 8 also addresses the problem P10 by building banks of the
previous observers and decision mechanisms for groups of WTs in the WF operating under sim-
ilar conditions. Again, the isolation performance is ameliorated at the cost of fault simultaneity
restrictions.

The results of this chapter were mainly addressed in:

• Ester Sales-Setién and Ignacio Peñarrocha-Alós. Robust estimation and diagnosis of
wind turbine pitch misalignments at a wind farm level. Submitted for journal publication
(Renewable Energy), June 2018.

Chapter 10: Summary and future research

This last chapter draws some conclusions on the current thesis, whose outline is summarized in
Table 1.1. Chapter 10 also discusses exciting research problems for further development on a
near future.
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1.3.1 List of contributions

The results presented in this thesis mainly correspond to works developed with the author’s
supervisor where the author has played a key role. The results in Chapter 3 were developed in
collaboration with David Tena, while the problematic presented in Chapter 4 was addressed in
collaboration with Dr. José V. Abellán-Nebot. The results in Chapter 5 and some preliminary
results in Chapter 7 were reviewed by Dr. Roberto Sanchis and Dr. Daniel Dolz1. As a summary,
listed below are all the publications obtained by the author to date.

Journal papers

1. Ester Sales-Setién, Ignacio Peñarrocha-Alós, and José V Abellán-Nebot. Estimation
of nonstationary process variance in multistage manufacturing processes using a model-
based observer. IEEE Transactions on Automation Science and Engineering, 16(2):741–
754, 2019 (DOI:10.1109/TASE.2018.2856465, IF:3.667).

2. Ester Sales-Setién and Ignacio Peñarrocha-Alós. Fault estimation via proportional
multiple-integral and multiple-resonant observers for discrete-time systems. IET Control
Theory & Application, 13(5):659–671, 2019 (DOI:10.1049/iet-cta.2018.5201, IF:3.296).

3. Ester Sales-Setién and Ignacio Peñarrocha-Alós. Multiobjective performance-based de-
signs in fault estimation and isolation and its application to wind turbines. International
Journal of Systems Science, 50(6):1252–1274, 2019 (DOI:10.1080/00207721.2019.1598511,
IF:2.185).

4. Ester Sales-Setién and Ignacio Peñarrocha-Alós. A markovian jump system approach
for the estimation and adaptive diagnosis of decreased power generation in wind farms.
Submitted for journal publication (IET Control Theory & Application, IF:3.296), October
2018.

5. Ester Sales-Setién and Ignacio Peñarrocha-Alós. Robust estimation and diagnosis of
wind turbine pitch misalignments at a wind farm level. Submitted for journal publication
(Renewable Energy, IF:4.900), June 2018.

Book chapters

6. José V Abellán-Nebot, Ignacio Peñarrocha, Ester Sales-Setién, and Jian Liu. Optimal
inspection/actuator placement for robust dimensional compensation in multistage manu-
facturing processes. In Computational Methods and Production Engineering, pages 31—50.
Elsevier, 2017 (DOI:10.1016/B978-0-85709-481-0.00002-1).

1This thesis has been accepted by the co-authors of the publications listed above that have waved the right
to present them as a part of another PhD thesis.
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Conference papers

7. Ester Sales-Setién and Ignacio Peñarrocha-Alós. Banks of estimators and decision
mechanisms for pitch actuator and sensor FE in wind turbines. IFAC-PapersOnLine,
51(24):1141—1148, 2018. 10th Symposium on Fault Detection, Supervision and Safety for
Technical Processes, SAFEPROCESS2018 (DOI:10.1016/j.ifacol.2018.09.715).

8. Ignacio Peñarrocha-Alós, Ester Sales-Setién and David Tena. Actuator fault tolerant
control proposal for PI controlled SISO systems IFAC-PapersOnLine, 51(24):680—687,
2018. 10th Symposium on Fault Detection, Supervision and Safety for Technical Processes,
SAFEPROCESS2018 (DOI:10.1016/j.ifacol.2018.09.649).

9. Ester Sales-Setién, David Tena, and Ignacio Peñarrocha. Comparison of leakage estima-
tion strategies in a real industrial pipe network. IFAC-PapersOnLine, 50(1):13550–13555,
2017. 19th World Congress of The International Federation of Automatic Control, IFAC
World Congress 2017 (DOI:10.1016/j.ifacol.2017.08.2358).

10. Ester Sales-Setién, David Tena, and Ignacio Peñarrocha. Estimación de fugas en un
sistema industrial mediante modelado por señales aditivas. In Actas de las XXXVIII Jor-
nadas de Automática (JJAA2017), pages 160—166, 2017.

11. Carlos Dı́az-Sanahuja, Ignacio Peñarrocha, Ricardo Vidal Albalate and Ester Sales-
Setién. Alternativas para el control de la red eléctrica aislada en parques eólicos marinos.
In Actas de las XXXVIII Jornadas de Automática (JJAA2017), pages 38—45, 2017.

12. Ester Sales-Setién, Ignacio Peñarrocha, Daniel Dolz, and Roberto Sanchis. Performance-
based design of PI observers for fault diagnosis in LTI systems under gaussian noises. In
Proceedings of the 3rd Conference on Control and Fault-Tolerant Systems (SysTol2016),
pages 407—412, 2016 (DOI: 10.1109/SYSTOL.2016.7739784).

13. Ester Sales-Setién, Ignacio Peñarrocha, Daniel Dolz, and Roberto Sanchis. Diseño
basado en prestaciones de observadores PI para el diagnóstico de fallos en sistemas lin-
eales con perturbaciones gaussianas. In Actas de las XXXVII Jornadas de Automática
(JJAA2016), 2016.

14. Ester Sales-Setién, Ignacio Peñarrocha, Daniel Dolz, and Roberto Sanchis. Fault de-
tection in the blade and pitch system of a wind turbine with H2 PI observers. Journal of
Physics: Conference Series, 659(1):012–033, 2015. 12th European Workshop on Advanced
Control and diagnosis, ACD2015 (DOI:10.1088/1742-6596/659/1/012033).

15. Ester Sales-Setién, Ignacio Peñarrocha and Daniel Dolz. Detección de fallos en la ori-
entación de palas en aerogeneradores mediante observadores H2 tipo PI. In Actas de las
XXXVI Jornadas de Automática (JJAA2015), 2015.
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Conference papers on Educational Innovation

16. Ester Sales-Setién and Ignacio Peñarrocha-Alós. Moodle questionnaires as a self as-
sessment tool for meeting the challenges of diversity in students’ background knowledge.
In Proceedings of the 11th Annual International Conference of Education, Research and
Innovation (ICERI2018), pages 2858—2864, 2018.

17. Ester Sales-Setién and Ignacio Peñarrocha-Alós. Desarrollo de cuestionarios para la re-
visión autónoma y personalizada de conocimientos previos. In Actas del Congreso Virtual
Avances en Tecnoloǵıas, Innovación y Desaf́ıos de la Educación Superior (ATIDES2018),
pages 61–70, 2018.



Chapter 2

Fault estimation and diagnosis

2.1 Concept of fault

2.1.1 Fault versus failure

In compliance with the definitions given in [125,140,141], let us first introduce the concepts of
fault and failure.

Fault. A fault is an unexpected deviation of at least one feature of a system from the accept-
able/standard condition which degrades the system performance.

Failure. A failure is a permanent interruption or a complete breakdown of a component or
system which results in its complete inability to perform a specific function.

In order to give a further insight into these concepts, let us consider the system in Fig. 2.1,
which is stabilized by a controller. Let us also assume that its performance is described in a
two-dimensional space; then, Fig. 2.2 represents the different regions of performance that must
be considered [29]:
• the region of required performance,
• the region of degraded performance,
• the region of unacceptable performance and
• the region of danger.

Despite the presence of disturbances, the nominal controller in the execution level makes the
fault-free system remain in the region of required performance, where the system satisfies its
function. Faults bring the system into the regions of degraded or unacceptable performance
whilst failures bring the system into the region of danger.

In the region of degraded performance the system is allowed to remain but the system
does not satisfy the required performance. The region of unacceptable performance must be
avoided and the region of danger is prohibited due to safety reasons. To deal with these issues,
a supervisory layer is introduced into the system. In this layer, we distinguish between the tasks
of monitoring and supervision, which are defined as follows [140,141] (Fig. 2.1).

19
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Figure 2.1. Execution and supervision level of a control system subjected to faults.

Monitoring. Determining the conditions of a system by recording information, recognising
and indicating anomalies in the behavior.

Supervision. Monitoring a system and taking appropriate actions to maintain the operation
in the region of required performance in the case of faults.

At the border of the region of required performance a supervision system is invoked, which
diagnoses the faults and demands fault tolerant tasks. The nominal control activity is thus
reconfigured to achieve fault-tolerance and upgrade the performance of the system. These fault
tolerant tasks (detailed in Section 2.4) are desirable in the region of degraded performance and
they become necessary in the region of unacceptable performance. For its part, a safety system
interrupting the operation of the system is essential in the region of danger to which the system
is brought in the case of failures.

The notions of reliability, maintainability, availability and safety describe the engineering
integrity of a system. According to [141,274], they can be defined as follows.

Reliability. The reliability of a system refers to its resistance to faults and failures. It is defined
as the probability that a system performs a required function under normal conditions during
a specific period of time.

Maintainability. The maintainability of a system refers to its ease of recovery from a fault
or failure. It is defined as the probability of restoring a faulty system to its normal condition
within a given timeframe, using the prescribed practices and procedures.

Availability. The availability of a system refers to its ability to be operational when needed.
It is defined as the probability that a system performs a required function at any period time.
Availability takes into account that faults and failures happen and need some time to repair.
Thereby, availability depends on the reliability and maintainability of the system.

Safety. The safety of a system refers to its ability not to cause danger to persons, equipment
or the environment.
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Figure 2.2. Regions of performance (Source: Prepared by the author on the basis of a figure in [29]).

To reach high availability, the system must have either reliable components or fast and reliable
removal of faults. Fault tolerant tasks cannot change the reliability of the plant components but
they improve the reliability and availability of the overall system since it remains operational
after the fault appearance [29].

2.1.2 Fault modeling and classification

As motivated in Section 1.2, this thesis focuses on FE and FD in the discrete-time framework.
The standard form of the state-space representation of a discrete-time linear time-invariant
(LTI) nominal system is given by

xk+1 = Axk +B uk, (2.1a)
yk = C xk +Duk, (2.1b)

where x ∈ Rnx is the state vector, u ∈ Rnu the input vector and y ∈ Rny the output vector.
A widely adopted way to model the faults is the additive approach, which is followed in this
thesis. In this approach, the additive fault vector f ∈ Rnf is used to extend (2.1) as

xk+1 = Axk +B uk + E fk, (2.2a)
yk = C xk +Duk + F fk. (2.2b)

The input-output transfer matrix representation of (2.2) is

y(z) = Gu(z)u(z) +Gf (z) f(z), (2.3)

with
Gu(z) = C (z I −A)−1B +D, Gf (z) = C (z I −A)−1E + F.

The i-th fault in the fault vector fk is denoted as fi,k (i.e., fi,k =
[
01×i−1 1 01×nf−i

]
fk).

Hence, (2.3) can be expressed as

y(z) = Gu(z)u(z) +
nf∑
i=1

Gfi(z) fi(z), (2.4)
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with
Gfi(z) = C (z I −A)−1Ei + Fi,

where Ei and Fi denote the i-th column of the matrices E and F , respectively.

The faults can be classified depending upon their time characteristics. Fig. 2.3 shows exam-
ples of common fault time functions: abrupt (or step) faults, incipient (drift or ramp) faults,
intermittent faults and oscillatory (or sinusoidal) faults. As outlined in Fig. 2.4, the faults can
be also classified according to their location as [125,193]:

Actuator fault. An actuator fault represents the partial or complete loss of a control action.

Sensor fault. A sensor fault represents the incorrect reading from a sensor.

Process fault. A process fault represents malfunctions within the process. It considers all
faults that cannot be characterized into the category of actuator or sensor fault.

Actuator faults (fa), sensor faults (fs) and process faults (fp) are additively modeled as

xk+1 = Axk +B (uk + fak ) + Ep f
p
k , (2.5a)

yk = C xk +D (uk + fak ) + fsk + Fp f
p
k . (2.5b)

Defining

fk =

f
a
k

fsk
fpk

 , E =
[
B 0 Ep

]
, F =

[
D I Fp

]
,

the dynamics (2.5) can be represented using (2.2).
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Another extended way to model the faults is the multiplicative approach. In practice, mal-
functions in the sensors, the actuators and the process may cause changes in the model param-
eters [70]. These changes can be described by extending (2.1) as

xk+1 = (A+ ∆AF )xk + (B + ∆BF )uk, (2.6a)
yk = (C + ∆CF )xk + (D + ∆DF )uk, (2.6b)

where ∆AF , ∆BF , ∆CF and ∆DF represent process, actuator and sensor faults. Introducing

fM,k =
[
∆AF xk + ∆BF uk
∆CF xk + ∆DF uk

]
, EM =

[
Inx 0

]
, FM =

[
0 Iny

]
,

we can rewrite (2.6) into

xk+1 = Axk +B uk + EM fM,k, (2.7a)
yk = C xk +Duk + FM fM,k. (2.7b)

This formulation reveals that, contrary to exogenous additive faults, multiplicative faults depend
on the state and the inputs of the system and may affect the system stability [70]. In this
way, pure multiplicative faults can be treated following an additive approach as long as their
appearance does not unstabilize the system.

2.1.3 Fault versus disturbance

Like faults, disturbances change the plant behavior. The distinction between them is given by
the aim of fault tolerant control [29]. The presence of the faults in the system is not known but
their effect on the system should be removed by remedial actions. Disturbances are nuisances
which are known to be present in the system and whose effects can be handled by appropriately
tuned controllers. Faults entail more severe changes and their effect cannot be suppressed by
the controllers designed for fault-free scenarios.

Disturbances in the system are often modeled as additive vectors. We distinguish between

• deterministic disturbances or unknown inputs (UIs) and
• stochastic disturbances or noises.

Denoting the UIs as d ∈ Rnd and the noises as w ∈ Rnw , we extend (2.2) as

xk+1 = Axk +B uk + E fk +Bd dk +Bw wk, (2.8a)
yk = C xk +Duk + F fk +Dd dk +Dw wk. (2.8b)

The input-output transfer matrix representation of (2.8) is

y(z) = Gu(z)u(z) +Gf (z) f(z) +Gd(z) d(z) +Gw(z)w(z), (2.9)

with
Gd(z) = C (z I −A)−1Bd +Dd, Gw(z) = C (z I −A)−1Bw +Dw.
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Defining d′k =
[
dk
wk

]
∈ Rn′d , B′d =

[
Bd Bw

]
and D′d =

[
Dd Dw

]
; it yields

xk+1 = Axk +B uk + E fk +B′d d
′
k, (2.10a)

yk = C xk +Duk + F fk +D′d d
′
k. (2.10b)

The input-output transfer matrix representation of (2.10) is

y(z) = Gu(z)u(z) +Gf (z) f(z) +G′d(z) d′(z), (2.11)

with
G′d(z) = C (z I −A)−1B′d +D′d.

Remark 2.1. Pure process noise (wp) and pure sensor noise (ws) can be modeled by means

of zeroing the appropriate columns of Bw and Hw (i.e., w =
[
wp

ws

]
with Bw =

[
Bp
w 0

]
and

Dw =
[
0 Ds

w

]
).

Model uncertainties also disturb the plant behavior. Among a number of expressions for
model uncertainties in state-space representation, a standard one is [70]

xk+1 = (A+ ∆A)xk + (B + ∆B)uk + E fk, (2.12a)
yk = (C + ∆C)xk + (D + ∆D)uk + F fk. (2.12b)

where ∆A, ∆B, ∆C and ∆D are the model uncertainties. Alternatively, the UI vector (d) can
be used to describe a number of different kinds of modeling uncertainties [45]. For instance, for
stable systems, (2.12) can be translated into

xk+1 = Axk +B uk + E fk +B∆ d∆,k, (2.13a)
yk = C xk +Duk + F fk +D∆ d∆,k. (2.13b)

with
d∆,k =

[
∆Axk + ∆B uk
∆C xk + ∆Duk

]
, B∆ =

[
Inx 0

]
, D∆ =

[
0 Iny

]
.

As detailed in Section (1.1.2), in this thesis, we consider stable (or stabilized) systems. Hence,
we use the additive UI vector (d) to represent the modeling uncertainties.

2.2 Fault diagnosis

2.2.1 Fault diagnosis tasks

Fault diagnosis is the procedure to obtain fault information used for fault compensation or
scheduled system maintenance. In general, fault diagnosis contains three steps as shown in
Fig. 2.5: fault detection, fault isolation and fault identification [29,112,325].
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Figure 2.5. Fault diagnosis tasks.

Fault detection. Fault detection is to decide whether a fault has occurred in the system.

Fault isolation. Fault isolation is to find the location of the fault (i.e., the faulty component).

Fault identification or analysis. Fault identification is to identify the magnitude of the fault.
This step determines the kind and severity of the fault.

Fault diagnosis (FD) covers fault detection, isolation and analysis (FDIA). In this thesis, as
introduced in Section 1.1.2, fault identification or analysis (FA) is obtained by means of fault
estimation (FE) strategies and the fault estimates are then used for fault detection and isolation
(FDI) purposes, to which we simply refer as estimation-based fault isolation (FI).

2.2.2 System structural properties for fault diagnosis

Corresponding to the tasks in the FD framework, the concepts of fault detectability, isolability
and identifiability are introduced to describe the structural properties of the system from the
FD perspective. We also introduce the concept of disturbance decoupability. The definitions in
this section are the discrete-time version of the ones in [70]. Similar applies to the necessary and
sufficient conditions detailed hereafter, whose proof is omitted. The reader is referred to [70]
for the detailed proofs in continuous time, provided that it is straightforward to obtain their
discrete counterpart.

Recall the system (2.10) described as

xk+1 = Axk +B uk + E fk +B′d d
′
k,

yk = C xk +Duk + F fk +D′d d
′
k.

We define the vector ξ that contains a subset of the faults in vector f , i.e., ξk =
[
f1,k . . . fl,k

]T
∈

Rl with l ≤ nf . Its transfer matrix verifies

Gξ(z) =
[
Gf1(z) . . . Gfl(z)

]
,

and we denote the minimal state-space realization of Gξ(z) by

Gξ(z) = C (z I −A)−1Eξ + Fξ.

We also define f̄i,k =
[
fi,k
d′k

]
∈ R1+n′d .
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Fault detectability

Given the system (2.10), a fault fi is detectable if

∂y

∂fi

∣∣∣∣
fi=0

dfi 6≡ 0. (2.14)

The definition (2.14) mathematically expresses that a fault fi is detectable if any occurrence of
the fault (from zero to any time function different from zero) leads to a change in the system
output.

Theorem 2.1. ([70]) Given the system (2.10), a fault is detectable if and only if Gfi(z) 6= 0.

Fault isolability

Given the system (2.10), the faults fi (i = 1, . . . , l) in the fault vector ξ are isolable if

∂y

∂ξ

∣∣∣∣
ξ=0

dξ 6≡ 0. (2.15)

The definition (2.15) mathematically expresses that a group of faults is isolable if any simul-
taneous occurrence of the faults leads to a change in the system output. Note that the defini-
tion (2.15) implies that fault detectability is necessary for fault isolability.

Remark 2.2. The system

xk+1 = Axk + Eξ ξk, yk = C xk + Fξ ξk, x0 = 0,

is called input observable when yk = 0 implies ξk = 0, [134]. Except for the assumption on
the initial condition x0 = 0, the physical meaning of input observability is equivalent to that of
isolability of additive faults [70].

Theorem 2.2. ([70]) Given the system (2.10), the faults in the vector ξ are isolable if and only
if

rank {Gξ(z)} =
l∑

i=1
rank {Gfi(z)} . (2.16)

where rank{G(z)} denotes here the normal rank1 of the transfer matrix G(z).

Considering that ∑l
i=1 rank {Gfi(z)} = l and that rank {Gξ(z)} ≤ min{ny, l}, the following

corollary to Theorem 2.2 is introduced.

Corollary 2.1. Given the system (2.10), the faults in the vector ξ are isolable only if the number
of sensors satisfies ny ≥ l.

1The normal rank of a transfer matrix G(z) is the rank of G(z) at all the values of z except for the transmission
zeros [151].
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The condition in Theorem 2.2 can be alternatively expressed in terms of state-space matrices
as detailed in the following corollary.

Corollary 2.2. ([70]) Given the system (2.10), the faults in the vector ξ are isolable if and
only if

rank
[
A− z I Eξ
C Fξ

]
= nx + l, (2.17)

where rank{G(z)} denotes here the normal rank of the transfer matrix G(z).

Fault identifiability

Given the system (2.10), the faults fi (i = 1, . . . , l) in the fault vector ξ are identifiable if the
transfer matrix Gξ(z) is invertible and its inverse is stable and causal. This definition requiring
the stability and causality of G−1

ξ (z) expresses the realizability of inverting Gξ(z) [205].

Theorem 2.3. ([70]) Given the system (2.10), the faults in the vector ξ are perfectly identifiable
if and only if

rank
[
A− z I Eξ
C Fξ

]
= nx + l, ∀z ∈ C̄1, (2.18)

with C̄1 being the closed plane outside the unit circle.

The condition (2.18) implies the condition (2.17) and the condition that the transmission
zeros from the faults in ξ to the measurements must be stable [106]. We deduce that fault
isolability (and hence fault detectability) is necessary for perfect fault identifiability.

Disturbance decoupability

Given the system (2.10), the disturbance d′ can be fully decoupled from the fault fi if

∂y

∂f̄i

∣∣∣∣
f̄i=0

df̄i 6≡ 0. (2.19)

The definition (2.19) mathematically expresses that the disturbance d′ can be fully decoupled
from the fault fi if any occurrence of the fault fi leads to a change in the system output despite
the presence of any disturbance d′.

Theorem 2.4. ([70,97]) Given the system (2.10), the disturbance d′ can be fully decoupled from
a fault fi if and only if

rank
{[
Gfi(z) G′d(z)

]}
= rank {Gfi(z)}+ rank

{
G′d(z)

}
, (2.20)

where rank{G(z)} denotes here the normal rank of the transfer matrix G(z).

The condition in Theorem 2.4 can be alternatively expressed in terms of state-space matrices
as follows.
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Corollary 2.3. ([70]) Given the system (2.10), the disturbance d′ can be fully decoupled from
a fault fi if and only if

rank
[
A− z I Ei B′d
C Fi D′d

]
= 1 + rank

[
A− z I B′d
C D′d

]
, (2.21)

where rank{G(z)} denotes here the normal rank of the transfer matrix G(z).

Remark 2.3. Combining Theorem 2.2 and Theorem 2.4, we deduce that the faults in the vector
ξ are isolable among them and from the disturbance d′ (i.e., the disturbance d′ can be fully
decoupled from them) if and only if

rank
{[
Gξ(z) G′d(z)

]}
=

l∑
i=1

rank {Gfi(z)}+ rank
{
G′d(z)

}
. (2.22)

The condition (2.22) can be alternatively expressed in terms of state-space matrices as

rank
[
A− z I Eξ B′d
C Fξ D′d

]
= l + rank

[
A− z I B′d
C D′d

]
. (2.23)

2.2.3 Classification of fault diagnosis strategies

Fault diagnosis (FD) strategies are based on exploiting redundancies to generate residuals,
which are signals representing inconsistencies between these redundancies. In principle, these
inconsistencies derive from the presence of faults. However, the presence of disturbances (e.g.,
UIs, noises or model uncertainties) also cause inconsistencies that may deviate the residuals.
Hence, the residual signals must be evaluated in decision mechanisms in order to discern the
faults from the disturbances that affect the system. FD strategies consist thus of two steps:

Evaluation

Generation

FAULT DIAGNOSIS

SystemInput Output

Faults

Fault
information

with fault
information

Signal

Disturbances

Figure 2.6. Fault diagnosis steps.
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Figure 2.7. Hardware versus analytical redundancy.

1. generating (possibly disturbed) signals containing the faults information and
2. evaluating them in order to detect/isolate/identify the faults;

see Fig. 2.6. A traditional approach to achieve FD is the use of hardware redundancy (e.g., [147,
194]). Although FD techniques based on hardware redundancy are still standard in industrial
applications, FD techniques based on analytical redundancy have gain more and more attention
since their first appearance in the 1970s [19] and, thus, analytical redundancy has been developed
rapidly [330]. According to [140,325], hardware and analytical redundancy are characterized as
follows (Fig. 2.7).

Hardware redundancy. The methods which are based on hardware redundancy utilize multi-
ple lanes of sensors and actuators for duplicating the components of the systems and achieving
physical redundancy. These methods are characterized by their high reliability; however, the
extra equipment entails additional maintenance costs, weight and space requirements.

Analytical redundancy. The methods which are based on analytical redundancy exploit the
redundancy derived from the explicit or implicit knowledge of the system. Analytical redun-
dancy is also called software redundancy because it replaces physical redundancy by mathe-
matical models or patterns which are implemented in computer software. Since no additional
hardware is installed in the system, no additional hardware faults are introduced. Therefore,
analytical redundancy is potentially more reliable than hardware redundancy [288]. However, it
is more challenging due to its need to ensure robustness towards disturbances including model
uncertainties, noises and other kinds of disturbances. A comprehensive review of analytical
approaches can be found in [100,101,137,289–291].

Traditionally, analytical methods can be categorized into signal-based, data-driven and phys-
ical model-based approaches [95,101]. See the classification in Fig. 2.8 detailed hereafter.
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Figure 2.8. Classification of fault diagnosis strategies.

Model-based analytical redundancy. Model-based strategies utilize the mathematical model
of the system to achieve analytical redundancy. The reference books in model-based diagno-
sis [44, 70, 266] detail the basic principles of generating and evaluating model-based signals for
FD. Depending on the kind of generated signal, we distinguish between residual-based strategies
and FE-based strategies. Depending on the methods which are utilized to generate such signals
we distinguish between
• observer-based approaches [97,326],
• parity equations [31,75,223] and
• parameter estimation approaches [94,110,145].

Remark 2.4. Several authors have proved that parity equations lead to certain type of observer
structures. Hence, it can be considered that parity-based methods are structurally equivalent to
observer-based ones, although the design strategies are different [70].

Signal processing-based analytical redundancy. Signal processing-based methods achieve
analytical redundancy from the a priori knowledge of some measurable signal patterns in healthy
conditions. They utilize
• time-domain [88,132],
• frequency-domain [114,148] or
• time-frequency signal processing techniques such as [39,55].

Data-driven analytical redundancy. Data-based strategies use the historical data of the
system to achieve analytical redundancy because, for complicated industrial processes, a large
amount of historical data, rather than a model or a signal pattern, is available [101]. Generally,
data-driven approaches are classified into
• statistical-based approaches [71,203,315] and
• intelligent FDI approaches including methods such as neural networks [165,265,272].

Signal processing-based methods do not require the explicit physical model of the system; how-
ever, they are mainly used for steady-state processes and their applicability to multivariable
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dynamic systems is limited [70]. Like signal processing-based methods, data-driven methods do
not require the explicit physical model of the system; hence, their applicability is extensible to
systems with unknown structure. Moreover, the effectiveness of data-driven FD strategies for
dynamic systems have been proved umpteen times (e.g., [18,245,314,317]). However, data-driven
schemes require complex preprocessing steps involving high computational burden. Taking all
these considerations into account, there is an upward trend in developing hybrid FD approaches
integrating or combining more than one diagnosis strategy [284].

The emphasis on this thesis is on model-based strategies with observers. In the following,
we briefly explain the basics of model-based residual methods and fault estimation.

2.3 Model-based fault diagnosis

2.3.1 Residual-based FD schemes

Let us first define residual generation and evaluation [44].

Residual generation. Residual generation consists on processing the input and the output
of a monitored system in order to generate signals (residuals, denoted as r) representing the
inconsistency between the system variables and the mathematical model of the system.

Evaluation

Actuator faults

PlantActuator Sensor

Component faults Sensor faults

System

Output, ykInput, uk

Residual
Generation

Residual

FAULT DIAGNOSIS

Residual, rk

Fault
Information

FAULT DETECTION
OR/AND ISOLATION

Disturbances

Figure 2.9. General residual-based FD scheme.
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Residual evaluation. Residual evaluation consists on processing the residuals by comparing
them to certain threshold function in order to get rid of the effect of the disturbances on the
residuals and obtain certain fault information.

See the residual generation and evaluation scheme in Fig. 2.9. Depending on whether the genera-
tion and evaluation of the residuals is aimed to achieve fault detection or isolation, we distinguish
between detection residuals and isolation residuals.

Residuals for fault detection

A residual for fault detection is a signal which must be generated to be sensitive to all the faults
affecting the system:

r(z) =
nf∑
i=1

Gr,fi(z) fi(z), (2.24)

where Gr,fi(z) 6= 0 (i = 1, . . . , nf ) is defined as the fault transfer function representing the
relation between the detection residual r(z) and the fault fi(z). Fig. 2.10 depicts this relation
for a system with three faults (nf = 3).

Any fault in the system can be then detected by evaluating the residual in a decision mech-
anism in the form of{

if T (rk) ≥ Jk , fk 6= 0 (A fault is present in the system)
otherwise , fk = 0 (No fault is present in the system) , (2.25)

with T and J being the evaluation and threshold function for fault detection.
A general structure for a residual generator is [44]

r(z) = Hu(z)u(z) +Hy(z) y(z), (2.26)

with Hu(z) and Hy(z) being realizable, stable transfer matrices. Considering the system (2.2)
(i.e., no disturbances affect the system), the residual (2.26) verifies

r(z) =
(
Hu(z) +Hy(z)Gu(z)

)
u(z) +Hy(z)Gf (z) f(z),

which can be alternatively expressed as

r(z) =
(
Hu(z) +Hy(z)Gu(z)

)
u(z) +Hy(z)

nf∑
i=1

Gfi(z) fi(z).

Hence, in order to generate a residual in the form of (2.24) through (2.26), the transfer matrices
Hu(z) and Hy(z) must verify the constraint conditions:

Hu(z) +Hy(z)Gu(z) = 0, (2.27a)
Hy(z)Gfi(z) 6= 0, i = 1, . . . , nf . (2.27b)

The existence of a solution to (2.27b) is subjected to the detectability of each fault fi (i =
1, . . . , nf ). If this condition is satisfied, the design of the residual (2.26) consists on choosing re-
alizable, stable transfer matrices Hu(z) and Hy(z) satisfying (2.27). The different approaches to
generate detection residuals correspond to different parametrizations of these transfer matrices.
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Residuals for fault isolation

One of the main approaches to achieve fault isolation is to build a structured residual set [109].
Each residual in the set is aimed to be sensitive to a subset of faults while insensitive to the
remaining faults. Performing a threshold test for each residual in the set leads to fault isolation.
The main types of structured residual set are dedicated residual sets and generalized residual
sets. A simple example of these schemes for a system with three faults is depicted in Fig. 2.11.

Dedicated residual set. A dedicated residual set consists of a set of residuals, each of them
being sensitive to one fault and insensitive to the others:

ri(z) = Gri,fi(z) fi(z), i = 1, . . . , nf , (2.28)

where Gri,fi(z) 6= 0 (i = 1, . . . , nf ) is defined as the fault transfer function representing the
relation between the residual ri(z) and the fault fi(z). Then, a simple logic can be used to make
the decision about the appearance of a specific fault:{

if Ti (ri,k) ≥ Ji,k , fi,k 6= 0 (The i-th fault is present in the system)
otherwise , fi,k = 0 (The i-th fault is not present in the system) , (2.29)

with Ti and Ji being the evaluation and threshold function for the i-th residual.

Generalized residual set. A generalized residual set consists of a set of residuals, each of
them being sensitive to all but one fault:

ri(z) =
[
Gri,f1(z) . . . Gri,fi−1(z) Gri,fi+1(z) . . . Gri,fnf (z)

]


f1(z)
...

fi−1(z)
fi+1(z)

...
fnf (z)


, i = 1, . . . , nf . (2.30)

where Gri,fj (z) 6= 0 (i = 1, . . . , nf and j = 1, . . . , i − 1, i + 1, . . . , nf ) is defined as the fault
transfer function representing the relation between the residual ri(z) and the fault fj(z). Then,
a simple logic can be used to make the decision about the appearance of a specific fault: if Ti (ri,k) < Ji,k

Tj (rj,k) ≥ Jj,k, ∀j 6= i
, fi,k 6= 0 (The i-th fault is present in the system)

otherwise , fi,k = 0 (The i-th fault is not present in the system)
.

(2.31)

From (2.28) and (2.30), we deduce that there is more design freedom in the construction gen-
eralized residual sets than in the construction of a dedicated residual set. Hence, generalized
residual sets are more common in practice.
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Figure 2.11. Residuals for fault isolation.

Consider the general case in which a residual r1 must be sensitive to a group of faults f1 =[
f1 . . . fl

]T
∈ Rl with l ≤ nf and insensitive to the others (f2 =

[
fl+1 . . . fnf

]T
∈ Rnf−l)

and another residual r2 must be sensitive to f2 and insensitive to f1:

r1(z) =
[
Gr1,f1(z) . . . Gr1,fl(z)

]
f1(z)

...
fl(z)

, r2(z) =
[
Gr2,fl+1(z) . . . Gr2,fnf

(z)
]
fl+1(z)

...
fnf (z)

, (2.32)

with Gr1,fi(z) 6= 0 (i = 1, . . . , l) and Gr2,fi(z) 6= 0 (i = l + 1, . . . , nf ). The system (2.2) can be
expressed as

y(z) = Gu(z)u(z) +G1
f (z) f1(z) +G2

f (z) f2(z),

with G1
f (z) =

[
Gf1(z) . . . Gfl(z)

]
and G2

f (z) =
[
Gfl+1(z) . . . Gfnf (z)

]
. The residual gen-

erators in the general form of (2.26), i.e.,

r1(z) = H1
u(z)u(z) +H1

y (z) y(z), r2(z) = H2
u(z)u(z) +H2

y (z) y(z), (2.33)

verify

r1(z) =
(
H1
u(z) +H1

y (z)Gu(z)
)
u(z) +H1

y (z)
l∑

i=1
Gfi(z) fi(z) +H1

y (z)G2
f (z) f2(z),

r2(z) =
(
H2
u(z) +H2

y (z)Gu(z)
)
u(z) +H2

y (z)G1
f (z) f1(z) +H2

y (z)
nf∑

i=l+1
Gfi(z) fi(z).
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Hence, in order to generate the residuals (2.32) through the residual generators (2.33), the
transfer matrices H1

u(z) and H1
y (z) must verify the constraint conditions:

H1
u(z) +H1

y (z)Gu(z) = 0, (2.34a)
H1
y (z)G2

f (z) = 0, (2.34b)
H1
y (z)Gfi(z) 6= 0, i = 1, . . . , l, (2.34c)

and the transfer matrices H2
u(z) and H2

y (z) must verify the constraint conditions:

H2
u(z) +H2

y (z)Gu(z) = 0, (2.35a)
H2
y (z)G1

f (z) = 0, (2.35b)
H2
y (z)Gfi(z) 6= 0, i = l + 1, . . . , nf . (2.35c)

The existence of a solution to (2.34c) and (2.35c) is subjected to the detectability of each fault
fi (i = 1, . . . , nf ). Provided these constraints, the existence of a solution to (2.34b) and (2.35b)
is subjected to the isolability of the fault vector f1 from the fault vector f2. This condition
reveals that fault isolation is more challenging than fault detection.

Observer-based residual generation approaches

Observer-based methods can be utilized for generating both residuals for fault detection and
residuals for fault isolation. According to [44], a bank of observers which is devoted to the
generation of a dedicated residual set is called a dedicated observer scheme and a bank which is
devoted to the generation of a generalized residual set is called a generalized observer scheme.

The main idea of observer-based residual generation methods consists on estimating the
output of the system by using an observer. Then, the (weighted) output estimation error is
used as a residual. For instance, consider the following observer

x̂k+1 = A x̂k +B uk + L (yk − C x̂k), (2.36a)
ŷk = C x̂k +Duk +K (yk − C x̂k). (2.36b)

where x̂ is the estimated state, ŷ is the estimated output and L and K are constant observer
gain matrices of appropriate dimensions. The residuals can be generated as

rk = Q (yk − ŷk), (2.37)

with Q being a weighting matrix.
Provided that only the output estimates are necessary, state estimation is avoidable. Hence,

a functional observer as the one presented hereafter can be utilized:

zk+1 = F zk +K yk + J uk, (2.38a)
wk = Gzk +Ryk + S uk, (2.38b)

with F , K, J , G, R and S being the observer gain matrices of appropriate dimensions. z is the
state of the functional observer and w is aimed to be an estimate of certain linear combination
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of the state Lx (i.e., limk→∞(wk − Lxk) = 0). In order to generate the residuals, one must
design the functional observer to assign L = C. The output estimate can be thus obtained as

ŷk = wk +Duk. (2.39)

Then, the residual is obtained with (2.37). See the references [44, 283] for more details on
functional observers in the FD framework.

2.3.2 FE-based FD schemes

Let us first define fault estimation and evaluation.

Fault estimation. Fault estimation (FE) consists on processing the input and the output of
a monitored system in order to generate a fault estimation vector (denoted as f̂) satisfying

lim
k→∞

(f̂k − fk) = 0. (2.40)

Fault evaluation. Fault evaluation consists on processing each fault estimate f̂i by comparing
it to certain threshold function in order to determine whether this fault is present in the system
(fault detection and isolation):{

if Ti (f̂i,k) ≥ Ji,k , fi,k 6= 0 (The i-th fault is present in the system)
otherwise , fi,k = 0 (The i-th fault is not present in the system) . (2.41)

with Ti and Ji being the evaluation and threshold function for the detection/isolation of the
i-th fault.

Remark 2.5. In many works, a non-zero fault estimate is supposed to immediately indicate the
presence of a fault in the system. Hence, an evaluation stage based on decision mechanisms is
omitted. However, as further detailed in Section 2.3.3, the effect of disturbances cannot always
be completely removed from the fault estimates. For this reason, in this thesis, we propose to
evaluate the fault estimates in FDI decision mechanisms. Provided that isolation is more involved
than detection, we refer to these mechanisms as FI decision mechanisms.

The fault estimation and evaluation scheme is depicted in Fig. 2.12. If we compare this FE-based
scheme to the residual-based scheme in Fig. 2.9, the main difference is that FE provides fault
identification capabilities while residual-based schemes are limited to fault detection/isolation
tasks. As explained in the following section, FE is necessary for many fault tolerant control
(FTC) approaches. Hence, this thesis focuses on FE strategies.

The core of the FE problem consists on generating signals with the desired fault information.
In analogy to (2.26), we consider the following general structure for FE:

f̂(z) = Hu(z)u(z) +Hy(z) y(z), (2.42)
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with Hu(z) and Hy(z) being realizable, stable transfer matrices. Considering the system (2.2)
(i.e., no disturbances affect the system), the fault estimation vector (2.42) verifies

f̂(z) =
(
Hu(z) +Hy(z)Gu(z)

)
u(z) +Hy(z)Gf (z) f(z).

Hence, in order to satisfy (2.40), the transfer matrices Hu(z) and Hy(z) must verify the con-
straint conditions:

Hu(z) +Hy(z)Gu(z) = 0, (2.43a)
lim
z→1

(
Hy(z)Gf (z)

)
= Inf . (2.43b)

The existence of a solution to (2.43) is subjected to the identifiability of each fault fi (i =
1, . . . , nf ). Provided that fault isolability is necessary for fault identifiability, this fact reveals
that FE is more challenging than residual generation.

Observer-based fault estimation approaches

Among FE techniques, there is an upward trend in the use of advanced observers [100]. We
distinguish between

• augmented observers [41,99,180,307],
• sliding mode observers [298,316],
• adaptive observers [177,241] and
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Figure 2.12. General FE-based FD scheme.
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• iterative observer schemes [136].

In this thesis, augmented observers are utilized. An augmented observer is based on an
augmented model including both the system model and the fault model [99]. Let us consider
the following general fault model in the form of

ζk+1 =AF ζk +BF δk, (2.44a)
fk =CF ζk, (2.44b)

where ζ is the fault state vector, δ is a fault generating vector and AF , BF and CF are the
state-space matrices defining the fault model. The model (2.2) is then augmented as

zk+1 =A zk + B uk + E δk, (2.45a)
yk =C zk +Duk, (2.45b)
fk =R zk, (2.45c)

where z =
[
x

ζ

]
denotes the extended state vector. The state-space matrices in (2.45) verify

A =
[
A E CF
0 AF

]
, B =

[
B

0

]
, E =

[
0
BF

]
, C =

[
C F CF

]
, R =

[
0 CF

]
.

The following model-based augmented observer can be then used to estimate the faults in (2.45)

ẑk+1 =A ẑk + B uk + L (yk − C ẑk) , (2.46a)
f̂k =R ẑk +Duk +K (yk − C ẑk) , (2.46b)

where the design observer gain matrices L and K are of appropriate dimensions. Defining the
fault estimation error as f̃k = fk − f̂k and the extended state estimation error z̃k = zk − ẑk, it
follows that

z̃k+1 = (A− L C) z̃k + E δk, (2.47a)
f̃k = (R−K C) z̃k, (2.47b)

The input-output transfer matrix representation of (2.47) is f̃(z) = Gδ(z) δ(z), with Gδ(z) =
(R−K C)(z I − (A− L C))−1 E .

The matrices AF , BF and CF are chosen to guarantee zero steady-state fault estimation
errors for the faults which are presumed to affect the system. As the gain matrices L and K must
be designed to stabilize the fault estimator (2.46), the output given by Gδ(z) under an impulse
signal in δ(z) decays to zero. Therefore, if the realization (AF , BF , CF ) is able to generate the
fault signal f from an impulse signal δ, the fault estimation will achieve zero steady-state error.
Illustratively, consider the following two examples.
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• If it is assumed that the first discrete-time derivative of the faults affecting the system is
bounded, AF , BF and CF are fixed to

AF = Inf ∈ Rnf×nf , BF = Inf ∈ Rnf×nf , CF = Inf ∈ Rnf×nf . (2.48)

The augmented observer (2.46) with (2.48) is called a discrete-time proportional integral
(PI) observer and it is widely utilized in the literature [41,99,323] (see also the works [163,
305,339] on continuous-time PI observers).

• If it is assumed that the nI -th discrete-time derivative of the faults affecting the system
is bounded, AF , BF and CF are fixed to

AF =


Inf 0 0 0
Inf Inf 0 0

0 . . . . . . 0
0 0 Inf Inf

 ∈ R(nf ·nI)×(nf ·nI), (2.49a)

BF = Inf ·nI ∈ R(nf ·nI)×(nf ·nI), CF =
[
0 Inf

]
∈ Rnf×(nf ·nI). (2.49b)

The augmented observer (2.46) with (2.49) is called a discrete-time proportional multiple-
integral (PMI) observer and it is also common in the literature [307] (see also [102, 103,
156,306,322] on continuous-time PMI observers).

2.3.3 Robust generation

In Section 2.3.1 and Section 2.3.2, we considered the system (2.2), which is not affected by
disturbances. Considering now the system (2.10), the residual (2.26)2 verifies

r(z) =
(
Hu(z) +Hy(z)Gu(z)

)
u(z) +Hy(z)Gf (z) f(z) +Hy(z)G′d(z) d′(z). (2.50)

The equation (2.50) shows that both the faults and the disturbances affect the residual and,
hence, the discrimination between these two effects is difficult. This is the objective of robust
FD. Depending on whether the effect of the disturbances is totally or partially decoupled from
the residual we distinguish between full and approximate disturbance decoupling.

Full disturbance decoupling

Full (or perfect) disturbance decoupling is defined as the residual design strategy in which the
disturbance effect is totally decoupled from the residual:

Hy(z)G′d(z) = 0. (2.51)

The existence of a solution to (2.51) together with (2.27)3 requires that the disturbances are
decoupable from the faults to which the residual must be sensitive (i.e., their effect on the

2The isolation residuals (2.33) and the fault estimator (2.42) are in the same form as (2.26). Hence, in this
section, we mainly refer to the results regarding robust residual generation for fault detection.

3(2.34c) or (2.35c) in the case of fault isolation and (2.43) in the case of fault estimation.
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measurements must be totally decoupled). If this condition is satisfied, perfect disturbance
decoupling can be achieved by using different design techniques as eigenstructure assignment
approaches [149, 224, 225] or unknown input observers (UIOs) [45, 120, 127, 163, 340]. Provided
the importance of the latter approach, we now give some notes on UIOs.

Unknown input observers Consider the system (2.10) with D′d = 0, the full-order observer

zk+1 = F zk + T B uk +K yk, (2.52a)
ŷk = C zk + C H yk, (2.52b)

satisfying the conditions

B′d = H C B′d, (2.53a)
T = I −H C, (2.53b)
F = T A−K1C, (2.53c)
K2 = F H, (2.53d)
K = K1 +K2. (2.53e)

is an UIO for residual generation [44]. The residual is then obtained with (2.37).

Theorem 2.5. ([44]) Necessary and sufficient conditions to achieve an UIO from (2.52) for
the system (2.10) with D′d = 0 are

(i) rank {C B′d} = rank {B′d} ,

(ii) rank
[
z I −A B′d
C 0

]
= nx + n′d, ∀z ∈ C̄1.

The condition (i) is a necessary and sufficient condition for the existence of a solution
to (2.53a)4. The condition (ii) is equivalent to the condition that the transmission zeros from the
disturbances to the measurements must be stable. As detailed in [70], these two conditions are
not equivalent to the conditions for perfect disturbance decouplability. While perfect disturbance
decoupling just requires the reconstruction of measurable variables for the purpose of generating
analytical redundancy, UIOs are used to reconstruct the state variables.

Approximate disturbance decoupling

Approximate (or optimal) disturbance decoupling is defined as the residual design strategy in
which the disturbance effect on the residual is attenuated:

‖Hy(z)G′d(z)‖ = γ, (2.54)

with γ being certain disturbance attenuation level for some system norm.
4A special solution to (2.53a) is H = B′d

(
(C B′d)T C B′d

)−1 (C B′d)T .
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The decoupability of the disturbances from the faults to which a residual must be sensitive
is a strong condition and it makes difficult (if not impossible) to achieve perfect disturbance
decoupling in a practical application. In such cases, perfect decoupling is generally sought for a
decoupable subset of disturbances (generally unknown inputs) and approximate decoupling is
fixed for the others (generally noises).

Approximate disturbance decoupling can be achieved in different manners [70]:

• Approximating G′d(z) by another transfer matrix Ḡ′d(z) satisfying the conditions for per-
fect disturbance decoupling and designing the residuals so that the effect of Ḡ′d(z) is
cancelled.

• Designing the residuals so that the effect of G′d(z) is attenuated.

In this thesis, the latter approach is utilized.

2.3.4 Evaluation strategies

It is clear from Section 2.3.3 that the residuals may be corrupted by disturbances and other
uncertainties. To achieve fault diagnosis successfully, a widely accepted procedure is to perform
a residual evaluation step as illustrated in Fig. 2.6. A general form of an evaluator is the one
presented in (2.25)5:{

if T (rk) ≥ Jk , fk 6= 0 (A fault is present in the system)
otherwise , fk = 0 (No fault is present in the system) ,

where T and J denoted the evaluation and threshold function.

Remark 2.6. The robustness achieved in the signal generation step (i.e., residual generation
or fault estimation) is often called active robustness. The robustness achieved in the evaluation
step is often called passive robustness [44].

Different evaluation functions of the residual rk ∈ Rnr are available in the literature. Some
standard ones are [70,74]

• the peak value T (rk) =
√∑nr

i=1 r
2
i,k ,

• the trend peak value T (rk) =
√∑nr

i=1(ri,k − ri,k−1)2 and

• the RMS value T (rk) =
√

1
T

∑k+N
κ=k

∑nr
i=1 r

2
i,κ (N being the size of certain time-window).

In this thesis, peak values are utilized for evaluation purposes [30,201,217]6.

The determination of the threshold function is influenced by different factors such as the
dynamics of the residual generator and the properties of the disturbances affecting the system.
Generally, thresholds functions can be classified into

• constant thresholds computed offline [229,267] and
• adaptive thresholds computed online [201,234,328].
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Figure 2.13. Constant versus adaptive thresholds (Source:Prepared by the author on the basis of a figure in [44]).

Constant thresholds are less computationally costly than adaptive thresholds. In the case of
large manoeuvres, however, fixed thresholds may lead to poor fault diagnosability. The solution
to this problem is the use of adaptive thresholds that vary according to the control activity and
the UI/noise and the fault signal properties [44]. This concept is illustrated in Fig. 2.13.

There exist two major model-based (online or offline) threshold computation approaches
depending on the information which is available for the disturbances affecting the system:
statistical methods and deterministic methods.

Statistical methods. Statistical methods are well-established in the statistical framework
and they are based on hypothesis testing. The thresholds represent the limits of the confidence
intervals for fault diagnosis which are set according to the statistical properties of the residuals
in fault-free scenarios. These properties can be derived from the knowledge of the statistical
properties of the disturbances affecting the system.

Deterministic methods. Deterministic methods are well-established in robust control theory.
The thresholds represent the bounds of the effect of the disturbances on the residuals. They can
be derived from the knowledge of the bounds of the disturbances affecting the system.

Note that the main difference between both approaches is that statistical-based thresholding
leads to probabilistic diagnosis decisions (the confidence level of the diagnosis decision is lower
than 100%) while norm-based thresholding leads to certain diagnosis decisions (the confidence
level of the diagnosis decision is equal to 100%).

Remark 2.7. It is well-known that the theoretical model-based setting of thresholds using de-
terministic methods may lead to (too) conservative thresholds which result in poor fault diagnos-
ability. Hence, it is the state of the art in real applications to avoid model-based deterministic
methods and to set instead data-driven thresholds on the basis of tests in the real application
environment [71].

5The decision mechanisms (2.29), (2.31) and (2.41) are in the same form as (2.25). Hence, in this section, we
mainly refer to residual evaluation for fault detection.

6For scalar residuals or fault estimates (ri,k or f̂i,k) the peak value is equivalent to the absolute value (i.e.,
Ti(ri,k) = |ri,k| and Ti(f̂i,k) = |f̂i,k| ).
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2.4 Fault diagnosis and fault tolerant control

2.4.1 Classification of fault tolerant control strategies

Fault tolerant control (FTC) is a control strategy to ensure that a closed-loop system can
continue its operation with the required (satisfactory) performance in the presence of faults
(see Section 2.1.1). A comprehensive review on FTC methods can be found in [21, 318, 330].
Generally, FTC methods are classified into passive (PFTC) or active (AFTC) depending on
whether they use fixed or reconfigurable control strategies [89].

Passive fault tolerant control. PFTC uses robust controllers against certain classes of pre-
sumed faults (Fig. 2.14).

Active fault tolerant control. AFTC uses the fault information provided by a FD scheme
to actively reconfigure the control actions so that the acceptable performance of the system can
be maintained in the presence of faults(Fig. 2.15).

It is clear that there are two main differences between PFTC and AFTC:

• PFTC does not require FD and AFTC does require it;
• PFTC uses fixed control structures and AFTC reconfigures the controller by changing its

parameters or structure.
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Figure 2.14. General passive FTC scheme.
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Figure 2.15. General active FTC scheme.
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Figure 2.16. Classification of fault tolerant control strategies (Source: [170]).

Provided these differences, PFTC is computationally more attractive; however, it requires cer-
tain a priori knowledge of the faults and it is less versatile than AFTC. Hence, compared
with PFTC, AFTC is of broader applicability and it has been the major concern of the FTC
community.

As detailed in Fig. 2.16, AFTC can be further classified into projection methods and recon-
figuration methods including control allocation, fault hiding and controller redesign strategies.

Projection methods. Projection methods compensate the fault diagnosed at the FD unit by
switching the nominal controller to another controller from a set of precomputed (projected)
controllers; hence, this method is also called multiple model in the literature [34, 329]. The set
of predefined controllers are precomputed for a set of a priori presumed faulty situations.

Reconfiguration methods. Reconfiguration methods include three main approaches: control
allocation, controller redesign and fault hiding.

• Control allocation. Control allocation strategies eliminate the actuator faults diagnosed
at the FD unit by reallocating the corresponding control actions to redundant healthy
actuators [8, 37,61].
• Controller redesign. Control redesign involves the computation of new parameters of the

controller taking into account the fault information from the FD unit. It includes strategies
such as model predictive FTC [279,313].
• Fault hiding. Fault hiding approaches use a reconfiguration block between the plant and

the nominal controller in order to hide the diagnosed fault to the nominal controller [275].
Fig. 2.17 depicts the basic diagram of the fault hiding method. Currently, two main types
of fault hiding methods have been proposed: Virtual actuator/sensor and estimation &
compensation.
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Figure 2.17. General fault hiding scheme.

– In virtual actuator/sensor approaches, the reconfiguration unit uses the faulty system
dynamics (deduced from the FD unit) to modify the control action provided by the
nominal controller so that the faulty plant behaves as the original healthy one [239,243].

– Estimation & compensation approaches are based on feedforwarding the fault esti-
mates provided by the FD unit to the controller so that it takes this information into
account for the computation of the control action [85,144,281].

Although projection AFTC methods are more flexible than PFTC approaches, they also
present the drawback of requiring some a priori knowledge of the presumed faults. Control
allocation methods require actuator hardware redundancy and, hence, they are only suitable
for overactuated control systems. According to this background, control redesign and fault hiding
approaches are considered to be good alternatives to achieve AFTC. Especially, estimation &
compensation AFTC methods have become mainstream because they intrinsically integrate
diagnosis and FTC tasks [170–172,179].

2.4.2 Fault diagnosis tasks for fault tolerant control

More often than not, AFTC approaches require FE to achieve their fault tolerant purposes [29].
It is obvious that control redesign and fault hiding methods need the information provided by
fault analysis for their functioning. For its part, control allocation and projection methods may
not require FE in their implementation. However, FE becomes necessary in projection methods
if multiple controllers are predesigned for different degrees of the same isolated fault. FE also
becomes necessary in control allocation methods when the faulty actuators are not suppressed
and, instead, the control efforts are reorganized among all the actuators.

As explained in Section 2.3.1, residual-based strategies provide FDI information but they
are not devoted to FA. Hence, some investigators utilize fault reconstruction methods in order
to obtain fault estimates from the generated residuals. However, these reconstructions rely on
discrete-event algorithms with complex decisions that entail delays and errors [53, 171]. Hence,
FE appears as a powerful alternative to residual-based strategies in an AFTC framework.
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This thesis is then focused on the development of observer-based FE strategies which can be
utilized in AFTC. As deduced from Section 2.3.3 and Section 2.3.4, the presence of disturbances
and noises may lead to non-zero fault estimates in fault-free scenarios. In order to reduce the
misleading effect that may be produced by feedforwarding non-zero fault estimates in healthy
situations to an active fault tolerant controller, we propose to evaluate the fault estimates in
decision mechanisms to achieve FDI (Remark 2.5), to which we simply refer as fault isolation
(FI).

2.5 Fault diagnosis performance

2.5.1 Fault estimation performance

Consider certain fault estimator (2.42) satisfying (2.43a). When applied to the system (2.10),
the fault estimator verifies

f̂(z) = Hy(z)
(
Gf (z) f(z) +G′d(z) d′(z)

)
. (2.55)

The performance of the fault estimator can be then described by the behavior of f̂ w.r.t. f
and w.r.t. d′. In this thesis, we characterize the performance of each fault estimate f̂i and we
distinguish between the effects of the fault fi and of the other faults fj (j = 1, . . . , i − 1, i +
1, . . . , nf ). Similarly, we distinguish between the effects of the UIs d and of the noises w:

f̂i(z) = Hy(z)
(
Gfi(z) fi(z) +

nf∑
j=1,j 6=i

Gfi(z) fi(z) +Gd(z) d(z) +Gw(z)w(z)
)
. (2.56)

As illustrated in Fig. 2.18, we refer to these effects using the following nomenclature.

Fault tracking behavior. The fault tracking behavior refers to the behavior of f̂i when a
fault occurs in the i-th fault channel (i.e., fi 6= 0). In order to describe this behavior, we utilize
different performance parameters w.r.t. different fault signals. For instance,

• we utilize the cumulative squared error (CSE) w.r.t. the fault signals for which the steady-
state estimation error is zero.
• we utilize the fault tracking delay w.r.t. the fault signals for which the steady-state esti-

mation error is constant.

Fig. 2.19 shows these parameters for the case of a stable PI observer7.

Interfault coupling. The interfault coupling refers to the effect on f̂i of the faults in the
channels j 6= i (i.e., fj 6=i 6= 0). In order to characterize this effect, we utilize the concept of
degree of interfault decoupling, which refers to some norm bound of this effect.

7A stable PI observer guarantees zero steady-state estimation errors when step faults occur and constant
steady-state estimation errors when ramp faults occur.
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Figure 2.18. Performance characterization in fault estimation.
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Figure 2.19. Performance parameters for the fault tracking behavior of a PI observer.

UI coupling. The UI coupling refers to the effect on f̂i of the UIs (i.e., d 6= 0). In order to
characterize this effect, we utilize the concept of degree of UI decoupling, which refers to some
norm bound of this effect.

Noise influence. The noise influence refers to the effect on f̂i of the noises (i.e., v 6= 0). In this
thesis, it is generally assumed that the noises are zero-mean8. Hence, we utilize the variance
due to noises to characterize this effect.

The design of a fault estimator aims to achieve low CSEs and/or fault tracking delays,
high degrees of interfault and UI decoupling and low variances due to noises. The trade-offs
that appear for satisfying these four characteristics are called performance trade-offs in fault
estimation (Fig. 2.20).

2.5.2 Fault isolation performance

As illustrated in Fig. 2.21, we can characterize the performance of a FI mechanism (i.e., the
signal generator and evaluator) using the following standard parameters [44].

8This assumption is common for systems affected by stochastic noises (e.g., Kalman filter theory).
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Figure 2.20. Performance trade-offs in fault estimation.

False isolation rate. The false isolation rate is the probability of rising the alarm of fault i
when this fault is not present in the system (i.e., fi = 0).

Minimum isolable fault. The minimum isolable fault is the smallest value of a fault fi that
ensures the isolation of this fault.

