
45

PROGRAMMING
AS LITERACY

Annette Vee

Connections between writing and programming have long been commonplace in certain
areas of computer science (Knuth 1992; Abelson et al. 1996). In fact, almost as soon as com -
puters arrived on college campuses in the United States, computer programming was proposed
as a burgeoning literacy akin to reading and writing. In 1961, computer scientist Alan Perlis
(1962) argued that undergraduates should be taught programming just as they are taught
writing in first-year composition courses. Shortly afterward, mathematicians John Kemeny
and Thomas Kurtz developed the BASIC programming language, which was widely taught
in schools in the 1970s and installed on many of the first home computers to hit the U.S.
and U.K. in the 1980s. In U.S. schools in the 1980s, Logo promised to introduce pro gram -
ming on a wide scale, preparing the next generation to fight in the Cold War. Edu cational
approaches to “computer literacy” shifted away from programming and toward usage in the
1990s, as operating systems began offering graphical interfaces and the commercial software
market expanded. But, as computers have become even cheaper, more accessible, more
ubiquitous, and more relevant to contemporary communication practices, the link between
programming and literacy has been revived (Prensky 2008; Rushkoff 2010). Supposedly,
“everyone should learn to code.” What is it about programming that prompts these persistent
connections to literacy and writing, and what do these connections mean?

The humanities can help to answer these questions. While computer science can tell us
about what programming can do, approaches to programming from the humanities can tell
us about programming’s significance in developed societies: what it means for people to program
computers and for programmed computers to increase their roles in our everyday lives. In
particular, literacy studies has much to say about these questions because literacy research has
long grappled with how people work with socially situated, technological systems of signs.
As programming is tracing a trajectory similar to that taken by reading and writing in society,
the theoretical tools of literacy studies aid us in understanding the history and future of the
who, what, and why of programming.

With help from literacy studies, we will dive more deeply into the complex relationship
between programming and writing. Programming has been rhetorically framed as writing when
it is discussed as a potentially widespread ability like literacy. Its relationship to writing is under
consideration when its status is debated in the law. This chapter explores the relationship
between programming and writing, and what that relationship means for contemporary literacy,
by introducing several influential projects that have posited programming as a literacy and
then outlining some of the strange borders between writing and programming that certain

445

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/224781626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

legal cases have highlighted. It concludes by pointing to several ways the humanities have
already and can contribute to our understandings of computer programming as part of the
environment in which humans now dwell and communicate.

The Rhetoric of Programming as a Literacy

Coding is currently a male-dominated practice. Because of historical, social, and economic
barriers, women and certain minority populations are underrepresented in the population of
people who can code (Ensmenger 2010). There are now countless initiatives aimed at making
coding more inclusive: Code.org, Made with Code, #YesWeCode, Black Girls Code, and
many more. Inertia behind these initiatives is so strong that they are often thought of as
constituting a “coding for everyone” movement. They frequently select from the history and
characteristics of mass literacy to frame their goals. Strategically, this framing makes sense:
literacy, like programming, is a complex communicative ability facilitated by technology. Since
textual literacy is much more prevalent than the ability to program, the analogies the move -
ment makes are aspirational: “coding for everyone” is still a dream.

However, the project of mass literacy was similarly ambitious: the idea of getting everyone
to read and write. We have naturalized these skills, but the truth is that reading and writing
are complex—no more or less complex than programming. Literacy is still unevenly dis tri -
buted: rates are generally lower among women worldwide, and in poor countries or among
people of lower classes in richer countries. And literacy campaigns have been handmaidens
to larger projects of cultural homogenization, such as “Americanization” in the early twentieth
century. So there are obvious problems with holding literacy up as an ideal for the coding
campaigns. Yet literacy rates exceed 95 percent in all industrialized countries, and the world -
wide literacy rate is around 85 percent. Almost 90 percent of men and over 80 percent of
women in the world can read and write by the time they are fifteen (UNESCO Institute for
Statistics 2015). The dream of mass literacy has largely come true, although people’s opinions
differ on what it looks like and how to measure or teach it. Still, governments and citizens
almost universally support literacy as a concept and as a moral good. While computer science
educators can debate how we might teach “coding for everyone,” the humanities are situated
to ask different questions, including whether the “coding for everyone” movement should
follow the path of mass literacy.