Isolation time indices. The isolation time indices describe the time delays in isolating the
appearance of a fault fi. We distinguish between
• the acknowledgement time for isolation, which refers to the time elapsed between the

sample in which fi reaches the minimum isolable fault and the first sample of isolation of
the fault.
• the isolation time, which refers to the time elapsed between the appearance of the fault fi

and the first sample of isolation of this fault.

Remark 2.8. In this thesis, FDI is achieved by means of evaluating the fault estimates provided
by model-based observers in threshold-based decision mechanisms. From a diagnosis performance
perspective, we assume the non-simultaneity of faults. Hence, we indistinctly refer to detection
and isolation performance parameters or to isolation performance parameters.

The design of a FI mechanism aims to achieve low isolation time indices, low minimum
isolable faults and low false isolation rates. The trade-offs that appear for satisfying these
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fault estimate
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Figure 2.21. Performance characterization in fault isolation.
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Figure 2.22. Performance trade-offs in fault isolation.

characteristics are called performance trade-offs in FI (Fig. 2.22). As extensively proven in the
literature [4,49,72,327], an optimal trade-off between these performance parameters requires an
integrated design of the signal generator and evaluator (in this thesis, the model-based observers
and the decision mechanisms evaluating the fault estimates).

2.6 Fault diagnosis: applications

The authors in [315] state the need of detailed and comprehensive studies to improve the
effectiveness and feasibility of FD systems in industrial environments. In this section, we briefly
motivate the development of advanced FD techniques for the practical applications included in
the thesis.

Industrial pipe networks. The networks of pipelines and tanks represent major assets of
the process industry. However, pipelines may suffer from leakages due to corrosion, erosion or
material defects, amongst others. In many cases, the effect of these leakages extends beyond
the costs derived from downtimes and product losses because they may be hazardous for the
environment or for human beings. Therefore, a lot of attention has been paid to leakage detec-
tion [233]. Besides external FD techniques utilizing specialized hardware for leakage detection,
there are internal FD techniques that deal with the information provided by the process mea-
surements. Among them, we distinguish between the strategies that rely on the principle of mass
conservation and the methods that use analytical models of the dynamics of the fluid inside the
pipelines [208]. Unfortunately, except from some contributions (e.g., [237]), most of the works in
the literature do not deal with real experimental data. Hence, more research regarding leakage
diagnosis in real industrial environments is necessary.

Multistage manufacturing processes. At the manufacturing stage, process engineers are fo-
cused on the reduction of process variation. However, process variation reduction throughout the
manufacturing process is a challenging task, especially in complex processes such as multistage
manufacturing processes (MMPs). Current state of industrial practice in MMPs monitoring is
mostly based on statistical approaches, such as statistical process control (SPC) [202]. However,
the identification of the root causes has been proved to be arduous when using these meth-
ods [187]. More advanced FD techniques require an explicit model of the MMPs. In this field,
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one of the most successful approaches is the stream-of-variation (SoV) model [262], a model
adapted from the state-space model in control theory for modeling MMPs. Online estimators
(e.g., [11, 77]) utilizing batches of manufactured pieces have been successfully applied to SoV
models. However, these estimators are mainly applied to MMPs from a stationary perspective.
Research in FD for MMPs in non-stationary conditions is thus necessary.

Wind turbines. Undoubtedly, wind energy is a powerful source of sustainable energy (see
Appendix A.1). However, wind turbines (WTs) are expensive systems and their maintainability
and reliability must be high in order to maximize the amount of generated power and to minimize
the costs associated to maintenance operations [199]. A promising strategy to ensure these
capabilities is the introduction of advanced FD systems in WTs because, in the state-of-the-art
of industrial WTs, FD schemes are simple and most often conservative [216]. Proof of this is
the acceptance of the benchmark model presented by Odgaard, Stoustrup & Kinnaert in [216]
for the development of advanced FD techniques in WTs, which has received a lot of attention
from the researches in the FD field (e.g., [32, 214, 221]). The WT benchmark considers some
common WT faults (see Appendix A.3) covering sensor, actuator, and process faults in different
WT systems: the pitch system, the drive train system and the generator and converter system.
However, most solutions in the bibliography focused either on FDI or on the identification of
certain of these faults. It is thus necessary to develop estimation-based FD strategies considering
all the faults in the WTs. Moreover, the benchmark includes FDI performance requirements;
however, these requirements are generally a posteriori studied in the literature. Hence, it is
necessary to develop more FD solutions for WTs guaranteeing a predefined FD performance.

Wind farms. Odgaard & Stoustrup presented another benchmark in [215] for FD in WTs at
a wind farm (WF) level. Motivated by the conclusions in pioneer works as [168], the authors
recognize that some faults which are difficult to diagnose at a WT level can be better handled
at the WF level, when the WT is considered in comparison to other WTs of the farm. The WF
benchmark considers the following faults: decreased power generation due to debris build-up
or erosion, blade misalignments and changes in the drive train damping due to wear and tear.
Fewer solutions to this FD problem are available in the literature (e.g., [16, 30, 264]). However,
most of these solutions concentrate on FDI purposes and propose the generation and evaluation
of open-loop residuals which are very sensitive to disturbances and uncertainties. Moreover,
these solutions separately generate and evaluate spatial and temporal residuals. Hence, it is of
interest to develop estimation-based closed-loop FD strategies merging the spatial and temporal
information provided by the process measurements in WFs.



Chapter 3

Comparison of leakage estimation
strategies in a real industrial pipe
network

This chapter addresses the leakage estimation problem for a real industrial
network of pipelines and tanks. For this aim, we propose two different ap-
proaches that rely on the mass conservation principle. The first method mod-
els the leakages as multiplicative faults and applies the recursive least square
identification algorithm to identify them. The second approach deals with the
leakages as additive faults and relies on PI observers for estimating the leak-
ages. We also include a brief performance-based analysis of these methods
w.r.t fault diagnosis issues.

3.1 Introduction

The networks of pipelines and tanks represent major assets of the process industry. Regardless
of the effort in designing and building the network, pipelines may suffer from leakages due
to corrosion, erosion or material defects, amongst others. In many cases, the effect of these
leakages extends beyond the costs derived from downtimes and product losses because they may
be hazardous for the environment or for human beings. Then, much effort has been devoted
to face this problem. Pioneer works in the filed dealt with pipe rehabilitation and replacement
issues, [36]. In the last decades, most of the attention has been drawn to leakage detection, [233].

The authors in [107] divide leakage detection methods into two main groups. First, we
have the direct or external techniques that require the application of specialized hardware such
as optical sensors, acoustic devices or soil monitoring. Second, there are indirect or internal
techniques that do not require specialized sensors and deal with the information provided by
the process measurements. Among them, Billmann and Isermann [208] distinguish between the
strategies that rely on the principle of mass conservation and the methods that use analytical
models of the dynamics of the fluid inside the pipeline. The latter enable the detection and

51
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location of smaller leakages w.r.t mass-conservation-based techniques, see [27]. Many contribu-
tions such as [292] deal with these analytical methods for leakage identification; however, these
strategies require complex models which are very difficult to calibrate and require a trained
user [278]. Moreover, some industrial pipe networks are not equipped with pressure transducers
and the application of these strategies is not possible. The mass-conservation-based methods,
such as the ones present in [9], are easy to use and can be easily implemented since they rely
on instrumentation available in every pipeline [80].

Regardless of the model on which they are based, we find leakage indirect identification tech-
niques that use model-based observers for fault diagnosis (FD), like in [286], and other methods
that rely on parameter identification techniques, like in [20]. Except from some contributions
(i.e., [237]), most of these works do not deal with real data and, in many cases, they assume
idealized noise conditions. The authors in [315] state the need of detailed and comprehensive
studies to improve the effectiveness and feasibility of FD systems in industrial environments.
The main objective of this chapter is to apply and compare the suitability of two different fault
estimation (FE) mass-conservation-based techniques for leakage identification in a real indus-
trial pipe network. The first approach is based on parameter identification techniques and the
second one is based on model-based observers.

3.1.1 Structure and notation

The outline of this chapter is as follows. First, we state the problem in Section 3.2, where we
include the mathematical model of the pipe network and its sensors and we detail the objectives
of the chapter. In Section 3.3, we show how to deal with the leakages from a multiplicative point
of view. Similarly, Section 3.4 deals with leakage identification from an additive perspective.
Section 3.5 compares these two mass-conservation-based approaches and analyses the suitability
of these methods from a FD perspective. Section 3.6 applies the techniques to a real network.
First, we present the results derived from simulated data and then we show the performance of
the algorithms when applied to real industrial data. Finally, Section 3.7 summarizes the main
conclusions.

In this chapter, x(t) ∈ Rn represents a continuous-time signal at time t and x[k] ∈ Rn

represents a discrete-time signal at sample k. Expected value is denoted as E{·} and absolute
value is denoted as | · |.

3.2 Problem statement

Let us consider a group of i = 1, . . . , nv fluid storage tanks interconnected through a network
of j = 1, . . . , nq pipelines. We propose to model this network through the mass balance of each
tank i as

Ṁi =
nq∑
j=1

ci,jmj , i = 1, . . . , nv, (3.1)
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where mj is the mass flow rate carried by the pipeline j, Ṁi is the derivative of the mass
contained in the tank i and ci,j is a constant describing the relation between the flow of the
pipeline j and the variations experienced by the tank i. We have that ci,j = 0 if the pipeline is
not connected to the tank and ci,j = {−1, 1} depending on whether the pipeline extracts fluid
from the tank or introduces fluid in it.

Due to the high cost of mass flowmeters such as Coriolis flowmeters, mass flow rates are not
generally measured through these devices in industry. It is much more common to find mag-
netic or pressure-based volumetric flowmeters which are calibrated with a predefined product
density, ρ0. Environmental conditions may affect the product density. In such cases, the actual
density, ρ, does not verify ρ = ρ0. Taking this consideration into account, we model the mass
flow rate measurement in the pipeline j (denoted as uj) as

uj = mj + ηj , (3.2)

where ηj takes not only account of the sensor noise but also considers the biases produced by
the differences between the predefined density, ρ0, and the actual density, ρ. Similar applies to
the mass contained in the tanks. In industry, this mass is computed through the measurements
provided by level sensors, the tank dimensions and the predefined product density, ρ0, i.e.,

M0
i = ρ0

i Si hi,

with Si being the equivalent cross section of the tank i and hi being the equivalent level measured
by the sensors in the i-th tank. Again, we model the mass measurement in the tank i (denoted
as si) as

si = Mi + νi, (3.3)

where νi takes into account sensor noises, density biases and tank dimensions uncertainties.

The previous network might be affected by leakages that corrupt the network. If a leak-
age occurs, (3.1) does not hold anymore. In the following sections, we present two different
approaches to consider possible fluid leakages in the process model. Section 3.3 deals with the
leakages as multiplicative faults and Section 3.4 models them as additive faults. The main ob-
jective of this chapter is to provide multiplicative and additive leakage estimation algorithms
that use the information provided by the input measurements uj (j = 1, . . . , nq) and the output
measurements si (i = 1, . . . , nv). In this chapter, we also aim to characterize the performance of
these fault estimators in order to build fault evaluators and achieve fault detection and isolation
(FDI).

We desire that the algorithms developed in this thesis can be implemented in industrial hard-
ware such as Programmable Logic Controllers (PLCs) or Distributed Control Systems (DCSs);
hence, we work in the discrete domain with the sample time Ts.
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3.3 Multiplicative approach for leakage estimation

3.3.1 Leakage identifiability analysis

Let us consider that the previous network may be affected by leakages in its pipelines. We can
extend the model (3.1) to take these possible faults into account as

Ṁi =
nq∑
j=1

(ci,j + ci,j θi,j)mj , i = 1, . . . , nv, (3.4)

where θi,j is a parameter that describes the existence of leakages in the section of the pipeline j
between the tank i and the sensor uj . Then, we have that θj = 0 if this leakage does not occur
and θj 6= 0 when this leakage is present in the network. The mass flow rate of the leakage θi,j ,
which we denote as li,j , is given by

li,j = θi,jmj . (3.5)

Identification algorithms allow identifying as many parameters as sufficiently excited inputs are
available per each measured output, see [17,174]. Thus, if we assume that all the mass flow rates
mj are sufficiently excited, each measurement si allows identifying all the leakage parameters θi,j
with j = 1, . . . , nq. In all, the discrete state-space realization that enables leakage multiplicative
identification in the surroundings of the tank i is

yi[k] = Di xi[k] + Ei η[k] + µi[k], (3.6)

with
Di =

[
1 + θi,1 . . . 1 + θi,nq

]
, xi[k] =

[
ci,1 u1[k] . . . ci,nq unq [k]

]T
,

Ei =
[
ci,1 . . . ci,nq

]
, η[k] =

[
−η1[k] . . . −ηnq [k]

]T
,

and where yi[k] and µi[k] are the output measurement and its noise defined as

yi[k] = 1
Ts

(si[k]− si[k − 1], (3.7)

µi[k] = 1
Ts

(νi[k]− νi[k − 1]). (3.8)

3.3.2 Estimation algorithm

For leakage parameter identification, we transform (3.6) by removing the variables associated
to the pipelines which are not connected to the tank i, i.e.,

yi[k] = D̄i x̄i[k] + Ēi η̄[k] + µi[k], (3.9)

where D̄i and Ēi result from removing the columns j satisfying ci,j = 0. Similar applies to the
rows of x̄i and η̄ w.r.t xi and η. We denote by n̄q the resulting number of rows or columns in
the previous vectors.
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We propose to identify the parameters θi,j (j = 1, . . . , n̄q) in (3.9) through the following
recursive least squares (RLS) algorithm with trace control, see [191]:

Ri[k] = x̄i[k]T Pi[k − 1] x̄i[k] + λ, (3.10a)
Li[k] = Pi[k − 1] x̄i[k]Ri[k]−1, (3.10b)
D̄i[k − 1] = [1 . . . 1] + θ̂i[k − 1]T , (3.10c)
θ̂i[k] = θ̂i[k − 1] + Li[k] (y[k]− D̄i[k − 1] x̄i[k]), (3.10d)

Pi[k] = 1
λ

(I − Li[k] D̄i)Pi[k − 1], (3.10e)

if tr(Pi[k]) > α then Pi[k] = α/tr(Pi[k])Pi[k], (3.10f)

with θ̂i[k] =
[
θ̂i,1[k] · · · θ̂i,n̄q [k]

]T
being the vector of identified parameters, Pi[k] the inverse of

the weighted information matrix and λ the forgetting factor that must be chosen according to
the excitation of the mass flow signal.

3.3.3 Design and performance analysis

The convergence of (3.10) depends on the initial value of the matrix Pi. This matrix must be
initialized at a high value to indicate that, initially, there is no information about the process
(e.g., Pi[0] = 109 · I). In the initialization, we do not expect any leakage in the network; thus,
we set θ̂i[k] to zero.

The estimation error of vector θi depends on the forgetting factor λ: a larger value of λ
leads to a lower error. The speed of the convergence to the real parameters depends on both the
excitation level of the signals and the forgetting factor λ: the convergence under system changes
is faster with a lower value of λ. Therefore, λ can be seen as a tuning parameter for setting
the trade-off between the FE accuracy and the convergence speed. If the system is sufficiently
excited, λ can be chosen close to 0.995, and if not, it must be chosen close to 1.

This method gives no a priori information of the estimation error because the signal to noise
ratio of the flow signals may change during normal operation. Furthermore, if a signal is mainly
constant and does not sufficiently excite the identification algorithm, this approach can give
wrong estimations with significant biases [6]. The algorithm should be stopped in the case that
all the flow rates become constant and should be only activated if the flows are significantly
varying.

3.4 Additive approach for leakage estimation

3.4.1 Leakage identifiability analysis

Let us consider the leakage flows to be additive faults. The process model can be written as

Ṁi =
nq∑
j=1

ci,j (mj + li,j), i = 1, . . . , nv, (3.11)
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According to [70], the identifiability of the faults requires their detectability and isolability. A
fault is detectable if its variations affect the output measurement of the system. This means
that a leakage flow li,j (j = 1, . . . , nq) is detectable through the i-th model in (3.11) if ci,j 6= 0.
Regarding isolability issues, additive faults are only isolable if the number of faults is not larger
than the number of output measurements. Provided that only one output measurement si is
available per tank, it is just possible to estimate the total leakage flow that occurs in all the
pipelines connected to each tank i, i.e.,

Ṁi =
nq∑
j=1

ci,jmj + fi, i = 1, . . . , nv, (3.12)

with

fi =
nq∑
l=1

ci,j li,j . (3.13)

Finally, let us define the transfer function between the fault fi and the output measurement si
as Gfi(s). Identifiability requires the stability and causality of the inverse of Gfi(s). We have
that G−1

fi
(s) = s and we deduce that fi is not identifiable through si. To face this problem,

we propose to consider the measurement of the derivative of Mi to be the output measurement
of the system; in this case, we have G−1

fi
(s) = 1 and we deduce that fi is identifiable through

the measurement of Ṁi. The discretization of the state-space model of the system that enables
leakage estimation in the surroundings of the tank i is

yi[k] = Ei u[k] + Ei η[k] + µi[k] + fi[k], (3.14)

with
u[k] =

[
u1[k] . . . unq [k]

]T
.

3.4.2 Estimation algorithm

To enhance the steady-state accuracy in additive FE, we propose to use model-based propor-
tional integral (PI) observers. Thus, we model each fault fi as

fi[k + 1] = fi[k] + ∆f i[k], (3.15)

where ∆f i[k] represents the variation of the fault signal fi between two consecutive samples.
The equation (3.15) allows modeling, for instance, abrupt or step signals (∆f [k] only takes a
non-zero value at the fault appearance) and incipient or ramp signals (∆f [k] takes a constant
value). This kind of fault model has been widely used in the literature to analyse the behavior
of FD algorithms, see [155, 162]. The proposed single-input single-output (SISO) PI observer
for the estimation of the fault fi is

f̂i[k + 1] = f̂i[k] + li(yi[k]− f̂i[k]− Ei u[k]), (3.16)

where f̂i is the fault estimate and li is the gain that updates the prediction obtained from the
model with the measurements.
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3.4.3 Design and performance analysis

First, let us define the FE error as

f̃i[k] = fi[k]− f̂i[k]. (3.17)

Its dynamics is given by

f̃i[k + 1] = (1− li) f̃i[k]− li (Ei vi[k] + µi[k]) + ∆fi[k] (3.18)

and we deduce that li places the poles of the dynamics of f̃i. For a first-order system, an
unambiguous measure of the speed of response is the time constant τi defined as

τi = −Ts/ln(1− li). (3.19)

This constant fixes, for instance, the 98% settling time towards step faults as ts,98% = 4τ . Other
indices of the temporary behavior of the response include the cumulative squared error (CSE)
of the response which is given by

CSEi = Ts
(
1− (1− li)2

)
(3.20)

when a step fault occurs.

Second, we denote the covariance of the error f̃i[k] as σ2
i . To compute σ2

i , we should take
account of the correlation between νi[k] and νi[k − 1] inside µi[k], see (3.8). Then, at steady
state and when no fault occurs, σ2

i satisfies the following Lyapunov equations:

Fi = AiFiATi +Bi ViBT
i , (3.21a)

σ2
i = RFiRT , (3.21b)

with
R =

[
1 0

]
, Ai =

[
li/Ts 1− li

0 0

]
, Bi =

[
−liEi −li/Ts

0 1

]
,

and Vi being the covariance of vector vi[k] =
[
η[k] νi[k]

]
, i.e., Vi = E

{
vi[k] vTi [k]

}
.

The equations (3.19)-(3.20) and (3.21) show that there is a trade-off between the tracking
ability of the fault estimator and the accuracy of the estimations. To design the fault estimator
we can either fix the temporary behavior of the estimation through (3.19) or (3.20) and obtain
a certain accuracy of the estimations by (3.21) or vice-versa

3.5 Comparison and FDI architecture

3.5.1 Comparison

Let us briefly compare the multiplicative estimation approach presented in Section 3.3 and the
additive estimation approach included in Section 3.4.
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• Regarding isolability issues, the additive observer-based approach just estimates the to-
tal leakage of all the pipelines connected to a tank i and, unlike the method based on
parameter identification, it does not indicate which pipeline j is responsible for the fault.

• Regarding excitability issues, the multiplicative approach requires sufficiently excited in-
puts. The additive approach does not demand any condition to the inputs.

• Regarding analysis issues, the performance of the estimations obtained through parameter
identification cannot be a priori characterized as it depends on the excitation of the
inputs. In opposite, the performance of the estimations obtained through PI observers is
parametrizable and does not depend on the inputs.

3.5.2 FDI architecture

Provided the previous characteristics of the two presented approaches, we propose to use the
fault estimates provided by the additive approach (i.e., (3.16)) for FDI purposes. We introduce
the following decision mechanism:{

if |f̂i[k]| ≥ fm,i , Fault fi
otherwise , No fault fi

, (3.22)

where fm,i denotes the minimum isolable fault fi and it refers to the constant fault that raises
the alarm of fault fi provided the non-existence of other faults nor noises in the system. Let
us define the false isolation rate (FIR), which we denote as φi, as the probability of rising false
alarms regarding the presence of the fault fi. If we assume that the noises affecting the system
are Gaussian, we have that the FE error f̃i[k] is normally distributed with zero mean. Then,
fm,i should satisfy the following relation for guaranteeing certain FIR:

fm,i = Φ−1(1− φi/2)σi, (3.23)

where Φ−1 is the inverse cumulative distribution function of a normal random variable. The
equation (3.23) means that fm,i can be also seen as the quantile used to construct the confidence
interval of level 1− φ(i)/2.

Remark 3.1. If the noises are biased, we must increase the threshold fm,i in an amount equal
to
∑
j |Fi,j |v̄i,j where Fi,j is the static gain from the sensor noise vi,j to the estimated fault f̂i,

and v̄i,j is the bias in sensor vi,j.

Remark 3.2. Once we have diagnosed the presence of a fault in a pipeline connected to the tank
i through (3.22) and if the inputs mj are sufficiently excited, we can determine which pipeline
j is responsible for the leakage. To do so, we should look for the estimate θ̂i,j [k] (j = 1, . . . , n̄q)
that experiences the greatest variation after the fault appearance.
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Figure 3.1. Network architecture of tanks, pipelines and transducers.
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Figure 3.2. Real input and output measurements of the tank 2 (Ts = 1).
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Figure 3.3. Detail in real y2 data for different sample times (Light: Ts = 1, Dark: Ts = 20).

3.6 Application

Let us consider the network depicted in Fig. 3.1. There is a raw material storage tank connected
with a feeding tank. Let us denote the mass inside these tanks as M1 and M2. The maximum
capacity of the tanks is, respectively, 10.000 and 800 metric tons. These tanks are connected
through a pipeline which delivers a mass flow rate m1 up to 25 t/h (c1,1 = −1 and c2,1 = 1).
The feeding tank has two consumers, whose mass flow rates are denoted as m2 and m3 (c2,2 =
c2,3 = −1). These mass flows are supposed to be, at most, 15 t/h and 10 t/h. All the pipelines
are prone to faults (l1,1 and l2,1/2/3). In this analysis, we focus on the leakage l2,1, which refers
to the leakage in the section that goes from the flowmeter in the pipeline 1 to the tank 2 1. We

1In reality, this section of the pipeline 1 is the longest pipe section in the network and it, moreover, is the
least accessible pipe section for the operators.
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Figure 3.4. Trade-offs of performance for different designs.

apply the previous FE techniques in both simulated data and real industrial data (in which we
have added a simulated leakage).

For Ts = 1, the measured signals are shown in Fig. 3.2. Fig. 3.3 shows that the quantization
in the measurements s2[k] affects y2[k] when computed with Ts=1 s: its noise is correlated. If we
use Ts=20 s, the correlation disappears at the cost of a maximum delay in the FDI scheme of 20
s. This delay being negligible for the case of study, we choose Ts = 20 s for the implementation.
In this case, the standard deviation of the measurement noise of y2[k] is 79.2 t/h. In the worst
case, the standard deviation of the measurement noises of u1[k], u2[k] and u3[k] is 0.053 t/h,
0.0026 t/h and 0.022 t/h, respectively. We see that the main handicap of the problem is the
difference in the magnitude order between the noise in the tank measurements and the noises
in the pipeline measurements. For validation purposes, we also generate simulated data. The
simulated data is obtained by generating mass flow rate signals and obtaining the corresponding
volume by integration; then, we add Gaussian noises to all the signals with the worst observed
real standard deviation.

3.6.1 Additive approach

For the fault estimator (3.16) and the fault evaluator (3.22), we have performed several designs
with different constant times τ2 (from 20 min to 180 min) and FIRs (φ(1) = 10−3, φ(2) = 10−6

and φ(3) = 10−9). Fig. 3.4 (left) shows the minimum isolable fault that corresponds to each
design. We see that for a given FIR, the minimum isolable fault fm,2 diminish when increasing
the time constant of the fault estimator. Achieving certain sensitivity to faults (i.e., given fm,2)
requires a larger time constant of the estimator if we want to assure lower FIRs.

Under the presence of step faults f2, the estimator f̂2[k] behaves as a first-order system
with time constant τ2 and unitary gain. This allows us to obtain the sample in which the fault
estimate crosses the threshold and, therefore, the amount of mass that has been leaked until
FDI is achieved: −F τ log(1 − fm/F ). In Fig. 3.4 (right), we represent this mass for different
estimators (with the time constant indicated in the horizontal axis and with a FIR of 10−3)
under three different step faults of size F2(1) = 2 t/h, F2(2) = 3 t/h, and F2(3) = 5 t/h. Given
an estimator defined by τ2 and fm,2, it is remarkable that a bigger leakage F2 makes the FDI



3.6. Application 61

Time [h]

f̂ 2
[t/

h]

fm,2 = 0.75 t

0 2 4 6 8 10
-2

0

2

4

Time [h]

fm,2 = 1.50 t

0 2 4 6 8 10
-2

0

2

4

Time [h]

fm,2 = 2.50 t

0 2 4 6 8 10
-2

0

2

4

Figure 3.5. Comparison of different designs of additive fault estimation and diagnosis (Dark: Industrial data,
Light: Simulated data, Red: Threshold).
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Figure 3.6. Multiplicative fault estimation with λ = 0.999 (Dark: Industrial data, Dashed: Simulated data with
uj(1)).

to occur faster in such a way that less mass leaks. The leaked mass is infinite if the fault F2
is less than the threshold fm,2, and it reaches a minimum at a certain τ2. As the fault is not
known a priori, this feature cannot be used to find an optimal fault estimator and evaluator (in
the sense of finding the fault estimator and evaluator that assures minimum leaked mass until
diagnosis).

In order to test the goodness of the approach, we have fed the algorithm (3.16) with the
real data. We have added a step signal of 3 t/h (from the instant 5h) to the measurements of
m1. Recall that his step represents an abrupt leakage in the section of the pipeline 1 that goes
from the flowmeter to the tank 2. We have tested the approach for different designs (with three
different values of fm,2 and a fixed FIR of 10−3); the results are depicted in Fig. 3.5 (black).
We can appreciate that in the initial healthy periods the estimation has a bias as explained
in (3.2). Note that, for the simulated data, the algorithm (3.16) provides unbiased estimations
in the healthy period that satisfy the FIR of the design tightly.

3.6.2 Multiplicative approach

Now, we show the behavior of the RLS algorithm to identify faults in all the pipelines. We
have again compared simulated data with the real industrial data. We have simulated a leak
by multiplying the measurement of m1 by 1.2 from the instant 4 h. We can see in Fig. 3.6 the
performance of the algorithm with λ = 0.999, where the simulated data (dotted lines) shows
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convergence for the parameter θ̂2,1 (the one with the injected fault), but it shows a bad transient
for the other parameters that should be kept to zero (mainly due to the high measurement
noises). The application of the algorithm to the real data shows a bad initial transient and no
convergence after the fault appearance, mainly due to the scarce excitement of the mass flow
rates implied in the identification process (see Fig. 3.2).

3.7 Conclusion

In this chapter, we have analysed the problem of leakage detection in networks of tanks and
pipes, whose mass and mass flow rates are measured by noisy sensors. We have described
and modeled the problem and we have proposed two different estimation strategies. The first
approach models the leakages as multiplicative faults, where identification techniques as the
RLS apply. The main drawback of this approach is the requirement of permanently excited
signals. The performance of the estimation does also depend on that excitation. The second
strategy models the leakages as additive faults and we propose a SISO PI observer for their
estimation. This approach does not require any specific excitement of the signals and we are
able to characterize the achievable performance despite the presence of high noise levels in the
signals. This performance has been characterized by means of the minimum isolable fault, the
false isolation rate and the convergence rate under step-like faults. We have shown the relation
between these three performance indices for the real industrial data. Finally, we have simulated
leaks by means of disturbing the measurements of the flowmeters and we have showed the
behavior of both approaches. The validity of the additive approach for leaks in the pipelines
that surround certain tank has been proved and we have showed that the multiplicative approach
fails with the real data due to its poor excitation.



Chapter 4

Estimation of non-stationary process
variance in multistage manufacturing
processes

In this chapter we propose a recursive algorithm to estimate the process vari-
ance in multistage manufacturing or assembly processes. We use a replicated
model that includes the process variance to be estimated as a time-varying
state that changes slowly. For this model, we develop an estimation strategy
including tuning parameters that play a direct role in the trade-off between
the estimation accuracy and the adaptation to changes. We also develop a
statistical confidence interval for the estimations which enhances the decision
of whether the process variances have changed. Unlike other batch methods in
the literature, our proposal is computed recursively, and it allows us to tune
the trade-off between the convergence speed and the accuracy without modi-
fying the sample size, which only contains the data of the last manufactured
piece.

4.1 Introduction

Nowadays, the highly competitive markets demand customized and high quality products with
minimum lead times exerting a great pressure on companies to optimize their resources through-
out the product development cycle. At the manufacturing stage, process engineers are focused
on the analysis and reduction of process variation to reduce cost, improve product quality
and minimize production ramp-up times when new products are launched. However, process
variation reduction throughout the manufacturing process is a challenging task, especially in
complex processes such as multistage manufacturing processes (MMPs). These processes are
those that produce products under multiple setups where the operations conducted at the first
stages have an influence on the manufacturing operations down-streams [262]. For instance, the
process assembly of automobile bodies is a MMP composed of a series of single stages where,
at each stage, the body from previous stages is held in a work-holding structure to assemble

63



64 4. Estimation of non-stationary process variance in multistage manufacturing processes

new components and, after the welding operation, the body moves forward to the next stages in
order to complete additional assembly operations. In MMPs, statistical process control (SPC)
techniques are commonly applied to control the manufacturing process over time by monitoring
the quality characteristics of the product. The statistical control charts applied in SPC are
effective tools to detect process changes and ensure product quality. However, the identification
of root causes that may be inferred from charting results would be significantly limited if the
interrelationships between the process variables and the key product characteristics (KPCs) are
not explicitly modeled. To overcome this limitation, Li et al. [175] proposed a causation-based
T 2 decomposition method where the causal relationships among variables are modeled by a
Bayesian network. The interpretation and decomposition of Hotelling’s T 2 together with the
causal information of the process and the KPCs variables let the proposed SPC method to trace
backward from certain quality problems to the variables that are the root causes. An improve-
ment of this method is provided in Verron et al. [293] where the decompositions are computed
within the Bayesian network itself.

The state-space model from control theory has also been successfully applied to model
the relationships between variation sources and product dimensional quality measurements in
MMPs [2, 3, 146, 187, 195, 310, 311, 338]. The use of the state-space model with SPC techniques
for root cause identification was proposed in Zou and Tsung [341]. In their work, a multivari-
ate exponential weighted moving average scheme with the generalized likelihood test that fully
incorporates directional information based on the state-space model was proved to be an effec-
tive solution for process monitoring and fault diagnosis. Besides these SPC techniques, different
variation source identification techniques such as those based on MLE estimators, REML es-
timators and MINQUE estimators have been proposed in MMPs using the state-space model
as a linear mixed model. In [336], the application of MLE and MINQUE estimators in MMPs
was discussed for estimating both the mean and the variance of the process variation sources. A
hypothesis-testing procedure was also developed to provide confidence level of each of the esti-
mation results which let the plant engineers determine if process faults regarding the mean and
the variance of the process variation sources exist in terms of statistical significance. However,
these methods have been mainly applied in biological and agricultural fields [255] and they are
primarily applicable to offline experiments where the sample size is small and the computation
time is not a concern. In MMP, large quantity of data may be available and the detection and
identification of any process malfunctioning need to be carried out faster and efficiently. For this
reason, online estimators with low computation cost and fast response have been investigated
in previous researches proving their applicability. A good comparison of online estimators of
the variance of the process variation sources (i.e., process variance estimators) and their per-
formance can be found in [78], where the process variance estimators from the research works
in [11, 67, 77, 276] were analysed. These estimators entail closed-form expressions and are more
cost-effective than the MLE method, particularly for large sample sizes, and are thus more
suitable for online quality control. However, the estimators analysed are only adequate when
the MMP is stationary since the estimations are based on the sample of data of the last N
pieces and only when most of the N pieces are affected by the process faults the estimators can
correctly detect and quantify the process variance changes. Therefore, these estimators present
a delay in identifying the variation sources which negatively impacts on the efficiency of online
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quality control actions. For instance, a certain number of parts may be manufactured before
the variation source is identified which compromises the quality in terms of variance of the
final product and produces an increase of non-quality costs. To overcome this limitation the
application of non-stationary process variance estimators in MMPs has to be investigated.

This chapter discusses the use of a model-based observer that recursively updates the es-
timated process variance with the measurements from each new processed piece. The observer
demands few computational burden and it has an asymptotic behavior We also discuss how to
tune the observer for fixing the trade-off between the convergence speed under process variance
changes and the steady-state error for stationary process variances.

4.1.1 Structure and notation

This chapter is organized as follows. The problem statement is presented in Section 4.2. Sec-
tion 4.3 presents the proposed approach for modeling the non-stationary behavior of the process
variances in MMPs that enables the application of observer-based strategies for variation source
identification. Section 4.4 explains the estimation procedure of the process variance and it de-
tails a design strategy of the observer for ensuring a specific performance of the estimator. In
Section 4.5 we include the design of confidence intervals for the estimates so as to enhance
statistical hypothesis testing for fault diagnosis. Section 4.6 briefly compares the proposed es-
timates with offline existing estimators and Section 4.7 presents a case of study to validate the
approach. Finally, Section 4.8 summarizes the main conclusions of the chapter.

Let M ∈ Rn×n be a square matrix and m ∈ Rn be some vector. M [i, j] denotes the element
in the i-th row and j-th column of M and m[i] denotes the i-th element in m. In ∈ Rn×n is
the identity matrix of size n and 1n ∈ Rn is the unitary column vector of size n. vec(M) ∈ Rn2

denotes the vectorization of M and vec−1 (vec(M)) = M . diag(M) ∈ Rn is the operator that
returns a column vector with the diagonal entries of M . diag−1(diag(M)) is a diagonal matrix
with the elements M [i, i] in its diagonal. Product is denoted as ∏, summation is denoted as ∑
and the direct sum is denoted as ⊕, so that ⊕im[i] ∈ Rn×n is a diagonal matrix containing the
elements of m in its diagonal. M⊗2 , and M◦2 represent the Kronecker and Hadamard product
of M and M (i.e., M⊗2 = M ⊗M and M◦2 = M ◦M). Expected value and probability are
denoted as E{·} and Pr{·}.

4.2 Problem statement

In a MMP the deviations caused by the variation sources of each stage propagate along the
production line. At certain stage the dimensional variability of a piece consists of two compo-
nents: one derived from the previous stages and another created at the current stage. Since these
deviations are much smaller than their corresponding nominal value, they can be represented
by a linear state-space model as

xk(i) = Ak−1 xk−1(i) +Bk u
m
k (i) + uuk(i), (4.1a)

yk(i) = Ck xk(i) + vk(i), (4.1b)
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Figure 4.1. Diagram of a MMP.

where xk(i) ∈ Rnx,k represents the dimensional variability of piece i = {1, ...,∞} at stage
k = {1, ...,M}. Vector

uk(i) =
[
umk (i)
uuk(i)

]
∈ Rnu,k

(with nu,k = nmu,k + nuu,k and nuu,k = nx,k) is the input vector including both the modeled and
unmodeled variation sources of the k-th stage affecting the i-th piece. Vector yk(i) ∈ Rny,k is the
output vector denoting the measurements of the i-th piece at the k-th stage and vk(i) ∈ Rny,k
takes account of the corresponding measurement noises. This kind of stage and piece indexed
state-space models, depicted in Fig. 4.1, has been extensively used in MMP applications as
shown in [2, 3, 146,187,195,310,338], which are referred for further modeling details.

As proposed by Apley and Shi [11], model (4.1) can be algebraically transformed into a
linear replicated model. Setting the initial conditions to 0, it yields

y(i) = Γu(i) + v(i), (4.2)

where y(i), u(i) and v(i) stand, respectively, for all the measurements, inputs and noises that
affect each piece i throughout the MMP, i.e.,

y(i) =


y1(i)

...
yM (i)

 , u(i) =


u1(i)

...
uM (i)

 , v(i) =


v1(i)

...
vM (i)

 ,
with y(i) ∈ Rny , v(i) ∈ Rny , ny = ∑

kny,k and u(i) ∈ Rnu , nu = ∑
knu,k. Matrix Γ can be

obtained from Ak, Bk and Ck as explained in the references.
Many works as [78] consider that (4.2) describes a stationary process. For process variance

estimation purposes, it is then possible to establish the following relation:

Σy = Γ Σu ΓT + Σv, (4.3)

where

Σy = E{y yT }, (4.4a)
Σu = E{uuT }, (4.4b)
Σv = E{v vT }. (4.4c)
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However, the process variances in (4.3) may change its value at the moment when certain piece
i is manufactured. This is due to different effects such as the wear and tear to which the MMP
is prone. Then, we can no longer consider the MMP as a stationary process and we rewrite (4.3)
as

Σy(i) = Γ Σu(i) ΓT + Σv(i), (4.5)

where Σy(i), Σu(i) and Σv(i) denote the covariance of the measurements, the variation sources
and the measurements noises at the moment when certain piece i is processed, i.e.,

Σy(i) =E{y(i) y(i)T }, (4.6a)
Σu(i) =E{u(i)u(i)T }, (4.6b)
Σv(i) =E{v(i) v(i)T }. (4.6c)

Remark 4.1. The variables Σy(i), Σu(i) and Σv(i) defined in (4.6) are time-varying stochastic
variances [158, 186] and they represent the variance of y, u and v for a population of pieces
manufactured at the manufacturing conditions of the i-th piece.

Taking [78] as reference, in this chapter we assume that:

• The underlying distributions of u and v are Gaussian.

• The input vector u is zero-mean since it represents the deviation from the designed nominal
position. The variation sources are independent, so that u has a diagonal non-stationary
covariance matrix, i.e.,

Σu(i) =


σ2
u(i)[1] 0

. . .
0 σ2

u(i)[nu]

 ,
where σ2

u(i)[p] represents the dimensional variance of the p-th variation source of the MMP,
i.e., p = {1, ..., nu}, at the moment where the i-th piece is manufactured.

• The noise vector v is zero-mean, independent of u and it has a diagonal non-stationary
covariance matrix,

Σv(i) =


σ2
v(i)[1] 0

. . .
0 σ2

v(i)[ny]

 ,
where σ2

v(i)[r] represents the dimensional variance of the noise of the r-th sensor of the
process, i.e., r = {1, ..., ny}, at the moment where the i-th piece is manufactured.

• As many works in the field (e.g., [78] ), we assume that all the measurement noises have
the same variance. Then, we rewrite Σv(i) as

Σv(i) = σ2
v(i) Iny ,
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with σ2
v(i) being a scalar that denotes this shared process variance. It is straightforward

to extend the results in this chapter to the case where the sensor noises are characterized
by different variances1.

For the sake of readability, we denote the components of Σu(i) and Σv(i) as σ2(i)[j] with
j = {1 . . . nj} and nj = nu + 1, i.e.,

σ2(i)[j] ≡
σ2

u(i)[j], j < nj ,

σ2
v(i), j = nj .

The stationary process variance estimator as the ones studied in [78] (i.e., the Least-Squares
fit estimator (LSE), the estimator in Apley and Shi (ASE) [11], the estimator in Ding, Shi and
Ceglarek (DSCE) [77] and the estimator presented in Stoica and Nehorai (SNE) [276]) use the
sampling variance of a batch of N pieces, i.e.,

Sy =
∑N
i=1y(i) y(i)T

N
, (4.7)

as an estimate of Σy in (4.3). For the study of a non-stationary process, we could propose to
infer a time-varying population variance every time that a new piece i is manufactured. If we
used the sample provided by the batch of the last N pieces, an estimation of Σy(i) in (4.5)
would be given by

Sy(i) =
∑i
ι=i−Ny(ι) y(ι)T

N
. (4.8)

The use of (4.8) is computationally costly since a large sample size (i.e., the data provided by a
batch of N pieces) is used for guaranteeing accurate estimates of the process variances σ2(i)[j]
and no individual control over the accuracy of each process variance estimate is available. For
its part, the use of a sample of large size in (4.7) for ensuring accurate estimates delays the
estimation of variance changes and thus the decision of whether the process has experienced
faults or not. In this chapter, we propose an alternative strategy for identifying the components
of Σu(i) and Σv(i) and their possible changes taking into account

• the accuracy of the estimations,

• the time needed to track their changes,

• the computational cost,

• the data storage,

• the design flexibility.

To fulfil these requirements we develop a model for MMPs which includes the non-stationary
behavior of the process variances σ2(i)[j] and enables the application of observer-based strate-
gies. These strategies allow us to incrementally improve the accuracy of the estimates σ̂2(i)[j]
with the data provided by each new piece without the need of storing or using the data of the
previous pieces in the computation.

1It is well known that the maximum number of different process variances which can be estimated depends
on the structural properties of the MMP under consideration. See [70,337] for studying the diagnosability issues
of each case.
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4.3 Variation propagation model

In order to develop a model for MMPs with non-stationary process variances of the variation
sources and noises we exploit the Gaussian nature of u(i) and v(i) in (4.2). Let us first introduce
the following lemma.

Lemma 4.1. ([128]) Let g(i) ∈ Rng be a vector of zero-mean independent Gaussian noises,
i.e.,

g(i) ∼ N (0,Σg(i)), (4.9)

with Σg(i) being certain diagonal and varying covariance. If gu(i) denotes the vector including
ng zero-mean independent Gaussian noises of unitary covariance, i.e.,

gu(i) ∼ N (0, Ing),

vector g′(i) defined as
g′(i) = Σg(i)

1
2 gu(i) (4.10)

is distributed as (4.9).

Applying Lemma 4.1, the random signals u(i) and v(i) in (4.2) can be rewritten as

u(i) = D(i) η(i), v(i) = R(i) ν(i). (4.11)

where

η(i) =


η(i)[1]

...
η(i)[nu]

 , ν(i) =


ν(i)[1]

...
ν(i)[ny]


are column vectors containing independent zero-mean Gaussian sequences with unitary time-
invariant covariances, i.e.,

E{η(i)} = 0nu , E{η(i) η(i)T } = Inu , (4.12a)

E{ν(i)} = 0ny , E{ν(i) ν(i)T } = Iny , (4.12b)

E{η(i) ν(i)T } = 0nu×ny . (4.12c)

Matrix D(i) contains the standard deviation of the components of u(i), i.e.,

D(i) =


σu(i)[1] 0

. . .
0 σu(i)[nu]

 ,
and fulfils

D(i)D(i)T = Σu(i).

The same applies to matrix R(i) w.r.t. v(i) (i.e., R(i) = σv(i) Iny). Note that signals η(i) and
ν(i) represent the Gaussian variations in u(i) and v(i) while D(i) and R(i) describe the size of
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these variations. Applying the decomposition in (4.11), the linear replicated model (4.2) results
in

y(i) =
[
ΓD(i) R(i)

] [η(i)
ν(i)

]
. (4.13)

Defining matrices

Ψ(i) =
[
ΓD(i) R(i)

]
, ζ(i) =

[
η(i)
ν(i)

]
,

we rewrite (4.13) as
y(i) = Ψ(i) ζ(i). (4.14)

For process variance estimation, the information of interest resides in the diagonal terms of
the quadratic expression of (4.13). Let us then define the output vector m(i) ∈ Rny as

m(i) = y(i) ◦ y(i) ≡ diag{y(i) y(i)T }, (4.15)

verifying
m(i) = diag{Ψ(i) ζ(i) ζ(i)T Ψ(i)T }. (4.16)

Note that m(i) depends on the process variances that we want to estimate. If we define q(i) as
the column vector stacking these variances, i.e.,

q(i) =


σ2(i)[1]

...
σ2(i)[nj ]

 ∈ Rnj ,

being σ(i)[j] the elements of D(i) and R(i) and, thus, included in Ψ(i), the expected value of
m(i) satisfies

E{m(i)} = H q(i), (4.17)

with
H = [Γ◦2 1ny ] ∈ Rny×nj ,

where we have taken into account that E{ζ(i) ζ(i)T } = Inu+ny (see Appendix D.1.1).

For modeling the non-stationary behavior of the process variances, we propose the following
dynamics of the state vector q(i):

q(i) = q(i− 1) + ∆q(i− 1), (4.18)

where

∆q(i) =


∆σ2(i)[1]

...
∆σ2(i)[nj ]

 ∈ Rnj

takes account of the process variance differences between two consecutive pieces i and i + 1.
Dynamics of the form of (4.18) have been widely used in the literature to analyse the behavior of
estimation algorithms for non-stationary processes. Note that equation (4.18) allows modeling
every kind of change experienced by the variables q(i)[j] provided an appropriate form of the
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signals ∆q(i)[j]. For instance, abrupt changes in q(i)[j] are produced by impulse signals ∆q(i)[j]
(i.e., ∆q(i)[j] is only nonzero at the time of the fault appearance), drift changes in q(i)[j] are
produced by step signals ∆q(i)[j] (∆q(i)[j] takes a constant value during the fault existence)
and parabolic changes in q(i)[j] are produced by ramp signals ∆q(i)[j].

Thus, the estimations provided by an estimator which takes equation (4.18) into account
would vary in value when any kind of fault form appears in the system. However, such estimator
only guarantees estimations with zero-mean steady-state errors when abrupt changes affect
the system [155, 163, 249]. Thus, the estimations are unbiased when no changes occur and
when abrupt changes affect the system. If more general changes occurred, the steady-state
estimation errors would not be zero-mean. For instance, if drift changes took place the steady-
state estimation errors would be constant [307]). In any case, however, the estimations would
vary in value and the changes experienced by the variables q(i)[j] would be detected.

Remark 4.2. If zero-mean estimation errors were required for changes beyond abrupt devia-
tions, a more general model in the form of

ξ(i) = AQ ξ(i− 1) +BQ ∆q(i− 1), (4.19a)
q(i) = CQ ξ(i) +DQ ∆q(i), (4.19b)

should be considered. In (4.19), ξ(i) ∈ Rnζ is an auxiliary state vector of an appropriate di-
mension so that the dynamics of the forecast changes can be produced through some matrices
(AQ, BQ, CQ, DQ) and impulse signals ∆q(i). See [162,306,307] for details on the derivation of
these models.

4.4 Estimation of process variance

4.4.1 Model-based observer

For achieving non-stationary process variance estimation, we use a model-based observer. Based
on the model defined by equations (4.16)-(4.18), we set up the following estimation algorithm.
First, we define q̂(i) as the vector that contains the estimation of q(i), i.e., the process variance
estimation. Second, we obtain m(i) with the acquired measurements for piece i using expres-
sion (4.15). Then, we estimate m(i) using the last estimated process variance q̂(i− 1) and the
expression of its expected value given by (4.17), which involves the model information H:

m̂(i) = H q̂(i− 1). (4.20)

Finally, we update the process variance estimation with the difference between the measured
and estimated output through

q̂(i) = q̂(i− 1) + L(i) (m(i)− m̂(i)) , (4.21)

where L(i) is the updating gain matrix which defines the weight between the output predic-
tion error and the last estimated process variance. We define the state estimation error as
q̃(i) = q(i)− q̂(i) and its dynamics is given by

q̃(i) = q̃(i− 1) + ∆q(i− 1)− L(i) (m(i)−Hq̂(i− 1)). (4.22)
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If we add and subtract Hq(i) to the difference m(i)−Hq̂(i− 1) in (4.22), the dynamics of q̃(i)
can be expressed as

q̃(i) =
(
Inj − L(i)H

)
(q̃(i− 1) + ∆q(i− 1))− L(i) t(i), (4.23)

with
t(i) = m(i)−H q(i) (4.24)

being a zero-mean random variable as it derives from the difference between m(i) and its
expected value.

Remark 4.3. Notice that an estimate q̂(i) may be negative for some piece i (i.e., q̂(i) < 0).
Provided that q(i) is a vector stacking variance values and it cannot be negative, we postprocess
q̂(i) so as to provide a refined estimate of q(i), which we denote as q̂p(i):

q̂p(i) =
{
q̂(i) if q̂(i) ≥ 0
0 otherwise .

4.4.2 Observer design

In this section, we propose a design of the gain L(i) of the estimation algorithm (4.21). Note
that the dynamics in (4.23) can be seen as the estimation error dynamics which is achieved when
applying a state observer to a linear system with q̃(i) being the state estimation error, ∆q(i)
the process noise, t(i) the measurement noise, Inj the state matrix and H the output matrix.
As the considered process noise t(i) depends on the state, the error dynamics is not linear and
simple designs with a constant gain L(i) (as pole placement techniques or stationary Kalman
filter approaches) cannot be applied. We then propose a Kalman filter that takes account of
the dependence of the noise t(i) on the state which is being estimated (see Appendix D.1.2 and
references [52,119] for derivation details). The Kalman gain for observer (4.21) can be computed
as

P̄ (i) = P̂ (i− 1) +Q(i− 1), (4.25a)

L(i) = P̄ (i)HT
(
H P̄ (i)HT + T (i)

)−1
, (4.25b)

P̂ (i) =
(
Inj − L(i)H

)
P̄ (i), (4.25c)

with

Q(i) = E{∆q(i) ∆q(i)T }, T (i) = E{t(i) t(i)T },

and where P̂ (i) represents the expected covariance of the state estimation error, i.e.,

P̂ (i) = E{q̃(i) q̃(i)T }.

Remark 4.4. A necessary condition for the stability of observer (4.21) is that the pair (Inj , H)
is observable, which means that the process variances considered in q(i) are diagnosable. This
condition is verified whenever the output matrix H verifies

rank{H} ≥ nj . (4.26)
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For computing the covariances Q(i) and T (i) involved in (4.25), the following considerations
should be taken into account.

• Operating algebraically and taking account of the Gaussian nature and the statistical
properties (4.12) of the noises ζ(i), one gets that the covariance matrix T (i) is given by

T (i) = (Ψ(i) Ψ(i)T )◦2. (4.27)

Relation (4.27) shows the dependence of T (i) on the values σ(i)[j] and, thus, on the state
vector q(i), which is to be estimated. Provided the slow-varying character of q(i), we have
that, in general, T (i) ' T (i − 1). Then, we propose to approximate covariance T (i) of a
piece i by its predicted value from piece i− 1, i.e.,

T (i) ≈ T̂ (i− 1). (4.28)

Matrix T̂ (i−1) is computed through (4.27) with the values in the available postprocessed
estimated vector q̂p(i− 1).

• The covariance matrix Q(i) is unknown and it can be seen as a multivariate tuning pa-
rameter that fixes the performance of the observer. If matrix Q(i) is chosen to be diagonal,
as the value of certain element Q(i)[j, j] decreases, the steady-state accuracy of the corre-
sponding estimate improves because the filter is more focused on rejecting the variations
t(i). Respectively, if Q(i)[j, j] increases, the tracking ability improves at the cost of a
lower measurement noise rejection. For ensuring that Q(i) is in an appropriate order of
magnitude, we compute its elements as

Q(i) = Υ P̂ (i) Υ, (4.29)

with

Υ2 =


υ1 0

. . .
0 υnj


and υj ∈ [0, 1] chosen according to the desired performance. This leads to equation (4.25a)
as

P̄ (i) = P̂ (i− 1) + Υ P̂ (i− 1) Υ. (4.30)

Note that equation (4.30) excites more algorithm (4.25) when less knowledge of the states
is available and, therefore, P̂ (i) has a bigger value. This enhances the initialization of the
algorithm.

Remark 4.5. The proposed algorithm implies computing equations (4.25) and (4.21) with
m(i) = y(i)◦2 every time that a new piece i is manufactured in the MMP. At steady state,
however, the gain matrix L(i) is stationary. For reducing the computational burden, one can
use the expressions

L(i) = L(i− 1), P̂ (i) = P̂ (i− 1), (4.31)

instead of (4.25) whenever |q̂(i− 1)− q̂(i− 2)| ≤∆ for some given difference ∆.
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Remark 4.6. Note that algorithm (4.25) provides a suboptimal Kalman gain due to the previous
approximations and because ∆q(i) is non-zero when process variance changes occur. In any
case, the previous design procedure presents the advantage of containing some numerical tuning
parameters which can be used to set the trade-off between different estimation performance
parameters.

4.4.3 Estimator properties

The performance of the estimator depends on both the steady-state accuracy and on the delay
in tracking the changes defined by ∆q(i).

Steady-state behavior

Provided the unbiasedness of the estimator in fault-free scenarios (see Section 4.3), the accuracy
of the estimator (4.21) when ∆q(i) = 0 is given by the variance of the estimation errors, which
we denote as φj , i.e.,

φj = Var{q̃(i)[j] | ∆q(i) = 0}. (4.32)

The steady-state covariance of the estimation errors due to noises, which we denote as P , is the
solution of the following Riccati equation:

P =
(
Inj − P̄ HT

(
H P̄ HT + T

)−1
H

)
P̄ , (4.33)

with P̄ = P + ΥP Υ, and where T is the noise covariance at certain steady state. If we choose
matrix Υ to have equal terms (i.e., υj = υ, ∀j), the covariance matrix of the steady-state error
is given by

P = υ

υ + 1(H(Σy ◦Σy)−1HT )−1. (4.34)

See Appendix D.1.3 for the derivation of this expression. From (4.34), we deduce that the
accuracy of the estimations improves as the design variables υj decrease.

Transient behavior

The transient behavior of the estimator can be characterized by the number of pieces whose data
must be fed to the estimator in order to track certain change ∆q(i)[j]. We define the settling
time of the estimator, which we denote as η90,j , as the number of pieces which are needed so
that q̂[j] changes the 90% of the change experienced by q[j] with t(i) = 0. We can also describe
the tracking ability of the estimator in terms of the cumulative squared error (CSE) experience
by the j-th estimation due to process variance changes and which we define as

ϕj =
∞∑
i=1
{q̃2(i)[j] | t(i) = 0}. (4.35)

According to [191], the response of (4.21) when a unitary step change ∆q[j](i) occurs is like the
response of a first-order system g(i) defined as g(i) = 1−(1 + υj)−i when t(i) = 0. In this sense,
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the settling time and the CSE of the estimator due to unitary step changes are approximately
given by

η90,j = − log(0.1)
log(1 + υj)

, (4.36a)

ϕj = (1 + υj)2

(1 + υj)2 − 1 , (4.36b)

see [117]. From (4.36), we deduce that the tracking ability regarding the estimation of q[j]
improves when υj is increased.

Remark 4.7. Similarly to η90,j we can define ηρ,j as the number of pieces which are needed so
that q̂[j] achieves the ρ% of the change experienced by q[j] with t(i) = 0 as

ηρ,j =
− log

(
100−ρ

100

)
log(1 + υj)

. (4.37)

4.4.4 Performance-based observer design

As seen in Section 4.4.3, matrix Υ enhances the accomplishment of certain trade-off between
the transient and the steady-state tracking performance. Relations (4.36a), (4.36b) and (4.33)
can be used to choose the values υj (j = 1, . . . , nj) so as to set certain trade-off regarding
the performance of the estimator. For instance, in order to set certain settling time for the
estimation of a unitary step change in q[j], the variable υj must be fixed to

υj = 0.1−1/η90,j − 1. (4.38)

4.5 Statistical hypothesis testing for fault diagnosis

In steady state (i.e., when no process variance changes occur), we denote the confidence interval
offered by an estimate q̂(i)[j] for q(i)[j] as

Ωj(i) = [q̂(i)[j]− hj , q̂(i)[j] + hj ], (4.39)

where hj depends on the confidence level of the interval, γj = 1 − αj , and on the variance of
the estimation q̂(i)[j]. Note that, in steady state, the marginal variance of the estimation q̂[j]
is P [j, j], which can be obtained through equation (4.33).

Through Chebyshev’s inequality [238], we have that

Pr{q(i)[j] 6∈ Ωj(i)} ≤ P [j, j]/h2
j . (4.40)

Then, if we set hj as

hj =
√
P [j, j]/α∗j , (4.41)
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we guarantee a bound αj ≤ α∗j for the confidence level of the interval Ωj(i).

Relation (4.40) holds regardless of the probability distribution of q̂(i)[j]. We know, however,
that when ∆q(i) = 0, the estimation q̂(i) can be expressed as the infinite weighted sum

q̂(i) = −
i∑
ι=1

i∏
κ=ι+1

(
Inj − L(κ)H

)
L(ι)t(ι). (4.42)

where the terms −∏i
κ=ι+1

(
Inj − L(κ)H

)
L(ι) represent the weighting factors and t(ι) are in-

dependent and identically distributed zero-mean random variables with finite variance. One can
demonstrate that the sequence of these weighting factors fulfils the conditions on [300] and then
one can claim that q̂(i) approaches a normal distribution. Provided these results, we can set hj
to fix the confidence level γj to 1− α∗j as

hj = Φ−1
Z (1− α∗j/2)

√
P [j, j], (4.43)

with Φ−1
Z (·) being the inverse cumulative distribution function of a standard normal variable.

This confidence level is tightener than the one obtained in (4.40) through Chebyshev’s inequality.

Remark 4.8. Provided that q(i) ≥ 0, we postprocess the value of the limits of Ωj(i) so as to
provide a refined confidence interval of q(i)[j], which we denote as Ωj,p(i):

Ωj,p(i) =
{

[q̂(i)[j]− hj , q̂(i)[j] + hj ] if q̂(i)[j] ≥ hj
[0 , q̂(i)[j] + hj ] otherwise . (4.44)

Note that when we use the refined confidence interval Ωj,p(i) in (4.44) and hj is defined through (4.41),
we guarantee a bound αj ≤ α∗j which is looser than the bound which is guaranteed for Ωj(i)
in (4.39) (i.e., the difference between αj and α∗j is larger). Similarly, if hj is defined through (4.43)
and we use the interval Ωj,p(i) in (4.44), we just guarantee a bound αj ≤ α∗j instead of fixing
its value to αj = α∗j as happens with Ωj(i) in (4.39). Thus, if we use Ωj,p(i) in (4.44), the real
confidence level is larger than the one that we have with Ωj(i).

In order to determine whether a process variance of the MMP q[j] has experienced a change
∆q[j] (i.e., a fault j has appeared), we set the following statistical hypothesis test, where we
use i = 0 to refer to a piece for which the estimator has achieved the steady state and that has
been manufactured with healthy conditions in the MMP:{

H0 : q(i)[j] ∈ Ωj(0)
H1 : q(i)[j] 6∈ Ωj(0) . (4.45)

Here, the null hypothesis stands for “No change of the j-th process variance” (i.e., “No fault
j”) and the alternative hypothesis stands for “Change of the j-th process variance” (i.e., “Fault
j”).
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4.6 Comparison with batch-based estimators

As explained in Section 4.2, the batch-based estimators such as the LSE or DSE are offline
estimators which are conceived for periodically verify the state of the process. In the following,
we compare the properties of these offline estimators with the characteristics of the proposed
online approach.

• Accuracy of the estimations. In fault-free scenarios, the variance of the estimates provided
by batch-based estimators is proportional to 1/N (see [78] for details on the correspond-
ing expressions). When using the proposed approach, the variance of the estimates is
proportional to υ/(υ + 1) if every υj is fixed to a common value υ (see (4.34)).

• Time to track changes. The delay in tracking changes with the proposed online approach
is approximately given by the settling time of the estimator which is defined by the
number of pieces η98,j in (4.36a) and it is inversely proportional to υj . For its part, offline
batch-based methods just ensure the diagnosis of a fault if a whole batch of faulty pieces
is used in the computation of Sy through (4.7). Then, these methods cannot ensure a
tracking delay lower than 2N . Moreover, provided the non-zero variance of the estimates,
the manufacturer might not state that a fault has occurred until certain number κ of
consecutive faulty estimations are available. In such a case, the number of faulty pieces
which must be manufactured in order to state that a fault has occurred is η98,j + κ− 1 if
the proposed approach is used and κN if offline estimators are used.

From these two considerations, we deduce that the existing trade-off between the accuracy of the
estimations and their ability to track changes can be set through νj for the proposed approach
(as explained in Section4.4.3) and through N for batch-based methods . If N is reduced (or if
νj is increased), the tracking ability increases at the cost of lower estimation accuracies. For
accuracies in the same order of magnitude (i.e., 1

N = υ
υ+1), the time to track changes is κ (υ+1)

υ

for batch-based methods and κ− 1− log(0.02)
log(1+υj) for the proposed approach. The tracking ability

is thus in the same order of magnitude for both methods if κ = 1 and it gets better for the
proposed approach as κ is increased.

Remark 4.9. Note that if big faults affect the system, it is not necessary that q̂[j] changes the
90% of the change experienced by q[j] in order to detect a fault. If we use ηρ,j with ρ < 90
instead of η90,j for the characterization of the tracking ability of the model-based observer, the
time that we need in order to detect changes is exponentially reduced. Contrariwise, in no case
this time is lower than (κ− 1)N for batch-based methods.

As stated in Section 4.2, when it comes to estimators, other matters of fact are the compu-
tational burden, the volume of stored data and the design flexibility, which are now compared
for both methods.

• Computational Burden. The algorithms of batch-based estimators (i.e., the LSE and the
ASE) require N vector product and summation operations, which are time-consuming.
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As the accuracy of such methods improves when N is increased, it happens that there
exists a trade-off between the accuracy of the estimations and the computational time of
such methods. The computational burden of the proposed observer does not depend on
the performance of the estimator because the variance of the estimation can be simply
modified by changing the values in Υ. Thus, the computational time is independent of the
performance of the estimator.

• Data Storage. The sample size of the proposed approach only contains the data of the
last manufactured piece. Thus, when certain piece i is manufactured the stored data is
q̂(i−1) and y(i). For its part, the sample size of offline approaches contain the data of the
last N manufactured piece. Thus, when certain piece i is manufactured the stored data is
y(i − N + 1), y(i − N + 1), . . . , y(i − 1), y(i − 2). Again, there exists a trade-off between
the accuracy of the estimations and the amount of stored data which is not present in
observer-based methods.

• Design Flexibility. The trade-off between the ability to track changes and the accuracy of
the estimations is collectively set by N for all the estimations q̂[j]. Oppositely, this trade-
off is individually set by νj for each the estimations q̂[j]. Thus, the proposed approach
enhances the use of different estimations performance requirements for each q[j].

4.7 Case of study

In this section, we set up different assembly processes in order to apply the strategies presented at
the previous sections. Even if these processes are simple, the modeling and estimation framework
is fairly general and it can be applied to more complex processes.

4.7.1 Single-stage assembly process

First, we study a single-stage automotive body assembly described and modeled by Apley and
Shi [11] and studied by Ding et al. [78]. In this single-stage case (M = 1), an optical coordinate
measuring machine (OCMM) provides 9 measurements (ny = 9). The pieces at this stage are
fixed by a 4-way locator, P1, which produces positioning variability in two directions (i.e., δP x1
and δP z1 ) and by a 2-way locator, P2, which only produces positioning variability in one direction
(i.e., δP z2 ); thus, uk = [δP x1,k δP z1,k δP z2,k]T and nu = 3. The replicated matrix Γ is

Γ =



0.093 0.577 −0.120
0 0 0

−0.093 0 0.843
0.093 0.577 −0.120

0 0 0
0.647 0 −0.120
−0.370 0.577 0.482

0 0 0
0.647 0 −0.120


.
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Figure 4.2. Stationary process variance estimation of σ2
v (υ4 = 0.05) in the single-stage assembly process. Real

(- -), Estimation (Gray —), Fitted Gaussian distribution (Black —).

The sensor accuracy is (6σ)sensor = 0.1 mm and the tolerance of the pinholes is 0.2 mm. If the
tolerance is approximated by the six-sigma value; then, (6σ)locator = 0.2 mm.

First, we simulate a stationary process of 300 pieces with q =
[
1.1 2.5 04.4 0.6

]T
· 10−3

mm2 (values taken from [78]). The left-hand side of Fig. 4.2 shows the estimation results for
q[4] (i.e., q̂p[4]) when applying an observer with Υ2 = 0.05 I4 in (4.29). On the right-hand
side of Fig. 4.2, we look at the shape of the probability distribution of q̂p[4] when running 50
simulation trials and we compare it with a fitted normal density proving a high goodness of fit
of the Gaussian distribution. Similar results apply to the other variance estimations q̂p[j] with
j = {1, 2, 3}, which we do not include due to space constraints. The variance of the estimations
provided by different observers are shown in Table 4.1.

In order to compare the proposed online estimators with the process variance estimators
based on the sampling variance of a batch of N pieces, we apply these estimators online by
inferring a time-varying population variance every time that a new piece i is manufactured
from Sy(i) computed through (4.8) (i.e., every time that a new piece i is entirely measured, the
estimation is made with the data provided by this piece and by the previous N − 1 completed
pieces). In Fig. 4.3, we compare the relative computational time which is needed to perform
the estimation of the previous process for different estimators and different values of the corre-
sponding tuning parameters that lead to different variances of the estimations. As explained in
Section 4.6, Fig. 4.3 shows that the computational burden of the proposed observer (KF) does
not depend on the performance of the estimator because the variance of the estimation can be
simply modified by changing the values in Υ. Oppositely, the algorithms of batch-based estima-
tors (i.e., the LSE and the ASE) require more operations as the estimation accuracy is improved
and, thus, the computational time increases with the accuracy. From this figure, we also deduce
that the estimator (4.21)-(4.25) is more computationally costly than the LSE and the ASE
for estimations of lower accuracies. However, our estimator is more efficient and becomes more
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Table 4.1. Variance of the steady-state estimations [·10−6mm4] for different observers with Υ2 = υ I4.

υ Var{q̂p[1]} Var{q̂p[2]} Var{q̂p[3]} Var{q̂p[4]}
0.0010 0.0217 0.0103 0.0166 0.0001
0.0152 0.1362 0.1784 0.3443 0.0029
0.0294 0.2322 0.3551 0.6693 0.0051
0.0436 0.3182 0.5384 1.0273 0.0071
0.0579 0.4010 0.7288 1.4120 0.0090
0.0721 0.4880 0.9272 1.8032 0.0109
0.0863 0.5773 1.1415 2.2138 0.0128
0.1005 0.6698 1.3773 2.6695 0.0147
0.1147 0.7640 1.6326 3.1927 0.0167
0.1289 0.8599 1.9116 3.8059 0.0186
0.1431 0.9600 2.2181 4.5634 0.0205
0.1574 1.0698 2.5425 5.5490 0.0224
0.1716 1.1817 2.9035 6.7644 0.0243
0.1858 1.2843 3.3121 8.1135 0.0261
0.2000 1.3797 3.7668 9.6098 0.0280

N=10
N=10

υ = 0.01 υ = 0.1

υ = 0.01 υ = 0.1

Variance of the estimation of σ2
u[1] [·10−6mm4]
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Figure 4.3. Comparison of the computational time which is needed for different estimation accuracies regarding
σ2
u[1] at steady state with different estimation strategies.

computationally appealing as the desired accuracy of the estimations is increased. Moreover, if
we use relaxation (4.31) (steady-state KF), the computational burden is dramatically reduced
for all accuracies.

Fig. 4.4 shows the results provided by three observers with different performance w.r.t. the
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Figure 4.5. Comparison of statistical testing methods with different confidence interval limits (γj = 99%) for the
estimation of σ2

v (υ4 = 0.05) in the single-stage assembly process. Real (- -), Estimation (Gray —), Gaussian-based
limit (Red —), Chebyshev-based limit (Blue —).

estimation of q[4] when the process of 300 pieces is affected by an abrupt fault which modifies
the sensors accuracy from 0.6 · 10−3 mm2 to 0.95 · 10−3 mm2 at the piece 150. The observers
have been designed with requirements over the CSE due to unitary step changes ∆q(4): ϕ4 = 5
(giving υ4 = 0.1), ϕ4 = 10 (giving υ4 = 0.05) and ϕ4 = 15 (giving υ4 = 0.01). We prove that, as
explained in Section 4.4, a smaller CSE (and higher tuning parameter in Υ) results in a better
tracking ability at the cost of a lower performance w.r.t. the variance of the process variance
estimations. The designer should tune this parameter according to the criticality of the delays
in tracking changes.

In Fig. 4.5, we include the estimation results of q[4] provided by the model-based observer
designed with Υ2 = 0.05 I4 together with the limits of Ω4,p(0) for both the computation of
h4 through (4.41) and through (4.43) (γ4 = 99%). When no taking account of the Gaussian
behavior of the estimations and the limits are computed by means of the Chebyshev’s inequality,
the confidence interval Ω4,p(0) is too big and only big variance changes can be detected. On the
contrary, the limits of Ω4,p(0) when computed through (4.43) are tight and smaller faults (as
the one being simulated) can be diagnosed.
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process affected by an abrupt fault in σ2

v. Real (- -), Estimation (Gray —) Gaussian-based limit with γj = 99%
(Red —).

Thus, in Fig. 4.6 we include all the estimations provided by the estimator (Υ2 = 0.05 I4) for
this process with the corresponding the Gaussian-based thresholds of Ωj,p(0) (γj = 99% with
j = {1, 2, 3, 4}). We prove that, although the order of magnitude of the variables involved in
q(i) is different, the model-based observer provides appropriate results. Note that the observer
depends on T (i), which is a function of q(i) (see (4.25)-(4.27)). Thus, when certain component
of q(i) increases its value, so does the variance of the estimations.

Fig. 4.7 shows, for its part, the simulation results (with Υ2 = 0.05 I4 and γ4 = 99%) for
the process in which we suppose that δP z1,k is affected by an abrupt fault, which doubles its
standard deviation from 0.05 mm to 0.1 mm at the piece 150. Then, we have that q(i) in mm2

is now given by

q(i) =


[
1.1 2.5 4.4 0.6

]T
· 10−3 if i ∈ [0, 150)[

1.1 10 4.4 0.6
]T
· 10−3 if i ∈ [150, 300]

.

As shown in the corresponding figure, the presence of this fault is diagnosed in 52 pieces. If for
the simulated fault (∆q[3] = 7.5 · 10−3 mm2) this number of corrupted pieces is critical, the
designer may decide to build an estimator with higher tuning parameters in Υ2 at the cost of
poorer accuracy.

For the simulations in Fig. 4.6 and Fig. 4.7 we have assumed that no a priori knowledge of the
variances σ2

u[j] and σ2
v is available. Then, the estimator should be initialized at q̂(0)[j] = 0 and

the estimations increase progressively in value as new measurements are processed. Moreover,
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Figure 4.7. Process variance estimation with a model-based observer (Υ2 = 0.05 I4) in the single-stage assembly
process affected by an abrupt fault in σ2
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some simulation results in these figures may look as a fault appeared when it does not (e.g., the
variation experienced by σ2

u[2] in Fig. 4.6). The reader should notice that these variations are
within the confidence intervals designed for a 99% confidence level. If just thinner variations
are allowed, the designer should decrease the value of the variables νj so that the accuracy of
the estimates improves; contrariwise, if these variations should fade faster, the designer should
increase the value of the variables νj so that the tracking ability of the estimator improves. In
Fig. 4.8 we show the estimation of σ2

u[1] for a fault-free scenario. If we use an observer with
Υ2 = 0.1 I4, the latest simulation results may look as if an abrupt fault appeared but, in any
case, the estimation is within the confidence interval for γ1 = 99% (Ωj,p(i) = [0, 3.236]·10−3) and
no fault is thus diagnosed. If this temporary bias is prohibitive in terms of accuracy, one can use
other observers as the ones in the second part of Fig. 4.8, which are designed with Υ2 = 0.01 I4
(Ωj,p(i) = [0.315, 1.885] · 10−3 for γ1 = 99%) and Υ2 = 0.001 I4 (Ωj,p(i) = [0.493, 1.707] · 10−3

for γ1 = 99%).

4.7.2 Multistage assembly process

Second, we study the two-stage process (M = 2) provided in [78] which was derived from a
segment of the simplified automotive body assembly process presented by Ding, Shi and Ceglarek
in [77]. This simplified assembly process has been widely used in the literature for analysing
diagnosability issues [77, 231], estimation of variance components of variation sources [78] and
optimal sensor distribution [76,200]. In this example, depicted in Fig. 4.9, three workpieces are
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u[1] in fault-free scenarios. Real (- -), Estimation (Gray —) Gaussian-based limit with
γ1 = 99% (Red —).

welded together at Stage I. In this stage, there are 9 fixturing variation sources (nu = 9). Once
welding operations are completed, the entire assembly is transferred to a dedicated in-process
OCMM stage (Stage II) for inspection. High-precision laser-optic coordinate sensors are used
to measure two directional coordinates at each of the nine measurement points and, hence,
ny = 18. Matrix Γ satisfies

Γ =



0 0 0 0.1215 −0.3846 0 0 0 0.2632
0 0 0 0.0221 −0.0699 0 0 0 0.0478
0 0 0 0.1215 −0.3846 0 0 0 0.2632
0 0 0 −0.1817 0.5944 0 0 0 −0.4067
0 0 0 −0.0773 0.2448 0 0 0 −0.1675
0 0 0 −0.3379 1.0699 0 0 0 −0.7321
0 0 0 0.1656 −0.5245 0 0 0 0.3589
0 0 0 −0.3379 1.0699 0 0 0 −0.7321
0 0 0 0 0 0 0 0 0
0 0 0 −0.2054 0.6503 0 0 0 −0.445
−1 1 0 −0.3110 0 0.4 −0.4 0 0.311
0 0 0 0.0574 0 −0.24 1.24 0 −1.0574
−1 1 0 −0.2153 0 0 0 0 0.2153
0 0 0 −0.2392 0 1 0 0 −0.7608
−1 0 1 −0.0957 0 0 0 0.4 −0.3043
0 0 0 0.0574 0 0 0 −0.24 0.1826
−1 0 1 0 0 0 0 0 0
0 0 0 −0.2392 0 0 0 1 −0.7608



.

The output matrix H which results from Γ does not verify condition (4.26); then, we redefine
vector q(i) so that nj = rank{H} as

q(i)[j] =


σ2
u[1] + σ2

u[2] if j = 1
σ2
u[1] + σ2

u[3] if j = 2
σ2
u[j + 1] if j ∈ {3, 4, 5, 6, 7, 8}
σ2
v if j = 9

.
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Figure 4.9. Scheme of the two-stage assembly process, adapted from [77,78].

and we modify matrix H accordingly. This means that in the case of the three first fixturing
variation sources we do not identify the process variations individually, but a combination of
them.

First, we simulate a process of 2250 pieces with the values

σ2(i)[j] =



4.5 · 10−3 if j = 1
0.3 · 10−3 if j ∈ {2, 3}
0.5 · 10−3 if j ∈ {4, 5, 8, 9}
1.5 · 10−3 if j = 6
2.5 · 10−3 if j = 7
0.0111 · 10−3 if j = 10

.

(values in mm2 taken from [78]). We assume that an abrupt change occurs modifying the
variance σ2

u[6] from 1.5 · 10−3 mm2 to 3.4 · 10−3 mm2 (i.e., doubled standard deviation of the 6-
th variation source) at piece 1000. Fig. 4.10 and Fig. 4.11 show the estimation results regarding
σ2
u[j] when applying an observer with Υ2 = 0.002 I9 in (4.29) and γj = 99%. Again, we prove

that, although the order of magnitude of the variables involved in q(i) is highly different, the
model-based observer provides appropriate results.

Now, we simulate a process of 1200 pieces in which standard deviation of the sensors is
modified from 0.0033 mm to 0.0100 mm at piece 250. The first simulation depicted in Fig. 4.12
shows the estimation results for this process when using an estimator designed with ν9 = 0.002
and a Gaussian-based threshold with γ9 = 99%. The second part of this figure shows that the
proposed algorithm (with ν9 = 0.002 and γ9 = 99%) does also track drift faults. In this case,
σv = 0.0033 mm before the drift fault and σv = 0.0073 mm 1000 pieces after the fault appears.
The drift fault modifies the sensor process variance linearly. The other results compare the
performance of estimators with different requirements over the estimation of q[9]: υ1 = 0.01,
and υ1 = 0.001. Again, we see the trade-offs detailed in Section 4.4. Note that the order of
magnitude of the tuning parameter (i.e., υj) used in the estimators in Fig. 4.12 is smaller
than the order of magnitude of the tuning parameter in the estimators in Fig. 4.4 due to the
differences in the values involved in the MMP.



86 4. Estimation of non-stationary process variance in multistage manufacturing processes

Piece

Va
ria

nc
e

[·1
0−

3 m
m

2 ]

σ2
u[1] + σ2

u[2]

0 750 1500 2250
3.6

4.4

5.2

6

Piece

σ2
u[1] + σ2

u[3]

0 750 1500 2250
3.6

4.4

5.2

6

Figure 4.10. Process variance estimation with a model-based observer (Υ2 = 0.002 I9) in the multistage assembly
process affected by an abrupt fault in σ2

u[6] (Part I, combined process variations). Real (- -), Estimation (Gray
—) Gaussian-based limit with γj = 99% (Red —).
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4.8 Conclusion

In this chapter, we have addressed the non-stationary process variance estimation problem with
a recursive algorithm that is updated with the information available from every new manufac-
tured piece. This strategy relaxes the computational burden and the data storage required by
other algorithms that use a large sample size for each computation. Furthermore, our approach
has a multivariate parameter that tunes the performance in the existing trade-off between the
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Figure 4.12. Comparison of the performance of different observers used in the multistage assembly process
for the estimation of σ2

v, which is affected by an abrupt fault or a drift fault. Real (- -), Estimation (Gray —)
Gaussian-based limit with γj = 99% (Red —).

adaptation to process variance changes and the accuracy in stationary periods. We have shown
two possible computations of the confidence interval, one based on the Chevyshev’s inequality
and another which takes account of the Gaussian behavior which is approached by the esti-
mation errors. We have shown in two different examples how to tune the algorithm in order
to obtain a desired performance. Future work will include the application of the proposed ap-
proach to factory collected and the extension of the approach to obtain not only process variance
estimations but also estimations of the mean of the variation sources.





Chapter 5

Performance-based design of
proportional integral observers for fault
diagnosis

This chapter addresses the fault diagnosis problem for LTI systems under
the presence of Gaussian noises through model-based proportional-integral ob-
servers with predefined gains. We propose a co-design of fault estimators and
evaluators which takes into account the trade-off between physically meaning-
ful parameters such as the false isolation rate, the minimum isolable faults
and the cumulative squared error of the fault estimates under abrupt faults.
Dynamic fault isolation is also taken into account. In order to solve this de-
sign problem, we present two different approaches: one based on the steady-
state Kalman filter and another based on convex optimization techniques.

5.1 Introduction

Fault diagnosis (FD) has received much attention in the last decades [44,97,140]. A FD module
entails three main tasks: fault detection, isolation and analysis (FDIA). While fault detection
consists on determining the appearance of a fault in the system, fault isolation (FI) focuses
on its localization and fault analysis (FA) aims to characterize the fault nature [96]. To design
these modules, model-based approaches have been widely studied. Broadly speaking, a FDIA
system consists of residual generators and evaluators. Among model-based residual generation
strategies, there is an upward trend in the use of schemes which rely on observers, see [139,141,
290] and references therein. Given the dual relation between controllability and observability,
the enhancement of the steady-state accuracy provided by the integral term in controllers has
motivated many researchers to introduce an integral term in the observer design. This type
of proportional-integral (PI) observers is proposed in [82, 197, 212] where an augmented state
system enables FDIA. On the framework of residual evaluation, statistical methods and norm-
based techniques are the most used strategies to achieve optimal processing of the residuals
generated by observers [70]. According to [73], an integrated design of both residual generators
and evaluators is the key to achieve an optimum FDIA strategy.

89
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When designing a FDIA system the presence of disturbances is the first issue to take into ac-
count [201,206,226]. Robust FDIA is an active research area and there are two main different ap-
proaches to deal with this problem. First, works as [45,66,225] propose the complete elimination
of the effect of these disturbances on the residuals. When complete decoupling is not possible,
the effect of these disturbances should be minimized [51,333]. Still, not only must the residuals
be robust to disturbances, but they must also be as sensitive as possible to faults [122,332]. In
the norm-based context, Zhang and Ding [327] propose to use the trade-off between the false
alarm rate (FAR) and the fault detection rate (FDR) to achieve the desired performance of the
FD mechanism. However, these parameters give no information about other matters such as
the size of the faults which are susceptible to be detected and isolated, the dynamic behavior
of the residuals for FDI or their steady-state accuracy for FA. The optimization-based designs
in [229, 248] include the minimum faults to be detected and a conservative bound of the FAR
through Markov’s inequality. In those works, under the assumption of Gaussian noises, the FAR
is later tightened through involved iterative procedures over the initial optimization problem.
In [229], the tracking ability is included in the design through a decay ratio which implies
an additional constraint. This conservatism can be avoided thanks to expressing the dynamic
behavior of the residuals in terms of their Cumulative Squared Error (CSE) [248].

In this chapter, we propose a FDIA strategy for linear time-invariant (LTI) discrete-time
systems affected by Gaussian noises. The proposed FDIA strategy utilizes fault estimation
(FE) techniques and it is based on fault estimators (PI observers with constant gains) and fault
evaluators (threshold-based decision mechanisms) that focus on isolation tasks. We present
two straightforward co-design approaches of the fault estimators and evlautors which take into
account all the previous performance aspects. These integrated designs explicitly include tight
bounds of the false isolation rate, the minimum isolable faults, the CSE of the fault estimates
under abrupt (step) faults and a measure of the dynamic FI. The first technique is based on
the steady-state Kalman filter and it is solved through heuristic optimization algorithms. The
second one is a norm-based approach with bilinear matrix inequalities (BMI) and we solve it
via iterative convex optimization.

5.1.1 Structure and notation

The outline of this chapter is as follows. First, we state the problem in Section 5.2, where we
include the mathematical model of the systems under consideration, we present the suggested
fault estimation and evaluation strategy and we define the performance parameters to be con-
sidered. In Section 5.3, we show how to include these requirements in the two proposed design
approaches of the FDIA system. Section 5.4 validates the suggested strategy through simulation
results. Finally, Section 5.5 summarizes the main conclusions.

Let M be a square matrix of size n× n. M(i, i) denotes the i-th diagonal element of matrix
M , while M(i) denotes its i-th row or column depending on the context. M � 0 means that
M is positive semidefinite. Similar applies to �. The direct sum is denoted as ⊕. Let xk ∈ Rn

represent a signal. xk(i) denotes the i-th element of vector xk. Expected value and probability
are denoted as E{·} and Pr{·}.
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5.2 Problem statement

5.2.1 State-space models

Let us consider LTI discrete-time systems defined by the equations

xk+1 = Axk +B uk + E fk +Gvk, (5.1a)
yk = C xk +Duk + F fk +H vk, (5.1b)

where x ∈ Rnx is the state vector, y ∈ Rny is the output vector and u ∈ Rnu is the input
vector. Vector v ∈ Rnv includes zero-mean Gaussian noises of known covariance E{vk vTk } = V .
Finally, vector f ∈ Rnf includes the faults affecting the system. We assume that all the faults
are detectable, isolable and identifiable.

Remark 5.1. We introduce the transfer matrix from a fault f(i) to the outputs as Gf(i)[z] =
C (z I −A)−1E(i) +F (i). According to the results in [70], we state that a fault f(i) of a system
of the form (5.1) is detectable if and only if Gf(i)[z] 6= 0, isolable if and only if

rank
[
Gf(1)[z] . . . Gf(nf )[z]

]
=

nf∑
i=1

rank
(
Gf(i)[z]

)
,

and identifiable if and only if the inverse of the transfer matrix Gf(i)[z] is realizable and stable.

To reach FDIA objectives, we propose a scheme that relies on model-based PI observers.
Thus, we model the faults fk of (5.1) as

fk+1 = fk + ∆fk, (5.2)

where ∆fk represents the variation of the fault signal between two consecutive instants. The
equation (5.2) allows modeling, for instance, abrupt or step signals (∆fk only takes a non-zero
value at the fault appearance) and incipient or ramp signals (∆fk takes a constant value). This
kind of fault model has been widely used in the literature to analyse the behavior of FDIA
algorithms, see [155,162]. To include the faults dynamics, we extend the model (5.1) as

zk+1 = Ā zk + B̄ uk + Ḡ vk + Ē∆fk, (5.3a)
yk = C̄ zk + D̄ uk + H̄ vk, (5.3b)

where zk =
[
xTk fTk

]T
is the extended state vector,

Ā =
[
A E

0 I

]
, B̄ =

[
B

0

]
, Ḡ =

[
G

0

]
, Ē =

[
0
I

]
,

C̄ =
[
C F

]
, D̄ = D and H̄ = H.
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5.2.2 Fault estimation and evaluation

For achieving FA, we propose the following fault estimator in the form of a PI observer with
predefined gain:

ẑk+1 = Ā ẑk + B̄ uk + L(yk − C̄ ẑk − D̄ uk), (5.4a)
f̂k = R ẑk, (5.4b)

where f̂ is the fault estimation vector and L is the gain matrix that updates the prediction
obtained from the model with the measurements . R is the matrix that extracts the faults from
the extended state zk, i.e., fk = Rzk with R = [0nf×n Inf×nf ]. Recall that we denote as R(i)
the i-th row of matrix R; then, a single fault can be extracted as fk(i) = R(i) zk. Let us define
the FE error as

ek = fk − f̂k, (5.5)

whose dynamics is given by

z̃k+1 = (Ā− L C̄) z̃k + (Ḡ− L H̄) vk + Ē∆fk, (5.6a)
ek = R z̃k, (5.6b)

with z̃k = zk − ẑk. We denote as Q the covariance of the error ek, i.e., Q = E{ek eTk }.

Remark 5.2. Under null initial conditions and in the absence of faults, the estimation error ek
has a multivariate normal distribution with zero mean and covariance Q because the disturbances
and measurement noises are normally distributed with zero mean. The error associated to each
fault estimate, ek(i), is zero-mean normally distributed with variance Q(i, i), corresponding to
the marginal distribution of the i-th element in the error vector.

For FI purposes, we set the following decision mechanism evaluating the fault estimates
provided by (5.4): {

if |f̂k(i)| ≥ fth(i) , Fault f(i)
otherwise , No fault f(i) , (5.7)

where fth(i) is the threshold for the isolation of the fault f(i).

Remark 5.3. We say that there is a fault on the system (fault detection) if any of the alarms
for the faults f(i) (i = 1, . . . , nf ) is active. The fact of detecting and isolating a fault through
the same decision mechanism (5.7) does not introduce any conservatism if we consider the non-
simultaneity of faults.

5.2.3 Performance characterization

According to [44], we define different parameters that allow us to characterize the FI performance
of the fault evaluators (5.7) which are based on the fault estimates provided by (5.4). First, the
false isolation rate (FIR), which we denote as φ(i), is the probability of rising false alarms of
fault f(i), i.e.,

φ(i) = Pr{|f̂k(i)| ≥ fth(i) : fk(i) = 0}. (5.8)
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Second, the minimum isolable fault (MIF), which we denote as fm(i), is the constant fault that
raises the alarm of fault f(i) provided the non-existence of other faults nor noises in the system,
i.e.,

fm(i) =
{
|fk(i)| :

fk(i) = fk−1(i), ∀k
limk→∞ |f̂k(i)| ≥ fth(i)

}
. (5.9)

In this chapter, the previous definition implies fth(i) = fm(i).

Remark 5.4. Recall that under null initial conditions and in the absence of faults, each error
ek(i) is normally distributed with zero mean. Hence, the MIF can be also seen as the quantile
used to construct the confidence interval of level 1− φ(i)/2. Thus, the following relation holds

fm(i) = Φ−1(1− φ(i)/2)Q(i, i)1/2, (5.10)

where Φ−1 denotes the inverse cumulative distribution function of a normal random variable.

Third, we define the cumulative squared error (CSE) of a fault estimate f̂(i), which we
denote as ϕ(i), as its cumulative estimation error, i.e.,

ϕ(i) =
∞∑
k=1

e2
k(i). (5.11)

Whilst the FIRs and the MIFs define the accuracy of the FDIA strategy, the CSE of the
fault estimates reflects its tracking ability. The aim of this chapter is to co-design the fault
estimator (5.4) and the fault evaluator (5.7) to guarantee certain FIRs and MIFs and maximize
the fault tracking ability.

5.3 Design of the fault estimator and evaluator

To design the fault estimator (5.4) and the fault evaluator (5.7), we present two different in-
tegrated approaches. First, we develop a Kalman-based technique which includes some numer-
ical tuning parameters and we show the difficulty of fixing them according to actual physical
meaning. Then, we develop a BMI-based design strategy which explicitly includes physical per-
formance parameters and we solve it through a sequence of convex optimization problems.

5.3.1 Kalman-based fault estimator and evaluator

The following theorem shows how to calculate a predefined gain of the observer (5.4) for the
system (5.3) based on the steady-state Kalman filter gain.

Theorem 5.1. Let us assume that ∆fk has a known constant covariance matrix Γ−1, i.e.,
Γ−1 = E{∆fk ∆fTk }. The optimal Kalman gain of the observer (5.4) for the system (5.3) at
steady-state is given by:

L = Ā P C̄T C−1, (5.12)
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with C = (C̄ P C̄T+H̄ V H̄T ) and P being the covariance matrix of vector z̃k, i.e., P = E{z̃k z̃Tk },
which satisfies the following Riccati equation:

P = Ā P ĀT + G V GT + Ā P C̄T C−1 C̄ P ĀT , (5.13)

with G = Ḡ⊕ Ē and V = V ⊕ Γ−1.

Proof. See [152].

The previous result allows us to obtain a gain L that stabilizes the observer and that takes
into account the presence of faults in the system. With the obtained gain L, we obtain the
steady-state covariance of the observer error during fault-free scenarios by solving the following
Lyapunov equation

P0 = (Ā− LC̄)P0 (Ā− LC̄)T + (Ḡ− LH̄)V (Ḡ− LH̄)T ,
Q = RP0R

T . (5.14)

As the faults are not Gaussian noises, the matrix Γ needed in Theorem 5.1 is neither constant
nor known and it can be seen as a tuning parameter whose value can be chosen by the designer to
modify the FDIA performance. Thus, increasing Γ improves the accuracy of the fault estimates
(as the filter will focus more on rejecting the noises indicated by V ), and decreasing Γ improves
the tracking ability at the cost of a lower measurement noise rejection. Given (5.10) and for a
given FIR, a better estimation accuracy implies achieving a lower MIF.

One design procedure is to look for the value of Γ that leads to a matrix L through (5.12)
and (5.13) such that Q in (5.14) satisfies some given performance. The next strategy shows how
to design a Kalman-based fault estimator and evaluator guaranteeing certain FIRs and MIFs
while the tracking ability of the fault estimates is maximized.

Strategy 5.1. Let us define a diagonal matrix Q as

Q =
⊕
i

f̄m(i)2/Φ−1(1− φ̄(i)/2)2, (5.15)

where φ̄(i) denotes the desired FIRs and f̄m(i) stands for the desired MIFs. The optimization
problem

minimize γ (5.16)

subject to X1 =
{

(5.12), (5.13), (5.14), Γ � 0,
Q ≤ Q, tr(Γ) � γ

}

along the variables P , P0, Q, L and Γ leads to the fault estimators with the fastest response under
faults and guaranteeing the constrained performances when the thresholds of the evaluators are
defined as fth(i) = f̄m(i). Matrix Q denotes the covariance of the fault estimates at steady-state
when no faults occur and is given by (5.14).

The previous minimization problem can be solved through heuristic optimization approaches
such as genetic algorithms.



5.3. Design of the fault estimator and evaluator 95

5.3.2 BMI-based fault estimator and evaluator

The following theorem shows how to design the observer gain L taking into account FDIA
performance parameters.

Theorem 5.2. Consider the PI observer (5.4) applied to the system (5.3). If there exist any
full matrix L, any symmetric matrices S, Q̄ and any nf symmetric matrices Pi and Γi fulfillingS SA S G V

? S 0
? ? V

 � 0,
[
Q̄ R

? S

]
� 0, (5.17)

and the following constraints for i = 1, . . . , nfPi PiA 0
? Pi R(i)T
? ? I

 � 0,
[
Pi Pi Ē

? Γi

]
� 0, (5.18)

with A = Ā− L C̄ and G = Ḡ− L H̄, the following statements hold:

• In the absence of faults and noises (i.e., ∆fk = vk = 0), the error (5.5) converges to zero.

• In the absence of noises (i.e., vk = 0), the CSE of a fault estimate f̂(i) (i = {1, . . . , nf})
due to a single unitary step fault f(j) with j = {1, . . . , nf} is bounded as ϕ(i) ≤ Γi(j, j).

• In the absence of faults (i.e., ∆fk = 0), the covariance of the error (5.5), is bounded as
Q � Q̄.

Proof. The following items prove each of the statements of Theorem 5.2.

• Let us define the Lyapunov function V S
k = z̃k S z̃

T
k at each instant k. In the absence of

measurement noises and faults after taking Schur’s complements on the first linear matrix
inequality (LMI) presented at (5.17) and premultiplying the result by z̃Tk and postmul-
tipliying by its transpose, we obtain that V S

k+1 − V S
k ≤ 0 which assures that the state

estimation error (5.5) converges to zero. We get the same result if we define the Lyapunov
function V Pi

k = z̃k Pi z̃
T
k at each instant k and we operate on the first LMI presented

at (5.18).

• Performing similar steps on each of the second LMIs presented at (5.18) (Schur’s com-
plements and operations with ∆fTk ), taking expected value on the results and adding the
obtained constraints to the previous one, we get

E{V Pi
k+1} −E{V Pi

k }+ E{e2
k(i)} ≤ ∆fTk Γi ∆k,

where we have taken into account the uncorrelation between z̃k and ∆fk. Considering null
initial conditions and adding the result from k = 0 to K − 1 and taking the limit when
K →∞, it yields

∞∑
k=0

e2
k(i) ≤

∞∑
k=0

∆fTk Γi ∆fk.
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If a single unitary step fault f(j) occurs (i.e., ∆fk(j) = 1 only if k = 0) then,
∞∑
k=0

e2
k(i) ≤ Γi(j, j).

Hence, by bounding the diagonal elements of Γi we constraint the CSEs of each of the
fault estimates due to the appearance of different faults, what proves the second statement
in Theorem 5.2.

• Applying congruence transformation with
[
S−1 0 0

0 I 0
0 0 I

]
and Schur’s complements on the first

LMI in (5.17) we have that

AS−1AT + G V GT � S−1,

Comparing this inequality with the steady-state covariance matrix P0 from (5.14) we have
that P0 � S−1 if we assume that A has stable eigenvalues, which has been demonstrated
in the first item. Then, after applying Schur’s complements on the second LMI in (5.17)
we have

RS−1RT � Q̄,
what finally leads to

Q = RP0R
T � RS−1RT � Q̄,

proving thus the third statement in Theorem 5.2.

Taking advantage of the bounds presented in the previous theorem, the next strategy shows
how to design a BMI-based fault estimator and evaluator guaranteeing certain FIRs and MIFs
while the CSE of the fault estimates is minimized.

Strategy 5.2. Let us define a diagonal matrix Q as shown in (5.15) with φ̄(i) the desired FIRs
and f̄m(i) the desired MIFs. The convex optimization problem

minimize γ (5.19)

subject to X2 =


(5.17), (5.18),
Q̄ � Q, ∑nf

i Γi(i, i) � γ,∑nf
i,i 6=j Γi(j, j) � ε γ, ∀i, j


along the variables S, Q̄, Pi, and Γi with ε ≥ 0 and ε → 0 leads to the fault estimators and
evaluators with the lowest CSE due to faults and guaranteeing the desired FIRs and MIFs when
the thresholds of the evaluators are defined as fth(i) = f̄m(i). This design also enhances dynamic
FI through parameter ε.

Remark 5.5. While the elements Γi(i, i) (i = 1, . . . , nf ) quantify the tracking ability of a fault
estimate i towards a fault in its own channel, the elements Γi(j, j) (i 6= j) specify its rejection
ability against a fault in a different channel, f(j). This could imply a certain trade-off between
tracking and decoupling ability. If the system allows complete dynamic FI, one can set ε = 0
in (5.19); but, if this is not possible due to the characteristics of the system, one can include
variable ε in the optimization design procedure.
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Remark 5.6. The previous optimization problem entails BMIs and it can be solved through
solvers such as the ones presented in [129, 161]. Albeit, it is possible to iteratively solve these
inequalities through a sequence of LMI problems following different approaches such as the ones
presented in [86], or by a single LMI problem using some slack variables as in [108] at the cost
of achieving a lower performance.

5.4 Example

Let us consider a system (5.1) described by the following matrices

A =
[

0.2883 −0.0484
−0.9076 0.7753

]
, B =

[
0.0059
1.1532

]
, C =

[
−2.0756 −0.1952
−2.0756 −0.1952

]

and D = 0. We model the presence of three zero-mean uncorrelated Gaussian noises of variance
0.048. These noises affect the system as

G =
[
0.0059 0 0
1.1532 0 0

]
, H =

[
0 1 0
0 0 1

]
.

We consider that an actuator and a sensor faults may occur, i.e.,

E =
[
−1.1114 0

4.7135 0

]
, F =

[
0 0
0 1

]
.

For this LTI system, we design fault diagnosers that allow us to recognize actuator and sensor
faults above 0.05 and 0.10 respectively (f̄m(1) = 0.05 and f̄m(2) = 0.10). We also impose
that there should be 250 samples in average between false alarms (φ̄(1) = φ̄(2) = 0.004). The
constant gain for FE (5.4) obtained by the Kalman-based design approach is

LT =
[
−0.0362 0.2285 0.0132 −0.0127
−0.0025 −0.0700 0.0044 0.0325

]
;

if we design the observer gain through the BMI-based strategy, the constant gain matrix is

LT =
[
−0.4607 3.6390 0.0129 −0.0227
−0.0236 0.1001 0.0004 0.0227

]
.

In this example, we set up the problem in YALMIP [192] and we successfully solved it with the
PENBMI solver [129,161]. We fixed ε = 0.

For verifying the imposed performance restrictions, we first simulate a fault-free process
of 3.5 · 106 samples. The Kalman-based results satisfy the FIR bounds (φ(1) = 0.0040 and
φ(2) = 0.0039); similar applies to the BMI-based results (φ(1) = 0.0039 and φ(2) = 0.0039).
Second, we simulate a process of 3500 samples where the following faults occur

fTk =


[
15 f̄m(1) 0

]
[500, 1500][

0 12 f̄m(2)
]

[2000, 3000][
0 0

]
Otherwise

.
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Figure 5.1. Fault diagnosis via different approaches. Fault (Gray), Estimate (Black), Threshold (Red).
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Figure 5.2. Details on fault isolation issues. Fault (Gray), Estimate (Black), Threshold (Red).

Fig. 5.1 shows the simulation results of this process. The CSE during the existence of fault
f(1) verifies the bound obtained in the BMI-based optimization problem: ϕ(1) < Γ1(1, 1) f(1)2

(i.e., 16.96 < 17.25). The same applies to fault f(2) (i.e., 26.87 < 29.28). We verify that whilst
the BMI-based approach guarantees perfect FI, the Kalman-based design hinders dynamic FI
(see the details in Fig. 5.2). One should note that enhancing dynamic FI implies lower mini-
mization capability and, thus, higher CSE versus step-faults. Fig. 5.3 shows this trade-off for
the case of study, where we show the optimization result γ for different values of ε.

5.5 Conclusions

We have presented two estimation-based FD approaches for solving a fault diagnosis problem
with model-based proportional-integral observers under the assumption of Gaussian noises. The
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Figure 5.3. Trade-off between dynamic isolation restriction, ε, and minimization capability, γ.

design is based on the trade-off between isolation performance indices as the false isolation rate
and minimum isolable fault, as well as the fault tracking ability via the cumulative squared
error. We have explained how to co-design a fault estimator and evaluator for straightforwardly
achieving certain false isolation rates and minimum isolable faults while minimizing the response
time under the appearance of faults. We have proposed two designs based on optimization
procedures. The first one includes as constraints two discrete Lyapunov equations (steady-state
Kalman filter), while the second one includes several BMIs that bound the covariance matrix of
the FE error as well as the cumulative squared FE error under step faults. In the BMI approach,
one can avoid the dynamic coupling between FE channels, leading to dynamic isolability; while
in the Kalman filter approach one cannot state this feature.





Chapter 6

Fault estimation via proportional
multiple-integral and multiple-resonant
observers

We develop a fault estimation strategy which is based on a novel proportional
multiple-integral and multiple-resonant observer. This observer is an exten-
sion of the well-known PMI observer and it is able to estimate from low to
high-frequency fault signals. The proposed estimation strategy is applied to
discrete-time systems which are affected by faults and stochastic noises. We
present a multiobjective design strategy of the observer that fixes the trade-
offs between practical engineering parameters regarding the noise attenuation
and the ability to track each kind of fault dynamics considered by the aug-
mented observer. We study the influence of the order of the observer on the
steady-state and transient performance of the estimation of different types of
faults. Finally, a numerical example is given to illustrate the effectiveness of
the proposed observer, design and characterization.

6.1 Introduction

The increasing complexity and the high costs of practical control systems impose higher de-
mands of reliability and safety. Fault diagnosis, which has been extensively studied over the
last decades [29,44], arises as an effective solution to meet this demand. Among fault diagnosis
techniques, fault estimation (FE) appears as an advanced method that gives information not
only about the moment (detection) and the location (isolation) of a fault but also about its size
and shape (identification), which is of paramount importance for both real-time decision and
active fault tolerant control [222,330].

FE can be realized by utilizing a wide variety of advanced observer techniques such as sliding
mode observers [84,298], adaptive observers [98,312], iterative observers [50,136] and augmented
observers. The essence of the latter approach is to construct an augmented system in which the
faults are introduced as an additional state [100, 326]. As an extension of the Luenberger

101
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observer, proportional and integral (PI) observers, which have received much attention [163,
305,339], assume that the faults are constant or step signals. Their applicability is thus limited
to the estimation of faults whose variations are slow with respect to the dynamics of the system.
By supposing the considered faults to be in the more general form of a polynomial of the time,
proportional multiple-integral (PMI) observers were discussed in many works as [102, 103, 156,
306,322]. However and as stated in [104], pure high-frequency fault signals cannot be covered by
PMI observers. The development of strategies for estimating the parameters of sinusoidal signals
turns out to be an active research area. A comparison study of the most relevant exiting methods
can be found in [43]. Usually, the Fast Fourier Transform (FFT) is preferred in stationary
conditions. For the estimation of sinusoidal signals with time-varying amplitudes and frequencies
different kinds of adaptive techniques, as the ones presented in [42,209], are commonly utilized.
However in many practical applications the faults are periodic signals which can be decomposed
into sinusoids of known frequencies. Take as examples the faults related to human consumption
of resources such as electricity or water [240], the sensor loss of effectiveness related to the
ambient temperature evolution or the faults occurring in power systems of fixed frequency [157].
If the sinusoidal frequencies are known, simpler schemes can be used and it thus seems valuable
to extend PMI observers in order to include this resonant dynamics.

It is noticed that fault diagnosis and FE techniques aim to simultaneously make the es-
timates sensitive to faults and robust against disturbances and noises [10, 277] through the
accomplishment of certain trade-off between these properties [241,302]. In order to characterize
the sensitivity of PMI observers to faults, reference works [102,322] assume that the polynomials
of the time describing the faults are of certain order and that their highest-order non-zero time-
derivative is bounded. Then, they bound the effect of these time-derivatives of highest order on
the FE errors. In practice, it is possible to forecast some information about the polynomial order
of the faults which are prone to occur. Yet, no exact a priori knowledge of this order is available.
Hence, the authors in [103,104] propose to “choose a large order for safety”. However, choosing
a large polynomial order of the faults, increases the order of the corresponding augmented PMI
observer and it may degrade its behavior towards polynomial faults of lower order. It is then
reasonable to ponder to what extent the increasing order of an observer improves its ability to
track different type of faults; however, and to the best of the authors’ knowledge, no systematic
studies have been carried out in order to determine the influence of this allegedly protective
election on the overall performance of the fault estimator. It seems then valuable to study the
compromises resulting from such election and to provide a design strategy that allows managing
the arising trade-offs. In view of this, we propose to characterize the sensitivity of PMI observers
to faults by bounding the effect on the estimation error of each polynomial fault term instead of
just considering the effect of the highest-order fault terms. This characterization allows design-
ing PMI observers with a different sensitivity to each polynomial fault term according to their
individual probability of appearance. Thus, for the same level of disturbance/noise attenuation,
a higher ability to track the most probable forms of the fault would be achievable at the cost
of a lower performance w.r.t. the less probable fault forms.

Compared with continuous-time systems, fewer and more recent results have been reported
for FE in discrete-time systems [323]. In [41, 99, 323], PI estimation techniques are utilized



6.1. Introduction 103

and in [307] a PMI observer is used for disturbance estimation. It is well known that discrete-
time observers are more challenging and practical that continuous-time cases because most
continuous-time control systems are implemented digitally [323]. Thus, more effort has to be
devoted to FE in discrete-time systems. In any case, it would be straightforward to extend the
FE strategies presented in this thesis to continuous-time systems.

6.1.1 Contributions

Inspired by the above background, this chapter uses novel proportional multiple-integral and
multiple-resonant observers for FE. We study the performance trade-offs that appear when using
complex augmented fault observers for discrete-time systems in environments with stochastic
noises and it provides a design strategy that optimally fixes these trade-offs using practical engi-
neering parameters. In all, compared to the relevant existing literature, the main contributions
of this chapter are:

• The existence conditions of proportional multiple-integral and multiple-resonant (PMIR)
observers for discrete-time systems are included. As an extension of the PI and PMI
observer existence conditions available in the literature (see [41, 103]), we present the
existence conditions of PMIR observers. PMIR observers represent an extension of PMI
observers and they include resonant terms. Although these resonant terms are commonly
utilized in power systems for building PR controllers [259, 285], PMIR observers are not
utilized and their existence conditions are not available in the literature.

• A multiobjective design of the PMIR observer based on performance trade-offs is presented.
In this chapter, we present a design of the PMIR observer for systems in environments
with stochastic noises. The proposed design is a multiobjective optimization problem
based on matrix inequalities which fixes certain trade-off between the noise attenuation
and the ability to track each fault term included in the observer.Unlike common PMI
observer designs which just consider the fault tracking ability w.r.t. the highest-order
time-derivative of the fault (e.g., [102,322]), the proposed design includes the probability
of appearance of each kind of fault form considered by the augmented observer and it
allows specifying different tracking abilities w.r.t. each fault form.

• Practical engineering parameters are utilized in the proposed design. In an aim to bridging
the gap between theory and practice [222], the FE performance is characterized by means
of practical engineering parameters. The stochastic noise attenuation is represented by
the variance of the estimates in fault-free scenarios and the cumulative squared errors due
to fault appearances explain the fault tracking ability.

• The performance of PMIR fault estimators when the system is subject to non-modeled
faults is studied. To reinforce the justification of the probabilistic design approach pre-
sented in this chapter and provided that no a priori exact knowledge of the dynamics
of the faults affecting the system is available, we study the performance of a designed
PMIR observer when the system is affected by non-modeled faults. We also study the
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influence of the complexity of the considered faults (i.e., the degree of the polynomial and
the number of sinusoidal waves included in the augmented observer) on the performance
of the estimator w.r.t. fault signals of simpler dynamics.

6.1.2 Structure and notation

The outline of this chapter is as follows. First, we state the problem in Section 6.2. In Section 6.3,
we propose a FE strategy based on a novel model-based PMIR observers and, in Section 6.4, we
present a multiobjective optimization problem for the design of the estimator. In Section 6.5,
we study the fault tracking ability of the designed estimator in both steady state and transients.
These characterizations are validated through a numerical example in Section 6.6. Finally, Sec-
tion 6.7 summarizes the main conclusions and proposes future research topics.

Throughout the chapter, R denotes the set of real numbers and C denotes the complex plane.
Expected value, probability and absolute value are denoted by E{·}, P{·} and | · |. Let A be
some matrix and a be some vector. A[i, j] denotes the element in the i-th row and j-th column
of A and a[i] denotes the i-th element in a. A � 0 means that A is negative semidefinite and
similar applies to �. The trace of matrix A is represented as tr(A), its rank is given by rank(A)
and σ(A) denotes the eigenvalues of A. Let x be a stochastic signal. We write ‖xk‖22 , xTk xk
for the Euclidean norm of vector xk, ‖x‖22 ,

∑∞
k=0 ‖xk‖22 for the l2 norm of signal x and

‖x‖2RMS , limk→∞ 1
K

∑K−1
k=0 ‖xk‖22 for its RMS norm. In is the identity matrix of size n× n or

of appropriate size when the subindex is omitted; similar applies to 0n×n.

6.2 Problem statement

Consider the linear time-invariant (LTI) discrete-time system defined by

xk+1 = Axk +B uk + E fk + S wk, (6.1a)
yk = C xk +Duk + F fk + T wk, (6.1b)

with x ∈ Rnx , y ∈ Rny and u ∈ Rnu being the state, output and input vector. Vector w ∈ Rnw
represents the noise and vector f ∈ Rnf includes the faults f [l] with l = 1, . . . , nf that affect
system (6.1). A, B, C, D, E, F , S and T are known real constant matrices of appropriate
dimensions. Note that pure process noise (wp) and pure sensor noise (ws) may be considered

by means of zeroing the appropriate columns of S and T (i.e., w =
[
wp

ws

]
with S =

[
Sp 0

]
and

T =
[
0 T s

]
). The following assumptions on the system (6.1) are made.

Assumption 6.1. The pair (A,C) is observable.

Assumption 6.2. The matrices A, C, E and F satisfy

rank
[
Inx −A −E
C F

]
= nx + nf .
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Assumption 6.3. The matrices A, C, E and F satisfy

rank

z Inx −A −E 0
0 −Inf z Inf
C F 0

 = nx + 2nf

for z ∈ {cos(ωr)± j sin(ωr)} with r = 1, . . . , nR.

Assumption 6.4. The noises in w are zero-mean independent noises of known covariance,
i.e., E{wwT } = W .

Assumption 6.5. We consider that each fault f [l] = Ml f (with Ml =
[
01×l−1 1 01×nf−l

]
and l = 1, . . . , nf ) is in the fairly general form of

fk[l] = f Ik [l] + fRk [l], (6.2)

where f Ik [l] = ∑nI
i=1 f

i
k[l] and fRk [l] = ∑nR

r=1 f
r
k [l] contain, respectively, the aperiodic and periodic

components of the l-th fault which we write as

f ik[l] =
{
ci,l (k − κi,l)i−1 if k ≥ κi,l

0 otherwise , (6.3a)

f rk [l] =
{
dr,l sin[ωr (k − κ̄r,l)] if k ≥ κr,l

0 otherwise , (6.3b)

where ci,l (i = 1, . . . , nI) and dr,l (r = 1, . . . , nR) are unknown constants, κi,l (i = 1, . . . , nI)
and κ̄r,l (r = 1, . . . , nR) are the unknown times of appearance of the corresponding dynamics,
and ωr (r = 1, . . . , nR) are the discrete frequencies of the periodic components of the l-th fault.

Remark 6.1. Assumption 6.1 and Assumption 6.2 are usually made in the FE framework.
Assumption 6.3 extends Assumption 6.2 from a high-frequency perspective. Assumption 6.4 is
common for systems affected by stochastic noises (e.g., Kalman filter theory).

Remark 6.2. Many existing FE techniques assume bounded faults and/or faults with bounded
first-time derivative, e.g., [135, 136, 305]. Hence, it is not restrictive to specify Assumption 6.5
including faults with bounded nI-th time derivative as assumed in PMI observers [307] theory.
Moreover, the periodic components of f in Assumption 6.5 allow considering high-frequency
faults which, as stated in [104], cannot be covered by the dynamics of the faults assumed in
PMI observers. All the fault parameters but the frequencies ωr (r = 1, . . . , nR) are assumed to
be unknown. As previously discussed, the knowledge of these frequencies is reasonable in many
practical cases (e.g., electrical and power systems).

Remark 6.3. Note that f I [l] can be seen as the nI-th Taylor series expansion at k = 0 for
a function g whose derivatives g(n) exist for n = 1, . . . , nI on k = 0. Likewise, fR[l] with
ωr = r ω1 can be seen as the nR-th order Fourier series expansion for a periodic function g

which is integrable on the interval k ∈ [0, 2π/ω1].
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The faults in the form of (6.2) can be modeled through

ξk+1 =AF ξk +BF ζk, (6.4a)
fk =CF ξk, (6.4b)

with ξ =
[
ξI ξR

]T
∈ Rnξ being the fault state vector verifying nξ = nf · (nI + 2 · nR) and

ξ0 = 0. Vector ζ =
[
ζI ζR

]T
∈ Rnζ with nζ = nf · (nI +nR) is a vector including the following

impulse signals:

ζIk =



cnI ,1 δk−κnI ,1...
cnI ,nf δk−κnI ,nf

...
c1,nf δk−κ1,nf


, ζRk =



dnR,1 δk−κ̄nR,1...
dnR,nf δk−κ̄nR,nf

...
d1,nf δk−κ̄1,nf


.

The matrices in (6.4) verify AF =
[
AIF 0
0 ARF

]
, BF =

[
BI
F 0

0 BR
F

]
, CF =

[
CIF CRF

]
, with

AIF =


Inf 0 0 0
Inf Inf 0 0

0 . . . . . . 0
0 0 Inf Inf

 ∈ R(nf ·nI)×(nf ·nI),

BI
F = Inf ·nI ∈ R(nf ·nI)×(nf ·nI),

CIF =
[
0 Inf

]
∈ Rnf×(nf ·nI),

ARF =


2 cos(ω1) Inf 0 0

0 . . . 0 −Inf ·nR
0 0 2 cos(ωnR) Inf

Inf ·nR 0

 ∈ R(nf ·2·nR)×(nf ·2·nR),

BR
F =


sin(ω1) Inf 0 0

0 . . . 0
0 0 sin(ωnR) Inf

0

 ∈ R(nf ·2·nR)×(nf ·nR),

CRF =
[
Inf . . . Inf 0

]
∈ Rnf×(nf ·2·nR).

Note that the first nf elements in ζ refer to the generating signals related to the fault polynomial
terms of highest order (i.e., cnI ,l (k − κnI ,l)nI−1). Therefore, ζ[l] refers to the polynomial term
of highest order of the l-th fault and, more generally, ζ[(nI − i)nf + l] with i ∈ [1, . . . , nI ] refers
to the generating signal related to the term ci,l (k−κi,l)i−1 of this l-th fault. In the following, we
will use index m to refer to the m-th generating signal in vector ζ, index m̄(i, l) , (nI − i)nf + l

to refer to the generating signal of the polynomial term of power i − 1 in the fault channel l
and index m̆(r, l) , (nI + nR − r)nf + l to refer to the generating signal of the sinusoidal term
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of frequency ωr in the fault channel l. Thus, applying the Z transform to (6.4), we get that the
transfer functions Gf [l],ζ[m](z) from the different generating signals ζ[m] to f [l] are given in

f [l](z) =
nI∑
i=1

1
(1− z−1)i ζ[m̄(i, l)](z) +

nR∑
r=1

sin(ωr) z−1

1− 2 cos(ωr) z−1 + z−2 ζ[m̆(r, l)](z). (6.5)

Remark 6.4. Although the fault generator model (6.4) is built in view of the generation of fault
signals in the form of (6.2), any fault signal f [l] can be generated through (6.4) by any fault
input signal ζ[m] with m = 1, . . . , nζ whose Z transform is given by

ζ[m](z) = Z−1
{
Gf [l],ζ[m](z)

}
Z {f [l]}.

The objective of this chapter is to study the following problem.

Problem 6.1. Given the LTI discrete-time system (6.1) with zero-mean noises and faults in the
form of (6.2), it is required to provide a design strategy of an augmented observer that allows
us to optimally set the trade-offs between the noise attenuation and the individual abilities to
track each polynomial and sinusoidal fault term. It is then also necessary to analyse the effect
of these trade-offs on the ability to track non-modeled simpler or more complex faults.