To help us consider this question, we can look to the historical treatment of programming
as a literacy (Vee 2013). The rhetoric of programming as a literacy begins in 1961 with an
address by computer scientist, Alan Perlis, at a conference at MIT. Perlis (1962) argued that
all undergraduates should be taught programming just as they are taught writing in first-year
composition courses. First-year composition courses were (and largely still are) seen as service
courses to the rest of the university, venues for imparting the written communication skills
that are essential to success in college and beyond. Perlis’s argument that programming was
similarly essential to undergraduate education implies that it would become foundational to
many different disciplines and to civic life more generally. His vision is particularly striking
given the state of computers at the time: when he gave his address, only a few college campuses
had mainframe computers. But computers were increasingly important to large-scale business
and government, including defense. His emphasis on broad undergraduate education in
programming suggested that future leaders of America should know something about how
to write for these machines.

Perlis’s vision was at least partially realized with the BASIC programming language,
designed at Dartmouth during the early 1960s by John Kemeny and Thomas Kurtz. Like

A N N E T T E V E E

446

Perlis, Kemeny and Kurtz (1968) saw the computer as universally relevant. They designed
BASIC to be accessible to undergraduates in the liberal arts as well as those in engineering
or hard sciences. Kemeny (1983) in particular was concerned that future leaders trained at
Dartmouth should know something about computation, given its increasingly important
role in national infrastructure. BASIC was successful. By the 1968 fall term, 80 percent of
Dartmouth undergraduates, plus several hundred faculty, had learned how to write computer
programs (Kemeny & Kurtz 1968). In part because Kemeny and Kurtz made BASIC and
their time-sharing system free, the programming language spread across college campuses
during the 1960s and has enjoyed a long life afterward as well.

During the 1960s, efforts to teach programming broadly were focused on undergraduates,
since computers could be found only in government offices, large corporate centers, and some
college campuses. But, as the technology and culture of computing spilled out of college
campuses in the 1970s and West toward California, the impetus to promote programming
to the masses seems to have taken the same direction. West coast programming initiatives
were imbued with post-60s San Francisco area politics: hobbyists and hackers thrived, typified
by the Homebrew Computer Club, the People’s Computer Company, and Ted Nelson’s
manifesto Computer Lib/Dream Machines. Nelson argued, “If you are interested in democracy
and its future, you’d better understand computers” (1987 [1974]: 5). In the 1970s, computer
programming—usually in BASIC—was widely taught in high school after-school programs
and accelerated math classes.

By the mid-1980s, computers became cheaper and easier to use as well as more common
in middle-class American households, businesses, and schools: U.S. computer ownership almost
doubled from 1984 to 1989, from 8.2 percent to 15 percent, according to the U.S. Census
Bureau. Affordable and accessible personal computers, such as the Commodore 64 and Apple
II, meant that, for the first time, computers became available to children. The idea of com -
puters as tools for children owes much to educational research done in the 1970s, especially
by Seymour Papert and Alan Kay. Papert’s team developed the Logo programming language
in the U.K. and piloted it in classrooms during the late ’60s and ’70s. A student of Jean Piaget,
Papert (1980) argued that programming could scaffold young children to work with concepts
often considered too complex for their age. At Xerox PARC in the 1970s, Alan Kay led a
team of researchers to prototype the Dynabook laptop as well as the programming language
Smalltalk, both of which were designed to make computing and programming more accessible
to children (Kay 1993; Kay & Goldberg 2003 [1977]). This research preceded the home
computer revolution and provided a frame that allowed computer programming and computer
usage (largely still fused at this point) to be considered general rather than specialized skills.

Efforts to widen access to computers and programming in America were focused on K- 12
education in the 1980s, because of not only the efforts of people like Papert and Kay, but
also the heightening of the Cold War. American schools adopted programming in Logo or
BASIC as part of their curriculum, funded by Cold War initiatives for math, science, and
technology preparation. These initiatives imagined the front lines on the grounds of both
nuclear and computational technologies, and so children’s literacy with programming was
seen as critical to national defense and health during the 1980s. The term “literacy” becomes
more common in the rhetoric surrounding mass programming education at this point,
perhaps because literacy is often thought of as a primary goal of elementary education and,
since the nineteenth-century mass education movement, children have often been the site
where literacy is measured.

While the “computer literacy” movement went mainstream in the 1980s, a shift in
computer technology that followed the wave of home computers began to fundamentally

P R O G R A M M I N G A S L I T E R A C Y

447

change what it meant. The commercial software era severed computer programming from
computer usage. Because people no longer needed to know how to program in order to use
computers, the idea of computer literacy came to mean knowledge of file structures, saving
work to disks, and menu operations (diSessa 2000). This utilitarian and skills-based idea of
computer literacy stripped it of the optimism associated with earlier initiatives. Moreover,
Papert’s Logo pilot program did not scale well: uneven resources and support for teachers
deflated the program’s efficacy. Critics pointed to a lack of promised gains in children’s
cognitive abilities (Pea & Kurland 1984); and, despite Papert’s open disappointment in the
implementation and lack of follow-through, most programming initiatives in elementary
schools were eventually phased out.

In the 1990s, the energy behind the mass programming movement shifted from elementary
schools to the new World Wide Web, which once again widened access to programming.
The architect of the web, Tim Berners-Lee, insisted on technical and organizational protocols
that would enable it to be accessible and programmable by everyone (Berners-Lee & Fischetti
1999). For their introduction to programming, many people today credit HTML, the simple
markup language on which the web is built. HTML does not have the computational
capabilities of BASIC. However, BASIC inspired it, and it shares BASIC’s accessibility and
ubiquity. As the authors of 10 PRINT (a collaborative book based on a BASIC maze program
widely circulated during the 1980s) write, “HTML . . . copied BASIC’s template of simplicity,
similarity to natural language, device independence, and transparency to become many users’
first introduction to manipulating code” (Montfort et al. 2012: 192). The possibilities of
HTML and its ease of use, plus the fact that it led users to other more extensive languages,
such as JavaScript, Perl, and PHP, enacted that gentle novice-to-expert climb that Kemeny
and Kurtz sought for BASIC. However, even with most web browsers’ capability to show
the source code for any webpage, people are not automatically exposed to code now in the
same way that they were on their Commodore 64s in the 1980s. Many mass programming
advocates have pointed to this lack of exposure as a problem (why the lucky stiff 2003). While
people enjoy What-You-See-Is-What-You-Get (WYSIWYG) interfaces, any interface makes
assumptions about its uses and users. People learn to use menus with these assumptions
embedded, rather than thinking about or creating alternative kinds of software.

The 2000s took the “coding for everyone” movement into diverse online communities
with little connection to formal computer science and institutions. In his 1999 DARPA grant
application, Guido van Rossum, the designer of the Python programming language, tapped
into the positive cultural associations of literacy to secure funding for his dream of coding
for everyone:

We compare mass ability to read and write software with mass literacy, and predict
equally pervasive changes to society. Hardware is now sufficiently fast and cheap to
make mass computer education possible: the next big change will happen when most
computer users have the knowledge and power to create and modify software.

(van Rossum 1999)

His initiative was only funded for a year, but it signaled a burgeoning online education
movement where people could learn programming by downloading copies of language com -
pilers and developing environments, asking questions on forums such as Slashdot and Usenet,
contributing to open source projects and getting feedback on SourceForge, and watching
videos or reading blogs posted by people motivated to teach programming for fun, exposure,
or profit. Resources for learning programming outside of computer science had never been

A N N E T T E V E E

448

greater. The growth of the web allowed for ready circulation of open source pro gramming
languages, such as JavaScript, Python, Perl, PHP, and Ruby, some of which augment the
computational possibilities of HTML and echo BASIC’s appeal to novices.