6.3 Fault estimator

In order to build a model-based fault estimator, we extend the model (6.1) to include the
model (6.4) as

zk+1 =A zk + B uk + E ζk + S wk, (6.6a)
yk =C zk +D uk + T wk, (6.6b)
fk =R zk, (6.6c)

where z =
[
xT ξT

]T
is the extended state vector and A =

[
A E CF
0 AF

]
, B =

[
B

0

]
, E =

[
0
BF

]
,

S =
[
S

0

]
, C =

[
C F CF

]
, D = D, T = T and R =

[
0 CF

]
.

Theorem 6.1. If Assumption 6.1 and Assumption 6.2 are satisfied, then the extended pair
(A, C) is observable.

Proof. Define O(z) =
[
z Inx −A
C

]
. From linear systems theory, the pair (A, C) is observable if

rank {O(z)} = nx + nξ (with nξ = nf · (nI + 2 · nR)) for any z ∈ σ(A). In analogy to [41, 103]
and since the eigenvalues of A are equivalent to {σ(A), 1, cos(ω1) ± j sin(ω1), . . . , cos(ωnR) ±
j sin(ωnR)}, this proof discusses three cases:
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(i) If z ∈ σ(A) and z 6∈ {1, cos(ω1)± j sin(ω1), . . . , cos(ωnR)± j sin(ωnR)}, we have

rank {O(z)} = rank
[
z Inx −A

C

]
+ nξ

and, because of Assumption 6.1, rank {O(z)} = nx + nξ.

(ii) If z = 1, we have

rank {O(1)} = rank



Inx −A 0 0 0 −E
0 Inf 0 0 0

0 0 . . . . . . 0
0 0 0 Inf 0
C 0 0 0 F


+ nf2nR,

rank {O(1)} = rank
[
Inx −A −E
C F

]
+ nf (nI + 2nR − 1)

and, because o f Assumption 6.2, rank {O(1)} = nx + nξ.

(iii) For any r = 1, . . . , nR, if z = zr with zr , cos(ωr)± j sin(ωr), we have

rank {O(zr)} = nf (nI + 2nR − 2) + rank


zr Inx −A −E 0

0 −z̄r Inf Inf
0 −Inf zr Inf
C F 0

 . (6.7)

with z̄r being the complex conjugate of zr. For λ = zr, we have

−λ z̄r Inf + Inf = 0, λ Inf − zr Inf = 0;

because zr z̄r = 1 and we deduce that the second and third row of the matrix in (6.7) are
linearly dependent. Thus, it follows that

rank {O (zr)} = nf (nI + 2nR − 2) + rank

zr Inx −A −E 0
0 −Inf zr Inf
C F 0


and, because of Assumption 6.3, rank {O (zr)} = nx + nξ.

From (i), (ii) and (iii), we have that rank {O(z)} = nx + nξ for any z ∈ σ(A). This completes
the proof of the theorem.

Provided the observability of the extended pair (A, C), the faults are estimated through a
model-based observer in the form of:

ẑk+1 =A ẑk + B uk + L (yk − C ẑk −D uk) , (6.8a)
f̂k =R ẑk +K (yk − C ẑk −D uk) , (6.8b)
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where L and K are to be defined and represent the observer gain matrices that update the
model-based estimations with the measurements. In analogy to the PMI observers and to the
PR controllers which are used in power systems [259, 285] we say that an observer in the from
of (6.8) is a proportional multiple-integral and multiple-resonant (PMIR) observer.

Defining the FE error as f̃k = fk − f̂k and the extended state estimation error z̃k = zk − ẑk,
it follows that

z̃k+1 =A z̃k + E ζk + Swk, (6.9a)
f̃k =R z̃k + Twk, (6.9b)

with A = A − L C, E = E , S = S − L T , R = R − K C, and T = −K T . If we apply the Z
transform to (6.9), we get

f̃(z) = G
f̃ ,ζ

(z) ζ(z) +G
f̃ ,w

(z)w(z), (6.10)

being G
f̃ ,ζ

(z) = M(z)E, G
f̃ ,w

(z) = M(z) S + T and M(z) = R(z I −A)−1. Note that the error
sources affecting the FE error are the zero-mean noises in w and the fault variations in ζ. In
order to design the fault estimator (6.8), one must choose the observer gain matrices L and K

so that certain trade-off between the attenuation from w and from ζ is satisfied.

Remark 6.5. Note that the PMIR observer (6.8) enhances the estimation of simultaneous
actuator and sensor faults. Redefining R as R = diag{I, CF }, the observer (6.8) can be used as
a simultaneous state and fault estimator as proposed in some works, e.g., [102, 106].

Remark 6.6. The fault estimator (6.8) could be generalized for a continuous system by aug-
menting the corresponding system model with the continuous form of the fault model (6.4)
including continuous integrators and resonators. Then, the continuous observer should be con-
structed in analogy to (6.8).

6.4 Fault estimator design

In this section, we present an optimization-based design strategy of the observer (6.8). First,
the robustness and the fault sensitivity of the observer, represented by norm-bounds regarding
the attenuation from the noise w and from each ζ[m], are formulated using matrix inequalities.
Second, these matrix inequalities are numerically transformed so that they can be implemented
in a convex optimization design problem. Third, the obtained results are utilized in optimization-
based problems for the design of the observer (6.8).

6.4.1 Formulation via matrix inequalities

The robustness and the fault sensitivity of the observer (6.8) are translated into norm-bounds
using the formulation based on matrix inequalities in the following theorem.
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Theorem 6.2. Consider the fault estimator (6.8) applied to the system (6.6) and let Γ and Υ
be certain diagonal matrices. If there exist any matrices L and K and any symmetric matrices
Q and P fulfilling the matrix inequalities

Q � 0, (6.11a)
AT QA−Q+ RT R ≺ 0, (6.11b)
ST QS + TT T− Γ ≺ 0, (6.11c)

P � 0, (6.12a)
AT P A− P + RT R ≺ 0, (6.12b)
ET P E−Υ ≺ 0, (6.12c)

the following statements hold :

(i) In the absence of faults and noises (i.e., ζ = 0, w = 0), the error (6.9) converges to zero.

(ii) In the absence of faults (i.e., ζ = 0), error (6.9b) is bounded as tr(E{f̃k f̃Tk }) < tr(ΓW ).

(iii) In the absence of noises (i.e., w = 0), if ζ is an impulse, error (6.9b) is bounded as
‖f̃‖22 <

∑nζ
m=1 Υ[m,m] ζ2

0 [m].

Proof. Define the Lyapunov functions V Q
k = z̃Tk Q z̃k and V P

k = z̃Tk P z̃k. The following items
prove each statement of Theorem 6.2.

(i) In the absence of faults and noises, premultiplying (6.11b) by z̃Tk and postmultipliying by
its transpose, we get

V Q
k+1 − V

Q
k < 0, (6.13)

which assures that the estimation error (6.9) converges to zero . If we perform similar
steps on the inequality (6.12b), we get the same result w.r.t. V P , i.e.,

V P
k+1 − V P

k < 0, (6.14)

(ii) Premultiplying (6.11c) by wTk and postmultipliying by its transpose, summing the obtained
constraint to (6.13) and taking expected value on the result, we get

E{V Q
k+1} − E{V Q

k }+ tr(E{f̃k f̃Tk }) < tr(ΓW ),

where we have taken into account the independence between z̃k and wk and we have
applied that E{wTk Γwk} = tr(ΓW ) and E{f̃Tk f̃k} = tr(E{f̃k f̃Tk }) because wk is zero-
mean and so does f̃k in the absence of faults [271]. Considering null initial conditions
(E{V Q

0 } = 0), adding the result from k = 0 to k = K, dividing the resulting expression
by K and taking the limit when K → ∞, it leads to the second statement in Theorem
6.2 because with (6.11a) we have E{V Q

K+1} ≥ 0.
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(iii) Performing similar steps over the inequalities in (6.12) (i.e., operations with ζTk on (6.12c),
summation of the obtained constraint to (6.14) and taking expected value on the result),
it yields

E{V P
k+1} − E{V P

k }+ E{f̃Tk f̃k} − E{ζTk Υ ζk} < 0.

Considering null initial conditions (E{V P
0 } = 0), adding the result from k = 0 to k = K,

and provided that ζk is an impulse (i.e., ζk = 0 for k 6= 0), we get ‖f̃‖22 < ζT0 Υ ζ0 because
E{V p

K+1} ≥ 0 and E{f̃Tk f̃k} = f̃Tk f̃k since ζk is deterministic. Provided that matrix Υ is
diagonal, we prove the third statement in Theorem 6.2.

Remark 6.7. Note that the third statement in Theorem 6.2 bounds the norm of the FE error
w.r.t. each fault input ζ[m] through the diagonal term Υ[m,m]. Hence, different values in the
diagonal terms of Υ enhance a design with a different sensitivity w.r.t. each different fault input
ζ[m] (m = 1, . . . , nζ).

In order to give a discrete-time domain interpretation to these results, the following corollary
to Theorem 6.2 can be used. The proof is straightforward and thus is omitted here.

Corollary 6.1. If the premises in Theorem 6.2 are satisfied, the following statements hold for
the estimator (6.8) applied to (6.6):

(i) The sum of the variances of the fault estimates f̂ [l] due to noises (i.e., γ = tr(E{f̂k f̂Tk })
with f = 0) is bounded as γ < tr(ΓW ).

(ii) The cumulative squared error (CSE)1 of the FE vector f̂ due to a unitary impulse input
ζ[m] (i.e., υm = ‖f̃‖22 with w = 0 and ζ[n] = 0 for n = 1, . . . ,m − 1,m + 1, . . . , nζ) is
bounded as υm < Υ[m,m].

6.4.2 Numerical treatment for convexification

Note that the conditions in Theorem 6.2 are standard in norm-based designs [121,335] and their
feasibility depends on the restrictiveness of the chosen values for Γ and Υ. The use of independent
closed-loop Lyapunov functions Q and P guarantee a non-conservative design based on these
inequalities; however, the design results in a nonlinear problem. To recover convexity without
conservatively requiring all specifications to be enforced by a single Lyapunov function [252], i.e.,
Q = P , we can adopt a compromise solution by introducing a slack variable Z [69, 121]. After

some Schur complement operation and performing a congruence transformation by
[
Z 0
0 I

]
to

(6.11) and (6.12), we get the linear matrix inequalities (LMIs)Z
? −Q A 0
A T Q RT

0 R I

 � 0,

Z
? −Q S 0
S T Γ TT

0 T I

 � 0, (6.15)

1The CSE experienced by an observer is intrinsically related to its settling time. Hence, higher CSEs imply
higher settling times and vice-versa.
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Z
? − P A 0
A T P RT

0 R I

 � 0,
[
Z? − P Z E
ET ZT Υ

]
� 0, (6.16)

with Z? = Z + ZT , A = ZA−X C, S = Z S −X T and X = Z L. Here, we have taken into
account that the inequality Z Q−1 ZT � Z + ZT − Q holds for any strictly positive definite
matrix Q and any full-rank matrix Z. Note that it would also be possible to iteratively solve
the inequalities (6.11) and (6.12) if we perform Schur complements and we build a sequence of
problems of LMIs following different approaches such as the ones presented in [86].

6.4.3 Design optimization problem

The results in Theorem 6.2 could be utilized to design a PMIR observer with a fixed performance
w.r.t. noises and faults. In order to solve Problem 1, we use them in an optimization-based design
strategy that ensures certain optimal trade-off between the robustness and the individual fault
sensitivity of the observer. Let us first introduce the following assumption on the fault input
vector ζ.

Assumption 6.6. There is a non-zero probability that some fault inputs ζ[m] are zero, i.e.,
P
{⋃nζ

m=1 ζ[m] = 0
}
6= 0.

Provided Assumption 6.6, we can define the probability of appearance of certain fault input
ζ[m] as αm = 1− P{ζ[m] = 0}.

Remark 6.8. Assumption 6.6 enhances PMIR observer designs in which the fault sensitivity
towards the most probable fault forms is preponderant over the fault sensitivity towards less
probable fault forms. Hence, the probability of appearance of the faults can be seen as design
weights which are given to the different polynomial and sinusoidal fault terms in (6.2).

Remark 6.9. It is extended in PMI observer theory to consider that the fault input is ζ ′k =[
cnI ,1 . . . cnI ,nf

]T
δk ∈ Rnf and to characterize the fault sensitivity by means of the attenu-

ation from ζ ′ (e.g., theoretical works [103, 322] and practical works [166, 176]). In this thesis,
we extend this approach and we characterize the fault sensitivity by means of the individual
attenuation not only from the higher order dynamics generated by ζ ′ but from all the dynam-
ics generated by ζ. Note that Assumption 6.6 allows considering previous approaches which are
achievable if we set αm = 1/nf for m = 1, . . . , nf and αm = 0 for m = nf + 1, . . . , nζ .

The following two strategies show a proposal of how to use the results in Theorem 6.2 and
Corollary 6.1 in a multiobjective optimization problem for designing fault estimators guaran-
teeing certain trade-off between noise attenuation and fault sensitivity. Let us remark that
these design strategies are based on the discrete-time parameters in Corollary 6.1 (variances
and CSEs) which are rather intuitive for designers in practical environments. To enhance the
individual fault sensitivity approach, we distinguish between the fault unitary impulse inputs
for which a specific CSE constraint is necessary (ζ[m] such that m ∈ Ω, Ω ⊂ [1, nζ ]) and
expected/weighted CSE of the other unitary impulse inputs (ζ[m] such that m 6∈ Ω)
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Strategy 6.1. Assume that we want to design an estimator (6.8) with:

• minimum sum of the variances of the fault estimates f̂ [l] due to noises (i.e., γ),

• certain expected CSE due to the unitary impulse inputs ζ[m] such that m ∈ Ω (i.e.,∑
m∈Ω αmυm ≤ ῡ),

• certain bounded CSE (i.e., υm ≤ ῡm) due to each unitary impulse input ζ[m] such that
m ∈ [1, nζ ]\Ω,

To address this design, we set the following convex optimization problem

minimize tr(ΓW )
subject to

∑
m∈Ω

αmΥ[m,m] ≤ ῡ

Υ[m,m] ≤ ῡm, m ∈ [1, nζ ]\Ω,
(6.15), (6.16)

(6.17)

along the variables Z, X, K, Q, P , Γ and Υ and we define L = Z−1X.

Strategy 6.2. Assume that we want to design a fault estimator (6.8) with:

• certain bounded sum of the variances of the fault estimates f̂ [l] due to noises (i.e., γ ≤ γ̄),

• minimum expected CSE due to the unitary impulse inputs ζ[m] such that m ∈ Ω ⊂ [1, nζ ]
(i.e.,

∑
m∈Ω αmυm),

• certain bounded CSE (i.e., υm ≤ ῡm) due to each unitary impulse input ζ[m] such that
m ∈ [1, nζ ]\Ω,

To address this design, we set the following convex optimization problem

minimize
∑
m∈Ω

αmΥ[m,m]

subject to Υ[m,m] ≤ ῡm, m ∈ [1, nζ ]\Ω,
tr(ΓW ) ≤ γ̄
(6.15), (6.16)

(6.18)

along Z, X, K, Q, P , Γ and Υ and we define L = Z−1X.

Remark 6.10. Although we assume that the system (6.1) is not affected by non-zero mean
disturbances, it is possible to extend the results presented in this chapter to a system in the form
of

xk+1 = Axk +B uk + E fk + S wk + S2 dk,

yk = C xk +Duk + F fk + T wk + T2 dk,
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where d ∈ Rnd is a bounded vector and S2 and T2 are known constant matrices of appropriate
dimensions. For such cases, we propose to obtain the matrix inequalities which bound the H∞
norm of the dynamics between d and f̃ and add them in the design strategies of the observer.
See [213,326] for details on obtaining this norm using standard matrix inequalities formulation.
If unknown input decoupling were necessary, one could guarantee it by constraining the value
of this H∞ norm to zero or by using the algebraic constraints explained in [70, 106]. To build
this Unknown Input Observer (UIO), the rank inequalities in Assumptions 6.2 and 6.3 should
be extended as indicated in [106].

6.5 Analysis of the tracking behavior of PMIR observers

In this section, we analyse the tracking behavior of PMIR observers when the system is affected
by different types of faults. For this analysis, we omit the effect of the noise w on the fault
estimates.

6.5.1 Steady-state analysis

From a steady-state perspective, we have shown that an observer in the form of (6.8) designed
through the strategies presented in Section 6.4 experiences a finite cumulative squared error
when any fault in the form of (6.2) affects the system. Thus, in such cases, the steady-state
error of the estimator is zero. However, seldom is the dynamics of the real faults completely
known and it is possible that the real dynamics of a fault affecting the system does not match
the assumed model. In the following, we analyse the behavior of the estimator when the system
is affected by any polynomial fault and by a sinusoidal fault of any frequency.

Polynomial faults

Let us characterize the steady-state behavior of the PMIR observer (6.8) when the system (6.1)
is affected by a polynomial fault of any degree N . To do so, we first introduce a corollary
to Theorem 6.2 which gives a bound of the RMS-norm of the FE error as a function of the
difference between the degree of the fault (N) and the number of integral terms considered by
the PMIR observer (nI). Then, we obtain a bound of the final value of the estimation error.

Corollary 6.2. Consider the fault estimator (6.8) applied to the system (6.6). If a fault f [l] in
the form of fk[l] = cN,l k

N−1 affects the system, the RMS norm of the l-th FE error is bounded
as ∥∥∥f̃ [l]

∥∥∥
RMS

≤


0 if N ≤ nI
χl cN,l if N = nI + 1
∞ if N > nI + 1

, (6.19)

with χl =
∥∥∥G

f̃ [l],ζ[l](z)
∥∥∥
∞

being the H∞ norm of the transfer function between f̃ [l](z) and ζ[l](z)
(i.e., the generating signal for the polynomial term of highest order cnI ,l knI−1).
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Proof. Provided equality (6.5) and Remark 6.4, we have that fk[l] = cN,l k
N−1 (whose Z trans-

form is f [l](z) = cN,l
(1−z−1)N ) can be generated as

f [l](z) = Gf [l],ζ[m̄](z) ζ[m̄](z)

with
ζ[m̄](z) = cN,l

(1− z−1)N−i

for any i = 1, . . . nI (index m̄ being equivalent to m̄(i, l) , (nI − i)nf + l). From Theorem 6.2
we have that

∥∥∥G
f̃ ,ζ[m](z)

∥∥∥2

2
≤ Υ[m,m] and, thus,

∥∥∥G
f̃ [l],ζ[m](z)

∥∥∥
∞

= χm < ∞. Then, the RMS
norm of f̃ [l] is bounded as∥∥∥f̃ [l]

∥∥∥
RMS

≤ χm̄
∥∥∥∥Z−1

{
cN,l

(1− z−1)N−i
}∥∥∥∥

RMS

for all i = 1, . . . , nI and it, thus, verifies

∥∥∥f̃ [l]
∥∥∥
RMS

≤ min
i=1,...,nI

{
χm̄

∥∥∥∥Z−1
{

cN,l
(1− z−1)N−i

}∥∥∥∥
RMS

}
.

The RMS norm of the signal Z−1
{

cN,l
(1−z−1)N−i

}
is zero if N − i < 1, finite if N − i = 1 (i.e., a

step signal), and infinite if N − i > 1. Thus, the previous minimum is archived for i = nI and
we have ∥∥∥f̃ [l]

∥∥∥
RMS

≤ χl
∥∥∥∥Z−1

{
cN,l

(1− z−1)N−nI

}∥∥∥∥
RMS

.

because m̄(nI , l) = l, leading to the statement in Corollary 6.2.

The bound (6.19) in Corollary 6.2 implies that if a fault f [l] in the form of fk[l] = cN,l k
N−1

affects the system, the steady-state FE error of the l-th fault, i.e., limk→∞ f̃k[l], is bounded as

lim
k→∞

f̃k[l] ≤


0 if N ≤ nI
Kl if N = nI + 1
∞ if N > nI + 1

, (6.20)

with Kl being a constant which can be obtained through the following procedure.

From Theorem 6.2 we have that
∥∥∥G

f̃ ,ζ[m](z)
∥∥∥2

2
≤ Υ[m,m] and, thus,

∥∥∥G
f̃ [l],ζ[m](z)

∥∥∥
2

= φm <

∞. Provided that G
f̃ [l],ζ[m](z) = G

f̃ [l],f [l](z)Gf [l],ζ[m](z) and using the definition of Gf [l],ζ[m](z)
in (6.5), we have that∥∥∥G

f̃ [l],ζ[m̄](z)
∥∥∥

2
=
∥∥∥∥Gf̃ [l],f [l](z)

1
(1− z−1)i

∥∥∥∥
2

= φm <∞

for all i = 1, . . . nI (index m̄ being equivalent to m̄(i, l) , (nI − i)nf + l). Thus, we deduce that
limk→∞ f̃k[l] = 0 when ζk[m̄] = ci,lδk. Applying the final value theorem, this result implies that

lim
z→1

G
f̃ [l],f [l](z)

ci,l
(1− z−1)i−1 = 0, (6.21)
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for all i = 1, . . . , nI . Let us now decompose G
f̃ [l],f [l](z) as

G
f̃ [l],f [l](z) = Hl,l(z) (1− z−1)p,

whereHl,l(z) is a transfer function verifyingHl,l(1) = κl,l (κl,l being a constant) and p represents
the number of zeros at z = 1 in G

f̃ [l],f [l](z). Provided that

lim
z→1

K̄ (1− z−1)p
(1− z−1)q =


0 if q < p

K̄ if q = p

∞ if q > p

,

we deduce from (6.21) that
p ≥ nI (6.22)

because p ≥ i for all i = 1, . . . , nI . Applying the final value theorem when a fault f [l] in the
form of fk[l] = cN,l k

N−1 affects the system, we get

lim
z→1

G
f̃ [l],f [l](z)

cN,l
(1− z−1)N−1 =

lim
z→1
Hl,l(z)

cN,l(1− z−1)p
(1− z−1)N−1 ≤


0 if N ≤ nI
κl,l cN,l if N = nI + 1
∞ if N > nI + 1

(6.23)

and we deduce that Kl in (6.20) satisfies Kl = κl,l cN,l.

Remark 6.11. In essence, the purpose of a fault estimator is to invert the transfer functions
from the faults to the measurements [70]. If these transfer functions contain poles which are
close to z = 1 (i.e., integrators), it may occur that the transfer function from a fault to the
corresponding FE error contains p0 zeros at z = 1 (i.e., derivative terms) regardless of the
dynamics of the faults included in the estimator. Thus, we rewrite (6.22) as p = nI + p0 with
p0 ≥ 0 and we have that

lim
z→1

G
f̃ [l],f [l](z)

cN,l
(1− z−1)N−1 = lim

z→1
Hl,l(z)

cN,l(1− z−1)nI+p0

(1− z−1)N−1 =


0 if N ≤ nI + p0
Kl if N = nI + p0 + 1
∞ if N > nI + p0 + 1

with Kl = κl,l cN,l. Since no a priori knowledge of p0 ≥ 0 is available, this equality leads to the
bound (6.23).

Sinusoidal faults

Let us now characterize the steady-state behavior of the PMIR observer (6.8) when the sys-
tem (6.1) is affected by a sinusoidal fault of any frequency ωN . To do so, we introduce a corollary
to Theorem 6.2 which gives a bound of the RMS-norm of the FE error through the difference
between the frequency of the fault (ωN ) and the frequencies considered by the PMIR observer
(ωr, r = 1, . . . , nR). From this bound, we deduce a bound of the steady-state FE error.
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Corollary 6.3. Consider the fault estimator (6.8) applied to the system (6.6). If a fault f [l]
in the form of fk[l] = dN,l sin(ωN k) affects the system, the RMS norm of the l-th FE error is
bounded as ∥∥∥f̃ [l]

∥∥∥
RMS

≤
 0 if ωN ∈ f

min
r=1,...,nR

{
χm̆

dN,l |ω2
r−ω2

N |√
2ωN

}
if ωN 6∈ f

(6.24)

with f = {ω1, . . . , ωnR}, χm =
∥∥∥G

f̃ [l],ζ[m](z)
∥∥∥
∞

being the H∞ norm of the transfer function
between f̃ [l](z) and ζ[m](z) and index m̆ being equivalent to m̆(r, l) , (nI + nR − r)nf + l.

Proof. According to the proof of Corollary 6.2, fk[l] = dN,l sin(ωN k) (whose Z transform is
f [l](z) = dN,l sin(ωN ) z−1

1−2 cos(ωN ) z−1+z−2 ) can be generated through Gf [l],ζ[m̆](z) by

ζ[m̆](z) = 1− 2 cos(ωr) z−1 + z−2

sin(ωr) z−1
dN,l sin(ωN ) z−1

1− 2 cos(ωN ) z−1 + z−2 .

for any r = 1, . . . nR (index m̆ being equivalent to m̆(r, l) , (nI + nR − r)nf + l). The RMS
norm of f̃ [l] is thus bounded as∥∥∥f̃ [l]

∥∥∥
RMS

≤ min
r=1,...,nR

{
χm̆

∥∥∥Z−1 {ζ[m̆](z)}
∥∥∥
RMS

}
which is equivalent to ∥∥∥f̃ [l]

∥∥∥
RMS

≤ min
r=1,...,nR

{
χm̆

dN,l |ω2
r − ω2

N |√
2ωN

}
leading to the statement in Corollary 6.3.

It is straightforward to deduce that the bound (6.24) in Corollary 6.3 implies that if a fault
f [l] in the form of fk[l] = dN,l sin(ωN k) affects the system, the peak value of the steady-state
estimation error of the l-th fault, i.e., f̃k[l] with k sufficiently large to achieve the sinusoidal
steady state, is bounded as (f = {ω1, . . . , ωnR}):

max
k
|f̃k[l]| ≤

 0 if ωN ∈ f

min
r=1,...,nR

{
χ ¯̄m(r,l)

dN,l |ω2
r−ω2

N |
ωN

}
if ωN 6∈ f

6.5.2 Transient analysis

From the analysis in Section 6.5.1, we deduce that, from a steady-state perspective, better
results are achieved when the degree nI of the faults considered by the estimator is increased.
However, increasing this degree has its counterpart in the transient behavior of the estimator.
First, from (6.21) we have that

lim
z→1

1
(1− z−1)q Gf̃ [l],f [l](z)

1
(1− z−1)N−1 = 0, ∀q ≤ nI −N.

This equality implies that the cumulative error related to the l-th fault is zero whenever N < nI
and that the fault estimate f̂ [l] has, thus, an oscillatory behavior. It is worth nothing mentioning
that this behavior is undesirable in FE; especially, when the resulting fault estimates are used
in fault tolerant control schemes.



118 6. Fault estimation via proportional multiple-integral and multiple-resonant observers

Remark 6.12. Likewise to the analysis performed in Remark 6.11, if we denote the number
zeros at z = 1 which appear in the estimator regardless of the dynamics of the modeled faults as
p0, the equality in 6.5.2 holds for all q ≤ nI + p0 −N .

Second and considering nR = 0, the design freedom of an observer in the form of (6.8)

is provided by the observer gains K ∈ Rnf×ny and L =
[
Lx
LI

]
with Lx ∈ Rnx×ny and LI ∈

R(nI ·nf )×ny . In general and omitting the design effort which is devoted to the satisfaction of
noise attenuation constraints, all the design flexibility provided by Lx, LI and K can be used
to ameliorate the ability to track the nI polynomial terms of the faults. Now, if we design an
augmented observer including polynomial faults up to degree nI +N in its model, the observer

gains become K and L′ =

LxLN
LI

 with LN ∈ R(N ·nf )×ny . In such a case and given the structure

of the matrices AF , BF and CF in (6.4), the design freedom provided by LI , Lx and K can
be used to ameliorate the ability to track both the first nI and the last N polynomial terms
of the faults. For its part, the design flexibility provided by LN has no effect on the ability to
track the nI polynomial terms of lower order and and it can only be used to improve the ability
to track the N polynomial terms of higher order. In all, we intuitively deduce that the ability
to track certain term of a polynomial fault cannot be improved by increasing the order of the
augmented observer and that this tracking ability deteriorates as the sensitivity to polynomial
terms of higher order is increased. Similar deductions apply to the number of resonators included
in a PMIR observer.

6.5.3 Relevance of the proposed design

In this section, we have proved the exiting trade-off between the steady-state accuracy of an
augmented observer w.r.t. complex faults and its transient behavior w.r.t. simpler faults. For
PMI observers, we have proved that if we choose a large observer order as proposed in the
literature [103, 104], the steady-state error is effectively zero for polynomial faults below or
equal to this order. It is constant for polynomial faults of one extra order and increasing for
polynomial faults of higher-orders (Section 6.5.1). However, we have shown that this election
imposes some compromises because it deteriorates the performance of the observer w.r.t. lower-
order faults causing a slower and oscillatory response (Section 6.5.2).

This conclusion motivates the design proposed in Section 6.4 which, in contrast to the
existing designs in the literature of augmented observers (e.g., [103, 166]), weights the effect of
each polynomial degree of the fault. The weighting allows attenuating the negative effect on
the transient behavior of the observer w.r.t. low-order faults when extending the observer for
taking into account more complex but less probable fault dynamics.

Moreover, the resonant terms that we propose to include in the PMI observer (leading
to a PMIR observer) allow considering high-frequency faults without intensively augmenting
the negative effect of the noises on the fault estimates. The PMIR architecture maximizes the
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observer fault sensitivity around the high-frequencies in which the sinusoidal fault terms are
subject to occur. It should also be noted that the existence conditions for PMR observers differ
from those of PMI observers (see Theorem 6.1). Thus, it would be possible to design a PMR
observer for some systems which do not verify PMI observer existence conditions.

In all, compared with the existing literature of augmented observers, the proposed observer
and its design are based on taking these performance trade-offs into account. They allow weight-
ing the effect of the different fault terms according to their the probability of appearance or
hazard and they make possible the estimation of resonant fault terms with higher noise atten-
uation levels.

Example 6.1. To illustrate the goodness of the approach, consider the example case in which a
system is prone to three kinds of faults: a step, a ramp and a sinus of certain high-frequency. We
assume that the step and the sinusoidal fault have a high hazard potential due to their abrupt
nature whilst the ramp fault is less damaging. A common PMI observer needs to consider two
integrators of equal importance in its architecture and to accept low noise attenuation so as
to capture the sinusoidal fault. The proposed PMIR observer is able to achieve higher noises
attenuations because the resonant term enhances the sinusoidal fault sensitivity. Moreover, for
an equal noise attenuation level, faster step fault tracking can be achieved at the cost of a slower
response to the less dangerous ramp fault.

Let us finally remark that the proposed observer does not introduce any complexity in terms
of implementation because its architecture is analogous to that of PI and PMI observers. Note
that augmented observers are not highly computationally demanding because they avoid com-
plex schemes and computations (e.g., the adaptive laws in [98] involving nonlinear computations
or the intermediate computation steps of the iterative observer in [136]). In terms of design,
the procedure is based on standard convex optimization problems with LMIS. Moreover, the
tuning of the constraining terms in the design is facilitated by the use of intuitive parameters
(variances and CSEs).

6.6 Numerical illustrative example

In this section, we are going to numerically show the error effects caused by large-order aug-
mented observers and, consequently, the advantages of weighting in the design the effect of the
different fault dynamics included in the observer. Moreover, we are going to study the con-
venience of including resonant terms in the augmented observer when the system is prone to
high-frequency faults. For this purpose, consider a system in the form of (6.1) with matrices

A =


0.700 0.300 0.200 −0.003
0.050 0.600 −0.002 −0.040
0.010 0.003 0.630 1

0 0 0.010 0.600

 , B =


0.0044 0.0018
0.0353 −0.0755
−0.0559 0.0454
−0.0003 0.0002

 , C =
[
1 0 0 0
0 −1 0 0

]
,

D = 02×2, S =
[
I4 04×2

]
, T =

[
02×4 I2

]
.
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The covariance matrix of the noises is W = 0.004 I6. In the following, we study the case in
which this system is only affected by actuator faults and the case in which it is prone to both
actuator and sensor faults. For sake of clarity, unless explicitly stated otherwise, we show the
simulation results with wk = 0. The latter does not mean that wk = 0; it only means that
we remove the effect of the noises in the figures. For sake of brevity, we just include some of
the obtained observer gain matrices. All the observer designs are set up in YALMIP [192] and
solved using the solver MOSEK [204].

6.6.1 Actuator fault

Suppose that the system has the following fault distribution matrices

E =
[
−0.0088 −0.0706 0.1118 0.0006

]T
, F =

[
0 0

]T
,

and define the following polynomial fault signals (all of them appearing at k = 5 and reaching
fk = 1 at k = 305):

fk(N=1) =
{

1 if k ≥ 5
0 otherwise , (6.25a)

fk(N=2) =
{

1
300 (k − 5) if k ≥ 5

0 otherwise , (6.25b)

fk(N=3) =
{

1
3002 (k − 5)2 if k ≥ 5

0 otherwise . (6.25c)

Define also the following sinusoidal faults (appearing at k = 5 ):

fk(ωN=ω1) =
{

sin[ω1 (k − 5)] if k ≥ 5
0 otherwise , (6.26a)

fk(ωN=ω2) =
{

sin[ω2 (k − 5)] if k ≥ 5
0 otherwise . (6.26b)

with ω1 = 0.24 rad/sample and ω2 = 2ω1 = 0.48 rad/sample.

PMI observers

Let us design PMI observers (i.e., PMIR observers with nR = 0) for different values of nI
(nI = 1, 2, 3, 4). We follow the Strategy 6.2 presented in Section 6.4.3 with a variance noise
constraint equal to γ̄ = 0.010. First, we minimize the expected CSE of all the unitary impulse
inputs ζ[m] considering that they have an equal probability of appearance (i.e., Ω = [1, nζ ] and
αm = 1 for all m). We obtain the following observer gain matrices:

L(nI=1) =
[

0.7587 0.0020 0.5764 −0.0384 0.0332
−1.6358 −1.0984 0.2149 0.8111 2.1278

]T
,
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Table 6.1. Estimation errors of the PMI observers (γ̄ = 0.010).

nI = 1 nI = 2 nI = 3 nI = 4

N = 1
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N = 3
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N = 4
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L(nI=2) =
[

1.1447 0.0381 1.6242 0.1397 0.0098 −0.0964
−1.9995 −1.1073 −1.1448 0.7020 0.0409 1.6390

]T
,

L(nI=3) =
[

1.2351 0.0396 1.8266 0.1439 0.0001 0.0043 −0.0571
−2.0857 −1.1018 −1.3877 0.7132 0.0005 0.0382 1.4430

]T
,

L(nI=4) =
[

0.3157 −0.0446 0.0401 0.0530 0.0000 0.0001 0.0028 0.0768
−0.6127 −0.9289 0.0684 0.5412 0.0000 0.0008 0.0419 1.2691

]T
,

K(nI=1) =
[
0.04992.1143

]
, K(nI=2) =

[
−0.1062 1.5981

]
,

K(nI=3) =
[
−0.0589 1.4035

]
, K(nI=4) = 1 · 10−9

[
0.0103 0.1865

]
.

Table 6.1 includes the FE error f̃ experienced by each designed observer when the system
is subject to each of the polynomial faults (6.25) (i.e., fk = fk(N) with N = 1, 2, 3, 4). We prove
that, as detailed in Section 6.5.1, the steady-state error is zero whenever N ≤ nI , it is constant
if N = nI + 1 and it becomes unbounded if N > nI + 1. For instance, if we study the results
in the second column entry of Table 6.1 (nI = 2), the steady-state error is zero towards step
faults (N = 1) and ramp faults (N = 2); it is constant towards parabolic fault signals (N = 3);
and it is increasing towards cubic fault signals (N = 4). The counterpart of augmenting the
order of the observer is also shown in the table: the transient behavior becomes more oscillatory
as the difference between nI and N increases (see Section 6.5.2). See, for instance, the case
in which N = 2: the response of the PMIR observer that includes four integrators (nI = 4) is
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Table 6.2. CSE of the PMI observers (m = nI − i+ 1).

PMI
γ̄ = 0.010

CODE I1 I2 I2-L I2-M I2-H
nI 1 2 2 2 2

ῡm(i = 1) - - 6.20 5.30 4.87
υm (i = 1) 4.87 7.28 6.12 5.28 4.87
υm (i = 2) - 3001 3445 6740 566645

γ̄ = 0.005
CODE I1 I2 I2-L I2-M I2-H
nI 1 2 2 2 2

ῡm (i = 1) - - 12.50 10.80 9.70
υm (i = 1) 9.67 14.51 12.47 10.78 9.70
υm (i = 2) - 24174 26790 43623 1167520

more oscillatory than the response provided by the PMIR observer that includes two integrators
(nI = 2).

Moreover, the results in Table 6.2 show that the CSE experienced under step faults (denoted
as υm(i = 1)) is lower with nI = 1 (observer I1) than with nI = 2 (observer I2), being 4.78 vs.
7.28. Then, when step faults occur, I1 behaves better than I2 at the cost of non-zero steady-state
estimation errors towards ramp faults.

As proposed in Section 6.5, intermediate solutions can be achieved by designing observers
with nI = 2 and adding a constraint on the CSE due to step faults. To do so, we follow the
same design strategy (Strategy 6.2 with γ̄ = 0.010) and we constraint the CSE regarding the
integrator of lower order2. Table 6.2 includes the obtained results. Here, ῡm stands for the value
of the step CSE constraint (i.e., Υ[m,m] < ῡm). As this constraint becomes more restrictive
(from I2-L to I2-H), the performance of the observer w.r.t. step faults is closer to the performance
of a PMI observer with one integrator (I1), but at the cost of worsening the performance w.r.t
to ramps (see the values of the CSE experienced under ramp faults denoted as υm(i = 2)).
Note that for the most restrictive feasible constraint (i.e, ῡnI for nI = 2 equals the value of
υnI for nI = 1), the performance of the resulting observer (I2-H) w.r.t. step faults equals the
performance of I1.

For its part, when imposing more restrictive noise attenuation constraints in the design
(γ̄ = 0.005), the CSEs increase and the fault tracking ability of the observers deteriorates for
improving the accuracy of the estimates w.r.t. the noises.

Fig. 6.1 shows these trade-offs when simulating the step fault defined in (6.25a). We verify
that the response of the observers with nI = 2 approach the response of the observer with
nI = 1 as the CSE step fault constraint becomes more restrictive. We also verify that if the

2This design is equivalent to the one minimizing the expected CSE of all fault terms and giving a higher
probability of appearance to the lower-order fault terms.
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Figure 6.1. Step FE via different PMI observers (Table 6.2) with different noise attenuation constraints. Left:
wk = 0. Rigth: (wk 6= 0)

estimates becomes less noisy (with a more restrictive constraint γ̄), the responses w.r.t. to faults
become slower.

PMR observers

Let us now design PMR observers (i.e., PMIR observers with nI = 0) for nR = 1, 2 (with ω1 =
0.24 rad/sample and ω2 = 2ω1) following the same strategy (i.e., Strategy 6.2 in Section 6.4.3).
We obtain the following observer gain matrices:

L(nR=1) =
[

0.9730 0.0560 0.7791 0.0202 0.0030 −0.0053
−1.0980 −1.1591 −0.4720 0.7841 2.1641 2.1956

]T
,

L(nR=2) =
[

0.7027 0.0292 −0.3612 −0.4559 0.0208 0.0048 −0.1637 −0.0786
−0.5981 −1.0228 1.5289 0.5836 1.0166 1.0747 0.9339 1.0867

]T
,

K(nR=1) =
[
−0.0047 2.1946

]
, K(nR=2) =

[
−0.0732 2.1615

]
.

Similar deductions as the ones developed for PMI observers hold for PMR observers. The
numerical results in Table 6.3 show that increasing the number of resonators in the observer
reduces its ability to track the lower-frequency terms which are also included in the observer.
Thus, the CSE experienced under a sinusoidal fault of frequency ω1 (denoted as ῡm(r = 1)) is
smaller for the observer just including ω1 (observer R1) than for the observer including both
frequencies ω1 and ω2 (observer R2). Again, compromise solutions (R2-L,R2-M and R2-H) can
be achieved by designing an observer with both frequencies and imposing a restriction regarding
the CSE due to the sinusoidal fault of frequency ω1 (denoted as ῡm(r = 1) in the table). The
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Table 6.3. CSE of the PMR observers (m = nI + nr − r + 1).

PMR
γ̄ = 0.010

CODE R1 R2 R2-L R2-M R2-H
nR 1 2 2 2 2

ῡm(r = 1) - - 7.00 5.70 4.38
υm(r = 1) 4.37 8.31 7.00 5.70 4.38
υm (r = 2) - 8.10 10.04 15.55 1727

γ̄ = 0.005
CODE R1 R2 R2-L R2-M R2-H
nR 1 2 2 2 2

ῡm(r = 1) - - 14.00 11.50 8.97
υm (r = 1) 8.95 16.65 14.00 11.50 8.97
υm (r = 2) - 15.91 19.88 30.74 2804

results in Table 6.3 also show that higher noise attenuations (e.g., γ̄ = 0.005) impose larger
CSEs.

Fig. 6.2 includes the simulation results for these observers (γ̄ = 0.010) when the system
is subject to either of the sinusoidal faults defined in (6.26). We verify the numerical results
regarding the CSE in Table 6.3 and we prove that the steady-state error is only zero if the
frequency ωN defining the sinusoidal fault signal is within the frequencies ωr included in the
observer. Thus, if the fault is defined as (6.26a), the steady-state error is zero for both observers
R1 (designed with nR = 1) and R2 (designed with nR = 2). Contrariwise, if the fault is defined
as (6.26b), the steady-state error is only zero for R2.

Comparison of PMI and PMR observers

Let us first obtain the frequency response of the closed-loop transfer function between f and f̂
(denoted as Gf̂ ,f ) for the observers in Table 6.2 and Table 6.3 with γ̄ = 0.010. Fig. 6.3 depicts
these frequency responses.

First, as deduced in Section 6.6, we verify that the behavior of the PMI observers with two
integrators (I2, I2-L and I2-M) is oscillatory: the magnitude of the transfer function is larger
than 1 for some low frequencies. We also corroborate that intermediate results between I1 and
I2 can be achieved by constraining the CSE due to step faults as proposed in Section 6.4.3.
Similar applies to PMR observers.

Fig. 6.3 shows that the 3 dB bandwidth of PMI observers is much lower than ω1 and ω2
(0.1 vs. 0.24 and 0.48 rad/sample); thus, poor steady-state estimation results are obtained if we
use PMI observers in order to track the pure high-frequency sinusoidal faults defined in (6.26).
The unitary gain of Gf̂ ,f for R1 at ω1 ensures zero steady-state errors if the fault (6.26a) affects
the system and the same applies to R2 w.r.t. the faults (6.26a) and (6.26b). Contrariwise, if a
sinusoidal fault of low frequency (e.g., 0.2ω1 = 0.05 rad/sample) occurs, PMI observers offer
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Figure 6.2. Transient and steady-state FE via different PMR observers (Table 6.3 and γ̄ = 0.010) under two
sinusoidal faults of frequencies ω1 and ω2.
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Figure 6.3. Frequency response of the closed-loop transfer function between f and f̂ for different PMI and PMR
observers (Tables 6.2 and 6.3, γ̄ = 0.010).

much better estimation results than PMR observers. Effectively, the gain of Gf̂ ,f for R1 and
R2 at low frequencies is barely zero. Fig. 6.6 and Fig. 6.7 illustrate these behaviors. The initial
conditions in these simulation are fixed to x0 =

[
1 1 1 1

]
. As stated in Theorem 6.2, the

simulation results show that the FE error converges to zero in the absence of faults.

For its part, Fig. 6.4 reveals the effect of the restrictiveness of the noise attenuation constraint
included in the design. One verifies that higher noise attenuation constraints impose lower
bandwidths. For I1 with γ̄ = 0.010, the 3 dB bandwidth is 0.09 rad/sample; and for I1 with
γ̄ = 0.005, it is 0.05 rad/sample. Similarly, the 3 dB bandwidth for R1 reduces from 0.12
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Figure 6.4. Frequency response of the closed-loop transfer function between f and f̂ for different PMI and PMR
observers (Tables 6.2 and 6.3) designed with different noise attenuation constraints.
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Figure 6.5. Estimation of a sinusoidal fault of frequency 1.05ω1 via different PR observers (Table 6.3) designed
with different noise attenuation constraints. Results with wk = 0 and wk 6= 0.

to 0.06 rad/sample if γ̄ varies from 0.010 to 0.005. Hence, we deduce that PMI observers
track faults of higher frequencies as the noise is less attenuated and we conclude that the use
of the resonant terms proposed in this thesis allow considering high-frequency faults without
intensively augmenting the effect of the noise on the fault estimates.

From Fig. 6.4 we also conclude that PMR observers are more robust against uncertainties
in the real frequencies of the faults as the attenuation from the noise is reduced. Thus, if a
sinusoidal fault of some frequency (1 + δ)ω1 affected the system, R1 with γ̄ = 0.010 would offer
better fault tracking results than R1 with γ̄ = 0.005 at the cost of lower noise attenuation. (see
Fig. 6.5 including the simulation results for δ = 0.05 with wk = 0 and wk 6= 0).

PMIR observers

Let us now design PMIR observers through the Strategy 2 presented in Section 6.4.3 with dif-
ferent values of nI and nR (γ̄ = 0.010). Table 6.4 includes the CSE of these observers (υm) w.r.t.
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Figure 6.6. Estimation via different PMI observers (Table 6.2, γ̄ = 0.010) of two sinusoidal faults of frequencies
0.20ω1 and ω1.
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Figure 6.7. Estimation via different PMR observers (Table 6.3 and γ̄ = 0.010) of a sinusoidal fault of frequency
0.20ω1 and another of frequencies ω1 plus ω2.
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Figure 6.8. Estimation of a step and a sinusoidal fault (frequency ω1) via a PMIR observer (Table 6.4).

Table 6.4. CSE of the PMIR observers (m̄ = nI − i+ 1, m̌ = nI + nr − r + 1).

PMIR
γ̄ = 0.010

CODE I1-R1 I1-R2 I1-R2-R I2-R1 I2-R2
nI 1 1 1 2 2

ῡm̄(i = 1) - - - - -
ῡm̄(i = 2) - - - - -
υm̄(i = 1) 8.93 12.64 15.26 7.44 7.42
υm̄ (i = 2) - - - 3164 3279

nR 1 2 2 1 2
ῡm̆(r = 1) - - 9.25 - -
ῡm̆(r = 2) - - - - -
υm̆ (r = 1) 8.53 12.37 9.23 186.79 200.20
υm̆ (r = 2) - 11.98 14.48 - 146.67
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Figure 6.9. Frequency response of the closed-loop transfer function between f and f̂ for different PMIR observers
(Table 6.4 and γ̄ = 0.010).

different fault terms. Again, we deduce that increasing the order of the observer deteriorates the
transient performance of the estimator towards lower-order faults. Compromise solutions can
be achieved by imposing a restriction regarding the lower-order CSE constraints. For instance,
observer I1-R2 (ni = 1 and nr = 2) offers good results for the high-frequency sinus (υm̆ (r = 2)
equals 11.98) and an intermediate performance for the low-frequency sinus (υm̆ (r = 1) equals
12.37) and for other low-frequency signals (υm̄ (i = 1) equals 12.64). If better results regarding
the low-frequency sinus were required, one could design an observer like I1-R2-R with a CSE
constraint over the low-frequency sinus (with a value ῡm̆(r = 1) equal to 9.25).

Fig. 6.8 shows the FE results provided by the observer I1-R1 (designed with nI = nR = 1)
when the system is subject to either the step fault defined in (6.25a) or the sinusoidal fault
defined in (6.26a). We prove that unlike the so-called PMI observer, this PMIR observer ensures
zero steady-state estimation errors for both types of fault signals without increasing the noise
effect. Effectively, the frequency response in the first part of Fig. 6.9 shows that the observer
I1-R1 (nI = nR = 1) offers a compromise performance between the performance of I1 (nI = 1)
and R1 (nR = 1). The CSE w.r.t. the step fault is 8.93 (vs.4.87 obtained for I1) and 8.53 w.r.t.
the sinusoidal fault (vs.4.37 obtained for R1).

6.6.2 Actuator and sensor fault

Consider the situation in which the system suffers from simultaneous actuator (fa) and sensor

(f s) faults and let f =
[
fa

fs

]
. Then, one gets accordingly the following distribution matrices

(nf = 2):

E =
[
−0.0088 −0.0706 0.1118 0.0006

0 0 0 0

]T
, F =

[
0 0
1 0

]T
.
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Define

fak(N=1) =
{

1 if k ∈ [5, 500]
0 otherwise , (6.27a)

f sk(N=1) =
{

1 if k ∈ [1005, 1500]
0 otherwise , (6.27b)

fsk(ωN=ω1) =
{

sin[ω1 (k − 5)] if k ∈ [5, 500]
0 otherwise . (6.27c)

Let us design PMIR observers using the Strategy 6.2 presented in Section 6.4.3 with Ω =
[1, nζ ] and αm = 1 for all m. For γ̄ = 0.010 and for γ̄ = 0.005, we design the observers

• I1 with nI = 1 and nR = 0,

• I2 with nI = 2 and nR = 0,

• R1 with nI = 0 and nR = 1,

• R2 with nI = 0 and nR = 2 and

• I1-R1 with nI = 1 and nR = 1.

Fig. 6.10 shows the simulation results when the fault vector fk =
[
fak(N=1)
fsk(N=1)

]
affects the

system. Note that the deficits in the fault tracking behavior do also affect the isolation capability
of the estimator. As explained in Section 6.6.1, if the observer I2 is used, the actuator fault
estimate experiences an oscillatory behavior when the step actuator fault occurs. In this case,
moreover, the sensor fault estimate does also experience a transient oscillatory deviation. If I1
(ni = 1 and nr = 0) is used instead, the transient deviation is not oscillatory and, thus, the
isolation capability of the estimator is improved during transients.

In order to analyse this effect from a steady-state perspective, assume now that fk =[
fak(N=1)
f sk(ωN=ω1)

]
. The corresponding simulation results are shown in Fig. 6.11. When the step actua-

tor fault occurs, the observer I1 (ni = 1 and nr = 0) ensures zero steady-state estimation errors
that enhance perfect fault isolation in steady state. However, when the sinusoidal sensor fault
occurs, the steady-state estimation errors are non-zero and, thus, the fault isolation capability
of the estimator is deteriorated. The opposite occurs if the observer R1 (ni = 0 and nr = 1)
is used: perfect steady-state fault isolation is guaranteed when sinusoidal faults occur and the
problems appear when step faults affect the system. Finally, the observer I1-R1 (ni = 1 and
nr = 1) guarantees perfect steady-state fault isolation for both step and sinusoidal faults (see
the details in the second part of Fig. 6.11). Thus, we deduce that PMIR observers are useful
if different types of faults appear all around the system. For instance, sensor faults may always
represent biases (i.e., step faults). However, if sinusoidal actuator faults affect the system, the
use of resonators for the sensor FE guarantees perfect steady-state fault isolation and avoids
the appearance of steady-state fault interactions.
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Figure 6.10. Estimation of step actuator and sensor faults via different PMI observers designed with different
noise attenuation constraints.
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Figure 6.11. FE via different PMIR observers (γ̄ = 0.010) under a sinusoidal actuator fault (ω1) and a step
sensor fault.

6.7 Conclusion

In this chapter, we have generalized the standard formulation of a PMI observer to enhance the
estimation of high-frequency fault signals. We have given the conditions for the existence of the
novel observer and we have presented a multiobjective design strategy to fix an optimal trade-
off between the variance of the estimations in fault-free scenarios and their cumulative squared
tracking error in the presence of different faults. We have also included a study which shows
the influence of the complexity of the estimator (i.e., the order of the augmented observer)
on the existing trade-off between the steady-state and transient tracking performance of the
estimator when the system is subject to faults of different complexity. The design and the main
conclusions of this study are validated when the proposed FE strategy is applied to a numerical
illustrative example. The use of these fault estimates in active FTC strategies highlights as
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immediate future work. Future work will also include the application of the approach to practical
engineering examples.





Chapter 7

Multiobjective performance-based
designs in fault estimation and isolation
and its application to wind turbines

In this chapter, we develop a performance-based design of model-based ob-
serves and statistical-based decision mechanisms for achieving fault estima-
tion and fault isolation in systems affected by unknown inputs and stochas-
tic noises. First, through semidefinite programming, we design the observers
considering different estimation performance indices as the variance of the
estimation errors, the time delays in tracking fault signals and the degree of
decoupling from unknown inputs and from faults in other channels. Second,
we perform a co-design of the observers and decision mechanisms for sat-
isfying certain trade-off between different isolation performance indices: the
false isolation rates, the isolation times and the minimum size of the isolable
faults. Finally, we extend these results to a scheme based on a bank of ob-
servers for the case where multiple faults affect the system and isolability
conditions are not verified. To show the effectiveness of the results, we apply
these design strategies to a well-known benchmark of wind turbines which
considers multiple faults and has explicit requirements over isolation times
and false isolation rates.

7.1 Introduction

The importance of the reliability and maintainability of systems has increased over the last
decades. Hence, much effort has been devoted to developing fault detection and isolation (FDI)
and fault tolerant control (FTC) strategies [100]. On the FTC framework, there are two pos-
sible approaches: active and passive FTC. The difference between them is that passive FTC
is just an application of robust control that considers faults as uncertainties while active FTC
relies on fault diagnosis outputs. The two main approaches regarding FDI are data-based and
model-based techniques, see [71] and [44,70], respectively. Broadly speaking, most FDI systems
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consist of residual generators and evaluators; however, research has shown that there are in-
trinsic difficulties in the use of residuals in active FTC due to the complexity derived from
the reconstruction of the faults from the residuals. These reconstructions rely on discrete-event
algorithms with complex decisions that entail delays and errors [53, 171]. Active FTC based
directly on fault estimation (FE) rather than on FDI seems to provide more immediate and
accurate results, see [171, 178]. Among FE techniques, there is an upward trend in the use of
advanced observers [100]. Sliding mode observers are used in [298, 316], adaptive observers are
applied in [177, 241] and iterative observer schemes are studied in [136]. Augmented observers,
which consider the faults as additional states, have received considerable attention [99,105,307].
Especially, proportional integral (PI) observers have been intensively studied [41, 180, 305] and
applied [190,242] in the last two decades.

One of the main problems in the use of common FE techniques for active FTC arises when the
faults affecting a system are not isolable and it is not possible to build standard observers. Hence,
most FE works conservatively consider that the faults verify isolability conditions, e.g., [178,302].
A solution to deal with non-isolable faults is the use of a bank of generalized observers [44,70].
However, these schemes are usually implemented from a FDI perspective and each observer in
the bank is used to provide a residual signal which is sensitive to all but one fault, e.g., [79].
Thus, there is a need to develop more FE approaches based on banks of observers for systems
with non-isolable faults.

Another problem in the use of FE for active FTC schemes is the misleading effect produced
when feedforwarding non-zero fault estimates in fault-free scenarios. The residual signal in FDI
and the fault estimation signal in FE are subjected not only to faults but also to disturbances,
which may deviate the estimation outputs. In the FDI framework, in order to make the resid-
ual signal sensitive to faults but robust against disturbances, structural methods such as the
parametric eigenstructure assignment approach [225] and the unknown input observer (UIO)
approach [127,340] are well-known. Alternatively, numerical approaches based on optimization
methods that use the H∞/H− and the H∞/H∞ indices have gained more attention in FDI
research owing to its wide applicability [5, 10, 181]. In the FE framework, multiobjective opti-
mization design approaches are also used in works as [106, 241, 302]. In order to give further
physical interpretation to the indices involved in the optimization problem, [49, 327] propose
to use the trade-off between the fault detection rate (FDR) and the false alarm rate (FAR).
This trade-off is used in recent works as [331, 334] and it is of practical importance in FDI
applications. However, although the FAR and the FDR are suitable for FDI methods based on
residuals, these indices give little information about other important issues in estimation-based
methods such as the size of the faults which are susceptible to occur, the dynamic behavior
or the steady-state accuracy of the results. Some initial approaches considering a few of these
issues can be found in works as [229,249,321]. The iterative design procedures of FDI residuals
in [229] involve bounds of the minimum size of the detectable faults (MDF), bounds of the FAR
and a decay ratio representing the fault tracking ability of the residuals. In [249] a non-iterative
design procedure with the MDF, the FAR and the Cumulative Squared Error (CSE) of the
residuals is proposed. For its part, the methods in [321] include new indices as the expected
detection delay (EDD) for FDI in statistical processes. In all, as stated in [325], more research
on designs considering the performance of model-based FE is needed.
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A well-known benchmark for FDI and FTC of wind turbines is developed in [216]. The
benchmark takes account of a wide variety of the multiple and diverse faults to which a wind
turbine is prone and it sets some FDI performance requirements. A wide variety of solutions
based on residuals have been presented for this wind turbine FDI problem, see [214]. Data-based
approaches are proposed in works such as [221,268]. Nonetheless, model-based approaches, such
as the ones presented in [48,93,251], are more common. Set membership approaches are applied
in [93], UIOs are presented in [251] and Kalman filters are developed in [48]. However, there are
not solutions that provide a priori performance-based designs of the fault diagnosis mechanisms
to guarantee the requirements in the benchmark. Hence, the FDI performance is generally tested
through an a posteriori analysis or simulations. Regarding FTC, both passive and residual-based
active FTC strategies have been applied to wind turbines in [32,270]. In [173,254,261,263] active
FTC strategies based on FE are applied to wind turbines. However, all these works assume that
only certain faults among all the possible ones may affect the turbines. The same assumption
is considered in the FE solution presented in [303].

7.1.1 Contributions

In this chapter, FE is achieved by means of PI observers. The fault estimates are then evaluated
in statistical-based decision mechanisms to achieve fault isolation (FI). The main contribution
of this chapter is the development of novel estimation performance-based design strategies of PI
observers. In analogy to the integrated design of residual generators and evaluators in [49,327],
we also present novel co-design strategies in the FI framework. We formulate the co-design of PI
observers and statistical-based decision mechanisms guaranteeing a priori isolation performance
requirements. Compared to the relevant existing literature, the novelties of the proposed designs
are the following.