In the 2010s, the decentralized culture of how-to videos and forums online have become
consolidated by programming-promoting organizations such as Code.org, Khan Academy,
and Codecademy, which feature video lessons, e-books, interactive online code-checking,
and a wealth of other resources helpful to anyone wanting to learn programming. These groups
echo more general interest in mass online education, typified by Lynda.com, TED Talks,
and free lectures from universities through edX, as well as massively open online courses
(MOOCs) through for-profit entities like Coursera. Motivations for these groups vary from
profit to social justice, although all reflect an emphasis on education outside of formal programs
and institutions and position students as “neoliberal” workers “both empowered and wanting
(e.g., always in need of training)” (Chun 2011: 59).

The rhetoric of the current “coding for everyone” movement echoes the “empowerment”
of earlier efforts. In popular commentary, Douglas Rushkoff says that learning programming
gives people “access to the control panel of civilization” (2010: 1), and Marc Prensky argues
“[a]s programming becomes more important, it will leave the back room and become a
key skill and attribute of our top intellectual and social classes, just as reading and writing
did in the past” (2008). Code.org, a nonprofit launched in 2013 and supported by Mark
Zuckerberg and Bill Gates, showcases on their website a litany of quotes from educators,
technologists, and public figures claiming that learning to code is an issue of “civil rights,”
the “4th literacy,” and a way to “[c]ontrol your destiny, help your family, your community,
and your country.” Black Girls Code reflects literacy ideologies of wider access and “mastery”
in their mission statement: “By promoting classes and programs we hope to grow the number
of women of color working in technology and give underprivileged girls a chance to become
the masters of their technological worlds” (“About us” 2014). Black Girls Code and Code.org
are very different organizations with different funding structures and goals, making it especially
interesting that they both draw on the tropes of literacy empowerment to promote pro -
gramming education to a wider population. While some of the other initiatives discussed
here do not use the term “literacy,” they often draw on a similar profile of empowerment,
social justice, citizenship, and productivity.

As this brief history of the “coding for everyone” movement demonstrates, programming
has long been touted for its artistic possibilities as well as its utility for workers, businesses,
and government applications. These attributes are also often ascribed to literacy and have
been leveraged in mass literacy campaigns connected to democracy, defense, and mass school -
ing. References to literacy in the promotion of programming can help to convey individual
as well as collective goals and responsibilities because literacy is an individual skill, but one
which gains meaning and value in social contexts. Literacies purportedly help workers and
boost national productivity. It is for these reasons that Code.org could recruit both U.S.
President Barack Obama and a political rival, House Majority Leader Eric Cantor, in 2013
to make video statements in support of their project: programming, like literacy, is good for
the country.

How Is Programming Like Writing?

The promotion of programming on a wide scale borrows from the ideas of mass literacy
movements. Underneath this rhetoric, the parallels between programming and writing are
quite apt. Written text and code are both symbolic systems operating through an inscribed

P R O G R A M M I N G A S L I T E R A C Y

449

language and social contexts. Symbolic systems such as text and code can be distinguished
from other important technologies, such as carpentry, because they are “media machines”
that “process texts, images, and sound” (Poster 2011: x). Because of the ways that code can
process infinite forms of information, programming is the language that transforms computers
into what Alan Turing called the “universal machine.”

One way for us to explore how programming is like writing is to look at the ways
programming is treated like writing in United States law. (While the legal history I provide
here is specific to the U.S., international copyright agreements such as the Berne Convention
mean that the effects of U.S. law are similar across most developed countries.) In 1980, the
U.S. Congress amended the 1976 Copyright Act to define computer code as a “literary work”
and a “form of writing” when it was seeking a way to protect the intellectual property of
the growing software industry. This amendment and its surrounding debate cemented
computer programming as a form of creative expression. By 1994, prominent legal scholars
noted, “virtually all nations have recognized the textual character of program code in deciding
to use copyright law to protect it” (Samuelson et al. 1994). Somewhat contro versially, copy -
right protection extends not only to source code (the code generally written by and
for programmers to read) but also object code (the code that the computer reads). In other
words, programming produces copyrightable “writing” addressed to people as well as
computers (Vee 2012).