• Designs with a priori performance requirements. In most cases, the performance of FE and
FDI strategies is tested a posteriori (e.g., [30, 46]). Hence, the satisfaction of estimation
or isolation performance requirements entails iterative procedures. The designs proposed
in this chapter guarantee a priori performance requirements and, thus, we avoid iterative
design procedures.

• Designs with individual performance requirements. The designs proposed in this thesis deal
with the performance of each single fault estimation/isolation channel. This increases the
design flexibility compared with most existing FE and FI designs, where the performance
is jointly fixed for all the fault estimation/isolation channels (e.g., [106,302]).

• Designs with time-domain performance indices. In an aim to bridging the gap between
theory and practice, we use new performance indices providing further practical and phys-
ical interpretation to the norm bounds which are commonly used in FDI and FE de-
signs [178,302]. The proposed observer designs for FE deal with the trade-off between the
tracking delays w.r.t. different fault signals and the covariances of the fault estimates due
to noises. The proposed co-designs for FI deal with the following isolation performance
indices: the false isolation rates, the minimum isolable faults and the isolation times.
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• Single-step numerical designs of observers guaranteeing unknown input and interfault de-
coupling. The well-known design of UIOs requires algebraic constraints to achieve un-
known input (UI) decoupling [44]. Then, the remaining design freedom is used in a nu-
merical second-step design to achieve certain requirements over other performance crite-
ria [180,190,302]. In this thesis, we propose to use the concept of degree of UI decoupling
in order to numerically achieve UI decoupling and other performance requirements in a
single-step multiobjective optimization problem. We also introduce the concept of degree
of interfault decoupling to deal with the transient FE error which occurs due to the ap-
pearance of faults in other channels (e.g., the simulation results in [244,247]). The observer
performance indices (covariance due to noises, fault tracking delays and UI and interfault
decoupling) are altogether formulated via matrix inequalities in a single-step optimization
problem.

We generalize these design strategies to a scheme based on a bank of PI observers and statistical-
based decision mechanisms that allow achieving FI and FE in systems where isolability con-
ditions of faults do not hold. Assuming the non-simultaneity of certain number of faults, we
extend the concept of residual-based generalized observers [44,79] from a FE perspective.

To show the goodness of the proposed approaches, we apply the strategies presented in this
chapter to the well-known benchmark for FDI and FTC of wind turbines [216]. Unlike works
as [173, 303], which just consider the occurrence of a reduced number of possible faults, we
achieve the estimation of all the faults affecting the turbines. We also isolate these faults with
a priori guaranteed isolation performance indices.

7.1.2 Structure and notation

The outline of this chapter is as follows. First, we state the problem in Section 7.2, where we
propose a FE and FI strategy based on PI observers and decision mechanisms. In Section 7.3, we
present a FE performance-based design of the observer. In Section 7.4, we include a co-design
of the observer and decision mechanism for guaranteeing certain trade-off between isolation
performance indices. In Section 7.5, we extend the problem to the case in which FI becomes
necessary for FE because fault isolability conditions are not verified and standard augmented
observers are not applicable. Finally, Section 7.6 presents the results of applying the proposed FE
and FI techniques to the wind turbine problem. Section 7.7 summarizes the main conclusions.

Throughout the chapter, R denotes the set of real numbers. Expected value, probability
and absolute value are denoted by E{·}, P{·} and | · |. Let A be some matrix and a be some
vector. Aij denotes the element in the i-th row and j-th column of A and ai denotes the
i-th element in a. A � 0 means that A is negative semidefinite and similar applies to �.
The rank of matrix A is represented as rank{A} and its trace is given by tr{A}. Let x be a
stochastic process. We write ‖x(k)‖22 , x(k)T x(k) for the Euclidean norm of vector x(k) and
‖x(k)‖∞ , maxi |xi(k)| for its max norm. ‖x‖22 ,

∑∞
k=0 ‖x(k)‖22 denotes the l2 norm of process

x, ‖x‖2RMS , limk↔∞ 1
K

∑K−1
k=0 ‖x(k)‖22 denotes its RMS norm and ‖x‖∞ , maxk maxi |xi(k)|

denotes its l∞ norm. In is the identity matrix of size n × n or of appropriate size when the
subindex is omitted; similar applies to 0n×n.
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7.2 Problem formulation

Let us consider the linear time-invariant (LTI) discrete-time system defined by

x(k + 1) =Ax(k) +B u(k) + Ef(k) +Gv(k) +Dd(k), (7.1a)
y(k) =C x(k) + Ff(k) +Hv(k), (7.1b)

where x ∈ Rnx , y ∈ Rny and u ∈ Rnu are the state, output and known input vector; v ∈ Rnv is
the process and sensor noise vector and d ∈ Rnd is the UI vector. Vector f ∈ Rnf includes all
the process, actuator and sensor faults fi (i = 1, . . . , nf ) that affect the system [44]1. We define
Mi as the selection matrix verifying fi = Mi f (i.e., Mi =

[
01×i−1 1 01×nf−i

]
). The following

assumptions on the system (7.1) are made.

Assumption 7.1. The pair (A, C) is observable.

Remark 7.1. Augmented observers require the observability of the model (7.1) as detailed in
works as [41, 99]. Hence, Assumption 7.1 is not restrictive from a FE perspective.

Assumption 7.2. The faults are detectable, isolable among them and isolable from the UIs.

Remark 7.2. The transfer matrix from a fault fi to the outputs is given by

Gfi(z) = C (z I −A)−1Ei + Fi,

where Ei and Fi represent the i-th column of E and F , respectively. The transfer matrix from
the UIs to the outputs is given by

Gd(z) = C (z I −A)−1D.

We define Gfd as
Gfd =

[
Gf1(z) . . . Gfnf (z) Gd(z)

]
.

According to [70], Assumption 7.2 implies that

Gfi(z) 6= 0, ∀i,

rank{Gfd(z)} =
nf∑
i=1

rank {Gfi(z)}+ rank {Gd(z)} .

The detectability of the faults in Assumption 7.2 is a necessary condition for FDI and FE [44,70].
The isolability condition in Assumption 7.2 is also standard in these frameworks. However, this
condition becomes more restrictive as the number of UIs and faults increases [44,70]. Section 7.5
includes estimation and isolation strategies for the case in which the isolability condition in
Assumption 7.2 does not hold.

Assumption 7.3. The noises are zero-mean and of known covariance, i.e., E{v vT } = V . The
UIs are norm-bounded, i.e., ‖d‖∞ ≤ d̄.

1The proposed method entails a more general approach compared with some other existing works that only
consider either actuator faults [241] or sensor faults [10, 188].
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Remark 7.3. Vector v takes account of zero-mean stochastic disturbances while vector d takes
account of non-zero-mean norm-bounded disturbances. Other disturbances may be also considered
in the model (7.1) by means of decomposing it into a component included in vector v and
a component included in vector d. Pure process noise (vp) and pure sensor noise (vs) can

be modeled by means of zeroing the appropriate columns of G and H (i.e., v =
[
vp

vs

]
with

G =
[
Gp 0

]
and H =

[
0 Hs

]
). For its part, the UI vector can be also used to describe a

number of different kinds of norm-bounded modeling uncertainties [45] (e.g., d = ∆Ax with
∆A being the uncertainty regarding the state matrix2).

Assumption 7.4. The fault discrete derivative δ(k) = f(k + 1) − f(k) is norm-bounded, i.e.,
‖δ‖∞ ≤ δ̄.

Any fault signal verifying Assumption 7.4 (i.e., fault signals with norm-bounded fault dis-
crete derivative δ) can be modeled as

ξ(k + 1) =AF ξ(k) +BF δ(k), (7.2a)
f(k) =CF ξ(k), (7.2b)

with
AF = Inf , BF = Inf , CF = Inf . (7.3)

Remark 7.4. Assumption 7.4 is fairly general because it allows considering a wide range of
fault signals which are common in practical applications. For instance, a step (or abrupt) fault
signal is generated through (7.2) with an impulse signal δ, and a ramp (or drift) fault signal
is generated through (7.2) with a step signal δ. Note that Assumption 7.4 does not imply any
restriction over the upper bound of the fault vector f , which reduces the conservatism compared
with some other existing works [188, 241].

Remark 7.5. An augmented observer is based on an augmented model including both the sys-
tem dynamics and the fault dynamics [99, 105]. In the FE literature, fault dynamics verify-
ing Assumption 7.4 are widely utilized leading to the so-called proportional integral (PI) ob-
servers [41, 190], which are based on the fault model (7.2)-(7.3). A stable PI observer leads to
bounded steady-state FE errors when the system is subjected to fault signals verifying Assump-
tion 7.4. For instance, it leads to zero steady-state errors under step faults and to constant
steady-state errors under ramp faults.

Remark 7.6. Certain systems may be subjected to complex fault signal forms which do not
verify Assumption 7.4. In such cases, the fault estimates provided by a PI observer would increase
in value but the estimation errors would not be bounded. To ensure bounded FE errors, the fault
state-space matrices (7.3) must be replaced by more complex matrices. See, for instance, the
state-space matrices in [105, 307] for fault signals in the more general form of a polynomial of
the time leading to proportional multiple integral (PMI) observers. Hence, the model (7.3) and
the strategies developed in this chapter are easily extensible to fault signals which do not verify
Assumption 7.4.

2In practice, FE is performed in stable (controlled or uncontrolled) systems. Hence, if ∆A is bounded, the
uncertainty d = ∆Ax is bounded as x is also bounded.
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The model (7.1) is thus augmented as

z(k + 1) =A z(k) + B u(k) + E δ(k) + G v(k) +D d(k), (7.4a)
y(k) =C z(k) +H v(k), (7.4b)
f(k) =R z(k), (7.4c)

where z =
[
x

ξ

]
denotes the extended state vector. The state-space matrices in (7.4) verify

A =
[
A E CF
0 AF

]
, B =

[
B

0

]
, E =

[
0
BF

]
, G =

[
G

0

]
, D =

[
DT 0

]T
, C =

[
C F CF

]
, H = H and

R =
[
0 CF

]
. The following model-based PI observer is proposed to estimate the faults in (7.4)

ẑ(k + 1) =A ẑ(k) + B u(k) + L (y(k)− C ẑ(k)) , (7.5a)
f̂(k) =R ẑ(k) +K (y(k)− C ẑ(k)) , (7.5b)

where the design observer gain matrices L and K are of appropriate dimensions. Define the
estimation errors z̃(k) = z(k)− ẑ(k) and f̃(k) = f(k)− f̂(k). It follows that

z̃(k + 1) =Ā z̃(k) + Ḡ v(k) +D d(k) + E δ(k), (7.6a)
f̃(k) =R̄ z̃(k) + H̄ v(k), (7.6b)

with Ā = A − L C, Ḡ = G − LH, R̄ = R − K C and H̄ = −KH . Applying the Z transform
to (7.6), we get

f̃(z) = Gδ(z) δ(z) + Gd(z) d(z) + Gv(z) v(z), (7.7)

with Gδ(z)=M(z)E , Gd(z)=M(z)D, Gv(z)=M(z) Ḡ + H̄ and M(z)=R̄(zI − Ā)−1.

For isolation purposes, we set the following decision mechanisms (i = 1, . . . , nf ) evaluating
the fault estimates provided by (7.5):{

if |f̂i(k)| ≥ Ji , Fault i
otherwise , No fault i , (7.8)

where Ji is the isolation threshold of the i-th fault and must be designed.

Remark 7.7. For FI, it is not necessary to evaluate the fault estimates f̂ and appropriate
simpler signals (i.e., isolation residuals) can be generated and evaluated instead, e.g., [137,297].
In this thesis, the fault estimates are evaluated in isolation decision mechanisms in order to
decide whether to feed or not an active FTC mechanism with these estimates.

Remark 7.8. The decision mechanism (7.8) allows simultaneously achieving fault detection
and isolation, to which we simply refer as fault isolation. Appendix B shows how to use the fault
estimates provided by the observer(7.5) in a decision mechanism for pure detection purposes. It
also provides some notes on design strategies for guaranteeing a priori detection performance
requirements.
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In order to design the observer (7.5) and the decision mechanisms (7.8), one must choose
the gain matrices L and K and the thresholds Ji (i = 1, . . . , nf ). The main objective of this
chapter is to solve the following problems

• To provide a design strategy of the observer for guaranteeing certain a priori estimation
performance requirements.

• To provide a design strategy of the decision mechanisms for guaranteeing one a priori
isolation performance requirement.

• To provide a co-design strategy of the observer and the decision mechanisms for guaran-
teeing more than one a priori isolation performance requirement.

7.3 Fault estimation

7.3.1 FE Performance Characterization

The performance of the fault estimator (7.5) can be described using the following criteria:

e.1 the fault tracking speed,
e.2 the degree of interfault decoupling,
e.3 the degree of UI decoupling and
e.4 the noise attenuation.

Each element Gδij (z) of the transfer matrix Gδ(z) describes the fault tracking error that
the i-th fault estimate (i.e., f̂i) experiences due to the variations of the fault in the channel j
(i.e., δj). In particular, each diagonal element Gδii(z) describes the error f̃i due to δi and each
off-diagonal term Gδij (z) with j 6= i describes the coupling effect that occurs when f̃i increases
due to the appearance of a fault in another channel j 6= i (i.e., δj 6=i). Since the fault tracking
speed is strictly related to the fault tracking error, we make use of the H∞ norm of the transfer
functions Gδii(z) (i = 1, . . . , nf ) to characterize the criterion e.1.. Likewise, the criterion e.2.,
which refers to the degree of decoupling between faults, can be characterized through the H∞
norm of the transfer functions Gδij (z) (i = 1, . . . , nf , j = 1, . . . , i− 1, i+ 1, . . . , nf ).

Remark 7.9. There may also be a coupling effect when more than one fault vary simultane-
ously and it is also desirable to characterize this error. To cope with all these characterizations
numerically, we bound each FE error f̃i due to δ as

lim
K→∞

K∑
k=0

f̃i(k)T f̃i(k) ≤ lim
K→∞

K∑
k=0

δ(k)T Γi δ(k),

where the term Γiii stands for the H∞ norm of Gδii(z), the terms Γijj (j 6= i) stand for the H∞
norm of Gδij (z) and the off-diagonal terms Γijl (j 6= l 6= i) explain the behavior of the i-th fault
estimate towards simultaneous faults.
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The dynamics in Gd(z) determine the effect of the UIs on the fault estimates. Thus, the
criterion e.3 can be characterized through the H∞ norm of Gd(z). Finally, we characterize the
criterion e.4 through the covariance of the FE error due to noises.

Remark 7.10. In the absence of UIs and faults, the presence of zero-mean noises leads to zero-
mean FE errors. In this case, the covariance of f̃ , i.e., Σ = limk→∞ E{f̃(k)f̃(k)T }, is given by
the Lyapunov equations

Σz =ĀΣz ĀT + Ḡ V ḠT , (7.9a)
Σ =R̄Σz R̄T + H̄ V H̄T , (7.9b)

which we obtained from (7.7) with δ(z) = 0, d(z) = 0 and using an internal realization of Gv(z).

The requirements over these criteria can be thus translated into requirements over different
H∞ norms and covariance bounds of the FE errors. In order to set multiobjective designs with
different requirements over these criteria, we use the formulation based on matrix inequalities
which is shown in Theorem 7.1.

Theorem 7.1. Consider the observer (7.5) applied to the system (7.4). If there exist any ma-
trices L and K, any positive scalar γd, any symmetric matrices S, Q, Ξ, Pi and any diagonal
matrices Γi (i = 1, . . . , nf ) fulfilling

Q Q Ā QD 0
ĀT Q Q 0 R̄T
D̄T Q 0 γd I 0

0 R̄ 0 I

 � 0, (7.10)

 S S Ā S Ḡ V
ĀT S S 0
V ḠT S 0 V

 � 0,

 Ξ R̄ H̄ V
R̄T S 0
V H̄T 0 V

 � 0, (7.11)


Pi Pi Ā Pi E 0
ĀT Pi Pi 0 R̄T MT

i

ĒT Pi 0 Γi 0
0 Mi R̄ 0 I

 � 0, i = 1, . . . , nf ; (7.12)

the following statements hold:

(i) In the absence of UIs, noises and faults, the extended state estimation error converges to
zero.

(ii) The FE error due to UIs is bounded as3

‖f̃‖2RMS ≤ γd ‖d‖2RMS . (7.13)
3It is also bounded as ‖f̃‖2RMS ≤ γd n2

dd̄
2 because ‖d‖RMS ≤ nd ‖d‖∞ and ‖d‖∞ ≤ d̄.
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(iii) The covariance of the FE error due to noises is bounded as

Σ � Ξ. (7.14)

(iv) The FE error due to fault variations is bounded as4

‖f̃i‖2RMS ≤
nf∑
j=1

Γijj ‖δj‖2RMS . (7.15)

Proof. The following items prove each statement of Theorem 7.1.

(i) Let us define the Lyapunov function V Q(k) = z̃(k)T Q z̃(k) at each instant k. In the
absence of UIs, noises and faults (i.e., d = 0, v = 0, δ = 0), after taking Schur’s com-
plements on (7.10) and premultiplying the result by

[
z̃(k)T d(k)T

]
and postmultipliying

by its transpose, we obtain that V Q(k + 1) − V Q(k) ≤ 0, which assures that the esti-
mation error (7.6) converges to zero. We get the same result if we define the Lyapunov
functions V S(k) = z̃(k)T S z̃(k) and V Pi(k) = z̃(k)T Pi z̃(k) at each instant k and we per-
form similar steps on the first inequality in (7.11) and on (7.12) with

[
z̃(k)T v(k)T

]
and[

z̃(k)T δ(k)T
]
, respectively.

(ii) In the absence of noises and faults (i.e., v = 0, δ = 0), after taking Schur’s complements
on (7.10) and premultiplying the result by

[
z̃(k)T d(k)T

]
and postmultipliying by its

transpose, we obtain that

V Q(k + 1)− V Q(k) + f̃(k)T f̃(k)− γd d(k)T d(k) ≤ 0.

Considering null initial conditions (V Q(0) = 0) and adding the result from k = 0 to
k = K − 1, it yields

K−1∑
k=0

f̃(k)T f̃(k) ≤
K−1∑
k=0

γd d(k)T d(k),

where we have taken into account that Q � 0. Dividing this expression by K and taking
the limit when K →∞, it leads to the second statement in Theorem 7.1.

(iii) Applying a congruence transformation with
[
S−1 0

0 I

]
to the first inequality in (7.11) and

taking Schur’s complements on the result lead to

ĀS−1 ĀT + Ḡ V ḠT � S−1.

In the absence of UIs and faults (i.e., d = 0, δ = 0), the covariance of the estimation error
z̃, Σz = limk→∞ E{z̃(k)f̃(z)T }, fulfils the Lyapunov equation (7.9a). Then, we deduce
that Σz � S−1 because Ā has stable eigenvalues as demonstrated in the first item of this
proof. Applying Schur’s complements on the second inequality in (7.11) we have that

R̄S−1 R̄T +KH V (KH)T � Ξ.
4It is also bounded as ‖f̃i‖2RMS ≤

∑nf

j=1 Γijj δ̄2 because ‖δj‖RMS ≤ ‖δ‖∞ and ‖δ‖∞ ≤ δ̄.
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In the absence of UIs and faults (i.e., d = 0, δ = 0), the covariance of the estimation error
f̃ , Σ = limk→∞ E{f̃(k)f̃(k)T }, fulfils the Lyapunov equation (7.9b) and we deduce that
Σ � Ξ.

(iv) In the absence of UIs and noises (i.e., d = 0, v = 0), multiplying (7.12) with
[
z̃(k)T δ(k)T

]
on the left and by its transpose on the right and performing similar steps as in the second
statement, we prove the fourth statement in Theorem 7.1.

Remark 7.11. Optimization-based FE strategies usually characterize the performance of the
FE error vector f̃ w.r.t. the UIs d, the noises v and the fault variations δ, e.g., [106,172, 302].
In this chapter, we alternatively characterize the performance of each FE error f̃i w.r.t. the
noises v (using the bound Ξii) and w.r.t. each fault variation δj (using the bound Γijj). This
approach allows designing estimators satisfying in each fault channel different trade-offs between
fault sensitivity and noise attenuation, which is of practical interest in engineering applications.
For its part, we just characterize the performance of the entire FE error vector f̃ w.r.t. the UIs
d because we desire to design PI observers ensuring UI decoupling.

7.3.2 Observer design with FE performance requirements

Let us design the gain matrices L andK of the observer (7.5) for satisfying different requirements
over the criteria e.1, e.2, e.3 and e.4.

From Theorem 7.1, we deduce that if Γiii in (7.12) verifies

Γiii ≤ Γ̄iii, (7.16)

the fault tracking error of the estimate f̂i w.r.t. the variations described by δi is bounded
by Γ̄iii. The FE error can be bounded using the constraint (7.16); however, from a reliability
perspective, constraints over the criterion e.1 may be of more practical interest. Since the fault
tracking speed depends not only on the fault tracking error but also on the fault signal form, we
can choose Γ̄iii to ensure certain fault tracking speed w.r.t. a specific fault signal form verifying
Assumption 7.4. Conservatively, we consider a ramp fault of slope ∆i 6= 0 occurring in the i-th
fault channel5. In this case, the fault tracking speed may be described by the steady-state FE
delay Ti which is bounded as Ti ≤

√
Γiii. To prove it, note that a ramp fault signal is generated

through a constant signal δi (i.e., δi(k) = ∆i) and the steady-state FE error is also constant
and equal to

lim
k→∞

f̃i(k) = lim
z→1

(1− z−1)Gδii(z)
∆i

1− z−1 = Gδii(1)∆i = ¯̃
f i.

From the item (iv) in Theorem 7.1, we have that if d = 0 and v = 0,

1
K

K∑
k=0

f̃i(k)2 ≤ 1
K

K∑
k=0

Γiii δi(k)2.

5A constraint regarding the fault tracking speed w.r.t. ramp faults is conservative because it covers the worst-
case fault signal form considered in Assumption 7.4 (i.e., a ramp fault of slope ∆i = δ̄).
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Provided that δi(k) = ∆i, taking the limit when K → ∞, and computing the square root
of the result leads to |¯̃f i| ≤

√
Γiii ∆i. Taking into account that the slope ∆i describes the

proportionality between the increase of fi and the time elapsed between two different samples,
we get the previous bound. Then, if Γiii verifies (7.16), the estimation delay Ti under ramp faults
is bounded as Ti ≤

√
Γ̄iii.

Remark 7.12. Other fault signal forms verifying Assumption 7.4 could be considered to achieve
a constraint over the criterion e.1. For instance, consider a constant fault of size f̄i 6= 0 oc-
curring in the i-th fault channel. In this case, the fault tracking speed may be described by the
cumulative squared error defined as Ei = ‖f̃i(k)‖22. It is straightforward to prove that Ei ≤ Γiii f̄2

i .
Then, if Γiii verifies (7.16), the cumulative squared error Ei under unitary step faults is bounded
as Ei ≤ Γ̄iii.

Regarding the criterion e.2, if Γijj in (7.12) verifies

Γijj ≤ Γ̄ijj , (7.17)

certain degree of interfault decoupling between f̂i and δj 6=i is guaranteed. We define perfect
interfault decoupling as the characteristic of an estimator verifying Γijj = 0 for all i and for
all j 6= i. A numerically sound way of adding these constraints to a semidefinite programming
problem involving (7.12) is to set the constraint (7.17) for all i and for all j 6= i and to fix

Γ̄ijj := εjj (7.18)

with εjj = ε tr{Ξ}/f̄j , ε being a small number (e.g., ε ≤ 10−6) and f̄j being the maximum
expected value of the j-th fault, which can be derived from the physical constraints of the system.
The value (7.18) in the constraint (7.17) makes the estimation error due to fault variations in
other channels negligible w.r.t. the estimation error due to noises and we claim that practical
interfault decoupling is achieved whenever (7.17)-(7.18) is satisfied for all i and for all j 6= i.
For its part, the use of diagonal matrices Γi cancels the errors due to simultaneous variations
of faults (i.e., the FE error due to the product δj δl with j 6= l is cancelled).

Similarly, certain degree of decoupling from the UIs (criterion e.3) is guaranteed if γd
in (7.10) verifies

γd ≤ γ̄d. (7.19)

We define perfect UI decoupling as the characteristic of an estimator verifying γd = 0. Similarly
to (7.18), we numerically address this issue through

γ̄d := εd (7.20)

with ε = εtr{Ξ}/d̄. Thus, if (7.19)-(7.20) is fulfilled, the FE error due to UIs becomes negligible
w.r.t the error due to noises and we claim that practical UI decoupling is achieved.

Remark 7.13. Note that certain degree of interfault and UI decoupling is achievable regardless
of the isolability of the faults and UIs. Perfect interfault and UI decoupling are achievable because
the system (7.1) verifies Assumption 7.2 (i.e., the faults are isolable among them and from the
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UIs). If perfect UI decoupling is achieved, claims (iii) and (iv) in Theorem 7.1 do also hold in
the presence of UIs. We consider that they also hold when practical UI decoupling is guaranteed
and the UIs are present in the system.

Remark 7.14. The most extended strategy to build an observer guaranteeing perfect UI decou-
pling is the use of some algebraic constraints as the ones presented in [70,106,190] for the design
of UIOs. Then, the remaining design freedom can be used in a second-step observer design to
achieve certain requirements over other performance criteria. Alternatively, we propose to use
the numerical constraints (7.19)-(7.20) in a design problem involving (7.10) to achieve practical
UI decoupling. The proposal leads to an homogeneous formulation of all the performance cri-
teria and allows achieving practical UI decoupling together with other estimation performance
requirements in a single-step multiobjective optimization problem. Practical UI decoupling refers
then to the numerical approach to achieve UI decoupling. In practice, numerical (or practical)
UI decoupling is equivalent to structural (or perfect) UI decoupling, which is achieved using
algebraic constraints.

Finally, if matrix Ξ in (7.11) verifies

Ξii ≤ Ξ̄ii, (7.21)

certain noise attenuation (criterion e.4) is guaranteed in the i-th FE channel. Particularly, (7.21)
implies that the marginal variance of f̃i is bounded as Σii ≤ Ξ̄ii.

The following two multiobjective design strategies, summarized in Table 7.1, show a pro-
posal of how to use these results for designing the fault estimator (7.5) guaranteeing different
estimation performance requirements.

Strategy 7.1. Let us assume that we want to design a fault estimator (7.5) that minimizes
certain linear function f(·) of the marginal variances of the FE errors due to noises while it
guarantees practical UI and interfault decoupling, and certain FE delays under ramp faults, with
T ∗i being the maximum allowed delay in the i-th fault channel. To address this design, we solve
the following optimization problem

minimize f(Ξ11, . . . ,Ξnfnf )
subject to {(7.10)− (7.12), (7.16)− (7.20), ∀i, j 6= i}

(7.22)

with
Γ̄iii := T ∗i (7.23)

in (7.16) and along the variables S, Q, P i, Ξ, Γi, K, L and γd with i = 1, . . . , nf and j =
1, . . . , nf .

Strategy 7.2. Let us assume that we want to design a fault estimator (7.5) that minimizes
certain linear function f(·) of the FE delays under ramp faults while it guarantees practical UI
and interfault decoupling, and certain marginal variance of each FE error, with Σ∗ii being the
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Table 7.1. Overview of observer design strategies for guaranteeing estimation performance requirements.

Target Target Observer
Formulation Design

Practical UI decoupling γd ≤ εd Optimization
problem

(7.22)-(7.23)

Practical interfault decoupling Γijj ≤ εjj , ∀i, j 6= i

Bounded ramp FE delays Ti ≤ T ∗i , ∀i
Minimized marginal variances due to noises min f(Σ11, . . . ,Σnfnf )
Practical UI decoupling γd ≤ εd Optimization

problem
(7.24)-(7.25)

Practical interfault decoupling Γijj ≤ εjj , ∀i, j 6= i

Bounded marginal variances due to noises Σii ≤ Σ∗ii, ∀i
Minimized ramp FE delays min f(T1, . . . , Tnf )

variance requirement in the i-th fault channel. To address this design, we solve the following
optimization problem

minimize f(Γ1
11, . . . ,Γ

nf
nfnf )

subject to {(7.10)− (7.12), (7.17)− (7.21), ∀i, j 6= i}
(7.24)

with
Ξ̄ii := Σ∗ii (7.25)

in (7.21) and along the variables S, Q, P i, Ξ, Γi, K, L and γd with i = 1, . . . , nf and j =
1, . . . , nf .

Conservativeness and solvability of the observer design

The multiobjective optimization problems in Strategy 7.1 and Strategy 7.2 are based on the
results of Theorem 7.1, whose conditions are standard in norm-based designs [121,335]. The use
of independent closed-loop Lyapunov functions Q and Pi (i = 1, . . . , nf ), which are different
from the matrix bound S, guarantee non-conservative designs based on the inequalities (7.10)-
(7.12) because the estimation error model (7.6) is LTI. However, these designs become nonlinear
optimization problems entailing bilinear matrix inequalities (BMIs).

These nonlinear problems can be solved using different solvers such as the ones presented
in [129,161]. Unfortunately, these solvers introduce certain degree of conservatism because they
only guarantee local solutions. Alternatively, it is possible to iteratively solve the BMIs through
a sequence of problems of linear matrix inequalities (LMIs) following different approaches such
as the ones presented in [86]. Note that recovering convexity by enforcing Q = S = Pi for all i
is not suitable because this approach is too conservative. However, a compromise solution can
be also adopted by introducing a slack variable as detailed in works as [69,121].

Practical interfault and UI decoupling, which are required in Strategy 7.1 and Strategy 7.2,
are achievable because the system (7.1) verifies Assumption 7.2. Hence, the solvability of the
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optimization problems (7.22) and (7.24) depends on the restrictiveness of the values which are
chosen for the performance requirements T ∗i and Σ∗ii (i = 1, . . . , nf ), respectively. The solvability
limits of the performance requirements can be found using the following problems.

• The most restrictive requirements T ∗i (i = 1, . . . , nf ) guaranteeing the solvability of the
design problem in Strategy 7.1 satisfy T ∗i := Γiii, with Γiii being the solution to the following
problem:

minimize f(Γ1
11, . . . ,Γ

nf
nfnf )

subject to {(7.10), (7.12), (7.16)− (7.20), ∀i, j 6= i}

along the variables S, Q, P i, Γi, K, L and γd with i = 1, . . . , nf and j = 1, . . . , nf .

• The most restrictive requirements Σ∗ii (i = 1, . . . , nf ) guaranteeing the solvability of the
design problem in Strategy 7.2 satisfy Σ∗ii := Ξii, with Ξii being the solution to the
following problem:

minimize f(Ξ11, . . . ,Ξnfnf )
subject to {(7.10), (7.11), (7.17)− (7.21), ∀i, j 6= i}

along the variables S, Q, P i, Ξ, K, L and γd with i = 1, . . . , nf and j = 1, . . . , nf .

7.4 Fault isolation

7.4.1 FI performance characterization

Motivated by the characterization presented in [44,70], we describe the performance of the fault
isolator (7.8) through the following indices:

i.1. the false isolation rates,
i.2. the minimum isolable faults,
i.3. the acknowledgement times and
i.4. the isolation times.

Let us first define a persistent fault fi satisfying
|fi(k)| = 0 if k < k0
|fi(k)| ∈ (0, fi

¯
) if k ∈ [k0, k¯

)
|fi(k)| ≥ fi

¯
if k ≥ k

¯

. (7.26)

We define the false isolation rate of the fault i, which we denote as φi, as the probability of
rising an isolation alarm of the fault i when fi = 0:

φi = P{∃k : |f̂i(k)| ≥ Ji}. (7.27)
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Provided fj 6=i = 0, v = 0 and d = 0, we define the minimum isolable fault i, which we denote
as ψi, as the smallest value fi

¯
that ensures the isolation of the fault (7.26):

ψi =
{

min fi
¯s.t. ∃k ≥ k

¯
: |f̂i(k)| ≥ Ji

}
. (7.28)

Under these conditions (i.e., fj 6=i = 0, v = 0 and d = 0), we define the acknowledgement time
of the fault i, which we denote as ϑi, as the time elapsed between k

¯
and the first sample of

isolation of the fault (7.26):

ϑi =

 min
k≥k

¯
k − k

¯
s.t. |f̂i(k)| > Ji

 . (7.29)

We define the isolation time of the fault i, which we denote as τi, as the time elapsed between
the appearance of the fault (7.26) at k0 and the first sample of isolation of this fault:

τi = k
¯
− k0 + ϑi. (7.30)

7.4.2 Mechanisms design with FI requirements

Assume that the model-based observer (7.5) has been designed through the strategies presented
in Section 7.3.2 and the fault estimate f̂i provided by such observer (with prefixed stabilising
gains L and K) is used in the decision mechanism (7.8). In the following, we show how to design
the threshold Ji of the decision mechanism (7.8) for guaranteeing certain requirement over one
isolation performance index.

Regarding the index i.1, if fi = 0 and perfect UI and interfault decoupling are achieved, the
fault estimate f̂i is zero-mean and its variance is given by the marginal variance Σii, which can
be computed through (7.9). Then, through Chebyshev’s inequality6 and the definition (7.27),
we have that

φi ≤ Σii/J
2
i , (7.31)

and we can set Ji as
Ji :=

√
Σii/φ∗i . (7.32)

to guarantee the bound φi ≤ φ∗i .

Remark 7.15. Provided UI and interfault decoupling, if the noises v are Gaussian, we have
that f̂i ∼ N (0,Σii) and we can set Ji to fix the index i.1 to φ∗i as

Ji := Φ−1
Z (1− φ∗i /2)

√
Σii, (7.33)

with Φ−1
Z (·) being the inverse cumulative distribution function of a standard normal variable7.

6If a > 0 and x is a random variable of mean µ and variance σ, then P{|x− µ| > aσ} ≤ 1/a2.
7Note that the threshold Ji defined as (7.33) ensures φi ≡ φ∗i in the case of Gaussian noises while the threshold

Ji defined as (7.32) ensures the bound φi ≤ φ∗i regardless of the statical distribution of the noises.
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Ji

fi f̂iTi
∆i

kk0 k

ϑi

τi
Figure 7.1. Time isolation indices in the presence of a ramp fault.

The minimum isolable fault i depends on the form of the fault signal fi, see the defini-
tion (7.28). Then, we can just ensure certain index i.2 w.r.t. a specific fault signal form verify-
ing Assumption 7.4 and the conditions (7.26). The straightforward case is the occurrence of a
non-zero step fault in the i-th fault channel because the minimum isolable fault coincides with
the threshold of the isolation mechanism, i.e.,

ψi ≡ Ji. (7.34)

Hence, we can fix the minimum isolable constant fault i to ψ∗i by setting

Ji := ψ∗i . (7.35)

The time indices i.3 and i.4 do also depend on the form of the exogenous fault signal
fi, see (7.29) and (7.30). Then, we can just ensure certain time indices w.r.t. a specific fault
signal form verifying Assumption 7.4 and the conditions (7.26). In analogy to the estimation
performance criterion e.1, we consider the occurrence of a ramp fault of slope ∆i 6= 0 in the
i-th fault channel, see Fig. 7.1. If the estimation error has achieved the steady state when the
fault exceeds Ji, the acknowledgement time of the fault i is the steady-state estimation delay
Ti (i.e., ϑi ≡ Ti) and the isolation time of the fault i satisfies

τi ≡ Ji/∆i + Ti, (7.36)

where Ji/∆i characterizes the time that the ramp fault requires to achieve Ji. In all, ϑi ≡ Ti
is determined by the observer and it cannot be modified by varying Ji. Provided certain Ti, we
can set

Ji := ∆i(τ∗i − Ti) (7.37)

to fix the isolation time to τ∗i (i.e., τi ≡ τ∗i ) if τ∗i > Ti and ∆i is known. Note that the slope ∆i

is not generally known and requirements over the acknowledgement time ϑi are more general.
The mechanism design strategies presented in this section are summarized in Table 7.2. Note

that once Ji is designed to guarantee one isolation performance index, the other indices can be
computed through (7.31), (7.34) and (7.36).

7.4.3 Co-design with FI requirements

The strategies presented in Section 7.4.2 show how to design the decision mechanism (7.8) to
ensure one requirement over the index i.1, i.2. or i.4 when the gain matrices L and K of the
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Table 7.2. Overview of mechanism design strategies for guaranteeing one isolation performance requirement.

Target Target Mechanism
Formulation Design

Bounded false isolation rate φi ≤ φ∗i
Obtain Σii with (7.9)

Equality (7.32)†
Certain minimum isolable constant fault ψi ≡ ψ∗i Equality (7.35)
Certain ramp fault isolation time (slope ∆i) τi ≡ τ∗i Equality (7.37)

†Equality (7.33) with Gaussian noises ensures φi ≡ φ∗i .

observer (7.5) are prefixed (i.e., the gains are already designed). In order to achieve an isolator
guaranteeing two or more requirements over these indices, it is necessary to perform a co-design
of the observer (7.5) and the decision mechanisms (7.8). The following strategies, summarized
in Table 7.3, show a proposal of how to perform this co-design for guaranteeing more than one
isolation performance requirement.

Strategy 7.3. Assume that we desire to ensure altogether certain false isolation rates φ∗i
(i = 1, . . . , nf ), certain minimum isolable constant faults ψ∗i (i = 1, . . . , nf ) and minimum ac-
knowledgement times under ramp faults (and thus minimum isolation times under ramp faults).
To ensure these requirements, we first design the observer (7.5) through Strategy 7.2 with the
value

Σ∗ii := φ∗i ψ
∗
i

2 (7.38)

in (7.25) for all i. Second, with the obtained gains L and K, we compute Σ through (7.9)8 and
we set the isolation thresholds through (7.32) with φ∗i for all i.

Remark 7.16. If the noises v that affect the system (7.1) are Gaussian, the constraint (7.38)
can be replaced by

Σ∗ii := ψ∗i
2/Φ−1

Z (1− φ∗i /2)2 (7.39)

and each isolation threshold can be set through (7.33) with φ∗i .

Strategy 7.4. Now, assume that we desire to ensure altogether certain false isolation rates φ∗i
(i = 1, . . . , nf ), certain acknowledgement times under ramp faults ϑ∗i (i = 1, . . . , nf ) and we
desire to minimize the minimum isolable faults. To ensure these requirements, we first design
the observer (7.5) through Strategy 7.1 with the value

T ∗i := ϑ∗i (7.40)

in (7.23) for all i. Second, with the obtained gains L and K, we compute Σ through (7.9) and
we set the isolation thresholds through (7.32) (or (7.33) if the noises are Gaussian) with φ∗i for
all i.

8Strategy 7.2 guarantees practical UI and interfault decoupling and thus, in the fault-free scenarios, signal f̂i
is zero-mean and its variance is given by the marginal variance Σii.
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Table 7.3. Overview of co-design strategies for guaranteeing isolation performance requirements.

Target Target Observer Mechanisms
Formulation Design Design

Bounded false isolation rates φi ≤ φ∗i , ∀i

Optimization
problem

(7.24)-(7.25)†
Σ∗ii := φ∗i ψ

∗
i

2, ∀i

Obtain Σ (7.9)
Equal-

ity (7.32)‡

Bounded minimum isolable con-
stant faults

ψi ≤ ψ∗i , ∀i

Minimized ramp fault isolation
times

min f(τ1, ... , τnf )

Minimized ramp fault acknowl-
edgement times

min f(ϑ1, ... , ϑnf )

Bounded false isolation rates φi ≤ φ∗i , ∀i Optimization
problem

(7.24)-(7.25)
T ∗i := ϑ∗i , ∀i

Obtain Σ (7.9)
Equal-

ity (7.32)‡

Bounded ramp fault acknowl-
edgement times

ϑi ≤ ϑ∗i , ∀i

Minimized minimum isolable con-
stant faults

min f(ψ1, ... , ψnf )

Bounded minimum isolable con-
stant faults

ψi ≤ ψ∗i , ∀i Optimization
problem

(7.24)-(7.25)
T ∗i := ϑ∗i , ∀i

Equality (7.35)Bounded ramp fault acknowl-
edgement times

ϑi ≤ ϑ∗i , ∀i

Minimized false isolation rates min f(φ1, ... , φnf )

†Σ∗ii := ψ∗i
2/Φ−1

Z (1− φ∗i /2)2 with Gaussian noises.
‡Equality (7.33) with Gaussian noises.

Remark 7.17. Note that if we desire to ensure altogether certain acknowledgement times under
ramp faults ϑ∗i (i = 1, . . . , nf ), certain minimum isolable constant faults ψ∗i (i = 1, . . . , nf ) and
we desire to minimize the false isolation rates, we just have to design the observer (7.5) through
Strategy 7.1 with the value T ∗i := ϑ∗i and set Ji := ψ∗i for all i.

Remark 7.18. In order to achieve an isolator which guarantees certain isolation times τ∗i under
ramp faults of slope ∆i (i = 1, . . . , nf ), certain false isolation rates φ∗i (i = 1, . . . , nf ) while it
minimizes the minimum isolable constant faults, we must design the observer (7.5) through
Strategy 7.1 with T ∗i := τ∗i − 1/∆i

√
Ξii/φ∗i in (7.23) for all i. The constraint (7.23) becomes,

then, nonlinear. Provided this nonlinearity and given that slope ∆i is generally unknown, we
use Strategy 7.4 whenever requirements over time isolation indices appear in the co-design.

7.5 FE and FI with a bank of observers

In this section, we address the case in which the faults and the UIs in the system (7.1) are not
isolable (i.e., rank{Gfd(z)} <

∑nf
i=1 rank {Gfi(z)} + rank {Gd(z)}) and, thus, it is not possible

to build model-based observers that guarantee both decoupling from the UIs and appropriate
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fault estimates. Then, we design several observers (i.e., a bank of observers), each of them taking
only into account a subset of all the faults to which the system is prone. Assuming that all the
faults in the system are not simultaneous, we build a bank of decision mechanisms for the bank
of observers which enhances, first, FI and, then, FE.

Remark 7.19. As detailed in Remark 7.13, certain degree of UI decoupling is achievable re-
gardless of the isolability of the faults from the UIs. In this section, we assume that practical UI
decoupling is required and intermediate solutions guaranteeing certain degree of UI decoupling
do not fulfil the required performance.

Remark 7.20. Consider the case in which certain requirements over estimation or isolation
performance indices compromise FE or FI w.r.t. other performance indices. Although not being
necessary in terms of isolability conditions, the use of a bank of observers leads to a better
performance w.r.t the compromised indices at the cost of new restrictions over the simultaneity
of faults. This situation gives a further motivation to the strategies developed in this section.

7.5.1 Bank of observers and decision mechanisms for FE and FI

Let us denote the set of all possible faults as S = {f1, . . . , fnf } and the set of the corresponding
ordered indices as π = {1, . . . , nf} (i.e., πi = i). We split the model (7.1) into a bank of m
submodels. Each submodel b (with b = 1, . . . ,m) takes account of a subset Sb ⊂ S of ns < nf
faults (with ordered indices πb ⊂ π) while it ignores the other faults. Every fault of the system
is at least considered by one submodel in the bank (i.e., S = ⋃

b S
b) and Sb 6= Sc for b 6= c. The

number of submodels in the bank is thus

m = Cnf
ns = nf !

ns! (nf − ns)!
. (7.41)

We denote the vector that stacks the faults which are taken into account by the b-th submodel
as f b and the vector that stacks the faults which are ignored by this submodel as f\b. The b-th
submodel is

x(k + 1) =Ax(k) +B u(k) + Eb f b(k) +Gv(k) +Dd(k), (7.42a)
y(k) =C x(k) + F b f b(k) +H v(k), (7.42b)

with Eb and F b being the result of stacking the columns of E and F indexed by πb. The size
ns of the subsets Sb must be chosen in order to guarantee the isolability of all the fault vectors
f b in the presence of UIs. For all b, we must have that

rank{Gfbd(z)} =
ns∑
l=1

rank
{
Gfb

l
(z)
}

+ rank {Gd(z)} , (7.43)

with Gfb
l
(z) = C (z I − A)−1Ebl + F bl and Gfbd(z) =

[
Gfb1

(z) . . . Gfbns (z) Gd(z)
]
. Due to the

additive nature of the faults and the UIs in (7.1), it is not possible to guarantee the condi-
tion (7.43) if ns > ny − nd. Then, we set ns as the maximum number less than or equal to
ny − nd such that the condition (7.43) holds for all the submodels in the bank.
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In analogy to (7.4), we augment each submodel (7.42) with the dynamics of the fault vector
f b (i.e., AbF = Ins , B

b
F = Ins , C

b
F = Ins). Then, likewise to (7.5), we build a bank of observers

in the form of

ẑb(k + 1) =Ab ẑb(k) + Bb u(k) + Lb(y(k)− Cb ẑb(k)), (7.44a)
f̂ b(k) =Rb ẑb(k) +Kb (y(k)− Cb ẑb(k)), (7.44b)

with Lb and Kb being the observer gain matrices of the b-th observer of appropriate dimensions.
Vector f̂ b is the estimated fault and ẑb is the estimated extended state.

Note that (7.42) models the behavior of the system (7.1) when the faults f\b are not present
in the system (i.e., f\b = 0). Then, f̂ b is only reliable when f\b = 0. We know that a fault fi is
zero if f̂ bl = 0 with πbl = i for some estimator b. If ns or more simultaneous faults occur, there
are no zero-value fault estimates and all the estimates provided by the bank are thus corrupted.
This means that it is only possible to discern reliable estimates when no more than ns − 1
simultaneous faults are present in the system and that FE and FI are only possible if ns > 1.
In all, Algorithm 1 summarizes the strategy to build the bank of observers guaranteeing the
isolation and estimation of the maximum possible number of simultaneous faults.

Remark 7.21. Assume that the condition (7.43) does not hold for all submodels b if ns > 1.

• If (7.43) holds at least for some submodels b when ns > 1 and all the faults fi (i =
1, . . . , nf ) are considered within these submodels, we extend them with AbF = Ins , B

b
F =

Ins , C
b
F = Ins and we build the corresponding observers (7.44). We extend the other

submodels which do not verify (7.43) with AbF = 0ns×ns , Bb
F = Ins , C

b
F = Ins and we

build the corresponding observers (7.44). In this case, the latter observers are only used for
FI purposes and allow discerning the reliability of the outputs provided by the first group
of observers, which are used for FE purposes. See the details in [250]9.

• Otherwise, a transformation of the system, as proposed in [182], must be done (leading to
new a fault vector f).

In noisy environments, there are not zero-value fault estimates. This means that decision
mechanisms based on thresholds are necessary for both FI and FE. Likewise to (7.8), we set the
following decision mechanism which enables FI when no more than ns − 1 simultaneous faults
occur {

if |f̂ bl (k)| ≥ Jbl ∀(b, l) : πbl = i , Fault i
otherwise , No fault i . (7.45)

with Jbl being the isolation threshold of the l-th fault in the b-th bank.
For FE, we rely on f̂ bl as an estimate of fπb

l
whilst no fault in f\b has been isolated

through (7.45). If a set B of more than one estimator in the bank provides a reliable esti-
mation of a fault fi, we define f̂i through the reliable estimator with better performance w.r.t.
certain isolation performance index

f̂i(k) := {f̂ b∗l (k) : i = πb
∗
l }, (7.46)

9Once a fault is accommodated, the observers in the bank must be reset to avoid the existence of wrong initial
conditions derived from the previous presence of ignored faults.
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Algorithm 1 Strategy to construct the bank of observers.
1: ns ← ny − nd
2: while ns > 1 do
3: compute m with (7.41)
4: construct m subsets Sb verifying S = ⋃

b S
b and Sb 6= Sc for b 6= c

5: construct the bank of m submodels (7.42)
6: if the condition (7.43) is verified for all b then
7: construct the bank of m observers (7.44)
8: end algorithm
9: else

10: ns ← ns − 1
11: end if
12: end while
13: if ns = 1 then
14: apply the strategies in Remark 7.21
15: end if

with
b∗ = {argmin

b∈B
αbl : πbl = i},

and αbl certain isolation performance index reflecting and improved isolation performance as it
decreases.

7.5.2 FI performance characterization and co-design with FI requirements

The isolation index i.1 of a fault i, φi, depends on the false alarms of every pair f̂ bl and Jbl with
πbl = i, i.e.,

φi = P


⋂

(b,l):πb
l
=i
∃k : |f̂ bl (k)| ≥ Jbl

 , (7.47)

when fi = 0. Note that the events Xj = “∃k : |f̂ bl (k)| ≥ Jbl ” in (7.47) (with j = 1, . . . , nj
and nj the number of pairs (b, l) satisfying πbl = i) are not independent and φi depends on the
conditional probability of each event Xj subject to the occurrence of the others. Starting from
event X1, we have that

φi = P {X1} · P {X2/X1} · . . . · P
{
Xnj/X1 ∩ . . . ∩Xnj−1

}
. (7.48)

This equality holds when starting from any event Xj and, thus, we have that

φi ≤ P {Xj}

for j = 1, . . . , nj . The conditional probabilities in (7.48) are close to 1 because, in practice, the
same noises affect all the observers simultaneously. Hence, we deduce that φi is tightly bounded
by

φi ≤ min
(b,l):πb

l
=i

φbl , (7.49)
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where φbl satisfies (7.27) for the b-th estimator. Regarding the index i.1, the minimum isolable
constant fault i, ψi, is given by

ψi = max
(b,l):πb

l
=i

ψbl , (7.50)

where ψbl satisfies (7.28) for the b-th estimator. Analogous definitions apply to the time indices
i.3 and i.4.

In order to design the observers and decision mechanisms of the bank for satisfying global
isolation performance requirements, we make use of these characterizations. The following two
strategies show a proposal of how to perform the co-design of each observer and the correspond-
ing thresholds for guaranteeing different isolation requirements.

Strategy 7.5. Assume that we desire to ensure altogether certain false isolation rates φ∗i
(i = 1, . . . , nf ), certain minimum isolable constant faults ψ∗i (i = 1, . . . , nf ) and minimum
acknowledgement times under ramp faults. To ensure these requirements, we perform m indepen-
dent designs. In each of them, we design a different observer b of the bank and the corresponding
thresholds Jbl (l = 1, . . . , ns) through Strategy 7.3 with requirements φ∗i and ψ∗i whenever πbl=i.

Strategy 7.6. Assume that we desire to ensure altogether certain false isolation rates φ∗i (i =
1, . . . , nf ), certain acknowledgement times under ramp faults ϑ∗i (i = 1, . . . , nf ) and we want
to minimize the minimum isolable constant faults. To ensure these requirements, we perform
m independent designs. In each of them, we design a different observer b of the bank and the
corresponding thresholds Jbl (l = 1, . . . , ns) through Strategy 7.4 with requirements φ∗i and ϑ∗i
whenever πbl = i.

7.6 Case of study: FE and FI in a wind turbine

The benchmark in [216] describes a three-bladed horizontal wind turbine which consists of
four main systems: the generator and converter, the drive train, the blade and pitch and the
controller10. The strategies developed in this thesis are independent of the control scheme and
can be implemented regardless of the control law. In this section, we apply the proposed fault
estimators and isolators to the first three systems.

7.6.1 State-space models

In the following, we model the wind turbine systems through the continuous model

ẋ =Ac x+Bc u+ Ec f +Gc v +Dc d, (7.51a)
y =Cc x+ F c f +Hc v. (7.51b)

The sate-space matrices of the realizations are detailed in Appendix D.2.1. Reference [216],
which is referred for further modeling details, specifies that the noises that affect the wind
turbine benchmark are Gaussian.

10Some notes on the operation principle of wind turbines are included in Appendix A.2.
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Generator and Converter System. This system can be modeled as a first order closed-loop
system between the torque reference, τg,r, and the non-deviated torque τg,n. The actual generator
torque, τg, is given by τg = τg,n + ∆τg,n, where ∆τg,n is the offset representing the converter
fault. Let τg,m and vτg be the measurement of τg and the corresponding additive noise; then,
we have

x , τg,n, u , τg,r, y , τg,m, f , ∆τg,n, v , vτg , d , ∅.

Drive Train System. The drive train dynamics is represented by a two-mass model involving
the rotor speed, ωr, the generator speed, ωg and the torsion angle of the drive train, θrg.
This system is fed with the actual generator torque, τg, and the aerodynamic torque from the
wind, τa. Provided that the real generator torque is not available, we model this input as the
difference between its measurement, τg,m, and the corresponding additive sensor noise, vτg,m .
The aerodynamic torque may be obtained through the wind speed and the power coefficient,
Cp, which is a nonlinear function of ωr, the wind speed and the pitch angles of the turbine.
In practice, it is very difficult to know the real distribution of Cp and the measurements of
the wind speed provided by anemometers are rather inaccurate. Thus, we consider τa to be
an UI, which is a widely extended assumption in the bibliography, see [217]. Both drive train
speeds are measured by the redundant sensors ωr,m1 , ωr,m2 , ωg,m1 and ωg,m2 and we model their
possible faults as the additive signals ∆ωr,m1 , ∆ωr,m2 , ∆ωg,m1 and ∆ωg,m2 . Similar applies to
their corresponding sensor noise. In all, the state-space vectors are

x ,
[
ωr ωg θrg

]T
,

u , τg,m,

y ,
[
ωr,m1 ωr,m2 ωg,m1 ωg,m2

]T
,

v ,
[
vωr,m1

vωr,m2
vωg,m1

vωg,m2
vτg,m

]T
,

f ,
[
∆ωr,m1 ∆ωr,m2 ∆ωg,m1 ∆ωg,m2

]T
,

d , τa.

Blade and Pitch System. The hydraulic pitch system of each of the blades p = 1, 2, 3 is
modeled as a second order closed-loop system between the reference angle provided by the
wind turbine controller, βr, and the averaged measurement, βm(p), provided by two redundant
sensors, βm1(p) and βm2(p). Both sensors entail measurement noises that disturb the closed loops.
Provided that only the closed-loop indices (ωn0 and ξ0) are known, we model these disturbances
as additive signals vβ1(p) and vβ2(p) which affect both the measurements and the reference.
Similar applies to sensor faults, which we denote as ∆βm1(p) and ∆βm2(p) (See Fig. 7.2). The
pitch actuator may also suffer from dynamic changes. If we denote the deviations of ωn0 and ξ0
as ∆ωn(p) and ∆ξ(p) (i.e., ωn(p) = ωn0 + ∆ωn(p) and ξ(p) = ξ0 + ∆ξ(p)), the actuator fault can
be modeled as an additive signal in the form of

fβa(p) = (∆w2
n(p) + 2wn0∆wn(p))(βr − β(p))− 2 (ξ0∆wn(p)+ wn0∆ξ(p) + ∆ξ(p)∆wn(p))β̇(p).
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Figure 7.2. Architecture of the pitch system.

In all, the state-space vectors of each pitch system are

x ,
[
β(p) β̇(p)

]T
,

u , βr,

y ,
[
βm1(p) βm2(p)

]T
,

v ,
[
vβ1(p) vβ2(p)

]T
,

f ,
[
fβa(p) ∆βm1(p) ∆βm2(p)

]T
,

d , ∅.

7.6.2 Fault estimation and isolation

FE and FI architecture

We discretize the models (7.51) with the sample time Ts = 0.01 s and we obtain the matrices
A, B, C, D, E, F , G and H in (7.1). The converter faults fulfil the necessary condition for
fault isolability in Assumption 7.4; however, the drive train and the pitch faults do not verify
it. Then, we split these two models as detailed in Section 7.5. For the drive train system, the
strategy summarized in Algorithm 1 leads to ns = 3 and m = 4:

S1 = {f1, f2, f3}, S2 = {f1, f2, f4}, S3 = {f1, f3, f4}, S4 = {f2, f3, f4},
π1 = {1, 2, 3}, π2 = {1, 2, 4}, π3 = {1, 3, 4}, π4 = {2, 3, 4};
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Table 7.4. Fault signature matrix in the drive train system (�:Sensitive, �:Ignored).

f̂1
1 f̂1

2 f̂1
3 f̂2

1 f̂2
2 f̂2

3 f̂3
1 f̂3

2 f̂3
3 f̂4

1 f̂4
2 f̂4

3
f1 = ∆ωr,m1 � � � � � �
f2 = ∆ωr,m2 � � � � � �
f3 = ∆ωg,m1 � � � � � �
f4 = ∆ωg,m2 � � � � � �

Table 7.5. Fault signature matrix in the pitch systems (�:Sensitive, �:Ignored).

f̂1
1 f̂1

2 f̂2
1 f̂2

2 f̂3
1 f̂3

2
f1 = fβa(p) � � � �
f2 = ∆βm1(p) � � � �
f3 = ∆βm2(p) � � � �

then, FI is only guaranteed if no more than two simultaneous faults occur. For each pitch system,
the strategy summarized in Algorithm 1 indicates that the procedure in Remark 7.21 must be
applied. We get ns = 2 and m = 3:

S1 = {f1, f2}, S2 = {f1, f3}, S3 = {f2, f3},
π1 = {1, 2}, π2 = {1, 3}, π3 = {2, 3}.

The isolability condition (7.43) holds for the subsets S1 and S2, and all the faults of the pitch
system are considered within these subsets. For the subset S3 the condition (7.43) does not
hold and we must use AbF = 0, Bb

F = I, CbF = I to extend this submodel. Further explanations
regarding this issue are included in Appendix D.2.3.

For each of the resulting submodels, we define the observers (7.44) and the corresponding
decision mechanisms (7.45). The signature matrices are presented in Table 7.4 and Table 7.5,
where � indicates that the estimate f bl is devoted to the estimation of the fault fi and �
indicates that the fault fi is ignored by the observer b and it may corrupt the estimates f bl
with l = 1, . . . , ns. For each of the resulting submodels, we define the observers (7.44) and the
corresponding decision mechanisms (7.45).

FE and FI design

Let us first perform different observer designs to study the existing trade-offs between the es-
timation performance criteria detailed in Section 7.3.111. Fig. 7.3 (left) shows the estimation
performance results for different observers designed through Strategy 7.1 for the converter sys-
tem. One verifies that imposing more restrictive constraints over the ramp fault tracking delay
T11 leads to higher marginal variances due to noises Σ11. Fig. 7.4 includes the details on the
frequency response of the closed-loop transfer function between f and f̂ for some of these ob-
servers (Observer A with T11 = 1 samples, Observer B with T11 = 3 samples and Observer C

11The problems are set up in YALMIP [192] and we successfully solve them with the PENBMI solver [129].
For sake of brevity, we do not include the value of the obtained gain matrices.
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Figure 7.4. Frequency response of the closed-loop transfer function between f and f̂ (Converter system).

with T11 = 5 samples). Provided the physical proprieties of the converter system, the transfer
function between f and f̂ coincides with the transfer function between v and f̂ . One verifies
then that the observers with a higher bandwidth and a lower phase lag (i.e., fastest response
under the appearance of faults) are characterized by higher magnitudes at high frequencies (i.e.,
higher noise influence). Fig. 7.3 (left) also represents the effect of performing these designs in
situations of amplified (i.e., 4V ) and attenuated (i.e., 1/4V ) noises, where V denotes the noise
covariance in the benchmark. When the noises affecting the systems increase in variance, the
same fault tracking delays imply higher variances.

Now, we perform the observer and decision mechanism co-design in Strategy 7.4 with dif-
ferent acknowledgement time requirements. Fig. 7.3 (right) depicts the trade-offs between the
isolation performance indices defined in Section 7.4.1. Again, imposing more restrictive time
constraints leads to higher minimum isolable constant faults for certain level of false alarms.
For its part, increasing the false isolation rate reduces the value of the minimum isolable constant
faults for certain acknowledgement time of ramp faults.

To fulfil the requirements in the benchmark [216], we now design the observers and decision
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Table 7.6. Minimum isolable constant faults.

Fault Minimum Isolable Fault
∆ωr,m1 0.151 rad/s
∆ωr,m2 0.151 rad/s
∆ωg,m1 0.295 rad/s
∆ωg,m2 0.295 rad/s

Fault Minimum Isolable Fault
∆τg,n 14.300 Nm
fβa(p) 0.933◦/s2

∆βm1(p) 0.063◦
∆βm2(p) 0.063◦

Table 7.7. Wind turbine benchmark fault scenario description.

Fault code System Fault signal Fault type Time occurrence TS1
GC-1 Generator ∆τg,n offset t ∈ [3800, 3900] s
DT-1 Drive Train ∆ωr,m1 fixed value t ∈ [1500, 1600] s
DT-2 Drive Train ∆ωr,m2 , ∆ωg,m1 gain factor t ∈ [1000, 1100] s
P1-1 Pitch 1 ∆βm1(1) fixed value t ∈ [2000, 2100] s
P2-1 Pitch 2 ∆βm2(2) gain factor t ∈ [2300, 2400] s
P2-2 Pitch 2 fβa(2) change dynamics t ∈ [2900, 3000] s
P3-1 Pitch 3 ∆βm1(3) fixed value t ∈ [2600, 2700] s
P3-2 Pitch 3 fβa(3) change dynamics t ∈ [3400, 3500] s

mechanisms of the three wind turbine systems through Strategy 7.4.

Although the benchmark [216] highlights the necessity of isolating the faults occurring in
the wind turbine systems, it only explicitly specifies requirements over detection performance
indices. Thus, we equal the requirements over the false detection rates and the detection times
in the benchmark to the requirements over the false isolation rates and the isolation times,
respectively. In order to directly apply our approach, we approximate the requirements over the
isolation times to requirements over the acknowledgement times of ramp faults and we perform
the co-design of each pair of observer and mechanism in the banks. In number of samples, we
have ϑ∗1 = 3 for the converter, ϑ∗{1,2,3,4} = 10 for the drive train system, and ϑ∗1 = 8, ϑ∗{2,3} = 10
for the pitch system. The required false isolation rate is φ∗i = 10−5 for all the systems. We use the
summation (i.e.,∑ns

l=1 Ξll) as the function f(Ξ11, . . . ,Ξnsns) being minimized in the optimization
problem. The obtained minimum isolable constant faults are indicated in Table 7.6.

7.6.3 Simulation results

The wind turbine benchmark presents a scenario of 4400 s in which different faults occur.
Within the listing of the possible faults, the benchmark test sequences choose the subset of
faults in Table 7.7. The benchmark considers seven different test signal sets; they are formed
by time-shifting the occurrence of the faults defined in the original test sequence (TS1), which
is described in Table 7.7.

Illustratively, let us first simulate the time response of the Observers A, B and C defined in
Fig. 7.4 to estimate the converter fault in the test set TS1. Fig. 7.5 (left) shows the estimation
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Figure 7.5. FE in the converter with different observers (test set TS1).
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Figure 7.6. FE in the converter with model parameter changes (test set TS1).

results in fault-free samples and Fig. 7.5 (right) shows the estimation results during the fault
appearance. The simulation results validate the estimation trade-offs indicated in Fig. 7.3 (left).

Let us also analyse the effect of the restrictiveness of the time constraints on the sensitivity
to parameter changes in the model. Fig. 7.6 shows the effect produced by a 5% relative change
in the parameter defining the converter dynamics. We verify that the sensitivity to parameter
changes increases as the time constraints become more restrictive. The reader is referred to
Remark 7.3 and equation (7.7) to obtain the algebraic expression of the effect of the parameter
changes on the FE error12.

Now, we test the behavior of the observers and decision mechanics that we have designed
with the isolation performance constraints in the benchmark. If we simulate the different test
sets proposed in the benchmark through several Monte Carlo simulations for different noises,
we verify that all the results verify the false isolation rate restriction tightly. The isolation times
of the faults are summarized in Table 7.8. As an example, Fig. 7.7 details the isolation times
obtained for the fault DT1-1. Note that the minimum isolation times fulfil the requirements
in the benchmark. The cases in which the time requirement is exceeded refer to scenarios
with variable fault signals which do not always exceed the achieved minimum isolable fault. For
instance, there are cases in which the fault P3-2 is present in the system but the pitch reference

12If the uncertainties regarding parameter changes lead to poor estimation results, these uncertainties must be
modeled as UIs (see Remark 7.3) and certain degree of UI decoupling (i.e., constraint (7.19)) must be introduced
as an additional requirement in the observer design.
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Table 7.8. Isolation times (IT) in number of samples of the Monte Carlo simulation.

Fault scenario IT Requirement Minimum IT Mean IT Maximum IT
GC-1 3 2 2.19 3
DT-1 10 2 4.36 11
DT-2 10 2 2 2
P1-1 10 2 2 2
P2-1 10 6 223.8 737
P2-2 8 2 2.56 7
P3-1 10 2 2.46 13
P3-2 8 1145 1793.4 2322

1 2 3 4 5 6 7

5

10

15

Test set

IT
[S

am
pl

es
]

Figure 7.7. Isolation time (IT) of the fault DT-1 for the test sets in the benchmark.

is barely zero. In such cases, there is no chance to detect or isolate the changes experienced
by the pitch dynamics. Other proposals available in the bibliography provide similar results
regarding this issue. In any case, if the designer decides that missisolating these small faults
may be prohibitive, it would be possible to redesign the fault isolators through Strategy 7.5 as
explained in Section 7.5. Note that numerical comparisons with other strategies in the literature
are difficult because most existing works are devoted to fault detection and fault isolation and
estimation are not included. Moreover, they study indices as the FDR instead of the physically
meaningful parameters required on the benchmark (i.e., isolation times, minimum isolable faults,
etc.).

In the following, we include the figures showing the FE and FI results in the test set TS1
(described in Table 7.7). First, Fig. 7.8 shows the estimation signal and the corresponding
isolation threshold for the converter system, which is affected by GC-1. Fig. 7.9 shows the
outputs provided by the bank built for FE and FI in the drive train system, which is affected
by DT-1 and DT-2. It is straightforward to verify that applying (7.45)-(7.46), the isolation
and the estimation of the faults DT-1 and DT-2 is achieved.

Regarding the pitch system, Fig. 7.10 (details in Fig. 7.11) shows the results for the third
pitch system, which is affected by both P3-1 and P3-2. The figure includes the fault estimates
and the thresholds corresponding to the relied observers in the bank. Note that the observer
which provides the estimate of the fault f3 = ∆βm2(p) (i.e., the pair with better isolation
optimized performance index) becomes non-reliable when f2 = ∆βm1(p) is present in the system.
In this case, the estimation is provided by another pair in the bank with a poorer minimum
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Figure 7.8. FE and FI in the converter (test set TS1).
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Figure 7.9. Bank of observers and decision mechanisms in the drive train (test set TS1).
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isolable fault. For ease of space, we do not include the results for the first and second pitch
systems.

7.7 Conclusion

In this chapter, we have developed performance-based designs of model-based observes and
statistical-based decision mechanisms for achieving FE and FI in systems affected by unknown
inputs and stochastic noises. First, we have presented FE performance-based designs of PI
observers taking into account the trade-off between the degree of UI and interfault decoupling,
the delay to track fault variations and the covariance due to noises. Second, we have presented
FI performance-based co-designs of the observers and decision mechanisms taking into account
the trade-off between the false isolation rates, the minimum isolable faults and the isolation
times. Finally, we have extended the results to a scheme based on a bank of observers and
decision mechanisms which provides a solution for FI and FE in systems where fault isolability
conditions do not hold and it is not possible to achieve FE through standard observers. We have
applied this procedure to a well-known benchmark that has explicit isolation requirements and
we have shown that we fulfil all these requirements by just including them as constraints in the
designs.





Chapter 8

Estimation and adaptive diagnosis of
decreased power in wind farms: a
Markovian jump system approach

Blade erosion and debris build-up decrease the power production of wind
turbines, reducing their reliability and availability. The diagnosis of this fault
is necessary to actively address the problem. In this chapter, we propose a
Markovian jump model of the power generation system of a wind turbine and
we present a closed-loop model-based observer to estimate the faults related to
energy losses. The observer is designed through an H∞-based optimization
problem that fixes the trade-off between the observer fault sensitivity and
robustness. The fault estimates provided by the observer are then used in
data-based decision mechanisms for achieving fault detection and isolation.
The performance of the diagnosis strategy is then ameliorated in a wind farm
level scheme that uses a bank of the aforementioned observers and decision
mechanisms. Finally, the proposed approach is tested using a well-known
benchmark in the context of wind farm fault diagnosis.

8.1 Introduction

Wind energy is considered as a powerful source of sustainable energy. However, wind turbines
(WTs) are expensive systems and their maintainability and reliability must be high. Fouling
of the rotor blades with ice or insects, as well as erosion, is an important root cause of faults
and it is expected to increase in significance as more WTs are situated in locations with higher
wind speeds (WSs) [199, 282]. As stated in [64], the major problem related to debris build-up
and erosion is the reduction of the overall WT aerodynamic efficiency leading to unpredicted
reductions in power production. Besides possible human safety risks, debris build-up may also
cause mass and aerodynamic imbalances, damaging all WT components.

As discussed in [220], the diagnosis of debris build-up can be done using direct or indirect
measurements. Direct methods are based on the detection of some change of physical properties
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such as mass, electrical or thermal properties. Hence, they often require extra equipment, which
augment the installation and maintenance costs and the weight and space requirements. For
its part, indirect methods are mainly based on detecting the reduction in power production.
These methods do not require extra hardware because they use WT control measurements.
They require, however, the WTs to be in operation. Their main disadvantage is that energy
losses may be also the consequence of other phenomena which are, nonetheless, generally easily
distinguishable from debris build-up. For instance, consider the occurrence of an electric fault in
the WT generator. In this case, the deviation of the generator torque from its reference, which
can be deduced from the generator torque measurement, provides an immediate and accurate
diagnosis of the electric fault leading to its straightforward isolation from debris build-up or
erosion [216].

The indirect fault diagnosis (FD) of decreased power generation due to debris build-up or
erosion is one of the objectives of the realistic and widely accepted wind farm (WF) benchmark
presented in [215]. The benchmark includes the WF power generation model which is based
on the well-known power curve of a WT. Basically, two kinds of residuals are used in the
bibliography [16,30,33,83,264] to diagnose power reductions in the benchmark. At a WT level,
temporal residuals represent the inconsistencies between the power generation model output and
the generated power measurement of a single WT. At a WF level, spatial residuals represent
the inconsistencies between the generated power measurements of different WTs. Borcehrsen
et al. [33] utilize open-loop temporal residuals in dynamical cumulative sums. Alternatively,
Duviella et al. [83] present a FD approach based on spatial residuals and Blesa et al. [30]
compute both spatial and open-loop temporal residuals via nonlinear parameter varying parity
equations. For its part, Badihi et al. [16] merge both approaches. The authors use the generation
model of the WTs to compute the power differences among the WF; then, they compare them
to the measured power differences. They also present an approach which replaces the generation
model by fuzzy inference mechanisms. Similarly, Simani et al. [264] present fuzzy and neural
networks techniques.

The power generation model of a WT is affected by various non-negligible disturbances:
mean WS estimation errors, turbulences, vibrations and measurement noises [215]. Hence, the
WT level open-loop temporal residuals in [30, 33] may be significantly disturbed. The spatial
residuals in [16, 30, 83] are not affected by mean WS estimation errors because they compare
WTs working under the same wind conditions. For instance, the methods in [16] require that all
the WTs in the WF operate under the same wind conditions. However, in most cases, the WTs
operate in different conditions and WS estimation errors still affect the spatial residuals. In all,
it is of interest to develop closed-loop strategies with a better performance w.r.t. disturbances
at a WT level and at a WF level for groups of WTs affected not only by identical but also by
similar wind conditions. Specially, if the FD objectives require not only the information about
the appearance and the location of a fault (fault detection and isolation or FDI) but also about
its size and shape (fault estimation or FE). FE is of paramount importance for both real-time
decisions and active fault tolerant control (AFTC) [330] such as power demand redistribution
among the WF.

The closed-loop power generation system of a WT is a parametric loop because the WT
operates in different WS zones and under different WT operating modes [54]. Moreover, the
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stochastic characteristic of the wind brings further difficulty to the design of closed-loop FE
strategies. In the literature, many authors conclude that the WS behavior can be explained as
a Markovian process [40, 198]. This behavior has been exploited in recent WT control schemes
as the ones in [63, 184, 185]; however, up to date, there has been no work taking advantage of
the Markovian behavior of the wind to design FE strategies.

Motivated by the above background, in this work, we develop a Markovian jump system
approach for closed-loop FE of decreased power generation in a WF. First, we develop a WT
level approach; then, we extend it to the WF level for groups of nearby WTs working under
similar wind conditions. FE techniques must be simultaneously robust against uncertainties
and noises [106] and sensitive to faults through the accomplishment of certain trade-off between
these properties [327]. In this paper, we use the H∞ performance of the proposed model-based
observer to characterize these properties and to set up an optimal observer design strategy
based on linear matrix inequalities (LMIs). Providing a systematic performance-based optimal
approach for tuning the FE observer is an advantage when compared to other algorithm designs,
where some user expertise is necessary. For instance, numerical extensive simulations and trial
and error procedures are necessary to tune the algorithms in [264].

To achieve FDI, we evaluate the fault estimates provided by the proposed observer into
decision mechanisms based on thresholds. Model-based thresholding usually leads to too con-
servative results which are characterized by poor fault detectability and isolability [71], notably
in the cases of Markovian jump systems [246]. Therefore, we utilize a data-driven FDI approach
based on adaptive thresholds for evaluating the FE output provided by the model-based ob-
server. The proposed adaptive mechanism enhances a tight FDI adjustment in the different WS
zones and WT operating modes when compared to the constant thresholds in [16,33,264].

8.1.1 Challenges

The proposed Markovian jump system approach for FE and adaptive FDI entails the following
challenges.

1. Obtaining a linear parameter varying state-space model of the power generation system of
a WT, which is based on nonlinear power curves and consists of two operation modes. To
do so, we define a parameter vector containing the WS acting on a WT and the difference
between the demanded and the generated power. In this work, the power curves in the WF
benchmark [215] are utilized. In reality, these curves can be obtained through different
methods such as random forest, method of bins, k-nearest neighbours or support vector
regression [115].

2. Modeling the stochastic behavior of the parameters as Markovian processes. Obtaining a
suitable partition of the parameter set taking its discontinuities into account. Computing
the transition probabilities between subsets.

3. Building an augmented model-based observer for FE of decreased power generation in a
WT. Designing the observer through a multiobjective optimization problem that guaran-
tees certain optimal trade-off between the robustness against disturbances/uncertainties
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and the sensitivity to faults. To do so, we use the H∞ performance of the observer, which
we formulate using linear matrix inequalities (LMIs) for Markovian processes and convex
polytopic sets.

4. Building an adaptive threshold-based decision mechanism for FDI of decreased power
generation in a WT. Proposing an algorithm for computing a tight adaptive threshold
piecewise on the WT operation mode. Tuning the algorithm with fault-free datasets using
data-driven techniques.

5. Extending the WT level model-based FE and data-driven FDI approach to the WF level.
To do so, we group the WTs operating under similar wind conditions and we use a bank of
the previous observers and decision mechanisms that automatically merges the information
provided by the temporal and spatial relations in the WF according to the degree of shared
uncertainty among the WTs.

8.1.2 Structure and notation

The reminder of this chapter is organized as follows. Section 8.2 gives the problem formulation
and Section 8.3 presents a Markovian jump modeling of the power generation system of a WT.
In Section 8.4, we develop a wind turbine level model-based FE strategy and, in Section 8.5,
the FE output is utilized in a data-based FDI algorithm. Then, in Section 8.6, these strategies
are extended to the wind farm level. Simulation results are reported in Section 8.8 followed by
some concluding remarks in Section 8.9.

Let a be some vector and A and B be some matrix. The size of a is denoted as na and a[i]
denotes the i-th element in a. A � 0 means that A is negative semidefinite and similar applies
to �. The direct sum is represented as ⊕ and the Kronecker product is represented as ⊗. In is
the identity matrix of size n× n, 1n×m is a matrix of ones of size n×m and 0n×m is the zero
matrix of size n×m (all of these matrices being of appropriate dimensions when the subindex is
omitted). Expected value and absolute value are denoted by E{·} and | · |. Let xk be a vector of
stochastic signals at a sample k. We write ‖xk‖∞ , maxi |xk[i]| for the max norm of vector xk.
We write ‖x‖∞ , maxk maxi |xk[i]| for the l∞ norm of signal x, ‖x‖22 , limK→∞

∑K
k=1 x

T
k xk

for its l2 norm and ‖x‖2RMS = limK→∞ 1
K

∑K
k=1 x

T
k xk for its RMS norm.

8.2 Problem statement

8.2.1 Wind farm benchmark description

Consider the WF benchmark [215] with 9 WTs of 4.8 MW and the layout shown in Fig. 8.1. We
name the WTs according to the existing wind direction (see the example in Fig. 8.1) and we
consider that the wind is perpendicular to the rows of WTs (which are numbered as i = 1, . . . , Y
and Y is the number of rows for the considered wind direction) and parallel to the columns of
WTs (which are numbered as j = 1, . . . , Z and Z is the number of columns for the considered



8.2. Problem statement 171

3

l1 l2l0

j

2

1

i1 2 3

Figure 8.1. Layout of the WF benchmark (l0 = 1150 m and l1 = l2 = 1138.44 m).→: Wind direction,©: Wind
turbine, �: Wind mast.

wind direction). We denote the distance between two rows i and i+ 1 as li. There is a wind
mast that measures the wind speed at row i = 0:

v0 = v̂0 + ṽ0, (8.1)

with v0 being the wind speed at the wind mast, v̂0 being its measurement and ṽ0 being the
corresponding sensor noise. The wind speed acting on the WT (i, j), denoted as vi,j , can be
modeled as

vi,j = vi + ṽi,jt , (8.2)

where vi is the mean wind speed acting on the WTs in the i-th row and ṽi,jt is a zero-mean
turbulence component of known variance (σ2

t = 0.2 m2/s2).

The static available power in the WT (i, j), denoted as P i,js , represents the theoretical
maximal generated power in the WT and it depends on vi,j as shown in Fig. 8.2. This power
curve is extensively used in monitoring of wind farms (e.g., [115,196]) and it consists of four zones
delimited by three different wind speeds: the cut-in (vcut−in =4 m/s), the rated (vrated =12.5
m/s) and the cut-out (vcut−out =25 m/s) wind speed [54]:

• Zone I with vi,j < vcut−in. In this zone, the aerodynamic torque is not sufficient to
overcome the WT inertia and P i,js = 0.

• Zone II or partial load region with vcut−in ≤ vi,j < vrated. Maximum power point tracking
(MPPT) techniques are performed in this region. For MPPT, the pitch angle is held at
zero degrees and the generator moment is adjusted to keep the power coefficient of the
WT at a maximum value. Hence, P i,js becomes a nonlinear function of vi,j .

• Zone III or full load region with vrated ≤ vi,j < vcut−out. In this zone, the pitch angle is
controlled to keep the static available power not higher than the WT nominal power (i.e.,
P i,js = Pnom).

• Zone IV with vi,j ≥ vcut−out. The turbine is pitched out to stop the rotation due to
security reasons and P i,js = 0.
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Figure 8.2. Power curve P i,js (vi,j) and continuous and discrete transfer coefficient curves τs(vi,j) and a(vi,j).
Values borrowed from [215].

According to [215], changes in the generated power will be instantaneous; thus, the static
available power in the WT (i, j), denoted as P i,js , is filtered by a first-order transfer function.
This transfer function is characterized by the wind-dependent transfer coefficient τs in Fig. 8.2.
In all, the dynamic available power in a WT, named after P i,ja , is modeled as

Ṗ i,ja = τs(vi,j)
(
P i,js (vi,j)− P i,ja

)
. (8.3)

The WF controller feeds each turbine with the WT static power reference, denoted as Pt.
The WT also behaves as a low-pass filter to changes in the power reference; thus, the dynamic
power reference of a turbine, P r, fulfils

Ṗr = τr
(
Pt − Pr

)
, (8.4)

where τr is a known transfer function coefficient (τr = 1.2 rad/s).

Remark 8.1. The network operator demands certain power to the WF that ensures a reliable
connection of the farm to the electrical grid. This power demand is determined in different
modes such as delta, absolute and frequency regulation modes [15]. The WF controller computes
the WF static power reference, denoted as Pf , as a function of this demanded power and the
power generated by the WF. See [126, 160] for examples of WF power reference computation
algorithms. Then, the WF controller feeds each turbine with the WT static power reference, Pt.
In this case, the simple distribution algorithm Pt = Pf

Y Z is utilized.

Depending on the values of the dynamic available power P i,ja and the dynamic power refer-
ence Pr, each WT operates in one of the following two main working modes:

• If P i,ja < Pr, the control objective is to maximize the amount of power harvested from the
wind and, thus, the generated power equals the dynamic available power in the WT.
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Figure 8.3. Structure of the WF benchmark. The signals which are available for FE and FDI are depicted in
red.

• If P i,ja ≥ Pr, the control objective is to maintain the generated electrical power equal to
the reference.

This behavior can be modeled as

P i,j =
{
P i,ja − f i,j + si,j if P i,ja < Pr
Pr − f i,j + si,j otherwise , (8.5)

where P i,j is the power generated by the turbine (i, j) and si,j is a disturbance modeling the
drive train oscillations that influence the electrical power generation (i.e., si,j = γp sin(σp 2π t)
with γp = 1000 W and σp = 10 Hz). The additive element f i,j is the fault representing a
decreased power generation and it is caused by changes in the aerodynamics of the WT due to
phenomena such as debris build-up or blade erosion.

The power P i,j is measured by a sensor whose noise, wi,j , can be realistically described by
a zero-mean Gaussian noise with variance σ2

w = 2.5 · 105 W2. Denoting the generated power
measurement as yi,j , we have

yi,j = P i,j + wi,j . (8.6)

8.2.2 FE and FDI signals

The objective of this chapter is to develop an estimation and diagnosis strategy of the faults
representing a decreased power generation in the WTs of the WF.

The generated power measurements yi,j (i = 1, . . . , Y , j = 1, . . . , Z), the dynamic power
reference P r and the wind speed measurement at the wind mast v̂0 , are available for FE and
FDI (see Fig. 8.5). We assume that the wind speed at the WTs is not measured and, thus, vi,j
must be estimated. As detailed in Appendix C.2, the measurements v̂0 can be used to estimate
the mean wind speed vi through some propagation strategy. Denoting the propagated mean
wind speed as v̂i, it yields

vi,j = v̂i + ṽip + ṽi,jt , (8.7)
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where ṽip is the propagation error (i.e., ṽip = vi − v̂i), which derives from both the propagation
model mismatch and the use of the noisy measurement v̂0 in the propagation scheme. Note that
the total wind speed estimation error verifies

ṽi,j = ṽip + ṽi,jt ,

where the propagation error ṽip is common for all the turbines in the i-th row while the turbulence
ṽi,jt is different for each turbine (i, j).

It is well known that most continuous-time control systems are implemented digitally [323].
Thus, we present a discrete-time FE and FDI algorithm1. The following assumption on the fault
f i,j is made.

Assumption 8.1. The variation δi,j of the fault f i,j (i.e., δi,jk = f i,jk+1−f
i,j
k ) belongs to l2[0,∞).

Remark 8.2. Assumption 8.1 is common in FE and it considers faults whose variations are
slow with respect to the dynamics of the system and it can cover the typical faults in engineering
systems such as abrupt faults and incipient faults [99,323]. In any case, the strategies developed
in this chapter can be easily extended to faults with more complex dynamics (cf. [307]).

8.3 Markovian jump discrete state-space modeling

8.3.1 Parameter varying discrete state-space modeling

First, we develop the discrete state-space model of the power generation system described in
Section 8.2. Define

a(vi,j) = e−τs(v
i,j)Ts , b(vi,j) = 1− a(vi,j), (8.8)

with Ts being the sampling time that we fix to 1 s, see Fig. 8.2. Defining the state xi,j = P i,ja
and the inputs u(vi,j) = P i,js (vi,j) and r = Pr; it yields,

xi,jk+1 = a(vi,jk )xi,jk + b(vi,j)u(vi,jk ), (8.9a)
yi,jk = c(∆i,j

k )xi,jk + d(∆i,j
k ) rk − f i,jk + si,jk + wi,jk , (8.9b)

where ∆i,j is the power difference defined as

∆i,j = P i,ja − Pr = xi,j − r (8.10)

and with

c(∆i,j) =
{

1 if ∆i,j < 0
0 otherwise , (8.11a)

d(∆i,j) =
{

0 if ∆i,j < 0
1 otherwise . (8.11b)

1It would be also possible to straightforwardly formulate the continuous-time version of the FE and FDI
strategy presented in this chapter and to discretize the obtained result for implementation.
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The faults verifying Assumption 8.1 can be modeled through

f i,jk+1 = f i,jk + δi,jk , (8.12)

where δi,j is the fault variation. Defining the extended state vector zi,j =
[
xi,j f i,j

]T
and the

parameter vector θi,j =
[
vi,j ∆i,j

]T
, we augment the system (8.9) into

zi,jk+1 =
[
a(vi,jk ) 0

0 1

]
︸ ︷︷ ︸

A(θi,j
k

)

zi,jk +
[
b(vi,jk )

0

]
︸ ︷︷ ︸
B(θi,j

k
)

u(vi,jk )︸ ︷︷ ︸
u(θi,j

k
)

+
[
0
1

]
︸︷︷︸
E

δi,jk , (8.13a)

yi,jk =
[
c(∆i,j

k ) −1
]

︸ ︷︷ ︸
C(θi,j

k
)

zi,jk + d(∆i,j
k )︸ ︷︷ ︸

D(θi,j
k

)

rk + si,jk + wi,jk , (8.13b)

f i,jk =
[
0 1

]
︸ ︷︷ ︸

F

zi,jk . (8.13c)

For ease of readability, let us omit hereafter the dependence of the variables on the number
of turbine (i, j) (e.g., zk stands for zi,jk ). The extended system model (8.13) results in

zk+1 = A(θk) zk +B(θk)u(θk) + E δk, (8.14a)
yk = C(θk) zk +D(θk) rk + sk + wk, (8.14b)
fk = F zk. (8.14c)

The system dynamics (8.14) depends on the system matrices A(θk), B(θk), C(θk) and D(θk).
According to (8.8) and (8.13), the behavior of A(θk) and B(θk) switches between the estimated
wind speed zones as shown in Fig. 8.2. According to (8.11) and (8.13), C(θk) and D(θk) are
switching matrices whose value depends on the WT working mode determined by the sign of
the parameter ∆k.

8.3.2 Markovian jump discrete state-space modeling

The parameters v and ∆ can be considered to be bounded by the sets

v ∈ Ωv, Ωv := {v
¯
< v < v̄}, (8.15a)

∆ ∈ Ω∆, Ω∆ := {∆
¯
< ∆ < ∆̄}, (8.15b)

where v
¯
, v̄, ∆

¯
and ∆̄ are the minimum and maximum possible values of these parameters (which

we fix to v
¯

= 0 m/s, v̄ = 30 m/s, ∆
¯

= −4.8 MW and ∆̄ = 4.8 MW). The parameter vector

θ =
[
v

∆

]
lies then in Θ = Ωv × Ω∆. Let us partition the parameter set Θ into N subsets Θ(p)

(i.e., Θ = {Θ(p)}p∈{1,...,N}) by dividing Ωv into Nv intervals Ω(pv)
v (i.e., Ωv = {Ω(pv)

v }pv∈{1,...,Nv})
and Ω∆ into N∆ intervals Ω(p∆)

∆ (i.e., Ω∆ = {Ω(p∆)
∆ }p∆∈{1,...,N∆}), i.e.,

Θ =
{

(Ω(1)
v ,Ω(1)

∆ )︸ ︷︷ ︸
Θ(1)

, . . . , (Ω(1)
v ,Ω(p∆)

∆ ), . . . , (Ω(pv)
v ,Ω(1)

∆ ), . . . , (Ω(pv)
v ,Ω(p∆)

∆ )︸ ︷︷ ︸
Θ(N)

}
(8.16)
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Θ(1)

Θ(N)

∆

v

Ω
(1)
v Ω
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Ω
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∆

Ω
(N∆)
∆

∆
v

∆

v

Figure 8.4. Partition of the two-dimensional parameter set.

with N = Nv · N∆ (see Fig. 8.4). The partition is one such that each interval Ω(pv)
v lies in a

single wind speed zone and each interval Ω(p∆)
∆ lies in a single WT working mode (see Table

8.1).

For such partition, the system state-space matrices C(θk) and D(θk) associated with θk ∈
Θ(p) are constant and they can be expressed as

C(θk) = Cp, D(θk) = Dp. (8.17)

The system state-space matrices A(θk) and B(θk) associated with θk ∈ Θ(p) are constant if the
interval Ω(pv)

v defining Θ(p) (i.e., Θ(p) = (Ω(pv)
v ,Ω(p∆)

∆ )) lies in the wind speed zones I, III or IV
(i.e., Ω(pv)

v ∈ [v
¯
, vcut−in)∪ [vrated, v̄)) because the discrete transfer coefficient a(v) is constant in

these zones. If the interval Ω(pv)
v lies in the zone II (i.e., Ω(pv)

v ∈ [vcut−in, vrated)), these matrices
are not constant because the discrete transfer coefficient a(v) is described by the function in
Fig. 8.2. In all, we express the matrices A(θk) and B(θk) associated with θk ∈ Θ(p) as

A(θk) =
M∑
m=1

αmp (θk)Amp , B(θk) =
M∑
m=1

αmp (θk)Bm
p , (8.18)

with ∑M
m=1 α

m
p (θk) = 1 and 0 ≤ αmp (θk) ≤ 1 for m = 1, . . . ,M . The matrix Amp denotes the

m-th vertex of the convex polytope in which A(θk) lies whenever θk ∈ Θ(p). Note that in the
wind speed zones I, III and IV, we have Amp = Ap and αmp = 1/M for l = 1, . . . ,M . Similar
applies to B(θk).

Define the membership signal ξv whose value at a sample k equals the number pv of the
interval Ω(pv)

v in which the wind speed v lies at the sample k; similar applies to ξ∆ w.r.t. ∆ and
to ξ w.r.t. θ:

ξvk = pv if vk ∈ Ω(pv)
v , (8.19a)

ξ∆
k = p∆ if ∆k ∈ Ω(p∆)

∆ , (8.19b)
ξk = p if θk ∈ Θ(p). (8.19c)

Research has shown that the stochastic behavior of the mean wind speed can be represented as
a Markovian process [40,198]. This behavior has been exploited in recent WT control strategies
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pv Wind speed boundaries Wind zone
1 v

¯
≤ v < v1 Zone I

2 v1 ≤ v < v2 Zone I
...

...
...

n1 vn1−1 ≤ v < vcut−in Zone I
n1 + 1 vcut−in ≤ v < vn1+1 Zone II

...
...

...
n2 vn2−1 ≤ v < vrated Zone II

n2 + 1 vrated ≤ v < vn2+1 Zone III
...

...
...

n3 vn3−1 ≤ v < vcut−out Zone III
n3 + 1 vcut−out ≤ v < vn3+1 Zone IV

...
...

...
Nv vNv−1 ≤ v < v̄ Zone IV

p∆ Power difference boundaries Working mode
1 ∆

¯
≤ ∆ < ∆1 Pa < Pr

2 ∆1 ≤ ∆ < ∆2 Pa < Pr
...

...
...

n′1 ∆n′1−1 ≤ ∆ < 0 Pa < Pr

n′1 + 1 0 ≤ ∆ < ∆n′1+1 Pa ≥ Pr
...

...
...

N∆ ∆N∆−1 ≤ ∆ < ∆̄ Pa ≥ Pr

Table 8.1. Partition of the parameter sets Ωv and Ω∆.

as the ones in [63, 184,185]. Motivated by this research, we assume that that {ξvk} is a discrete
homogeneous Markov chain taking values in the finite set {1, . . . , Nv}. Since the mean wind
speed affects the WT working mode, we also assume that {ξ∆

k } is a discrete homogeneous
Markov chain taking values in the finite set {1, . . . , N∆}. Both assumptions are considered in
the following assumption over {ξk}.

Assumption 8.2. The membership {ξk} is governed by a discrete homogeneous Markov chain
whose states are in the finite set S = {1, . . . , N} with the transition probability matrix

Π =


π11 · · · π1N

...
...

...
πN1 · · · πNN

 ∈ RN×N (8.20)

and πpq being the transition probability defined as

πpq = Pr{ξk+1 = q|ξk = p}, (8.21)
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where
∑N
q=1 πpq = 1 for any p ∈ S.

Remark 8.3. ( [257]) Provided (8.16), the transition probability matrix Π satisfies Π = Πv ⊗
Π∆, with

Πv = [πvpvqv ]pv ,qv∈{1,...,Nv},
Π∆ = [π∆

p∆q∆ ]p∆,q∆∈{1,...,N∆},

πpvqv = Pr{ξvk+1 = qv|ξvk = pv},
πp∆q∆ = Pr{ξ∆

k+1 = q∆|ξ∆
k = p∆}.

Remark 8.4. ( [210]) The probabilities πpq can be obtained through numerical simulations by
sampling the data in the separate subsets Θ(p) and computing

πpq = observed transitions from state p to q
observed occurrences of state p .

Similar applies to πpvqv and πp∆q∆.

8.4 FE at a wind turbine level

8.4.1 FE architecture

To achieve FE, we build the following model-based observer for the extended system (8.14):

ẑk+1 =A(θ̂k) ẑk +B(θ̂k)u(θ̂k) + L(θ̂k)
(
yk − C(θ̂k) ẑk −D(θ̂k) rk

)
, (8.22a)

f̂k =F ẑk +K(θ̂k)
(
yk − C(θ̂k) ẑk −D(θ̂k) rk

)
, (8.22b)

where θ̂ =
[
v̂ ∆̂

]T
is the estimated parameter vector in which v̂ is the open-loop propagated

wind speed (see (8.7)) and ∆̂ is the closed-loop estimated power difference computed as ∆̂ =
P r − x̂ (with x̂ being the first state of ẑ)2. The estimated parameter vector θ̂ does also lie in
the set Θ, partitioned into the subsets {Θ(p)}p∈{1,...,N} as explained in Section 8.3.2.

The matrices L(θ̂k) ∈ R2×1 and K(θ̂k) ∈ R1 are the parameter-dependent design gain
matrices of appropriate dimensions. Provided the switching behavior of the system state-space
matrices in (8.17)-(8.18), we fix L(θ̂k) ∈ R2×1 and K(θ̂k) ∈ R1 as

L(θ̂k) = Lp if θ̂k ∈ Θ(p), (8.23a)
K(θ̂k) = Kp if θ̂k ∈ Θ(p), (8.23b)

where Lp and Kp are constant matrices associated to θ̂k ∈ Θ(p) and must be designed.
Given (8.19), these matrices can be also expressed as L(θ̂k) = Lp if ξ̂k = p and K(θ̂k) = Kp if
ξ̂k = p.

2It would be possible to define ∆̂ as the open-loop estimated power difference computed as ∆̂ = P r −
τs(v̂i,j)
s+τs(v̂i,j) P

i,j
s (v̂i,j). We choose to use the closed-loop estimated power difference in order to reduce the parameter

estimation error.
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Remark 8.5. Note that certain degree of conservatism is introduced when using switched ob-
server gain matrices in the form of (8.23) for the regions lying in the wind speed zone II, where
the state-space matrices A(θ̂k) and B(θ̂k) are not constant (see (8.18)). Even though switched
polytopic gain matrices could be used instead, the small variations experienced by these matrices
(see Fig. 8.2) justify the choice in (8.23) that reduces the observer complexity.

Define the extended state estimation error as z̃k = zk− ẑk and the FE error as f̃k = fk− f̂k.
It follows that

z̃k+1 =
(
A(θ̂k)− L(θ̂k)C(θ̂k)

)
z̃k + E δk + R̄ gk − L(θ̂k)

(
Rhk + sk + wk

)
, (8.24a)

f̃k =
(
F −K(θ̂k)C(θ̂k)

)
z̃k −K(θ̂k)

(
Rhk + sk + wk

)
, (8.24b)

with R̄ =
[
1 0

]T
. The error depends then on the fault variation δk, the oscillation sk, the noise

wk and the disturbances gk = gk(θ̂k, θk) and hk = hk(θ̂k, θk), which stem from using θ̂ instead
of θ in the estimation algorithm. As (8.24) refers to the turbine (i, j), gk and hk refer in fact to
gi,jk and hi,jk defined as

gi,jk =
(
a(vi,jk )− a(v̂ik)

)
xi,jk +

(
ū(vi,jk )− ū(v̂ik)

)
, (8.25a)

hi,jk =
(
c(∆i,j

k )− c(∆̂i,j
k )
)
xi,jk +

(
d(∆i,j

k )− (∆̂i,j
k )
)
rk, (8.25b)

with ū(vi,jk ) = b(vi,jk )u(vi,jk ). Specifically, gi,jk stands for the disturbance derived from the open-
loop wind propagation strategy and hi,jk is the disturbance derived from the closed-loop dynamic
available power estimation strategy. Note that hi,jk is in fact equal to 0 (if the WT operating
mode is correctly estimated) or to the difference ∆i,j (otherwise).

Provided (8.7), gi,jk , which is caused by the total wind speed estimation error, can be ex-
pressed as

gi,jk = eik + εi,jk , (8.26)

where eik is caused by the wind propagation error and εi,jk is caused by the wind turbulence, i.e.,

eik =
(
a(vik)− a(v̂ik)

)
xi,jk +

(
ū(vik)− ū(v̂ik)

)
, (8.27a)

εi,jk =
(
a(vi,jk )− a(vik)

)
xi,jk +

(
ū(vi,jk )− ū(vik)

)
. (8.27b)

In (8.27), the first summands are negligible w.r.t. to the second summands. Hence, we omit the
dependence of the disturbance ei on the column j. The following assumption on ei, εi,j and hi,j
is made.

Assumption 8.3. The disturbances ei, εi,j and hi,j can be considered to be bounded as

‖ei‖∞ ≤ ēp, ‖εi,j‖∞ ≤ ε̄p, ‖hi,j‖∞ ≤ h̄p, if θ ∈ Θ(p). (8.28)
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Details on the computation of these bounds are included in Appendix D.3.1. Note that it
would have been possible to consider a row-dependent bound of the disturbance caused by
the propagation error (i.e., |ei| ≤ ēip) because this error generally increases with the distance
to the wind mast. For sake of simplicity, we introduce some conservatism by neglecting this
dependence. Hence, ēp verifies ēp = maxi ēip.

For brevity, we omit again the dependence on the number of row i and on the number
column j. Taking (8.26) and (8.28) into account, the summands R̄ gk and hk in (8.24) can be
expressed as

R̄ gk = G(θ̂k)λk +G(θ̂k)µk, hk = H(θ̂k)ϕk, (8.29)

with λk ∈ [−1, 1], µk ∈ [−1, 1] and ϕk ∈ [−1, 1] satisfying

λk = ek/ēp, µk = εk/ε̄p, ϕk = hk/h̄p, (8.30)

if θk ∈ Θ(p) and where G(θ̂k), G(θ̂k) and H(θ̂k) are defined as

G(θ̂k) =Gp if θ̂k ∈ Θ(p), Gp = R̄ ēp, (8.31a)
G(θ̂k) =Gp if θ̂k ∈ Θ(p), Gp = R̄ ε̄p, (8.31b)
H(θ̂k) =Hp if θ̂k ∈ Θ(p), Hp = h̄p. (8.31c)

In all, we rewrite (8.24) as

z̃k+1 =A(θ̂k) z̃k + B(θ̂k)Wk + E δk, (8.32a)
f̃k =C(θ̂k) z̃k +D(θ̂k)Wk, (8.32b)

with

A(θ̂k) =A(θ̂k)− L(θ̂k)C(θ̂k),
C(θ̂k) =F −K(θ̂k)C(θ̂k),

B(θ̂k) =
[
G(θ̂k) G(θ̂k) −L(θ̂k)H(θ̂k) −L(θ̂k) −L(θ̂k)

]
,

D(θ̂k) =
[
0 0 −K(θ̂k)H(θ̂k) −K(θ̂k) −K(θ̂k)

]
,

Wk =
[
λk µk ϕk sk wk

]T
.

Note that Ap(θ̂k), Bp, Cp and Dp are defined using the corresponding matrices associated with
θk ∈ Θ(p) (e.g., Ap(θ̂k) = ∑M

m=1 α
m
p (θ̂k)(Amp − LpCp) and Cp = F −KpCp).

8.4.2 FE design

The FE error caused by δ describes the fault sensitivity of the observer and the error caused byW
describes the robustness of the observer against disturbances and noises. We characterize them
through theH∞ performance of the observer w.r.t. δ andW, respectively. To that end, we use the
formulation based on LMIs in the following theorem. For the sake of generality, we denote the size
of the inputs in (8.32) as nδ, nλ, nµ, nϕ, ns and nw verifying nδ = nλ = nµ = nϕ = ns = nw = 1
in this case of FE at a WT level.
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Theorem 8.1. Consider the observer (8.22) applied to the system (8.14). If there exist positive
scalars γλ, γµ, γϕ, γs, γw and γδ; full matrices of appropriate dimensions Xp, Kp and Vp;
and symmetric matrices of appropriate dimensions Qp, for p, q = 1, . . . , N and m = 1, . . .M
fulfilling the LMIs

Ξmp =


Ωp Λ̄mT

p Φ̄T
p 0

Λ̄mp Qp 0 CTp
Φ̄p 0 Γ ΥT

p

0 Cp Υp I

 � 0, (8.33)

with

Ωp =
N⊕
q=1

Vp + V T
p −Qq,

Λ̄mp =
[√
πp1 Λmp . . .

√
πpN Λmp

]
,

Λmp =VpA
m
p −XpCp,

Φ̄p =
[√
πp1 Φp . . .

√
πpN Φp

]
,

Φp =
[
Vp Gp VpGp −XpHp −Xp −Xp VpE

]
,

Υp =
[
0 0 −KpHp −Kp −Kp 0

]
,

Cp =F −KpCp,

Γ =γλ Inλ ⊕ γµ Inµ ⊕ γϕ Inϕ ⊕ γs Ins ⊕ γw Inw ⊕ γδ Inδ ,

then defining Lp = V −1
p Xp, the following statements hold for all θ̂k ∈ Θ.

1. In the absence of disturbances, noises and faults (i.e., Wk = 0 and δk = 0), the extended
state estimation error (8.32) converges asymptotically to zero in average.

2. Under null initial conditions, the expected value of the FE error is bounded as

E{‖f̃‖2RMS} <γλ nλ ‖λ‖2∞ + γµ nµ ‖µ‖2∞ + γϕ nϕ ‖ϕ‖2∞ + γs ‖s‖2RMS +
γw ‖w‖2RMS + γδ nδ ‖δ‖2∞, (8.34)

with E{‖f̃‖2RMS} = limK→∞ 1
K

∑K
k=1 E{f̃Tk f̃k|θ̂k−1 ∈ Θ(p)}.

Proof. If (8.33) holds for p, q = 1, . . . , N , we have that Qq � 0 and that Vp is a nonsingular
matrix because Vp+V T

p −Qq � 0. Hence, we can state that (Qq−Vp)Q−1
q (Qq−Vp)T � 0 which

implies that
Vp + V T

p −Qq � VpQ−1
q V T

p .

Thus, the matrix inequalities which result from replacing Vp + V T
p −Qq by VpQ−1

q V T
p in (8.33)

are also positive definite. Let us substitute Xp by Vp Lp and apply a congruence transformation
by

(⊕N
q=1 V

−1
p

) ⊕ I to the result. Multiplying the matrix inequality by αmp (θ̂k), summing for
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m = 1, . . . ,M , taking Schur’s complements, pre-multiplying the result by
[
z̃Tk WT

k δTk

]
and

post-multiplying by its transpose lead to
N∑
q=1

πpq
(
Ap(θ̂k)z̃k + BpWk + Eδk

)T
Qq
(
Ap(θ̂k)z̃k + BpWk + E δk

)
− z̃Tk Qp z̃k+

f̃Tk f̃k − γλ λTk λk − γµ µTk µk − γϕ ϕTk ϕk − γs sTk sk − γw wTk wk − γδ δTk δk < 0,
(8.35)

for all p = 1, . . . , N and where we have taken into account that ∑M
m=1 α

m
p (θ̂k) = 1.

Now, let us define the Lyapunov function Vk = z̃Tk Q(θ̂k) z̃k equal to Vk = z̃Tk Qp z̃k for
θ̂k ∈ Θ(p) and p = 1, . . . , N .

1. In the absence of disturbances noises and faults (i.e.,Wk = 0 and δk = 0), expression (8.35)
leads to

z̃Tk

( N∑
q=1

πpqAp(θ̂k)QqAp(θ̂k)
)
z̃k − z̃Tk Qp z̃k < 0,

for all p = 1, . . . , N , which assures E{Vk+1|θ̂k ∈ Θ(p)} − Vk < 0 guaranteeing that the
extended state estimation error (8.32) converges asymptotically to zero in average for all
θ̂k ∈ Θ.

2. For brevity, let us denote E{Vk+1|θ̂k ∈ Θ(p)} as E{Vk+1|θ̂k} and let us not include in the
next that the inequalities are fulfilled for all θ̂k ∈ Θ. Taking conditional expectation given
θ̂k−1 over expression (8.35) leads to

E{Vk+1|θ̂k} − E{Vk|θ̂k−1}+ E{f̃Tk f̃k|θ̂k−1} − γλ nλ‖λ‖2∞ − γµ nµ‖µ‖2∞−
γϕ , nϕ‖ϕ‖2∞ − γs ‖s‖2RMS − γw ‖w‖2RMS − γδ nδ‖δ‖2∞ < 0,

(8.36)

because E{Vk+1|θ̂k|θ̂k−1} = E{Vk+1|θ̂k} and the exogenous signals are independent of
θ̂k−1. In (8.36), we have also taken into account that λ is a deterministic signal and

E{λTk λk} = λTk λk ≤ nλ‖λ‖2∞

(similar applies to µ, ϕ and δ), and that E{sTk sk} = ‖s‖2RMS because sk is zero-mean
(similar applies to wk).
Under null initial conditions (V0 = 0), adding the aforementioned expression from k = 0
to k = K − 1 leads to

K−1∑
k=0

E{f̃Tk f̃k|θ̂k−1} <
K−1∑
k=0

(
γλ nλ‖λ‖2∞ + γµ nµ‖µ‖2∞ + γϕ nϕ‖ϕ‖2∞+

γs ‖s‖2RMS + γw ‖w‖2RMS + γδ nδ‖δ‖2∞
)
,

because ∑K−1
k=0

(
E{Vk+1|θ̂k} − E{Vk|θ̂k−1}

)
= E{VK+1|θ̂K} and E{VK+1|θ̂K} > 0. Divid-

ing this expression by K and taking the limit when K tends to infinity leads to (8.34).
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There exists thus a trade-off between ameliorating the fault tracking ability of the observer
and its robustness [106]. From the practical viewpoint, it is of considerable interest to achieve
certain tracking ability and to minimize the effect of the disturbances and noises on the es-
timations [327]. Thus, we propose to design the observer gain matrices through the following
optimization problem:

minimize γλnλ‖λ‖2∞ + γµnµ‖µ‖2∞ + γϕnϕ‖ϕ‖2∞+
γs ‖s‖2RMS + γw ‖w‖2RMS

subject to γδ ≤ γ̄δ,
Ξmp � 0, ∀p,m

(8.37)

along the variables γλ, γµ, γϕ, γs, γw, γδ, Xp, Kp, Vp, Qp and Pp (p = 1, . . . , N) and with γ̄δ
being the required H∞ performance describing the fault tracking ability of the observer.

Remark 8.6. The use of the signals (8.30) in the design process allows considering the differ-
ences in the bounds (8.28) among the different subsets Θ(p). Effectively, we now have that the
value of these bounds is introduced through the matrices Gp, Gp and Hp and ‖λ‖2∞ = ‖µ‖2∞ =
‖ϕ‖2∞ = 1. If the signals e, ε and h were used instead, the maximum value of the bounds (8.28)
(e.g., maxp ēp) would be the only information introduced in the design. Note also that if the
bounds (8.28) are not completely accurate, ‖λ‖2∞, ‖µ‖2∞ and ‖ϕ‖2∞ can be considered as tuning
parameters regarding the bounding accuracy. Similar applies to ‖s‖2RMS and ‖w‖2RMS that can
be easily derived from the known parameters γp and σw but whose values can be increased with
the uncertainty over these parameters.

Taking Remark 8.5 and Remark 8.6 into account, we deduce that the conservatism is reduced
when a lot of gridding intervals are utilized for the partition of the set Θ. Hence, the density N
of the grid {Θ(p)}p∈{1,...,N} is to be determined from a trade-off between having a few gridding
intervals that ensure reduced computational burden but introduce conservatism or having a lot
of gridding intervals causing heavy computational times but reduced performance conservatism
[56, 218]. As specified in Appendix D.3.1, we choose Nv = 6 and N∆ = 4. This gridding is a
posteriori validated through the numerical simulations in Section 8.8.

8.5 FDI at a Wind Turbine Level

We set the following decision mechanism for FDI:{
if |f̂k| ≥ Jk , Fault
otherwise , No fault , (8.38)

where J is an adaptive threshold covering the uncertainties affecting the fault estimate in fault-
free conditions. As recalled in [71], the model-based setting of thresholds usually leads to too
conservative thresholds which result in poor fault diagnosability. It is the state of the art in real
applications to optimally set thresholds on the basis of tests in the real application environment.
In this context, we propose to compute the threshold through a multivariate linear model over
the estimated parameters θ̂ and to obtain the coefficients of this model using a set of fault-free
training data as detailed hereafter.



184 8. Estimation and adaptive diagnosis of decreased power in wind farms: a Markovian jump system approach

Remark 8.7. Norm-based constant thresholding can be performed using the RMS-norm bound
of the FE error in (8.34) (with γδ = 0). Assuming zero-mean disturbances, one can apply
the Chebyshev’s inequality and obtain a stochastic threshold for certain confidence level. How-
ever, this approach ignores the real statistical distribution of the error and leads to too loose
bounds [229]. Alternatively, assuming bounded noises, a deterministic threshold can be directly
obtained by bounding the peak-norm of the FE error due to disturbances through the l1-norm
of (8.22). However, this approach is even more conservative because it bounds the worst-case
scenario, which rarely occurs in practice.

Provided the switching behavior of the system, we use different coefficients for each WT
working mode. For this purpose, we define η̂M (M = 1, 2, 3) as a signal indicating whether the
WT is estimated to be operating in mode M :

η̂1
k =

{
1 if ξ̂∆

k ∈ [1, n′1 − n′]
0 otherwise , (8.39a)

η̂2
k =

{
1 if ξ̂∆

k ∈ (n′1 − n′, n′1 − n′]
0 otherwise , (8.39b)

η̂3
k =

{
1 if ξ̂∆

k ∈ (n′1 − n′, N∆]
0 otherwise , (8.39c)

with ξ̂∆
k being the estimated membership function of power difference (i.e., ξ̂∆

k = p∆ | ∆̂k ∈
Ω(p∆)

∆ ) and n′ being a design parameter that defines an uncertain intermediate mode. Effectively,
mode M = 1 refers to the cases where ∆̂k < ∆n′1−n′ ≤ 0 and the generated power equals the
dynamic available power in the WT. Mode M = 3 refers to the cases where 0 ≤ ∆n′1−n′ ≤ ∆̂k

and the generated power equals the dynamic power reference (see Table 8.1). For its part, mode
M = 2 is the transition mode defined by n′ > 0 that takes the working mode estimation error
into account. In all, the proposed multivariate linear model for computing the adaptive threshold
is

Jk = Xk β, (8.40)

with Xk being the variable vector defined as

Xk =
[
η̂1
k η̂2

k η̂3
k η̂1

kv̂k η̂2
kv̂k η̂3

kv̂k η̂1
k∆̂k η̂2

k∆̂k η̂3
k∆̂k

]
and β ∈ R9×1 being the coefficient vector. Thus, in Mode M , the threshold verifies Jk =
β[M ] + v̂k β[M + 3] + ∆̂k β[M + 6].

Remark 8.8. Less conservative thresholds would be achievable by taking account of all the
switchings of θ̂k among the subsets of the parameter vector. To do so, the alternative variable
vector X̄k =

[
ˆ̄η1
k . . . ˆ̄ηNk

]
⊗
[
1 θ̂Tk

]
(with β̄ ∈ R3N×1) would be used instead. Here, ˆ̄ηpk is equal

to 1 if ξ̂k = p and it is equal to 0 otherwise. Similarly, it would be possible to take account of the
process dynamic behavior by using the alternative variable vector X̄ ′k =

[
Xk . . . Xk−O

]
(with

β̄′ ∈ R3O×1 and O being the number of past considered samples). However, the simplified form
in (8.40) reduces the complexity of the threshold computation while it has provided satisfactory
results in the simulations in Section 8.8.
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To obtain β, we collect the data of NT samples in fault-free conditions, we run the estima-
tor (8.22) and we construct the matrices

X =


X1
...

XNT

 , F̂ =


|f̂1|

...
|f̂NT |

 . (8.41)

Remark 8.9. To obtain a fault-free training dataset two approaches are possible. If a realistic
simulator of the WF is available, the designer can excite it with all possible power demands
and WS profiles and collect the output data. Alternatively, the designer can collect historical
data covering all possible power demands and WS profiles. For newly-built systems, one can use
either the corresponding simulator or the historical data of its initial operation by assuming that
no faults affect the system during this initial period.

Then, we solve the following optimization problem

minimize
β, ε>0

σ (F̂ − X β)T (F̂ − X β) + (1− σ) εN2
T

subject to |f̂k| < Xk β < |f̂k|+ ε, k = 1, . . . , NT

(8.42)

with σ ∈ [0, 1] being a weighting factor. The optimization problem (8.42) guarantees that the
collected fault estimates do not exceed the threshold and it minimizes a weighted combination
of the quadratic accumulated difference and the maximum difference (denoted as ε) between the
threshold and the simulated data. Note that the multiplicand N2

T in (8.42) is used to regularize
the minimized terms. The proposed FE and FDI strategies are summarized in Fig. 8.5.

Remark 8.10. The sampling False Alarm Rate (FAR) obtained from (8.42) is equal to 0. If the
resulting threshold is too conservative, one can fix FAR= φ

T by performing φ iterations in which
the optimization problem (8.42) is solved and the most conservative data (i.e.,|f̂k̄| and Xk̄ such
that k̄ = argmink∈[1,N ] |f̂k| −Xk β) is eliminated from F and X for the next iteration.

Remark 8.11. Recall that, for brevity, we have omitted the dependence of the variables on
the number of row i and on the number of column j. Hence, let us remark that the inequality
in (8.38) stands in fact for |f̂ i,jk | ≥ Jk. The threshold J does not depend on the number of WT
(i, j) because the disturbances and noises affecting the estimation error f̃ i,j are equally bounded
for all the WTs in the farm.

rk = Pr,k yi,jk

v̂0k v̂ikPropagation

∆̂i,j
k

θ̂i,jk Θ(p)

v

∆ Θ(p)

Subset Selector Gain
Matrix
Selector

Lp,Kp
Observer

x̂i,j
k = P̂ i,j

a,k

f̂ i,j
k

Jk

Threshold
Computation

Design
Threshold
OfflineOffline

Observer
Design

Decision
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Figure 8.5. FE and FDI strategy at a wind turbine level.
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8.6 FE and FDI at a wind farm level

The performance of the observer (8.22) and the decision mechanism (8.38) may be compro-
mised if the bounds of the disturbances in Assumption 8.3 are too large. A solution to mitigate
this effect is to totally decouple the FE error from these signals instead of attenuating their
effect through the robust design in (8.37). However, a necessary condition for achieving distur-
bance decoupling is that the faults and the disturbances have a totally decoupled effect on the
measurements and this is not possible from a WT level perspective because there is just one
measurement which is simultaneously affected by the faults and the disturbances. At the WF
level, we can consider altogether the WTs in the same row because the disturbance caused by
the wind propagation error (i.e., the disturbance ei) is common to all these WTs. As detailed
hereafter, when all the WTs in a row are prone to the power fault, ei does not verify disturbance
decoupling conditions either. However, in this case, it is possible to build a bank of observers
and decision mechanisms that allow achieving the decoupling from ei at the cost of some fault
simultaneity restrictions (cf. [70]).

Remark 8.12. We have here considered that ei is caused by the wind propagation error and
that εi,j takes account of the uncertainties caused by the individual turbulence. If for any wind
direction or for any other WF layouts there were no sufficient WTs per row in order to build the
bank of observers, we would consider groups i of close WTs and divide the uncertainty caused by
the wind propagation error into a common disturbance ei and a non-common disturbance which
would be considered together with the turbulence by εi,j.

To do so, let us first define the auxiliary vectors

f l(i) =
[
f i,1 . . . f i,l−1 f i,l+1 . . . f i,Z

]T
∈ RZ−1, (8.43a)

δl(i) =
[
δi,1 . . . δi,l−1 δi,l+1 . . . δi,Z

]T
∈ RZ−1, (8.43b)

where Z denoted the number columns for the considered wind direction. The vector f l(i)
considers all the faults of the WTs in the i-th row but the fault of the WT in the l-th column f i,l.
Similar applies to δl(i) w.r.t. the fault variations in (8.12). The model of the power generation
systems of the i-th row of WTs including the dynamics of f l(i) can be written as

zlk+1(i) =A(θk(i))


xi,1k

...
xi,Zk
f l(i)


︸ ︷︷ ︸

zl
k
(i)

+B(θk(i))


u(vi,1k )

...
u(vi,Zk )


︸ ︷︷ ︸
u(θk(i))

+
[

0
IZ−1

]
︸ ︷︷ ︸

E

δlk(i), (8.44a)


yi,1k

...
yi,Zk


︸ ︷︷ ︸
yk(i)

=Cl(θk(i)) zlk(i) +D(θk(i)) rk +

0(l−1)×1
1

0(Z−l)×1


︸ ︷︷ ︸

U l

f i,lk +


si,1k
...
si,Zk


︸ ︷︷ ︸
sk(i)

+


wi,1k

...
wi,Zk


︸ ︷︷ ︸
wk(i)

, (8.44b)
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with

A(θk(i)) =


a(vi,1k ) 0 0 0

0 . . . 0 0
0 0 a(vi,Zk ) 0
0 0 0 IZ−1

 , B(θk(i)) =


b(vi,1k ) 0 0

0 . . . 0
0 0 b(vi,Zk )
0 0 0

 ,

Cl(θk(i)) =


c(∆i,1

k ) 0 0 −Il−1 0

0 . . . 0 0 0
0 0 c(∆i,Z

k ) 0 − IZ−l

, D(θk(i)) =


d(∆i,1

k )
...

d(∆i,Z
k )

 ,
and where zl(i) ∈ R2Z−1 is the extended state vector, y(i) ∈ RZ is the measurement vector
and w(i) ∈ RZ and s(i) ∈ RZ are the disturbance vectors. For its part, θ(i) stands for the
parameter vector defined as

θ(i) =
[
θi,1 . . . θi,Z

]T
∈ R2Z . (8.45)

Assumption 8.4. The parameter vectors θi,j of all the turbines in the i-th row belong to
the same subset Θ(p) at each sample k (i.e., θi,jk ∈ Θ(p) for j = 1, . . . , Z). Hence, θ(i) lies
in the ordered parameter set Θ of N subsets Θ(p) (i.e., Θ = {Θ(1), . . . ,Θ(N)}) defined as
Θ(p) = (Θ(p), . . . ,Θ(p)).

Remark 8.13. Assumption 8.4 seeks reducing the computational burden of the design and im-
plementation of a switched observer based on the model (8.44). However, in reality, it may in
fact happen that not all the parameter vectors θi,j of the i-th row belong to the same sub-
set Θ(p) at certain sample k. In such cases, we neglect these differences and we consider
that θk(i) belongs to the closest subset Θ(p). In any case, if more precise results were re-
quired, Assumption 8.4 would be omitted and the parameter set would be alternatively defined
as Θ′ = {Ωv × Ω∆ × . . .× Ωv × Ω∆}. The partition of Ω∆ and Ωv as detailed in Section 8.3.2
would then lead to NZ subsets Θ′(p).

Omitting hereafter the dependence on the number of row i (e.g., zlk stands for zlk(i)), it
yields

zlk+1 =A(θk) zlk +B(θk)u(θk) +E δlk, (8.46a)
yk =Cl(θk) zlk +D(θk) rk +U l f i,lk + sk +wk, (8.46b)
f lk =F zlk, (8.46c)

with F =
[
0 IZ−1

]
.

8.6.1 FE and FDI architecture

In analogy to (8.22), the following model-based observer is built for the extended system (8.46):

ẑlk+1 =A(θ̂k) ẑlk +B(θ̂k)u(θ̂k) +Ll(θ̂k)
(
yk −Cl(θ̂k) ẑlk −D(θ̂k) rk

)
, (8.47a)

f̂ lk =F zlk +Kl(θ̂k)
(
yk −Cl(θ̂k) ẑlk −D(θ̂k) rk

)
. (8.47b)
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where Ll(θ̂) ∈ R(2Z−1)×Z and Kl(θ̂) ∈ R(Z−1)×Z are the gain matrices of the observer that we
fix to

Ll(θ̂) = Llp if θ̂ ∈ Θ(p), (8.48a)
Kl(θ̂) = Kl

p if θ̂ ∈ Θ(p). (8.48b)

Define z̃lk = zlk − ẑlk and f̃ lk = f lk − f̂ lk. It follows that

z̃lk+1 =Al(θ̂k)z̃lk + Bl(θ̂k)Wk +E δlk −Ll(θ̂k)U lf i,lk , (8.49a)
f̃ lk =Cl(θ̂k) z̃lk + Dl(θ̂k) Wk −Kl(θ̂k)U lf i,lk , (8.49b)

with

Al(θ̂k) =A(θ̂k)−Ll(θ̂k)Cl(θ̂k),
Cl(θ̂k) =F −Kl(θ̂k)Cl(θ̂k),

Bl(θ̂k) =
[
G(θ̂k) G(θ̂k) −Ll(θ̂k)H(θ̂k) −Ll(θ̂k) −Ll(θ̂k)

]
,

Dl(θ̂k) =
[
0 0 −Kl(θ̂k)H(θ̂k) −Kl(θ̂k) −Kl(θ̂k)

]
,

Wk =
[
λk µk ϕk sk wk

]T
.

We have that λk, µk and ϕk stand in fact for λk(i), µk(i) and ϕk(i) which are defined in analogy
to (8.30) as

λk(i) = eik/ēp, µk(i) =


εk
i,1/ε̄p...

εk
i,Z/ε̄p

 , ϕk(i) =


hk

i,1/h̄p...
hk

i,Z/h̄p

 ,
if θk ∈ Θ(p). For its part, G(θ̂k), G(θ̂k) and H(θ̂k) satisfy

G(θ̂k) =Gp if θ̂k ∈ Θ(p), Gp = R̄0 ēp, (8.50a)
G(θ̂) =Gp if θ̂k ∈ Θ(p), Gp = R̄ ε̄p, (8.50b)
H(θ̂k) =Hp if θ̂k ∈ Θ(p), Hp = R h̄p, (8.50c)

with R̄0 =
[

1Z×1
0(Z−1)×1

]
, R̄ =

[
IZ

0(Z−1)×1

]
and R = IZ . As previously specified, λk(i) is a single

disturbance modeling the wind propagation error and it affects all the turbines simultaneously.

In all, the signals affecting the l-th observer are the fault generators δl (with nδ = Z − 1),
the disturbances in W (with nλ = 1 and nµ = nϕ = ns = nw = Z) and the fault f i,l which can
be now considered as a new “disturbance”. Following the approaches in [70], one can verify that
it is now possible to decouple f l from λ if the new “disturbance” f i,l is ignored. Note that if f i,l
was not ignored and its dynamics was considered together with the dynamics of f l, λ would not
verify disturbance decoupling conditions because it would not be possible to distinguish this
disturbance from the occurrence of simultaneous faults in all the turbines in the row.
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Hence, we propose to ignore the presence of the fault f i,l and to design the observer (8.47)
through the optimization problem

minimize γµnµ‖µ‖2∞ + γϕnϕ‖ϕ‖2∞ + γs‖s‖2RMS +
γw‖w‖2RMS

subject to γλ = 0, γδ ≤ γ̄δ,
Ξm
p � 0, ∀p,m

(8.51)

with Ξm
p built in analogy to Ξmp with the matrices in (8.49) replacing the matrices in (8.32).

The new constraint γλ = 0 ensures now the decoupling from λ.

In the absence of the ignored fault f i,l, we can thus set the following decision mechanisms
(j = 1, . . . , l − 1, l + 1, . . . , Z):{

if |f̂ lk[j]| ≥ Jk , Fault f l[j]
otherwise , No fault f l[j] . (8.52)

The adaptive threshold J does not depend on the number of turbine (i, j) nor on the number
of ignored fault l (see Remark 8.11) and it is designed following the strategy presented in
Section 8.5. The decoupling from λ enhances FDI because the thresholds J in (8.52) are now
smaller than the thresholds J in (8.38).

However, if the fault f i,l is present in the system, the decision mechanisms (8.52) are no
longer reliable. Hence, we build a bank of l = 1, . . . Z observers, each of them taking account of
the fault f l and ignoring the fault f i,l. An observer l and the corresponding decision mechanisms
are reliable if the absence of the fault f i,l is diagnosed by the decision mechanisms of at least
another reliable observer l′ (l′ 6= l). In turn, the reliability of l′ implies that the decision
mechanisms of the l-th observer diagnose the absence of the fault f i,l′ . In all, the proposed bank
of observer and decision mechanisms enables FE and FDI whenever 2 of the faults in a row i

are not present in the system (i.e., there are no more than Z − 2 simultaneous faults in a row).
FE and FDI are then achieved with any of the reliable observers and decision mechanisms of
the bank.

8.7 Benefits of the proposed approach

Compared to the relevant existing literature, the benefits of the proposed approach are the
following.

• The proposed approach utilizes a reduced number of measurements: the power reference,
the generated power and the WS at the wind mast. This reduces the information needs
w.r.t. other techniques such as the one in [33] (requiring the rotor speed measurement) or
in [264] (requiring the collective pitch angle measurement). It does not either require the
information about the presumed fault size as it is in [33].
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• The residual-based techniques in [30, 33, 83] are focused on FDI tasks. Contrariwise, the
proposed approach is focused on both FE (Section 8.4) and FDI (Section 8.5), being more
suitable for the development of AFTC strategies.

• The proposed closed-loop approach is more actively robust against disturbances and un-
certainties than the open-loop methods in [16,30,33,83].

• The Markovian jump system approach is a non-conservative procedure to handle the
nonlinearities in the power generation model. It facilitates the adaptation to the different
levels of uncertainties and disturbances along the parameter set, leading to a less restrictive
compromise between fault sensitivity and robustness.

• The proposed observer design in Section 8.4.2 guarantees certain fault sensitivity with
optimal disturbance rejection. This performance is not guaranteed in [16,30,33,83]. where
more ad-hoc and user knowledge-based tuning procedures are utilized to set this trade-off.

• In contrast to the constant thresholds in [16, 33, 264], the adaptive FDI mechanisms pre-
sented in Section 8.5 allow the adjustment of the thresholds to the different WS zones and
WT operating modes. The proposed data-driven design of the FDI thresholds provides
tight bounds for the fault estimates obtained via Markovian observers. This allows a more
rapid detection and isolation of small faults w.r.t. model-based adaptive thresholds as the
ones used in [30], which moreover require precise bounds of the uncertainties.

• The WF level scheme proposed in Section 8.6 is based on a systematic multi-input multi-
ouput (MIMO) observer that automatically merges the information acquired from tem-
poral and spatial inconsistencies depending on the level of shared uncertainties among
the group of considered WTs. Hence, it is more easily extensible to different WF layouts
and wind direction than the residuals in [16, 30, 83, 264], which assume identical wind
conditions among groups of WTs.

8.8 Simulation results

The WF benchmark [215] includes the wind data of 4400 s for numerical simulations. The
wind directions in Fig. 8.6 are considered in the benchmark. The application of the proposed
WT level strategy is independent of the WF layout and of the wind direction. The WF level
approach requires to group the nearby turbines and to bound the shared uncertainties caused
by the wind (see Remark 8.12). In the first wind direction, we distinguish three rows and three
columns of WTs and, in this case, we simply group the turbines by rows. In the second wind
direction, there exist 5 rows of WTs; however, for the application of the WF level FE and FDI
strategy, we group the WTs as shown in Fig. 8.6. Due to space constraints, in the following,
we just include the simulation results for the first wind direction. Similar WF level results are
obtained for the other wind direction.

First, we create a fault-free training dataset and a validation dataset by considering 10
different dynamic power reference cases (see some example cases in the first row of Table 8.2).
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Figure 8.6. Rows/groups of WTs in the WF benchmark depending on the wind direction (→).©: Wind turbine,
�: Wind mast.
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Figure 8.7. Case A subsets. Turbine (i = 1, j = 1).

Note that it is not possible to consider different wind speed scenarios because only the data
related to one wind speed profile is available in the benchmark (detailed in Appendix C). The
transitions experienced by the training dataset (see the example in Fig. 8.7) are utilized for
computing the transition probability matrix of the Markovian process3 . Then, we perform the
design of the WT level observer (8.22) through the optimization problem (8.37) and of the
WF level observer (8.47) through the optimization problem (8.51). For both designs, we fix
the required H∞ performance describing the observer fault sensitivity to γ̄δ = 1. The values
included in the designs are specified in Table D.5 and Table D.6 of Appendix D.3.1. The fault-
free training dataset is subsequently utilized to obtain the thresholds of the data-based decision
mechanisms. For each training case, we run the designed estimator ((8.22) for the WT level
approach and (8.47) for the WF level approach). Then, we construct the matrices (8.41) with
all the estimated data and we solve the optimization problem (8.42)4.

The figures in Table 8.2 show the simulation results for some fault-free training and validation
cases. The estimates are in black and the thresholds are in red. For ease of comprehension, we
include both the figures comparing the real estimates in MW (i.e., f̂k at a WT level or f̂ lk[j] at
a WF level) with the real thresholds (i.e., Jk or Jk) and the figures comparing normalized FE
variables (i.e., f̂k/Jk at a WT level or f̂ lk[j]/Jk at a WF level) with unitary thresholds. First, we

3The transition probabilities are computed with the open-loop estimated power difference because the closed-
loop estimates are not yet available.

4All the designs are set up in YALMIP [192] and solved using the solver MOSEK [204]. For simplification, we
omit the obtained results.
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Table 8.2. FE and FDI in the fault-free WT (i = 1, j = 1). �: Training cases (A,B,C), �: Test cases (1,2).
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verify that the WF level approach enhances fault diagnosability w.r.t. the WT level approach:
the minimum diagnosable faults are in the order of 0.2 MW at the WF level and in the order of
0.5-1 MW at the WT level. Second, we deduce that more accurate fault estimates are obtained
when the power generated by the WT equals the dynamic power reference, Pr, and not the
dynamic available power, P̂ ia. Effectively, in this WT working mode, the uncertainties derived
from the wind speed estimation error disappear because the WT is available to generate the
amount of requested power.

Now, let us consider Case 1 and suppose that the turbine (i = 1, j = 1) is affected by a
40% power degradation during the period T1 (defined as [1000, 1100] s) and by a 3% power
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Figure 8.8. FE and FDI in the WT (i = 1, j = 1). Case 1 with 40% power degradation during T1 and 3%
power degradation during T2.
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Figure 8.9. WF level FE and FDI in the WT (i = 1, j = 1). Case 1 with different power degradation levels
during T1.

degradation during the period T2 (defined as [3200, 3300] s). The WT level and WF level FE
and FDI results are depicted in Fig. 8.8. One verifies that the first fault is only diagnosed at
the WF level and the second fault, although being also diagnosed at the WT level, it is more
clearly distinguishable at the WF level. If we study Case 1 (see Table 8.2), we verify that relative
power degradations are more difficult to diagnose during T1 than during T2 because, in this
case, the amount of generated power is smaller and, moreover, the generated power equals the
dynamic available power and the level of uncertainties is thus bigger. Hence, small relative power
degradations are hard to diagnose during this period (see some examples in Fig. 8.9).

Finally, we consider the whole WF and the Case 2 in Table 8.2. We assume that the turbine
(i = 1 ,j = 3) is affected by a relative power degradation of 50% during T1 and that the
turbine (i = 2 ,j = 1) is affected by a relative power degradation of 20% during T2. Fig. 8.10
shows the WF level simulation results for all the WTs in the farm. We verify that the proposed
approach allows FE and FDI in the WF. Moreover, the proposed approach allows simultaneous
faults in the farm: if the WT level approach is utilized, no simultaneity restrictions apply; if the
WF level approach is utilized, the only restriction for achieving FE is that there should be two
simultaneous fault-free turbines per row (i.e., only a faulty turbine per row in this case).
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Figure 8.10. WF level FE and FDI in the WF [pu]. Case 2 with 50% power degradation in the turbine (i = 1
,j = 3) during T1 and 20% power degradation in the turbine (i = 2 ,j = 1) during T2.

8.9 Conclusion

This chapter proposed a novel closed-loop FE scheme for the estimation of decreased power
generation in WTs due to blade erosion and debris build-up, which also cause other WT dam-
ages. The model-based strategy is based on the Markovian jump system model of the power
generation system of a WT and it thus covers all the wind speed zones and WT operating
modes. The FE output is also utilized for FDI in tighten data-based decision mechanisms. The
approach is first applied to a single WT and then generalized from a WF perspective. The WF
approach has the advantage of being easily applicable to different wind directions and layouts
by simply adjusting the level of shared uncertainty by the considered groups of nearby turbines.
The extension of the proposed approach to other WT systems and the use of the obtained fault
estimates in active FTC strategies highlight as immediate future work.



Chapter 9

Robust estimation and diagnosis of
wind turbine pitch misalignments at a
wind farm level

Wind turbine pitch misalignments provoke aerodynamic asymmetries which
can cause severe damage of the turbine and its components. The diagnosis
of these wind turbine faults at a wind farm level has emerged as an effective
solution to the problem. In this chapter, we propose a model-based strategy
to estimate and diagnose pitch misalignments at a wind farm level. Fault
estimation is addressed by using a switched observer that assumes bounded
wind propagation errors. These estimates are used in statistical-based deci-
sion mechanisms for achieving fault detection and isolation. The observer
design takes account on the trade-off between the cumulative squared errors
due to faults and the root mean square errors due to noises and uncertainties.
The thresholds of the decision mechanisms are fixed using the False Alarm
Rate criterion. The diagnosis performance is then ameliorated with a scheme
that uses a bank of the aforementioned observers and decision mechanisms.
Finally, the proposed approach is tested using a well-known benchmark in the
context of wind farm fault diagnosis.

9.1 Introduction

Wind energy has grown in importance over the last two decades as it has proven to be a promis-
ing and powerful source of renewable energy [87]. However, the maintainability and reliability of
wind turbines (WTs) is still a challenging and critical issue due to the high costs associated to
maintenance operations [235]. The issues related to the pitch system are of particular interest
to the wind industry due to their long downtimes and high failure rates [130,235]. These issues
include actuator, sensor and imbalance faults [23, 113, 168, 261]. A common pitch imbalance
fault is aerodynamic asymmetry, which may be caused by the misalignment of one or more
blades. This misalignment can be originated by several factors, including high wind shear and

195
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manufacturing, installation or control errors [113, 260]. In general, aerodynamic asymmetries
represent a significant problem for WTs, as also witnessed by the fact that certification guide-
lines require relatively small pitch misalignments [22]. When a blade misalignment is present,
the loadings experienced by the blades are not balanced which results in vibrations that nega-
tively affect other components of the turbine. Moreover, the power quality is degraded and the
power generation efficiency is reduced [260].

It is widely recognized that pitch actuator and sensor faults can be dealt with at the WT
level. A well-established benchmark for actuator and sensor fault diagnosis (FD) in WTs was
presented in [216]. Several solutions have been proposed showing the effectiveness of FD for pre-
dictive maintenance. Although some data-based methods being available, e.g., [68, 221], most
solutions deal with model-based FD techniques, see [153, 173, 189, 258, 304]. However, imbal-
ance faults are more challenging. As stated by [113], most exiting methods for imbalance fault
diagnosis require additional sensors such as vibrational sensors [150,169,211]. This extra equip-
ment is inevitably subject to failures and it is generally difficult to access. Thus, current-based
imbalance diagnosis methods have gained more attention [113, 260]. However, as recognized
by [113], there are intrinsic challenges in using current signals for imbalance diagnosis: the char-
acteristic frequencies of imbalance faults depend on the shaft rotating frequency and the useful
information in current signals for FD is characterized by a low signal-to-noise ratio.

Another approach is to diagnose imbalance faults at a wind farm (WF) level. In [168], a
WF data-mining approach was developed for monitoring blade imbalance faults. Motivated by
this work, a new benchmark has been presented in [215] for FD in WTs at a WF level. The
authors recognize that some faults which are difficult to diagnose at a WT level can be better
handled at the WF level, when the WT is considered in comparison to other WTs of the farm.
Fewer solutions to this problem can be found in the bibliography: data-driven approaches are
presented in [83, 267] and model-based strategies are developed in [30, 33]. Duviella et al. [83]
present an evolving classification method and Simani et al. [267] develop a FD strategy based
on fuzzy logic. Borcehrsen et al. [33] use dynamical cumulative sums for FD and Blesa et al. [30]
address the problem using interval nonlinear parameter varying parity equations.

One of the main interests in diagnosing pitch imbalances is the development of individual
pitch fault-tolerant controllers that accommodate the aforementioned faults for achieving load
mitigation [54]. The WF solutions in [30,33,83,267] are focused on fault detection and isolation
(FDI) tasks and they propose consistency checking methods which are based on computing the
difference, called residual, between the modeled and the real behavior of the system [44, 297].
Research has shown that there are intrinsic difficulties in the use of residuals in active fault
tolerant control (FTC) due to the complexity derived from the reconstruction of the faults from
the residuals [171]. Active FTC based directly on fault estimation (FE) rather than on residual-
based techniques seems to provide more immediate and accurate results, see [171]. Thus, Siminai
et al. [264] extended the work in [267] to cover FE. They develop data-driven solutions which
rely on fuzzy models and neural networks.

In this chapter, we propose a model-based strategy for FE and FDI of pitch misalignments.
This model is affected by uncertainties that depend on the operation conditions of the WT;
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hence, we develop a switched observer for FE [280]. These uncertainties derive from the open-
loop scheme which is used for wind propagation; however, just the information of their bounds
is necessary to design the observer. Thus, the proposed method has the feature of being easily
extensible to other wind propagation strategies. It is noticed that FE techniques aim to simulta-
neously make the estimates sensitive to faults and robust against uncertainties and noises [277]
through the accomplishment of certain trade-off between these properties [299, 327]. In an aim
to bridging the gap between theory and practice, we propose to use common engineering per-
formance parameters in the fault estimator design. Thus, we use the trade-off between the
cumulative squared error experienced by the estimates due to faults and the root mean square
of the estimation signals due to noises and uncertainties. Then, the fault estimates are evalu-
ated in statistical-based decision mechanisms for FDI, which we design for guaranteeing certain
False Isolation Rate (FIR). The proposed FE and FDI strategy is validated using the bench-
mark [215]. Through numerical simulations, we show the effect of the intuitive design settings
on the performance of the results.

9.1.1 Structure and notation

The rest of this chapter is organized as follows. Section 9.2 gives the problem formulation.
Section 9.3 presents the wind propagation scheme used in this chapter and its characterization.
In Section 9.4 we present the proposed performance-based FE and FDI strategy, whose design
we detail in Section 9.5. In Section 9.6 we present an improvement of performance which can
be made at the cost of some restrictions regarding the simultaneity of faults. Simulation results
are reported in Section 9.7 to show the effectiveness of the proposed approach, followed by some
concluding remarks in Section 9.8.

Let A and B be some matrix and a be some vector. A[i, j] denotes the element in the i-
th row and j-th column of A and a[i] denotes the i-th element in a. A � 0 means that A is
negative semidefinite and similar applies to �. The trace of matrix A is represented as tr(A).
Let xk be a vector of stochastic signals at a sample k. We write ‖xk‖∞ , maxi |xk[i]| for
the max norm of vector xk. We write ‖x‖∞ , maxk maxi |xk[i]| for the l∞ norm of signal x,
‖x‖22 , limK→∞

∑K
k=1 x

T
k xk for its l2 norm and ‖x‖2RMS = 1

K ‖x‖22 for its RMS norm. Expected
value, probability and absolute value are denoted by E{·}, P{·} and | · |. In is the identity matrix
of size n × n, 1n×m is a matrix of ones of size n ×m and 0 is the zero matrix of appropriate
dimensions.

9.2 Problem statement

Consider the WF benchmark consisting of N = 9 WTs of 4.8 MW. The benchmark considers
two possible wind directions: 0◦ and 45◦. The WTs can be named according to the wind direction
as shown in Fig. 9.1. We consider that the wind is perpendicular to the rows of WTs, which
are numbered as i = 1, . . . , ni and parallel to the columns of WTs, which are numbered as
j = 1, . . . , nj . There is a wind mast at row i = 0 which measures the wind speed. We denote the
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Figure 9.1. Layout of the WF benchmark (©: Wind turbine, �: Wind mast, →: Wind direction). Black: 0◦
layout, Gray: 45◦ layout.

distance between two consecutive rows i and i+ 1 as li. For the 0◦ layout, we have l0 = 1150 m
and li = 1138.44 m for all i 6= 0.

According to [116,215], the collective pitch system of a WT (i, j) can be modeled as a first
order close-loop system between the collective pitch, named after βi,j , and the collective pitch
reference, named after βi,jr :

βi,j(s) = τβ
s+ τβ

βi,jr (s), (9.1)

where τβ is a known constant transfer function coefficient (τβ = 1.6 rad/s). The collective pitch
reference is a nonlinear function g(·) of the dynamic power reference, P r, and the effective wind
speed acting on the blades of the turbine (i, j), νi,j :

βi,jr = g (νi,j , P r), (9.2)

see Fig. 9.2 (values borrowed from the look up tables in [215]). The dynamic power reference
on which the collective pitch reference depends is known. The WF controller computes the WF
static power reference, denoted as P f , as a function of the power requested by the operator and
the power generated by the WF and it feeds each turbine with P t verifying P t = P f/N . Then,
the dynamic power reference of a turbine, P r, fulfils

P r(s) = τp
s+ τp

P t(s), (9.3)

where τp is a known transfer function coefficient (τp = 1.2 rad/s). For its part, the effective wind
speed is not known and only the measurement of the wind speed at the wind mast is available.

The misalignment of one or more blades of turbine (i, j) can be modeled as an additive
fault, denoted f i,j , affecting the measurement of the collective pitch angle βi,j , denoted as yi,j .
The corresponding zero-mean Gaussian sensor noise of known variance (σ2

w = 0.3◦2) is named
after wi,j . The objective of this chapter is to develop a FE and FDI strategy for the blade
misalignment of the WTs in the WF.
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Figure 9.2. Nonlinear function g (νi,j , P r).

9.3 Wind and pitch reference estimation

The first step to estimate the pitch misalignment faults is to provide an open-loop estimation
strategy of the pitch reference which depends on the unknown effective wind speed. In this
section, we first propose a propagation strategy to estimate this wind speed and we bound
the errors associated to the wind speed estimation. Then, we use the estimated wind speed to
estimate the pitch reference and we bound the pitch reference open-loop estimation error. See
the open-loop estimation box in Fig. 9.4

9.3.1 Wind estimation

The wind speed acting on the WT (i, j), νi,j , depends on the mean wind speed acting on the
WTs in the i-th row, denoted as νi, and a zero-mean turbulence component of known variance
(σt = 0.2 m2/s2), which we denote as ν̃i,jt :

νi,j = νi + ν̃i,jt . (9.4)

The mean wind speed νi is not known and only the measurement of the wind speed at the
wind mast is available:

ν0 = ν̂0 + ν̃0, (9.5)

with ν0 being the wind speed at the wind mast, ν̂0 being its measurement and ν̃0 being the
corresponding sensor noise. From ν̂0, we can estimate the mean wind speed acting on the WTs
in the i-th row, νi, as detailed in Appendix C.2. Denoting the propagated mean wind speed as
v̂i, the mean wind speed fulfils

νi = ν̂i + ν̃ip, (9.6)

where ν̃ip is the propagation error. This error derives from both the use of the noisy measurement
ν̂0 and the propagation model mismatch. Fig. C.1 in Appendix D.4.1 shows the wind speed
estimation results for the turbines in the 0◦ layout.

From (9.4) and (9.6), we deduce that νi,j satisfies

νi,j = ν̂i + ν̃i,j , (9.7)
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where ν̃i,j is the total wind speed estimation error and it verifies

ν̃i,j = ν̃ip + ν̃i,jt . (9.8)

Note that the propagation error ν̃ip is common for all the turbines in the i-th row while the
turbulence ν̃i,jt is different for each turbine (i, j). The following assumption on these errors is
made.

Assumption 9.1. The errors in (9.8) can be considered to be bounded as follows.

• The propagation error ν̃ip of the turbines in the i-th can be considered to be bounded as
|ν̃ip| ≤ λip, where λip is different for each row of turbines i (the propagation error increases
with the distance between the wind mast and the turbines).

• The turbulence ν̃i,jt of the turbine (i, j) can be considered to be bounded as |ν̃i,jt | ≤ λt. We
compute λt as λt = 3σt.

In Appendix D.4.1 we validate the computation of these bounds through numerical sim-
ulations. Let us remark that this procedure is usually employed in observer-based applica-
tions [164,309].

Remark 9.1. The FE and FDI strategies developed in this chapter are independent of the wind
propagation scheme. If other wind propagation strategies were used, the bounds λip would vary
accordingly. Similar applies to the turbulence component that, if considered to be differently
distributed, it would be bounded with a different value λt.

9.3.2 Pitch reference estimation

The estimate ν̂i of the effective wind speed νi,j given by (C.2) is used to estimate the pitch
reference (9.2) of the turbines in the i-th row as

β̂i,jr = g (ν̂i, P r). (9.9)

From (9.8), we deduce that the pitch reference estimation error can be disaggregated as

g (νi,j , P r)− g (ν̂i, P r) = g (νi,j , P r)− g (νi, P r)︸ ︷︷ ︸
ũi,j

+ g (νi, P r)− g (ν̂i, P r)︸ ︷︷ ︸
ũi

, (9.10)

where ũi derives from the propagation error ν̃ip (i.e., ν̃ip = νi − ν̂i) and ũi,j derives from the
turbulence ν̃i,jt (i.e., ν̃i,jt = νi,j − νi). Thus, the error ũi is common for all the turbines in the
i-th row while ũi,j is different for each turbine. For certain row i and for certain value of the
estimated wind speed and of the dynamic power reference, one could compute the bounds of
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these errors with the values λip and λt (which are the bounds of the wind speed estimation errors
in Assumption 9.1) as

|ũi| ≤ max
{
|g (ν̂i + λip, P

r)− g (ν̂i, P r)|,
|g (ν̂i − λip, P r)− g (ν̂i, P r)|

}
, (9.11a)

|ũi,j | ≤ max


|g (ν̂i + λip + λt, P

r)− g (ν̂i + λip, P
r)|,

|g (ν̂i + λip − λt, P r)− g (ν̂i + λip, P
r)|,

|g (ν̂i − λip + λt, P
r)− g (ν̂i − λip, P r)|,

|g (ν̂i − λip − λt, P r)− g (ν̂i − λip, P r)|

 . (9.11b)

Note that we express these bounds in terms of ν̂i because the variables νi,j and νi are not
available. Since the function g (·) is nonlinear, these errors are different for the different values
of ν̂i and P r. Then, the following assumption is made.

Assumption 9.2. The errors in (9.10) can be considered to be bounded as

|ũi| ≤ λi1(ν̂i, P r), (9.12a)
|ũi,j | ≤ λi2(ν̂i, P r), (9.12b)

where λi1(ν̂i, P r) and λi2(ν̂i, P r) are different for each row i and depend on the inputs of the
function g (·).

The variables ν̂i and P r can be considered to be bounded by the sets

ν̂i ∈ Ων , Ων := {ν
¯
< ν̂i < ν̄}, (9.13a)

P r ∈ Ωp, Ωp := {P
¯
< P r < P̄}, (9.13b)

where ν
¯
, ν̄, P

¯
and P̄ are the minimum and maximum possible values of these parameters

(which we fix to ν
¯

= 0 m/s, ν̄ = 25 m/s, P
¯

= 0 MW and P̄ = 4.8 MW). The parameter

vector θ =
[
ν̂i

P r

]
lies then in Θ = Ων × Ωp. Let us partition the parameter set Θ into Nθ

subsets {Θ(q)}q∈{1,...,Nθ} by dividing Ων into Nν intervals (i.e., {Ω(qν)
ν }qν∈{1,...,Nν}) and Ωp into

Np intervals (i.e., {Ω(qp)
p }qp∈{1,...,Np}). Thus, we have Nθ = Nν ·Np (see Fig. 9.3). For each row

i, ũi and ũi,j are bounded as

|ũi| ≤ λi1,q if θ ∈ Θ(q), (9.14a)
|ũi,j | ≤ λi2,q if θ ∈ Θ(q), (9.14b)

where

λi1,q = max
θ∈Θ(q)

{
|g (ν̂i, P r)− g (ν̂i + λip, P

r)|
|g (ν̂i, P r)− g (ν̂i − λip, P r)|

}
. (9.15)

Similar applies to λi2,q, whose value is deduced from (9.11b) along the values θ such that θ ∈ Θ(q).
In Appendix D.4.1, we detail the computation of these bounds (we choose Nν = Np = 7).
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Figure 9.3. Partition of the two-dimensional parameter set (Nν = 4 and Np = 3)

9.4 FE and FDI of pitch misalignments

In this section we develop a model-based FE and FDI strategy of the misalignment of the
blades of the WTs in the WF. It is well known that most continuous-time control systems are
implemented digitally [323]. Thus, we develop the discrete state-space model of the pitch system
described in Section 9.2:

βi,jk+1 = αβi,jk + (1− α) g (νi,jk , P rk ), (9.16a)
yi,jk = βi,jk + f i,jk + wi,jk . (9.16b)

The discrete transfer function coefficient α is derived from τβ in (9.1) with an appropriate
sampling time, which we fix to Ts = 0.1 s. The following assumption on the faults f i,j is made.

Assumption 9.3. Define the variation δi,j of the fault f i,j as

δi,j(k) = f i,j(k + 1)− f i,j(k). (9.17)

We assume that δi,j is energy bounded.

The faults verifying Assumption 9.3 can be modeled through

ξi,jk+1 =aF ξi,jk + bF δ
i,j
k , (9.18a)

f i,jk =cF ξi,jk , (9.18b)

with ξi,j being the fault state and aF = bF = cF = 1. Any individual fault f [j] = f i,j is extracted
from f as f [j] = F j f where F j is the selection matrix defined as F j =

[
0j−1 1 0nj−j

]
.

Remark 9.2. Assumption 9.3 is common in FE and it considers faults whose variations are
slow with respect to the dynamics of the system and it can cover the typical faults in engineering
systems such as abrupt faults and incipient faults [99,323]. In any case, the strategies developed
in this work can be easily extended to systems whose faults do not verify Assumption 9.3. If
more complex fault signals affected the system, model (9.18) should be modify accordingly. See,
for instance, the models developed in [307] for faults in the form of a polynomial of the time.
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Provided Assumption 9.3, we extend the model (9.16) to include the dynamics (9.18). As
explained in Section 9.3.2, the estimated pitch reference is the same for all the turbines in the
i-th row. Thus, we model all these turbines simultaneously. In all, the discrete extended state-
space model of the pitch systems of the i-th row of WTs is given by the following model with
z ∈ R2nj being the extended state vector that stacks the collective pitch angles βi,j and the
fault states ξi,j of the turbines in the i-th row from j = 1 to j = nj . Similar applies to u ∈ Rnj ,
y ∈ Rnj , w ∈ Rnj , f ∈ Rnj and δ ∈ Rnj , which are the input, output, noise, fault and fault
generator vectors.

zk+1 =
[
α Inj 0

0 Inj

]
︸ ︷︷ ︸

A



βi,1k
...

β
i,nj
k

ξi,1k
...

ξ
i,nj
k


︸ ︷︷ ︸

zk

+
[

(1− α) I2nj

]
︸ ︷︷ ︸

B


g (νi,1k , P rk )

...
g (νi,njk , P rk )

0


︸ ︷︷ ︸

uk

+

 0

Inj


︸ ︷︷ ︸

D


δi,1k

...
δ
i,nj
k


︸ ︷︷ ︸

δk

,


yi,1k

...
y
i,nj
k


︸ ︷︷ ︸

yk

=
[
Inj Inj

]
︸ ︷︷ ︸

C

zk +


wi,1k

...
w
i,nj
k


︸ ︷︷ ︸

wk

,


f i,1k

...
f
i,nj
k


︸ ︷︷ ︸

fk

=
[
0 Inj

]
︸ ︷︷ ︸

R

zk,

In summary, we have

zk+1 = Azk +B uk +D δk, (9.19a)
yk = C zk + wk, (9.19b)
fk = Rzk, (9.19c)

fk[j] = F j fk. (9.19d)

The pitch references g (νi,j , P r) are not available. Then, we build a model-based observer for
the system (9.19) based on the open-loop estimates (9.9). Provided that the bounds of the errors
associated to these estimated variables depend on θ, we propose to use parameter-dependent
gain matrices in the observer. Then, we have the following fault estimator

ẑk+1 = A ẑk +B

[
1nj×1

0

]
g (ν̂ik, P rk )︸ ︷︷ ︸

ûk

+L(θk) (yk − C ẑk), (9.20a)

f̂k = R ẑk +K(θk) (yk − C ẑk), (9.20b)
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where L(θk) and K(θk) are the parameter-dependent design gain matrices of appropriate di-
mensions. Given the bounds in (9.14), we define L(θk) and K(θk) as

L(θk) = Lq if θk ∈ Θ(q), (9.21a)
K(θk) = Kq if θk ∈ Θ(q), (9.21b)

and the design gain matrices become the finite set of gain matrices Lq and Kq with q = 1, . . . , Nθ

(i.e., L(θk) ∈ {L1, . . . , Lq, . . . , LNθ} and K(θk) ∈ {K1, . . . ,Kq, . . . ,KNθ}). Define the extended
state estimation error as z̃k = zk − ẑk and the fault estimation error as f̃k = fk − f̂k. It follows
that

z̃k+1 =(A− L(θk)C) z̃k +B (uk − ûk) +D δk − L(θk)wk, (9.22a)
f̃k =(R−K(θk)C) z̃k −K(θk)wk. (9.22b)

The difference uk−ûk refers to the pitch reference estimation errors. As detailed in Section 9.3.2,
this error can be disaggregated as

uk − ûk =


g (νi,1k , P rk )− g (ν̂ik, P rk )

...
g (νi,njk , P rk )− g (ν̂ik, P rk )

0

 =
[
1nj×1

0

]
︸ ︷︷ ︸

E0

ũik︸︷︷︸
pk

+
[
Inj
0

]
︸ ︷︷ ︸
F0


ũi,1k

...
ũ
i,nj
k


︸ ︷︷ ︸

tk

. (9.23)

where pk is the pitch reference estimation error due to the error on the wind speed propagation
scheme and it is common to all the turbines in the i-th row. Vector tk contains the pitch
reference estimation error due to the wind speed estimation error caused by the turbulence of
each turbine. Provided the bounds (9.14), we deduce that the vectors pk and tk are bounded as

‖pk‖∞ ≤ λi1,q if θk ∈ Θ(q), (9.24a)
‖tk‖∞ ≤ λi2,q if θk ∈ Θ(q). (9.24b)

Remark 9.3. Since pk is common to all the turbines in the i-th row, the effect of the wind
propagation error on FE is diminished when all these turbines are considered simultaneously by
the same observer. This is the main reason to build one fault estimator (9.20) for each row of
turbines i.

Regarding FDI, we set the following set of fault evaluators (j = 1, . . . , nj):{
if |f̂k[j]| ≥ Jk[j] , Fault f [j]
otherwise , No fault f [j] , (9.25)

where J [j] is an adaptive threshold to be computed online. Note that the fault evaluator (9.25)
achieves fault detection and fault isolation simultaneously. For simplicity sake and considering
that fault isolation (FI) implies fault detection, the remainder of this chapter utilizes the term
FI to refer to FDI.

In the following, we present a multiobjective approach to design offline the gain matrices
Lq and Kq (q = 1, . . . , Nθ) of the model-based observer and to compute online the adaptive
thresholds J [j] of the decision mechanism.
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9.5 Fault estimator and evaluator design

9.5.1 Fault estimator design

From (9.22)-(9.23), it yields

z̃k+1 =(A− L(θk)C) z̃k + E pk + F tk +D δk − L(θk)wk, (9.26a)
f̃k =(R−K(θk)C) z̃k −K(θk)wk, (9.26b)

with E = BE0 and F = B F0. The fault estimation error depends on the following exogenous
signals:

(a) the fault generator δ satisfying Assumption 9.3,

(b) the noises w satisfying w ∼ N (0,W ) with W = σ2
w Inj ,

(c) the unknown inputs p and t satisfying the bounds (9.24).

The error caused by δ describes the fault tracking ability of the observer and the errors caused
by w, p and t describe the robustness of the observer against noises and uncertainties. Hence, we
propose to characterize the fault tracking ability of the observer by the cumulative squared error
(CSE) experienced by each estimate f̂ [j] (i.e., ‖f̃ [j]‖22 = ∑∞

k=1 f̃ [j]2) when it faces a unitary
impulse δ[m] (which generates a unitary step fault f [m]):

γjm = max
θ∈Θ

‖f̃ [j]‖22
‖δ[m]‖22

,

δk[m] = {1, 0, 0, . . .},
δ[n] = 0, ∀n 6= m,

w = 0, p = 0, t = 0.
(9.27a)

Similarly, we characterize the robustness of the observer by the root-mean-square (RMS) error
experienced by estimate f̂ [j] (i.e., ‖f̃ [j]‖RMS = limK→∞

√
1
K

∑K
k=1 f̃ [j]2 ) due to the noises (b)

and the UIs (c):

γjw = max
θ∈Θ

‖f̃ [j]‖2RMS

σ2
w

, δ = 0, p = 0, t = 0; (9.27b)

γjp = max
θ∈Θ

‖f̃ [j]‖2RMS

‖p‖2∞
, δ = 0, w = 0, t = 0; (9.27c)

γjt = max
θ∈Θ

‖f̃ [j]‖2RMS

‖t‖2∞
, δ = 0, w = 0, p = 0. (9.27d)

There exists thus a trade-off between ameliorating the fault tracking ability of the observer
and its robustness [106, 249]. From the practical viewpoint, it is of considerable interest to
achieve certain tracking ability and to minimize the effect of the noises and uncertainties on the
estimations [327]. Thus, we propose to design the observer gain matrices through the following
optimization problem

minimize
{Lq ,Kq}q∈{1,...,nθ}

nj∑
j=1

(
γjw σ

2
w + γjp ‖p‖2∞ + γjt ‖t‖2∞

)
subject to γjm ≤ γ̄jm , ∀j,m

stability of (9.26) , θ ∈ Θ

(9.28)
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Remark 9.4. Note that γjm with m 6= j denotes the CSE experienced by the fault estimate in
the j-th fault channel due to a unitary step fault in another channel m while γjj denotes the
CSE experienced due to a unitary step fault in the own channel j. Hence, the CSE requirements
γ̄jm (m = 1, . . . , j − 1, j + 1, . . . , nj) are generally chosen to be smaller than the corresponding
CSE requirement1 γ̄jj .

The system (9.26) operates in a finite set of multiple modes because

L(θk) ∈ {Lq}q∈{1,...,nθ} , (9.29a)

K(θk) ∈ {Kq}q∈{1,...,nθ} . (9.29b)

A general theory of such systems is developed in the switched systems community [62, 183,
273]. The results for switched systems under arbitrary switchings are rather conservative and
much tighter results can be developed if further assumptions hold [123]. Take as an example
a Markovian jump linear system where the switching process can be described by a Markov
chain [57]. In this work, we consider that the parameter θ is slow-varying compared to the
dynamics of (9.26). Thus, the membership of θ to a subset Θ(q) infrequently switches to another
subset Θ(p 6=q). In this fashion, we translate the optimization problem (9.28) into another design
problem ensuring global stability in the set Θ and certain local steady-state performance in
each subset Θ(q):

minimize
{Lq ,Kq}q∈{1,...,nθ}

Nθ∑
q=1

nj∑
j=1

(
γjw,q σ

2
w + γjp,q (λi1,q)2 + γjt,q (λi2,q)2

)
subject to γjm,q ≤ γ̄jm , ∀j,m, q

stability of (9.26) , θ ∈ Θ

(9.30)

where γjm,q, γjw,q, γjp,q, γ
j
t,q denote the maximums in (9.27) when θ ∈ Θ(q), e.g.,

γjm,q = max
θ∈Θ(q)

‖f̃ [j]‖22
‖δ[m]‖22

,

δk[m] = {1, 0, 0, . . .},
δ[n] = 0, ∀n 6= m,

w = 0, p = 0, t = 0.
(9.31)

Unlike γjm, γjw, γjp, γ
j
t , which depend on {Lq,Kq}q∈{1,...,nθ}, γ

j
m,q, γjw,q, γjp,q, γ

j
t,q only depend

on Lq and Kq. Note that in (9.30), we have taken into account that ‖p‖∞ ≤ λi1,q if θ ∈ Θ(q)

because ‖pk‖∞ satisfies (9.24). Similar applies to ‖t‖∞. In all, an observer designed through
the optimization problem (9.30) is globally stable inside the set Θ regardless of the parameter
dynamics and it guarantees certain local performance trade-off in each subset Θ(q) provided
infrequent changes of subset membership. Similar approaches are utilized in practical works
as [25,47,308].

Remark 9.5. The density Nθ of the grid {Θ(q)} is to be determined from a trade-off between
having

1In order to approximately fix the χ% settling times of the observer, we can approximate the fault observer
responses to the response of a first-order system. Hence, if we fix γ̄jj = 1

1−(1+log(1−χ/100)/T̄ j)2 , the χ% settling
time of the j-th fault estimate due to a step fault f [j] is approximated to T̄ j .
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• a few gridding intervals that ensure reduced computational burden and infrequent changes
of subset membership but introduce conservatism,

• a lot of gridding intervals causing heavy computational time and more frequent changes of
subset membership but reducing performance conservatism.

As previously specified, we choose Nν = Np = 7 (see Appendix D.4.1). This gridding is a
posteriori validated through the numerical simulations in Section 9.7.

Regarding the stability requirement in (9.30), it should be noted that even when all the
subsystems of a switched system are stable, such a system may fail to preserve stability. It is
well-known in switched systems theory that a necessary and sufficient condition to ensure the
stability of (9.26) is the existence of Nθ positive-definite matrices P1, . . . , PNθ satisfying ( [62])

(A− Lq C)T Pp (A− Lq C)− Pq � 0, ∀(q, p) ∈ {1, . . . Nθ} × {1, . . . Nθ}. (9.32)

Regarding the performance requirements in (9.30), let us apply the Z transform to (9.26) when
θ ∈ Θ(q); it yields

f̃ [j](z) =
nj∑
m=1

(
Gjm,q(z) δ[m](z)

)
+Gjw,q(z)w(z) +Gjp,q(z) p(z) +Gjt,q(z) t(z), (9.33)

with

Gjm,q(z) = −M j
q (z)D (Fm)T , (9.34a)

Gjw,q(z) = M j
q (z)Lq +Kq, (9.34b)

Gjp,q(z) = M j
q (z)E, (9.34c)

Gjt,q(z) = M j
q (z)F, (9.34d)

and M j
q (z) = F j (R−Kq C)(z I −A+ Lq C)−1. It is well-known that γjm,q, γjw,q, γjp,q, γ

j
t,q fulfil

( [269])

γjm,q = ‖Gjm,q(z)‖22, (9.35a)
γjw,q = ‖Gjw,q(z)‖22, (9.35b)
γjp,q ≤ ‖Gjp,q(z)‖2∞, (9.35c)
γjt,q ≤ ‖Gjt,q(z)‖2∞, (9.35d)

where ‖G(z)‖2 and ‖G(z)‖∞ denote, respectively, the H2 norm and the H∞ norm of a system
G(z). In all, (9.30) can be rewritten as

minimize
{Lq ,Kq ,Pq ,Qq}q∈{1,...,nθ}

Nθ∑
q=1

nj∑
j=1

(
‖Gjw,q(z)‖22 σ2

w + ‖Gjp,q(z)‖2∞ (λi1,q)2 + ‖Gjt,q(z)‖2∞ (λi2,q)2
)

subject to ‖Gjm,q(z)‖22 ≤ γ̄jm , ∀j,m, q
matrix inequalities in (9.32)

(9.36)
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This optimization problem ensures global stability in the set Θ and certain local steady-state
performance in each subset Θ(q). It can be solved using different numerical approaches as ge-
netic algorithms. In the following we briefly show how to translate this problem into a convex
optimization problem based on linear matrix inequalities (LMIs).

Convex formulation of the observer design optimization problem

The observer design optimization problem (9.36) can be reformulated as a multiobjective convex
optimization problem as follows.

minimize
Nθ∑
q=1

nj∑
j=1

(
γjw,q σ

2
w + γjp,q (λi1,q)2 + γjt,q (λi2,q)2

)
subject to Ξ1

q,p � 0, ∀(q, p) ∈ {1, . . . Nθ} × {1, . . . Nθ}
Ξ{2,3,4,5,6,7}q,j � 0, ∀(q, j) ∈ {1, . . . Nθ} × {1, . . . nj}

(9.37)

along the full-rank matrices Qq, Kq, Xq; symmetric matrices Pq,j , Rq,j , Sq,j , Tq,j , Vq,j ; and
scalars γwq,j , γ

p
q,j and γtq,j for q = 1, . . . , Nθ and j = 1, . . . , nj . The LMIs in (9.37) are defined as2

Ξ1
q,p =

[
Qq +QTq − Pp Ξq

? Pq

]
, (9.38a)

Ξ2
q,j =

Qq +QTq −Rq,j Ξq 0
? Rq,j Ψj

q

? ? I

 , Ξ3
q,j =

[
Qq +QTq −Rq,j QqD

? Γjq

]
, (9.38b)

Ξ4
q,j =

Qq +QTq − Sq,j Ξq 0
? Sq,j Ψj

q

? ? I

 , Ξ5
q,j =

Qq +QTq − Sq,j Xq 0
? γjw,q I (F jKq)T
? ? I

 (9.38c)

Ξ6
q,j =


Qq +QTq − Tq,j Ξq Qq E 0

? Tq,j 0 Ψj
q

? ? γjp,q I 0
? ? ? I

 , (9.38d)

Ξ7
q,j =


Qq +QTq − Vq,j Ξq Qq F 0

? Vq,j 0 Ψj
q

? ? γjt,q I 0
? ? ? I

 , (9.38e)

with Ξq = Qq A−Xq C, Ψj
q = (F j R− F jKq Cq)T and

Γjq =


γ̄j1 0 0

0 . . . 0
0 0 γ̄jnj

 . (9.39)

2The symbol ? in a block matrix denotes the blocks induced by symmetry.
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The gains Lq are then defined as Lq = Q−1
q Xq. The proofs associated to this procedure are

similar to the ones presented in the previous chapters of the thesis and can be derived from the
reference works [62,69,252,324], where it is shown how to translate a multiobjective optimization
problem into a convex optimization problem based on LMIs by means of introducing of slack
variables, here named after {Qq}q∈{1,...,Nθ}.

9.5.2 Fault evaluator design

To characterize the behavior of the FI decision mechanism (9.25) that evaluates the fault esti-
mates provided by the observer (9.20), we propose to use the parameters defined as follows.

• The false isolation rate (FIR) of the fault j, which we denote as φj , is the probability of
rising alarms of the j-th fault when no fault exists (i.e., f = 0).

• The minimum isolable fault j (MIF), which we denote as υj , is the smallest value of
a constant fault f [j] which ensures that the alarm of fault j raises at some sample kj
provided the non-existence of other faults and disturbances (i.e., f [m 6= j] = 0, w = 0,
p = 0, t = 0).

• The isolation time (IT) of fault j, which we denote as τ j , is the time elapsed between the
sample ka of appearance of a fault f [j] and the sample kj in which the alarm is raised
provided the non-existence of other faults and disturbances (i.e., f [m 6= j] = 0, w = 0,
p = 0, t = 0).

The decision mechanisms (9.25) consist of both the thresholds J [j] and the estimates f̂ [j]
provided by (9.20). The values of the thresholds J [j] fix the trade-off between the certainness
and uncertainness of the FI decision. Then, for certain estimator (9.20), as the thresholds J [j]
increase, so does the certainness of the decisions and the FIRs decrease while the MIFs and
ITs increase. Since the observer gain matrices are already designed through the optimization
problem (9.36), we can only arbitrarily fix the thresholds J [j]. Hence, it is only possible to
guarantee a performance requirement over one of the aforementioned isolation performance
parameters. We propose to online compute the adaptive thresholds for guaranteeing certain
FIRs of the fault evaluator.

The requirement over the FIRs concerns the case in which δ = 0 and f = 0 (i.e., f̂ = −f̃).
In this case, the estimation error sources are the noises (b) and the UIs (c). In the following,
we characterize the probability that, in the absence of faults, f̂ [j] exceeds certain value due to
each of these error sources.

• The signal f̂ [j] due to the noises w is zero-mean and Gaussian because the noises w are
zero-mean and Gaussian. Its time-varying variance is equal to the marginal variance of the
fault estimation error f̃ [j], which is given by the j-th diagonal element of Σf

k = E{f̂kf̂Tk }
(i.e., Σf

k [j, j]) and it can be computed as

Σk+1 = (A− L(θk)C) Σk (A− L(θk)C)T + L(θk)W L(θk)T , (9.40a)
Σf
k = (R−K(θk)C) Σk (R−K(θk)C)T +K(θk)W K(θk)T , (9.40b)
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with L(θk) and K(θk) being selected through (9.21)3. Taking account of the properties of
the probability distribution function of a zero-mean Gaussian variable, if δ = 0, p = 0 and
t = 0, we have that

P
{
|f̂k[j]| > Φ−1

Z (1− φj/2)
√

Σf
k [j, j]

}
≤ φj , (9.41)

with Φ−1
Z (·) being the inverse cumulative distribution function of a standard normal vari-

able.

• The statistical properties of the signal f̂ [j] due to the UIs p and t are unknown. Thus,
we propose to approximate its probability distribution function to a zero-mean uniform
distribution. If θ ∈ Θ(q), δ = 0, w = 0 and t = 0, the inequality

‖f̃ [j]‖RMS ≤ ‖Gjp,q(z)‖∞ λi1,q (9.42)

holds for infrequent changes of subset membership4. Thus, taking account of the properties
of the probability distribution function of a zero-mean uniform variable5 , we have that

P
{
|f̂k[j]| >

√
3 ‖Gjp,q(z)‖∞ λi1,q

}
≈ 0. (9.43)

Similar applies to the error caused by t.

Given these probabilities, we online compute the adaptive thresholds J [j] for approximately
bounding the FIRs (i.e., φj / φ̄j for j = 1, . . . , nj) as

Jk[j] = Φ−1
Z (1− φ̄j/2)

√
Σf
k [j, j] + p̄(θk) + t̄(θk), ∀j (9.44)

with

p̄(θk) = p̄q if θk ∈ Θ(q), (9.45a)
t̄(θk) = t̄q if θk ∈ Θ(q), (9.45b)

and where p̄ and t̄ are computed offline as

p̄q =
√

3 ‖Gjp,q(z)‖∞ λi1,q, (9.46a)
t̄q =

√
3 ‖Gjt,q(z)‖∞ λi2,q, (9.46b)

with the designed gains Lq and Kq for q = 1, . . . , Nθ. In all, the proposed FE and FI strategy
is summarized in Fig. 9.4.

3These Riccati equations have been obtained with δ(z) = 0, p(z) = 0, t(z) = 0 and using an internal realization
of the transfer function between w and f̃ .

4From the definition of γjp,q, we have ‖f̃ [j]‖RMS ≤ γjp,q ‖p‖∞; from (9.35), we have γjp,q ≤ ‖Gjp,q(z)‖∞; and
from (9.24), we have ‖p‖∞ ≤ λi1,q.

5If x is a zero-mean uniform variable, then |x| <
√

3 ‖x‖RMS .
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Figure 9.4. FE and FI strategy for each row of turbines i.

Remark 9.6. In order to avoid false alarms when the membership of θ to a subset Θ(q) changes
to a subset Θ(p 6=q) such that (p̄q + t̄q) > (p̄p + t̄p) we use the refined adaptive threshold J∗k [j]
defined as

J∗k [j] =
{
αj J

∗
k−1[j] + (1− αj) Jk[j] if Jk[j] < J∗k−1[j]

Jk[j] otherwise
, (9.47)

with αj defining a sufficiently slow filter which can be validated through numerical simulations
(we choose αj = 0.90).

Remark 9.7. The propagation error p is a high-frequency signal and we can model its dynamics
as p(z) = z−1

z−αf η(z) where η is a random variable verifying ‖η‖∞ = ‖p‖∞ and αf / 1 (we choose
αf = 0.99). Thus, we replace ‖Gjp,q(z)‖∞ by ‖Gjp,q(z) z−1

z−αf ‖∞ in (9.46a) . Similar applies to t;
hence, we replace ‖Gjt,q(z)‖∞ by ‖Gjt,q(z) z−1

z−αf ‖∞ in (9.46b). With this, we give more weight
to high-frequency components w.r.t. low-frequency components that would lead to a conservative
computation of the thresholds of the decision mechanisms.

9.6 Improvement of performance with fault simultaneity restrictions

The dependence of the thresholds on the variances of the noises and on the peak bounds of
the UIs (see (9.44)) may compromise the performance of the fault evaluator. Even if the effect
of the noises and UIs is attenuated (see the optimization problem (9.36)), large values of the
variances of the noises and, especially, of the bounds of the UIs may lead to large values of the
MIFs and ITs. In such a case, it would not be possible to detect and isolate through (9.25) the
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occurrence of small faults to which the system may be prone. Thus, we propose to improve the
FI performance at the cost of a constraint regarding the simultaneity of faults.

To do so, we build a bank of nj observers b (b = 1, . . . , nj). Each observer b aims to estimate
the auxiliary fault vector

f̄ bk =
[
f i,1k . . . f i,b−1

k f i,b+1
k . . . f

i,nj
k

]
.

The discrete state-space model of the pitch systems of the i-th row of WTs including the
dynamics of f̄ b can be written as

z̄bk+1 = Ā z̄bk + B̄ uk + D̄ δ̄bk, (9.48a)
yk = C̄ z̄bk + wk + Ḡb f i,bk , (9.48b)
f̄ bk = R̄ z̄bk, (9.48c)

with

z̄bk =
[
βi,1k . . . β

i,nj
k ξi,1k . . . ξi,b−1

k ξi,b+1
k . . . ξ

i,nj
k

]
,

δ̄bk =
[
δi,1k . . . δi,b−1

k δi,b+1
k . . . δ

i,nj
k

]
,

Ā =
[
α Inj 0

0 Inj−1

]
, B̄ = (1 − α) I2nj−1, D̄ =

[
0

Inj−1

]
, C̄ =

[
Inj Inj−1

]
, Ḡb =

 0(b−1)×1
1

0(nj−b)×1


and R̄ =

[
0 Inj−1

]
. Then, each model-based observer b can be built as

ˆ̄zbk+1 = Ā ˆ̄zbk +B ûk + L̄bk (yk − C̄ ˆ̄zbk), (9.49a)
ˆ̄f bk = R̄ ˆ̄zbk + K̄b

k (yk − C̄ ˆ̄zbk). (9.49b)

Define ˜̄zb = z̄b − ˆ̄zb and ˜̄f b = f̄ b − ˆ̄f b. It follows that

˜̄zbk+1 =(Ā− L̄bk C̄) ˜̄zbk + Ē pk + F̄ tk + D̄ δ̄bk − L̄bk wk, (9.50a)˜̄
f
b

k =(R̄− L̄bk C̄) ˜̄zbk − K̄b
k wk − Ḡb f i,bk , (9.50b)

with Ē and F̄ being built in analogy to E and F . The exogenous signals affecting the observer
b are not only the fault generator δ̄b, the noises w and the unknown inputs p and t but also
the fault f i,b. We propose to omit the dependence of the error on the fault f i,b and to design
the gain matrices of each observer (9.49) following the approach presented in Section 9.5 (the
matrices Ā, C̄, D̄, Ē, F̄ , L̄b and K̄b in the place of the matrices A, C, D, E, F , L and K).
Note that, in this case, the restriction regarding the CSE requirement of the b-th fault will not
appear in the optimization problem (9.30). This extra design freedom is then used to achieve a
greater minimization of the effect of the noises and the UIs on the fault estimates.

In the absence of the fault f i,b, we can thus set the following decisions (j = 1, . . . , nj − 1)
for the b-th observer: {

if | ˆ̄f bk[j]| ≥ J̄bk[j] , Fault f̄ b[j]
otherwise , No fault f̄ b[j]

, (9.51)
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where Jb[j] is designed following the strategies in Section 9.5. Note that the thresholds J̄b[j]
in (9.51) are smaller than the thresholds J [j] in (9.25): when omitting the presence of the fault
f i,b, we achieve a greater attenuation from noises and UIs.

If the fault f i,b is present in the system, the decision mechanisms (9.51) which are based
on the b-th observer are no longer reliable. Thus, an observer b and the corresponding decision
mechanisms are reliable if the absence of the fault f i,b is diagnosed by the decision mechanisms
of at least one reliable observer c (c 6= b). In turn, the reliability of c implies that the decision
mechanisms of the b-th observer diagnose the absence of the fault f i,c, see Fig. 9.5. In all, the
proposed bank of observer and decision mechanisms enables FE and FI whenever 2 of the faults
in a row i are not present in the system (i.e., there are no more than nj − 2 simultaneous faults
in a row). FE and FI are obtained with any of the reliable observers and decision mechanisms
of the bank. The strategy is summarized in Fig. 9.6.

9.7 Simulation results

The benchmark [215] includes a scenario of 4400 s in which different faults occur. In the first
period between 0 s and 2300 s, the WF cannot deliver the required power, while it can do so
in the second period between 2300 s and 4400 s. The collective pitch system of the turbines
(1, 1) and (2, 2) of the 0◦ layout are affected by misalignment of the blades causing an offset of
0.3◦ in the pitch angle measurements, see Table 9.1. In the following, we include the FE and FI
results that we obtain with the proposed approach. All the observer designs are translated into
multiobjective convex optimizations as detailed in (9.37), set up in YALMIP [192] and solved
using the solver MOSEK [204]. For simplification, we omit the obtained observer matrix gains
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Figure 9.5. Reliability chain in the bank of observers and decision mechanisms.
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{Lq,Kq}{1,...,Nθ} and the obtained bounds {p̄q, t̄q}{1,...,Nθ}. Let us remark that in the figures
of the section, unless explicitly stated otherwise, the fault estimates are in black and the FI
thresholds are in red.

For the 0◦ layout, we build a bank of observers and decision mechanisms for each row of
turbines (i = 1, 2, 3) as explained in Section 9.6. Let us perform different observer designs with
different values of the CSE requirements γ̄jj and let us use γ̄jm = γ̄jj/100 for all m 6= j in these
designs (See Remark 9.4). If we denote as ψ̄j the CSE requirement γ̄jj when taking into account
the sampling time Ts (i.e., ψ̄j = γ̄jj Ts), we use ψ̄j = [1, 5, 10, 20, 30, 50]◦2s for j = 1, . . . , nj .
The FIR criteria with φ̄j = 1 · 10−5 (i.e., one false alarm each 1000s) for j = 1, . . . , nj is used
to compute the thresholds of the decision mechanisms. Fig. 9.7 shows the effect of varying the
CSE in the turbine (i = 1, j = 1), which is affected by the fault F1. As an example, the details
on the results with ψ̄j = 30◦2s are depicted in Fig. 9.8. Fig. 9.9 shows the results for the turbine
(i = 2, j = 2), which is affected by the fault F2, and Fig. 9.10 shows the results for the turbine
(i = 1, j = 2), which operates in fault-free conditions. The results on the left hand side of the
figures include the variables f̂ [j] (black) and J [j] (red) while the results on the right hand side
compare the normalized variable f̂ [j]/J [j] (black) with a unitary threshold (red).

Fault ID 0◦ layout 45◦ layout Time occurrence
F1 (i = 1, j = 1) (i = 1, j = 3) [1300,1400] s
F2 (i = 2, j = 2) (i = 3, j = 3) [3300,3400] s

Table 9.1. Fault scenario description.
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Figure 9.7. FE and FI with different CSE requirements ψ̄j . Turbine (i = 1, j = 1) of the 0◦ layout affected by
the fault F1.
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Figure 9.8. Details on the FE and FI results with a CSE requirement of ψ̄j = 30◦2 s. Turbine (i = 1, j = 1) of
the 0◦ layout affected by the fault F1. Absolute variables in [◦].
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Figure 9.9. FE and FI with different CSE requirements ψ̄j . Turbine (i = 2, j = 2) of the 0◦ layout affected by
the fault F2.

Regardless of the value of the CSE requirement, all the figures show that when the power
harvested from the wind is much lower than the power required by the WF controller, the
achieved minimum isolable faults (MIFs) are smaller. In such cases, the estimated wind speed
is low and the pitch reference estimation errors are small because for low wind speeds the pitch
reference function is barely constant (see Fig. 9.2). Contrariwise, for high wind speeds the pitch
reference function is monotonically increasing and the pitch estimation errors are larger. Let us
now analyze the effect of the CSE requirement on the FE and FI performance. We verify that
as the CSE requirement becomes more restrictive (i.e., ψ̄j becomes smaller), the attenuation
from the uncertainties and the noises diminishes and the MIFs are larger. On the other hand,
the fault tracking behavior is improved and the isolation times (ITs) diminish (as long as the
achieved MIFs are smaller than the simulated faults).
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Figure 9.10. FE and FI with different CSE requirements ψ̄j . Turbine (i = 1, j = 2) of the 0◦ layout in fault-free
conditions.

Provided these deductions, it is reasonable that the fault F1, which occurs at the low
wind speed period, is isolated with all the designed observers. In contrast, the fault F2, which
occurs at the high wind speed period, is only isolated when using the designs with the less
restrictive CSE requirements. Fig. 9.11 compares the isolation of the fault F1 and of the fault F2
provided by three designs with a restrictive, an intermediate and a moderate CSE requirement
(i.e., ψ̄j = 5◦2s, ψ̄j = 20◦2s and ψ̄j = 50◦2s). For ease of comparison, the figure includes the
normalized variables f̂ [j]/J [j] of these three cases. Thus, bigger differences between the value
of the variable f̂ [j]/J [j] and the unitary threshold imply smaller MIFs. The IT of the fault
F1 is smaller if we use an observer designed with a smaller CSE requirement; in contrast, the
difference between the normalized variable f̂ [j]/J [j] and the unitary threshold becomes smaller.
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CSE [◦2s] MIF at 1300 s [◦] MIF at 3300 s [◦] largest MIF [◦] IT [s]

i = 1 i = 2 i = 1 i = 2 i = 1 i = 2 F1 F2
1 0.33 0.33 1.28 1.31 2.07 2.93 10 -
5 0.15 0.15 0.57 0.58 0.88 1.22 7 -
10 0.11 0.11 0.37 0.38 0.55 0.75 8 -
20 0.08 0.08 0.24 0.24 0.34 0.45 9 23
30 0.06 0.06 0.18 0.18 0.25 0.33 10 24
50 0.05 0.05 0.13 0.14 0.18 0.23 14 33

Table 9.2. Comparison of FI performance with different observers (0◦ layout).

For the fault the fault F2, we prove that FI is not achieved if the restrictive CSE requirement
is used in the design. The ITs of the other two designs are similar: even if ψ̄j = 20◦2s is smaller
than ψ̄j = 50◦2s, the achieved MIF at 3300 s for ψ̄j = 20◦2s is very close to 0.30◦ (see Table
9.2) and FI is compromised. In contrast, the achieved MIF for ψ̄j = 50◦2s at 3300 s is 0.14◦.
Table 9.2 summarizes these results for all the designs. Let us remark that the maximum values
of the MIFs are bigger at the row i = 2 than at the row i = 1 because the pitch reference
estimation errors are higher as the distance to the wind mast increases. At 1300 s and 3300 s
these differences are coincidentally minimal. The biggest differences appear at the wind speeds
and power references for which the slope of the pitch reference function is more pronounced.
Finally, note that the isolation of the fault F1 is achieved with the design of ψ̄j = 1◦2s even if
the MIF at 1300 s is bigger than the fault size (i.e., 0.33◦ vs. 0.30◦). The effect of the noises and
uncertainties enhances this isolation; however, the fault estimate oscillates around the threshold
of the FI decision and the results are thus misleading in this case.

In the following, we use ψ̄j = 30◦2s, and φ̄j = 1 ·10−5 (j = 1, . . . , nj) in the designs. Fig. 9.12
and Fig. 9.13 show the results for all the turbines in the WF when we analyse the 0◦ layout. To
enhance the comprehension of the functioning of the bank of observers and decision mechanisms,
let us study each row of turbines in the farm. In the row i = 1, between 1300 s and 1400 s, the
observer b = 1 and the corresponding decision mechanisms are corrupted by the appearance of
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Figure 9.12. FE and FI with ψ̄j = 30◦2 s (0◦ layout). Absolute variables in [◦].
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Figure 9.13. FE and FI with ψ̄j = 30◦2 s (0◦ layout). Normalized variables.

the fault F1 in the turbine (i = 1, j = 1) (i.e., f1,1
k 6= 0 if k ∈ [1300, 1400]). The estimates of the

fault f1,1 provided by the observers b = 2 and b = 3 indicate it. Thus, FE and FI is achieved
with the results of b = 2 and b = 3. Similarly, in the row i = 2, between 3300 s and 3400 s,
the results are provided by either b = 1 or b = 3 because b = 2 is corrupted by the fault F2
in the turbine (i = 2, j = 2). Fig. 9.14 includes the results of the non-reliable observer b = 2
and the corresponding decision mechanism. They estimate and isolate a non-existent fault in
the turbine (i = 2, j = 3). Fortunately, the estimates provided by the observers b = 1 and b = 3
are reliable and FI is achievable in the WF (Fig. 9.12 and Fig. 9.13).
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Let us now design a single observer and a single set of decision mechanisms for each row of
turbines of the 0◦ layout. Fig. 9.15 includes the results for the turbines in the column j = 1 when
the bank of observers and decision mechanisms is not used. The MIFs at the low wind speed
period do not vary significantly. Contrariwise, at the high wind speed period, the MIFs increase
drastically and this difference becomes bigger as the distance to the wind mast increases. Thus,
we deduce that FE and FI are more difficult when it is not possible to build a bank of observers
and decision mechanisms. This is the case where the wind direction is such that there are less
than three turbines in a row (e.g., the turbines in the rows i = 1, 2, 4, 5 of the 45◦ layout for
which we do not include the results due to space constraints). In such cases, the FE and FI
results are similar to the results in Fig. 9.15 . A possible solution to mitigate this effect is to
provide the turbines with laser anemometers (LIDAR), which offer a method of remote wind
speed measurement ( [253]) and thus, the wind estimation errors decrease.
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Finally, Fig. 9.16 shows the estimation results when other densities are utilized for gridding
the parameter set Θ. We prove that if the number of intervals Nν and Np is reduced, the
offline computational burden decreases at the cost of some performance conservatism in terms
of MIFs. In these cases, fewer changes of subset membership occur and the assumption of
infrequent membership switches, which is used to design the FI thresholds, is more realistic. In
any case, the chosen number of intervals (i.e., Nν = Np = 7) has proved to satisfy an adequate
trade-off between computational cost and performance conservatism. Moreover, as show in the
figures included in this section, few significant bound changes occur along the simulation of
4400s. Hence, we deduce that there are infrequent membership switches between intervals with
significantly different error bounds.

9.8 Conclusion

In this chapter a model-based FE and FI strategy is proposed for WT pitch systems affected
by the misalignment of one or more blades. The FE algorithm includes a switched observer
that is designed offline to guarantee global stability and local steady-state performance. In
the design we use the trade-off between common engineering parameters that describe the
fault estimation signals: the cumulative squared error due to faults and the root mean square
error due to noises and uncertainties. The FE performance is thus intuitively fixed. The fault
estimates are used in statistical-based decision mechanisms for FI. The thresholds of these
mechanisms are computed online under the FIR criterion. Under certain restrictions regarding
the number of simultaneous faulty turbines in a row, we improve the performance of the FE
and FI strategy using a bank of observers and decision mechanisms. The simulations performed
on the WF benchmark demonstrate that the proposed strategy is suitable to estimate and
isolate pitch misalignments. The algorithm is able to estimate pitch misalignments for all wind
directions but its performance is highly ameliorated when more than two turbines are in the
same perpendicular row to the wind direction. This proves the effectiveness of following a WF
level approach. It should be emphasized that the proposed strategy can be extended for FE and
FI in other WT subsystems at a WF level. Future research will include this extension. For its
part, the use of the pitch misalignment estimates in individual fault tolerant control highlights
as immediate future work.





Chapter 10

Summary and future research

10.1 Summary

This thesis addressed some issues arisen from the application of estimation-based FD strategies
to different practical systems such as industrial pipe networks, multistage manufacturing pro-
cesses, wind turbines and wind farms. We proposed different FE strategies based on augmented
observers and we developed various FDI strategies which are based on the evaluation the fault
estimates in threshold-based decision mechanisms.

The thesis focused on the performance of the proposed FD strategies. On the one hand, we
presented different optimization-based design approaches of the fault estimators and evaluators
that allow specifying requirements over different practical FE and FDI performance parameters.
In the FE context, we dealt with the cumulative squared error (CSE) due to faults, the fault
tracking delay, the variance due to noises and the degree of interfault and UI decoupling. In
the FDI framework, we dealt with the minimum isolable fault (MIF), the isolation time (IT)
and the false isolation rate (FIR). We also achieved to independently specify the performance
of each FE/FDI channel according to its particular diagnostic demands. On the other hand,
we presented an enhanced form of augmented observers with an improved performance w.r.t.
faults with periodic components. We studied the FE performance trade-offs that arise from the
structural complexity of an augmented observer and we presented a probabilistic approach to
optimally set these trade-offs. Finally, we extended the proposed approaches to schemes based
on banks of fault estimators and evaluators that allow achieving estimation-based FD in systems
with numerous faults.

Performance-based fault estimation and evaluation

In the process industry, the demands on diagnostic activities are established in terms of param-
eters which are barely introduced in theoretical designs. Hence, in this thesis, we presented a
variety of designs of fault estimators, designs of fault evaluators and co-designs of fault estima-
tors and evaluators which guarantee an optimal trade-off between this sort of practical FE and
FDI parameters.
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First, Chapter 3 considered systems affected by faults and stochastic noises. The chapter
briefly analyzed the suitability of different estimation approaches (RLS algorithms and SISO PI
observers) to establish FD performance-based designs. SISO PI observers having appeared to
be more appropriate, the chapter included some preliminarily notes on their design to fix either
the CSE towards abrupt faults or the variance due to noises. We subsequently showed how to
design the threshold of decision mechanisms that evaluate the fault estimates provided by the
observers. In this case, the design deals with the trade-off between the MIF and the FIR.

Second, Chapter 4, considering also systems affected by faults and stochastic uncertainties,
extended the previous results and included the performance-based design of a time-varying
MIMO PI observer utilizing the Kalman filter theory. By considering the fault variations as
uncertainties and their covariance as a multivariate tuning parameter, Chapter 4 presented a
design that also fixes either the CSE towards abrupt faults or the variance due to noises. We
also showed how to fix the threshold of the decision mechanisms evaluating the fault estimates
provided by the observer.

Third, Chapter 5 presented two co-design strategies of time-invariant MIMO PI observers
and threshold-based decision mechanisms for systems affected by faults and stochastic noises.
The proposed designs take into account the trade-off between the CSE towards abrupt faults, the
MIFs and the FIRs. Similarly to Chapter 4, the first co-design approach is based on the Kalman
filter theory and it consists on an heuristic optimization problem with Lyapunov equations. The
second co-design approach is based on H2 norms and covariance bounds and it consists on an
optimization problem formulated via matrix inequalities. The chapter also included some notes
on the suitability of the methods w.r.t. the handling of the appearance of faults in different
channels, to which we referred as interfault decoupling capability.

Finally, Chapter 7 considered, along with the presence of stochastic noises and faults, the
presence of UIs. It presented a single-step design of time-invariant MIMO PI observers that
allows achieving numerical UI decoupling together with other performance requirements over
the delays to track incipient faults, the FE covariance due to noises and the degree of interfault
decoupling. The design consists on an optimization problem with matrix inequalities utilizing
different H∞ norms and covariance bounds. Then, we extended these results and we presented
a co-design strategy of time-invariant MIMO PI observers and threshold-based decision mech-
anisms that allows specifying requirements over the FIRS, the MIFs and the ITs.

Fault estimation of complex uncertain fault forms

In certain practical applications, the faults are periodic signals which can be decomposed into
sinusoids of known frequencies. In Chapter 6, we thus generalized the formulation of the well-
known proportional multiple-integral (PMI) augmented observer by presenting and giving the
existence conditions of a novel proportional multiple-integral and multiple-resonant (PMIR)
observer for FE in systems with oscillatory faults.

Provided that the form of the faults affecting a practical system is a priori uncertain, Chap-
ter 6 also studied the influence of the structural complexity of an augmented observer on the
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existing trade-off between its steady-state behavior w.r.t. complex fault forms and its transient
behavior w.r.t. simpler fault forms. Along these lines, we also presented a FE design strategy
that takes into account the probability of appearance of each of the fault forms considered by
an augmented observer.

Fault estimation and evaluation in systems with numerous faults

In practice, the faults affecting a system rarely verify fault isolability conditions. However, stan-
dard FE techniques are not applicable to systems with non-isolable faults. Thus, in Chapter 7,
we extended the concept of bank of residual generators and evaluators to the FE framework.
We presented a bank of observer-based fault estimators and threshold-based fault evaluators
that allow achieving FE and FDI in systems with non-isolable faults at the cost of some fault
simultaneity restrictions.

In Chapter 8 and Chapter 9, we applied this scheme using banks of fault estimators and
evaluators to groups of comparable systems operating under similar conditions. The proposed
scheme automatically merges the information provided by the system model inconsistencies
and by the inconsistencies between systems and it optimally defines the degree of attention
that must be paid to each of these kinds of inconsistencies. It also ameliorates the FE and FDI
performance at the cost of some mild restrictions over the simultaneous occurrence of faults.

Fault estimation and evaluation in complex practical applications

This thesis faced the problems related to the application of estimation-based FD strategies
to practical engineering cases. First, Chapter 3 considered the problem of leakage diagnosis
in real industrial networks of pipelines and tanks. Applying the mass conservation principle,
Chapter 3 presented a multiplicative fault estimator based on the RLS identification algorithm
and an additive fault estimator based on SISO PI observers. It compared the suitability of
these methods w.r.t. leakage FD and it presented an FDI strategy that evaluates the leakage
estimates provided by the SISO PI observers.

Second, Chapter 4 presented an observer-based approach for the estimation of variance
deviations in multistage manufacturing processes (MMPs). After appropriately modeling the
non-stationary behavior of the variances in MMPs, we introduced a time-varying MIMO PI
observer for FE and we designed it using common FE performance parameters. Then, the fault
estimates were evaluated using statistical confidence intervals for FDI. These intervals were
tightened by expressing the fault estimates in terms of infinite weighted sums that approach
normal distributions. In comparison with traditional batch-based methods for variance estima-
tion in MMPs, the proposed observer-based approach is more computationally efficient, it has
lower data-storage demands and it is more flexible in terms of satisfying different estimation
and diagnosis performance requirements.

Third, Chapter 7 presented a solution for FE and FDI in the systems of a wind turbine (WT):
the pitch system, the drive train system and the generator and converter system. Provided
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that the actuator and sensor faults affecting some WT systems do not verify fault isolability
conditions, most estimation-based FD solutions in the bibliography obviate the existence of
sensor faults. Chapter 7 presented banks of time-invariant MIMO PI observers and threshold-
based decision mechanisms that allow achieving FE and FDI for all the WT actuator and sensor
faults. The chapter also included a co-design strategy of these fault estimators and evaluators
that allows a priori specifying the FI requirements (over false isolation rates and isolation times)
indicated in a well-known benchmark for FD in WTs. In the literature, the FI performance
is alternatively a posteriori studied and the satisfaction of the demanded FI requirements is
addressed via iterative procedures.

Finally, Chapter 8 and Chapter 9 addressed the problem of estimation-based FD in wind
farms (WFs). Chapter 8 considered the diagnosis of decreased power generation in WFs. For its
part, Chapter 9 considered the diagnosis of WT pitch misalignments in WFs. In these chapters,
we presented closed-loop FE and FDI approaches that are more actively robust against distur-
bances than the open-loop methods available in the literature. In the FE step, non-conservative
approaches were used to handle the model nonlinearities and the differences in disturbance
levels along the operation ranges: Chapter 8 presented a Markovian jump system approach
with switched PI observers and Chapter 9 designed switched PI observers considering infre-
quent mode switchings. The proposed observer designs also allow guaranteeing certain fault
sensitivity with optimal disturbance rejection. In the FDI step, we presented adaptive FDI
mechanisms that evaluate the fault estimates provided by the observers: Chapter 8 presented a
data-driven approach for computing the adaptive thresholds of the mechanisms and Chapter 9
used a model-based statistical procedure making some approximations over the probability dis-
tribution function of the fault estimates. Finally, in these chapters, considering some mild fault
simultaneity restrictions, the FE and FDI performance is ameliorated by building banks of the
previous observers and decision mechanisms for groups of WTs operating under similar wind
conditions.

10.2 Future research

The following promising future research directions arise from the contributions in this thesis.
We distinguish between the research ideas in the field of estimation-based FD and in the field
of active fault tolerant control (FTC).

Fault estimation and evaluation

In the field of estimation-based FD, some likely ideas for future research are listed below.

• Introduction of some practical FE and FDI performance parameters in the design of data-
based fault estimators and evaluators, as we did in the design of the model-based fault
estimators and evaluators presented in Chapter 3, 4, 5 and 7.
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• Formulation of an adaptive version of the Kalman-based time-varying fault estimators
presented in Chapter 4 for their adaptation to the actual level of fault variation. Analyzing
the possible inclusion of this feature to FE structures that switch among a set of predefined
augmented observers.

• Development of the PMIR observers introduced in Chapter 6 for their application in
systems with oscillatory faults of unknown frequency.

• Extension of the performance-based fault estimators and evaluators proposed in Chap-
ter 7 to more complex systems, e.g., large-scale system, networked control systems, hybrid
systems, etc.

• Application and adaptation of the proposed estimation-based FD strategies to other prac-
tical systems. For instance, the extension of the results in Chapter 4 to the estimation
and diagnosis of changes in the mean of the variation sources. Also, the application of the
PMIR observers in Chapter 6 to FE in power systems of fixed frequency or in wastewater
systems.

• Validation of the results in this thesis using experimental verification, which may pose
new research challenges. For example, the strategies in Chapter 7, 8 and 9 were tested
in realistic numerical simulators in the context of FD in WTs and WFs; future work will
include their application to small-scale physical simulators.

Fault tolerant control

In the field of estimation-based FD for FTC, some research challenges are listed below.

• Utilization in active FTC schemes of the estimation-based FD results provided by the
fault estimators and evaluators in Chapter 4, 7, 8 and 9. In particular, the application of
these results to fault tolerant model predictive control (MPC) seems immediate because
MPC structures easily adapt to the differences between faulty and fault-free scenarios.

• Development of co-designs of fault estimators and fault-tolerant controllers for a priori
guaranteeing FTC performance parameters (in analogy to the co-designs of fault esti-
mators and evaluators presented in Chapter 5 and 7 for a priori guaranteeing FDI per-
formance parameters). Comparison of the performance of systems including separately
designed or co-designed fault estimators and fault tolerant controllers.

• Development of performance-based co-designs of fault estimators, fault evaluators and
fault tolerant controllers. Comparison of the structures with fault estimators and fault
tolerant controllers and the structures including also fault evaluators.





Appendix A

Wind energy basics

A.1 Overview of wind power generation status

The combination of the need for climate friendly energy solutions, job creation, price stability,
limited fossil fuel resources and security of energy supply are sufficient reasons to shift towards
renewable energy [35]. Today, wind energy represents one of the most powerful renewable energy
resources and it is one of the world’s fastest-growing source of renewable electricity [219]. Both
in Europe and worldwide, wind power is being developed rapidly [154,167,320]. In the European
Union, the 85% of the new power capacity installed in 2017 came from renewable resources and
wind energy represented the 65% of these installations [92], see Fig. A.1

According to the data presented in [12, 58, 60, 91], 204 GW of wind power capacity were
installed in the world between 2012 and 2016. 52 GW were installed in Europe, of which 0.3
GW were placed in Spain. As detailed in Table A.1, these installations resulted in a total global
capacity of 487 GW by the end of 2016. The European and the Spanish capacity summed 161
GW and 23 GW, respectively. Spain became, then, the fifth world country in terms of wind
power capacity, Fig. A.2.

At present, the major wind power capacity is onshore; offshore wind currently accounts for a
small amount of the total installed wind power capacity in the world [26]. However, as detailed
in [90], offshore wind energy projects are gaining in importance and their growth rates are high,
see Fig. A.3.

A.2 Wind turbine operation principle

Wind turbines transform the kinetic energy in the wind into electrical energy. Figure A.4 shows
the main components of a horizontal-axis wind turbine. The nacelle, which is set at the higher
part of the tower, contains the main elements of the turbine: the rotor, the transmission system
and the power generation unit. The blades capture the wind pressure and, through the rotor
hub, they make the rotor to turn around his axis converting the wind kinetic energy into
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End 2012 End 2014 End 2016
Spain 22.784 23.025 23.075
EU-28 106.454 129.060 153.730
Europe 109.817 134.253 161.330
World 283.194 369.705 486.790

Table A.1. Installed Wind Power Capacity in GW. (Source: Prepared by the author on the basis of the data
in [12, 13, 58–60, 91])

Other (0.8 %)
Hydro (4.6 %)

Biomass (4.0 %)

Solar (25.2 %)

Wind (65.3 %)

Figure A.1. New renewable power in the European Union in 2017. (Source: Prepared by the author on the basis
of the data in [92])

China (34.7 %)
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Figure A.2. Top wind cumulative capacity in 2016. (Source: Prepared by the author on the basis of the data
in [60])

rotational mechanical energy. A gear box is used to connect the rotor axis to the generator axis,
and a converter and a high-voltage transformer are used to connect the generator to the grid.
The generator and the converter convert the mechanical energy into electrical energy. Works
as [24,38] show more details on the functioning of this generation system.

Changing the rotor aerodynamics modifies the energy generation. This is achieved by pitch-
ing the blades or by fixing a given rotor speed with respect to the wind speed. The converter and
its control system set the electromagnetic torque which, indirectly, fixes the rotational speed
and, then, the wind energy capture.
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Figure A.3. Cumulative installations of onshore and offshore wind power in the European Union. (Source:
Prepared by the author on the basis of the data in [92])
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Figure A.4. Wind turbine components. (Source: Prepared by the authors on the basis of an image in [14])

Figure A.5 shows an overview of the control system and the relations between the different
wind turbine systems (blade and pitch, drive train, generator and converter, and controller). The
signals between them are denoted as follows: the torques τc, τa, τg and τg,r refer to the captured
wind torque moving the turbine blades, the torque acting on the rotor, the electromagnetic
torque in the generator and its reference, respectively; the rotational speeds ωr and ωg refer to
the rotor and to the generator speeds; the pitch reference is denoted as βr; Pr and Pg refer to
the power reference and to the generated power; and, finally, the signals τg,m, ωr,m, ωg,m and
βm refer to the measurements of the generator torque, the rotor and the generator rotational
speeds, and the pitch angle.

Figure A.6 shows the four control zones in which the controller operates in a different way
depending on the mean wind speed for some given time window. This power curve is delimited
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Figure A.5. Control system overview. (Source: [216])
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Figure A.6. Control zones of a wind turbine operation. (Source: [54, 216])

by three different wind speeds: the cut-in, the rated and the cut-out wind speed [54].

• In Zone I, the aerodynamic torque is not sufficient to overcome the WT inertia and the
turbine is halted.

• In Zone II or partial load region, the controller maximizes the power production. The
pitch angle is held at zero degrees and the generator moment is adjusted to keep the
power coefficient of the WT at a maximum value.

• In Zone III or full load region, the power production is constant; the pitch angle is
controlled to keep the static available power equal to the WT nominal power.

• In Zone IV, the turbine is pitched out to stop the rotation due to security reasons.

A.3 Reliability of wind turbines

Wind turbines are subjected to different faults and failures. Unfortunately, the access to wind
turbine failures statistics is not always permitted by the manufacturer. Thus, this appendix
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refers to the statistics published in some relevant research articles: [65] and [124]. Table A.2
shows the reliability in terms of failure rates and downtimes of the subsystems responsible for
the 75% of the breakdowns of wind turbines. One can verify that the pitch and blade subsystem
together with the generator, the drive train and the converter cause most of the problems.

The authors in [287] explain that Operation and Maintenance (O&M) costs represent the
12% of the total costs of onshore wind projects and this percentage varies from 18% to 23%
in offshore wind farms. These big percentages show that advanced techniques are necessary
to ameliorate the reliability of wind turbines and this issue would be thus determinant in the
future prospects of wind projects.

Subsystem Contribution to Total Failure
Rate [%]

Contribution to Average Time
Lost [%]

Pitch 21,29 23,32
Converter 12,96 18,39

Drive Train 7,16 10,96
Generator 14,33 10,47

Blades 11,28 7,30
Transformateur 1,71 1,84

Tower 2,66 1,75
Brake 1,19 1,42

TOTAL 72,58 75,47

Table A.2. Reliability of wind turbine subsystems. (Source: Prepared by the author on the basis of the data
in [65, 124])
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Appendix B

Notes on fault detection

On the framework of fault detection based on FE, we can set the following decision:{
if f̂(k)T Λ f̂(k) ≥ JD Fault
otherwise No fault , (B.1)

where Λ and JD are to be defined and represent, respectively, a weighting matrix and a quadratic
scalar threshold for detection.

In analogy to the isolation parameters i.1-i.4, we define different parameters that charac-
terize the performance of the fault detector:

d.1. the false detection rates,
d.2. the minimum detectable faults,
d.3. the acknowledgement times for detection and
d.4. the detection times.

We define the false detection rate, which we denote as φD, as the probability of rising a
detection alarm when no fault exists (i.e., f = 0):

φD = P{∃k : f̂(k)T Λ f̂(k) ≥ JD}. (B.2)

Provided fj 6=i = 0, v = 0 and d = 0, we define the minimum detectable fault i, which we
denote as ψD,i, as the smallest value fi

¯
that ensures the detection of the fault (7.26):

ψD,i =
{

min fi
¯s.t. ∃k ≥ k

¯
: f̂(k)T Λ f̂(k) ≥ JD

}
. (B.3)

Under these conditions (i.e., fj 6=i = 0, v = 0 and d = 0), we define the acknowledgement time
for detection of the fault i, which we denote as ϑD,i, as the time elapsed between k

¯
and the first

sample of detection of the fault (7.26):

ϑD,i =

 min
k≥k

¯
k − k

¯
s.t. f̂(k)T Λ f̂(k) ≥ JD

 . (B.4)
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We define the detection time of the fault i, which we denote as τD,i, as the time elapsed between
the appearance of the fault (7.26) at k0 and the first sample of detection of this fault:

τD,i = k
¯
− k0 + ϑD,i. (B.5)

B.1 Mechanisms design with FD requirements

Assume that the model-based observer (7.5) has been designed through the strategies presented
in Section 7.3.2 and the FE vector f̂ provided by such observer (with prefixed stabilising gains
L and K) is used in the decision mechanism (B.1). In the following, we show how to design
the weighting matrix Λ and the threshold JD of the decision mechanism (B.1) for guaranteeing
certain requirement over one detection performance index.

Regarding the index d.1, if f = 0 and perfect UI decoupling is achieved, the FE vector f̂ is
zero-mean and its covariance is given by Σ, which can be computed through (7.9). Then, if we
set Λ = Σ−1, we have that

φD ≤ nf/JD, (B.6)

where we have used Chebyshev’s multidemensional inequality and the definition (B.2). We can
then set JD as

JD := nf/φ
∗
D. (B.7)

to guarantee the bound φD ≤ φ∗D.

Remark B.1. Provided perfect UI decoupling, if the noises v are Gaussian and we set Λ = Σ−1,
we have that f̂(k)T Λ f̂(k) is a chi-squared random variable of nf degrees of freedom and the
threshold JD can be seen as the quantile that we set to construct the confidence interval that
fixes the false detection rate to φ∗D, i.e.,

JD := Φ−1
χ2
nf

(1− φ∗D), (B.8)

with Φ−1
χ2
nf

(·) being the inverse cumulative distribution function of a chi-squared random variable
of nf degrees of freedom.

The minimum detectable fault i depends on the form of the fault signal fi, see the defini-
tion (B.3). Then, we can just ensure certain index d.2 w.r.t. a specific fault signal form verifying
Assumption 7.4 and the conditions (7.26). Consider the occurrence of a non-zero step fault in
the i-th fault channel. In this case, the minimum detectable fault i verifies

ψD,i ≡
√
JD/Λii. (B.9)

Note that if Λ is set as Λ = Σ−1, we have that ψD,i depends on Λii =
[
Σ−1]

ii, which is the
inverse of the conditional variance of f̃i. Provided (B.9), we can fix the minimum detectable
constant fault i to ψ∗D,i by arbitrarily setting Λii to some value and

JD := (ψ∗D,i)2 Λii. (B.10)
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The time indices d.3 and d.4 do also depend on the form of the exogenous fault signal fi,
see (7.29) and (7.30). Then, we can just ensure certain time indices w.r.t. a specific fault signal
form verifying Assumption 7.4 and the conditions (7.26). In analogy to the performance criteria
i.3 and i.4, we consider the occurrence of a ramp fault of slope ∆i 6= 0 in the i-th fault channel.
Similar deductions as the ones detailed for i.3 and i.4 apply for d.3 and d.4. First, we have that
the acknowledgement time for detection is determined by the observer (i.e., ϑD,i ≡ Ti ) and it
cannot be modified by varying JD nor Σ. Second, we have that the detection time depends on
the slope ∆i of the ramp, which is generally not known. Hence, its expression is omitted here.

B.2 Co-design with FD requirements

The strategies presented in Section B.1 show how to design the decision mechanism (B.1) to
ensure one requirement over the index d.1 or d.2. when the gain matrices L and K of the ob-
server (7.5) are prefixed (i.e., the gains are already designed). In order to guarantee two or more
requirements over detection indices, it is necessary to perform a co-design of the observer (7.5)
and the decision mechanisms (B.1). The following strategies show a proposal of how to perform
this co-design for guaranteeing more than one isolation performance requirement.

Strategy B.1. Assume that we desire to ensure altogether certain false detection rate φ∗D,
certain acknowledgement times for detection under ramp faults ϑ∗D,i (i = 1, . . . , nf ) and we
desire to minimize the minimum detectable faults. To ensure these requirements, we first design
the observer (7.5) through Strategy 7.1 with the value

T ∗i := ϑ∗D,i (B.11)

in (7.23) for all i. Second, with the obtained gains L and K, we compute Σ through (7.9), we
set Λ = Σ and we set the detection threshold through (B.7)with φ∗D.

Strategy B.2. Assume that we desire to ensure altogether certain false detection rate φ∗D,
certain minimum detectable constant faults ψ∗D,i (i = 1, . . . , nf ) and minimum acknowledgement
times for detection under ramp faults (and thus minimum detection times under ramp faults).
To ensure these requirements, we first design the observer (7.5) through Strategy 7.2 with a
modified variance constraint. The constraints (7.21) and (7.25) are replaced by

[Ξ−1]ii ≥ nf/φ∗D/(ψ∗D,i)2. (B.12)

for all i. Second, with the obtained gains L and K, we compute Σ through (7.9), we set Λ = Σ
and we set the detection threshold through (B.7)with φ∗D.

Note that the modified constraints (B.12) are nonlinear constraints and iterative procedures
must be used to solve Strategy B.2.

Remark B.2. If the noises v that affect the system are Gaussian, we use (B.8) (instead
of (B.7)) to set JD in Strategy B.1 and Strategy B.2. Moreover, the constraints (B.12) are
replaced to

[Ξ−1]ii ≥ Φ−1
χ2
nf

(1− φ∗D)/(ψ∗D,i)2.
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Appendix C

Wind speed in the wind farm

C.1 Wind model

Any wind speed v in the wind turbine and wind farm benchmarks [215, 216] consists of four
wind speeds: the mean wind speed vm describing the slow wind variations, a stochastic wind
speed component vs, the wind shear vws and the tower shadow vts:

v = vm + vs + vws + vts. (C.1)

As explained in [216], these components are generated as follows. Table C.1 shows the wind
model parameters.

• The mean wind speed is obtained by filtering a measured wind speed dataset with a low-
pass filter.

• The stochastic wind speed component is modeled as a Kaimal filter [207].

• The wind shear is modeled as

vws,i(t) = 2 vm(t)
3R2

(
R3 α

3H χ+ R4 α

4
α− 1
, H2 χ2

)
+ 2 vm(t)

3R2

(
R5 α

30
(α2 − α) (α− 2)

H3 χ3
)
,

where χ = cos(θri(t)) is the angular position of the three blades,

θr1(t) = θr(t),
θr2(t) = θr(t) + 2π/3,
θr3(t) = θr(t) + 4π/3,

and α and H re two aerodynamic parameters.

• The tower shadow is modeled through the following equations:

vts,i(t) = mθ̄ri(t)
3 r2 (ψ + υ),
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Parameter Value
α Aerodynamic parameter 0.1
H Aerodynamic parameter 81 m
R Blades Radius 57.5 m
r0 Radius of the blade hub 1.5 m

Table C.1. Wind model parameters.

with

ψ =2 a2 R2 − r2
0

(R2 − r2
0) sin(θ̄ri(t))2 + k2 ,

υ =2 a2 k2 (r2
0 −R2)(r2

0 sin(θ̄ri(t))2 + k2)
R2 sin(θ̄ri(t))2 + k2 ,

m =1 + α (α− 1) r2
0

8H2 ,

θ̄ri(t) =θr(t) + (i− 1) 2π
3 − 2π floor

(
θr(t) + (i−1) 2π

3
2π

)

and where floor(x) refers to the largest integer not greater than x, r0 is the blade hub
radius, and k is an aerodynamic parameter.

C.2 Wind speed estimation in the wind farm

From v̂0, it is possible to estimate the mean wind speed acting on the WTs in the i-th row
through different propagation models available in the literature, see [159] and the references
therein. Provided the wind and wake model of the benchmark in [215], we compute the estimated
mean wind speed using the following propagation model:

v̂i(t) = 1
Ki
v̂i−1(t− tip(t)), (C.2)

where Ki is a wake factor and satisfies Ki = 1 for i = 1 and Ki = 0.9 for i = 2, . . . , Y − 1. The
term tip(t) represents the propagation time between two consecutive rows and we compute it as

tip(t) = li
v̂0
f (t)/(Ki)i−1 ,

where v̂0
f results from filtering v̂0 using the low-pass filter Gf (s) = 1/(s+ 1).

The WF benchmark provides the real effective wind speed signals νi,j for numerical valida-
tions of the wind propagation schemes. The mean wind speed signals νi are not available.

Fig. C.1 shows the wind speed estimation results for the turbines in the rows i = 1, i = 2
and i = 3 of the 0◦ layout in Fig. 9.1. Recall that the wind speed estimates are common to all
the turbines in a row i (see the errors in the second part of Fig. C.1).
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Figure C.1. Wind speed (WS) estimation for the 0◦ layout.

C.3 Bounding the wind speed estimation errors

Let us bound the wind speed estimation error. Since vi is not available for numerical validations,
we cannot separately compute the turbulence and the propagation error. Hence, we proceed as
follows.

• We approximate the turbulence of the turbines to ν̃i,jt ≈ νi,j − 1/3∑3
j=1 ν

i,j . In the first
part of Fig. C.2 we show the results for the turbines in the row i = 1 of the 0◦ layout in
Fig. 9.1. For each sample k of the time series, we depict the pair (ν̂i, ν̃i,jt ). We bound the
turbulence as |ν̃i,jt | ≤ λt with λt = 3σt, which is depicted through a dashed gray line in
Fig. C.2.

• We conservatively bound the wind propagation error (i.e.,|ν̃ip| ≤ λip) with the 99-th per-
centile of the total error ν̃i,j , which we compute as ν̃i,j = νi,j− ν̂i. In the second part of the
Fig. C.2, we depict the pair (ν̂i, ν̃i,j) for the turbines in the row i = 1. The propagation
bound is depicted through a dashed gray line.

Remark C.1. From (C.2), we deduce that the propagation error is larger for higher wind speeds.
Thus, one could consider the bound |ν̃ip| ≤ λip(ν̃ip), where λip(ν̂i) would depend not only on the
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Figure C.2. Wind speed estimation error due to the turbulence and to the propagation model mismatch (0◦
layout, i = 1).

row i but also on the estimated mean wind speed. As shown in Fig. C.2 (including the 99-th
percentiles of different intervals), we can neglect the dependence of the bounds on the estimated
mean wind speed.



Appendix D

Auxiliary results

D.1 Auxiliary results of Chapter 4

D.1.1 Derivation of the expected value of m(i)

Let us first introduce the following lemma.

Lemma D.1. ([256]) Let A ∈ Rna×n, X ∈ Rn×n and B ∈ Rnb×n be some matrices. We have
that

vec
(
AX BT

)
= B ⊗A vec(X). (D.1)

If matrix X is diagonal, we have that

diag
(
AX AT

)
= A◦2 diag(X). (D.2)

Provided (4.14), we have that

E{y(i) y(i)T } = E{Ψ(i) ζ(i) ζ(i)T Ψ(i)T }. (D.3)

Applying (D.1) to (D.3), we get

E{y(i) y(i)T } = vec−1
(
Ψ(i)⊗2vec

(
E{ζ(i) ζ(i)T }

))
, (D.4)

where we have taken into account that E{Ψ(i)} = Ψ(i). Provided (4.12), this relation is simpli-
fied as

E{y(i) y(i)T } = Ψ(i) Ψ(i)T . (D.5)

Taking into account that matrices D(i)D(i)T and R(i)R(i)T are diagonal, we apply (D.2)
to (D.5) and we get that the diagonal components of E{y(i) y(i)T } are given by

diag(E{y(i) y(i)T }) = Γ◦2 diag (Σu(i)) + 1ny σ2
v(i), (D.6)

which can be rewritten as

E{m(i)} = [Γ◦2 1ny ] diag
(⊕

j
σ2(i)[j]

)
. (D.7)
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D.1.2 Kalman filtering

Let us consider a linear system of the form

x(i+ 1) = Ax(i) + w(i), y(i) = C x(i) + v(i), (D.8)

with x ∈ Rnx the state vector, y ∈ Rny the output vector, A ∈ Rnx×nx the state matrix and
C ∈ Rny×nx the output matrix. Vector w(i) ∈ Rnw contains the process noise and v(i) ∈ Rnw
contains the measurement noise. We assume that w(i) and v(i) are independent, zero-mean
Gaussian noises of time-varying covariances W (i) = E{w(i)w(i)T } and V (i) = E{v(i) v(i)T }.
A model-based observer for (D.8) is

x̂(i) = A x̂(i− 1) + L(i) (y(i)− C A x̂(i− 1)) , (D.9)

with x̂(i) the estimated state, see [81]. Then, the dynamics of the estimation error x̃(i) =
x(i)− x̂(i) is

x̃(i) = (Inx − L(i)C) (A x̃(i− 1) + w(i− 1))− L(i) v(i). (D.10)

The optimal Kalman gain L(i) for (D.9) is given by

P̄ (i) = A P̂ (i− 1)AT +Q(i− 1), (D.11a)

L(i) = P̄ (i)CT
(
C P̄ (i)CT + V (i)

)−1
, (D.11b)

P̂ (i) = (Inx − L(i)C) P̄ (i), (D.11c)

see [7, 119]. Here, P̄ (i) and P̂ (i) represent, respectively, the predicted and the estimation error
covariance matrix.

D.1.3 Derivation of the statistical properties of the estimator

Let us first remember the Woodbury matrix identity [230]:

(D + E F G)−1 = D−1 −D−1E (F−1 +GD−1E)−1GD−1. (D.12)

Now, assuming υj = υ, for all j, we rewrite (4.33) as

P = (I − νP HT (HνP HT + T )−1H) ν P (D.13)

with ν = 1 + υ. Premultiplying and postmultiplying (D.13) by (νP )−1, and applying (D.12) to
the term (HνPHT + T )−1 (with D = T , E = H, F = νP and G = HT ) it leads to

(ν−1 − ν−2)P−1 = Ξ− Ξ(ν−1P−1 + Ξ)−1Ξ (D.14)

with Ξ = HTT−1H. Now, applying again (D.12) to the term (ν−1P−1 + Ξ)−1 (with D = Ξ,
E = I, F = ν−1P−1 and G = I) we obtain that

(ν−1 − ν−2)P−1 =
(
νP + Ξ−1

)−1
. (D.15)
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Inverting both sides of the equality and substituting Ξ = HTT−1H, we finally have that

P = ν − 1
ν

(HTT−1H)−1. (D.16)

For its part, at steady state, T is given by T = (Ψ ΨT )◦2 and

ΨΨT = [ΓD R][ΓD R]T = ΓDDTΓ +RRT . (D.17)

From the definition of matrices D and R and using relation (4.3), we have that, at steady state,

ΨΨT = Γ ΣT
u Γ + Σv = Σy. (D.18)

Then, matrix T can be expressed as

T = (Ψ ΨT )◦2 = Σy ◦Σy. (D.19)

Finally, using (D.19) in (D.16) and substituting ν = 1 + υ, we get (4.34).

D.2 Auxiliary results of Chapter 7

D.2.1 State-space matrices of the wind turbine model

The state-space matrices of the converter model are Ac = −αgc and Bc = αgc. The matrices
Cc, F c and Hc equal the identity matrix of appropriate dimensions while Ec, Gc and Dc are
zero.

The state-space matrices of the drive train model are

Ac =

a11 a12 a13
a21 a22 a23
1 a32 0

 , Bc =

0
b

0

 , Gc =

0 0 0 0 0
0 0 0 0 −b
0 0 0 0 0

 , Dc =

1/Jr
0
0



Cc =


1 0 0
1 0 0
0 1 0
0 1 0

 , Hc =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


with a11 = −(Bdt+Br)

Jr
, a12 = Bdt

Ng Jr
, a13 = −Kdt

Jr
, a21 = ηdt,0 Bdt

Ng Jg
, a32 = −1

Ng
, a22 = −(ηdt,0 Bdt+Bg N2

g )
N2
g Jg

,

a23 = ηdt,0 Kdt
Ng Jg

and b = −1
Jg

. We have that Ec = 0 and F c = I.

The state-space matrices of each pitch model are

Ac =
[

0 1
2 c 2wn0 ξ0

]
, Bc =

[
0
−2 c

]
, Ec =

[
0 0 0
1 c c

]
, Gc =

[
0 0
c c

]
,

Cc =
[
1 0
1 0

]
, F c =

[
0 1 0
0 0 1

]
with c = −w2

n0/2, Hc = I and Dc = 0.
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D.2.2 Parameters of the wind turbine model

In the following, we include the values of the parameters of the wind turbine benchmark [216].
Table D.1 includes the parameters of the generator and converter system. Table D.2 includes
the parameters of the drive train system. Table D.3 includes the parameters of the blade and
pitch system. Table D.4 includes the parameters of the sensors that measure the signal indicated
in the table.

Parameter Value
αgc Model parameter 50 rad/s
ηg Efficiency of the generator 0.98

Table D.1. Generator and converter parameters.

Parameter Value
Bdt Torsion damping coefficient of the drive train 775.49 Nms/rad
Br Viscous friction of the low-speed shaft 7.11 Nms/rad
Bg Viscous friction of the high-speed shaft 45.6 Nms/rad
Ng Gear ratio 95
Kdt Torsion stiffness of the drive train 2.7·109 Nms/rad
ηdt Efficiency of the drive train 0.97
Jg Moment of inertia of the high-speed shaft 390 kg/m2

Jr Moment of inertia of the low-speed shaft 55·106 kg/m2

Table D.2. Drive train parameters.

Parameter Value
ξ0 Damping factor 0.6
wn0 Natural frequency 11.11 rad/s

Table D.3. Blade and pitch parameters.

Measurement Mean Standard Deviation
vw Wind 1.5 m/s 0.71 m/s
ωr Rotor speed 0 rad/s 0.16 rad/s
ωg Generator speed 0 rad/s 0.22 rad/s
τg Generator torque 0 Nm 9.5 Nm
Pg Generated Power 0 W 1 31.6 W
β Pitch Angle 0◦ 0.45◦

Table D.4. Sensors parameters.
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Figure D.1. Pitch system with one faulty and noisy sensor.

D.2.3 Fault observability in the subset S3 of the pitch system

As stated in Section 7.6.2, condition (7.43) is not verified for the subset S3. Provided that
ns = ny and given that input (fault) observability is directly related to system invertibility
([134,205]), we study the transfer matrix between the faults in f3 and y.

For ease of clarity, let us consider the analogous case in which the close-loop feedback is the
measurement provided by only one sensor, named after βm(p), as depicted in Fig. D.1 (instead
of the average of the measurements provided by two redundant sensors βm1(p) and βm2(p)). In
this illustrative appendix, we use a continuous-time formulation.

The transfer matrix of this simplified system satisfies

βm(p)(s) =
[
G0(s) Gf (s) Gv(s)

]  βr(s)
fm(p)(s)
vβ(p)(s)

 ,
with

G0(s) =
ω2
n0

s2 + 2 ξ0 ωn0 s+ ω2
n0

,

Gf (s) = Gv(s) = 1−G0(s) = s(s+ 2 ξ0 ωn0)
s2 + 2 ξ0 ωn0 s+ ω2

n0

.

The derivative term in Gf (s) ruins the realizability of inverting Gf (s).

Remark D.1. Any common control loop defined by H(s) has unitary static gain (i.e., H(0) =
1). Then, the transfer function Hf (s) = 1 − H(s) between a sensor fault inside a closed loop
and the corresponding measurement verifies Hf (0) = 0, which ruins the realizability of inverting
Hf (s).

In order to get rid of the derivative term in Gf (s), which causes the instability of the inverse
of Gf (s), we consider the derivative of fault fm(p)(s), named after ḟm(p)(s), to be the fault input
affecting βm(p). Thus, βm(p)(s) verifies

βm(p)(s) =
[
G0(s) G′f (s) Gv(s)

]  βr(s)
ḟm(p)(s)
vβ(p)(s)

 ,
with

G′f (s) = Gf (s)
s

= s+ 2 ξ0 ωn0

s2 + 2 ξ0 ωn0 s+ ω2
n0

.

Note that the inverse of G′f (s) is realizable.
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D.3 Auxiliary results of Chapter 8

D.3.1 Uncertainties and partition of the parameter set

Once the bounds |ν̃ip| ≤ λip and |ν̃i,jt | ≤ λt have been computed as detailed Appendix C.2,
we determine the bounds of the uncertainties ei and εi,j , which are caused by these wind
estimation errors. For sake of simplicity, define first the maximum wind propagation error bound
as ρ = maxiλip. Define also Ψ(vi,j) = a(vi,j)x̄+ ū(vi,j) with x̄ = 4.8 MW. The bounds of ei and
εi,j for a certain wind speed vi,j verify

ei(vi,j) =max
{
|Ψ(vi,j)−Ψ(vi,j ± ρ)|

}
,

εi,j(vi,j) =max
{
|Ψ(vi,j + ρ)−Ψ(vi,j + ρ± 3σt)|
|Ψ(vi,j − ρ)−Ψ(vi,j − ρ± 3σt)|

}
.

Fig. D.2 shows the results regarding ei. Smaller bounds are obtained for εi,j (not included here
for brevity). Provided these results and given the form of a(vi,j) in Fig. 8.2, we divide Ωv into
Nv = 6 subsets as shown in Table D.5. The table includes the value of the matrices in (8.18) (Bm

p

is deduced from Amp ) and the bounds of the uncertainties related to the wind speed estimation
results in Appendix C.2.

Remark D.2. At a WT level approach, the bounds ēp and ε̄p in Table D.5 are independent
of the considered wind direction. At a WF level approach, these values are also valid for WF
models in which the turbines are grouped by rows. For other WT groupings, ēp and ε̄p would be
modified accordingly (see Remark 8.12).

Provided the definition of the uncertainties hi,j and given the binary functions c(∆i,j) and
d(∆i,j), we divide the set Ω∆ into N∆ = 4 subsets as detailed in Table D.6. We have here
considered that no WT operating mode estimation error appears above the 10% of the nominal
power (i.e., 0.48 MW).
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Figure D.2. Bounds ēp of the disturbance ei (ρ = 4 m/s).
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Table D.5. Partition of the set Ωv.

pv Boundaries A1
p A2

p ēp [m/s] ε̄p [m/s]

1 0 ≤ v < 4 0.973 ⊕-1 0.973 ⊕-1 0.55 0.13
2 4 ≤ v < 7 0.973 ⊕-1 0.934 ⊕-1 1.95 0.66
3 7 ≤ v < 11.25 0.934 ⊕-1 0.895 ⊕-1 3.25 1.78
4 11.25 ≤ v < 12.5 0.895 ⊕-1 0.891 ⊕-1 1.44 1.34
5 12.5 ≤ v < 25 0.891 ⊕-1 0.891 ⊕-1 0.82 0.07
6 25 ≤ v < 30 0.973 ⊕-1 0.973 ⊕-1 0.55 0.07

Table D.6. Partition of the set Ω∆.

p∆ Boundaries Cp Dp h̄p [MW]

1 -4.8 ≤ ∆ < -0.48 [1 -1] 0 0
2 -0.48≤ ∆ < 0 [1 -1] 0 0.48
3 0≤ ∆ < 0.48 [0 -1] 1 0.48
4 0.48≤ ∆ < 4.8 [0 -1] 1 0

D.4 Auxiliary results of Chapter 9

D.4.1 Uncertainty and partition of the parameter set

Once the bounds |ν̃ip| ≤ λip and |ν̃i,jt | ≤ λt have been computed as detailed Appendix C.2, we
determine the bounds of the errors of the pitch reference estimation. In the following, we include
the bounds of the errors ũi (which depend on λip). A similar procedure is used to determine the
bounds of the errors ũi,j (which depend on λip and λt). Fig. D.3 includes the values of the bounds
λi1,q (|ũi| ≤ λi1,q) verifying (9.15) for the wind speed estimation results in Appendix C.2. We
include the results which are obtained when using three different numbers of intervals Nν and
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Figure D.3. Bounds of the pitch estimation error due to the propagation model mismatch [◦] (0◦ layout, i = 1).
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Np. As the number of gridding intervals increases, the points in the set Θ associated to low pitch
estimation errors increase. This enhances better FE and FD performances at the cost of heavier
computational times. Thus, we choose the intermediate solution defined by Nν = Np = 7.
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[141] Rolf Isermann and Peter Ballé. Trends in the application of model-based fault detection
and diagnosis of technical processes. Control Engineering Practice, 5(5):709–719, 1997.

[142] Imad M Jaimoukha, Zhenhai Li, and Vasilios Papakos. A matrix factorization solution to
the H−/H∞ fault detection problem. Automatica, 42(11):1907–1912, 2006.

[143] Bin Jiang and Fahmida N Chowdhury. Fault estimation and accommodation for lin-
ear MIMO discrete-time systems. IEEE Transactions on Control Systems Technology,
13(3):493–499, 2005.

[144] Bin Jiang, Marcel Staroswiecki, and Vincent Cocquempot. Fault accommodation for
nonlinear dynamic systems. IEEE Transactions on Automatic Control, 51(9):1578–1583,
2006.

[145] Tao Jiang, Khashayar Khorasani, and Siamak Tafazoli. Parameter estimation-based fault
detection, isolation and recovery for nonlinear satellite models. IEEE Transactions on
control systems technology, 16(4):799–808, 2008.

[146] Jionghua Jin and Jianjun Shi. State space modeling of sheet metal assembly for dimen-
sional control. Journal of Manufacturing Science and Engineering, 121(4):756–762, 1999.

[147] Barry W Johnson, James H Aylor, and Haytham H Hana. Efficient use of time and
hardware redundancy for concurrent error detection in a 32-bit vlsi adder. IEEE Journal
of Solid-state Circuits, 23(1):208–215, 1988.



262 BIBLIOGRAPHY
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