If programming produces “literary” writing, then it can be protected by First Amendment
or “free speech” rights in the United States. Activities protected as “speech” under the First
Amendment include oral communication, textual writing, methods of dress, gestures, visual
art, and computer code. “Speech” is unprotected when it verges on conduct, such as yelling
“fire” in a crowded theater. Since code is both conduct and writing—it does things as well
as says things—it occupies a liminal space in these laws. Testing this boundary in U.S. courts
was a series of cases involving cryptographic code written by a PhD student, Daniel Bernstein,
that the U.S. State Department argued should be regulated as a “weapon.” In its decision,
the court rejected the State Department’s argument that speech that performed a function
was not entitled to protection: recipes and sheet music were clearly protected speech, yet
they enabled people to do something. No form of communication can be divorced from its
function, argued the court; and so computer programming, while it does do things, also says
things: code is, therefore, a protected form of writing or speech.

The Bernstein case tested the lines between code’s status as creative expression and a poten -
tial weapon. A new case involving plans for a 3-D printed gun pushes this debate further.
“Wiki weapon” designer, Defense Distributed, uploaded plans to the internet that would
allow a 3-D printer to produce a working handgun. When the State Department pursued
them with the same weapons law used against Bernstein, they argued that their First
Amendment rights had been violated. Their founder, Cody Wilson, asks: “If code is speech,
the constitutional contradictions are evident . . . So what if this code is a gun?” (Greenberg
2015). Here, as in Bernstein, the question about how programming is related to writing is
more than just academic. If sticks and stones rather than words break bones, then what does
an executable blueprint for a gun do?

Writing has always been a potentially dangerous activity, Deborah Brandt (2014) argues,
and it has consequently enjoyed fewer legal protections than reading. Is the situation different
for programming? Because code does things, it is currently regulated by patent law; because
it is writing, it is also governed by copyright law; and because it is creative expression, it is
protected by law against censorship. If we think of programming as literacy, what kinds of
legal protections should pertain to the writing or reading of code?

A N N E T T E V E E

450

Conclusion

As these border cases demonstrate, programming is not separate from writing or any other
form of human communication. Algorithms interoperate with our lives, including our music
and movie tastes and even the heating of our homes (e.g., Pandora, Netflix, and the Nest
thermostat), and necessarily combine both computational and human procedures to do their
work. Self-taught algorithms take in and respond to analog input, leading to levels of
complexity neither computers nor humans can fully understand alone (Hayles 2005; Aneesh
2006). Moreover, computational and programmable devices are now joining a panoply of
other read-write tools to form a new matrix of social practices and technologies that constitute
literacy. Programming plays a supportive role in traditional writing through word-processing
programs, and it facilitates new forms of written communication such as tweets, texts,
Facebook posts, emails, and instant messages. It also remaps communication when it
contributes to what A. Aneesh (2006) calls “algocracy” (rule by algorithm) or acts as a blueprint
for printed objects such as guns. Programming is a kind of writing, and it is bound up with
traditional writing, and it exceeds historically assumed boundaries of writing. Popular discourse
about “programming as a new literacy” as well as legal cases debating the nature of code
reflect the complicated relationship between writing and programming.

Writing and programming are both/together inextricable and important forms of com -
position and communication. If literacy implies an ability to wield the dominant tools of
communication in a society, then in contemporary networked societies it includes some degree
of facility with computer programming. But literacy to what degree? For whom, and why?
How might people go about learning this new kind of literacy? And how should the activities
of literacy be protected through our social and legal institutions? These value-laden ques tions
have been considered by literacy studies in terms of textual writing and reading. In terms of
programming, they are currently being considered by fields such as digital rhetoric, digital
humanities, and software studies, which are developing theoretical tools to consider the ma -
terial and social affordances of digital technologies in human lives. While computer scientists
have considered the unique challenges in teaching novice programmers (Soloway & Spohrer
1988) and what education in computational literacy might look like (Wing 2006; Guzdial
2008), approaches to these questions from the humanities can help us consider questions of
politics and identity embedded in who learns computational literacy and why.

Further Reading

Brandt, D. (2014) The Rise of Writing: Redefining Mass Literacy. Cambridge, U.K.: Cambridge University Press.
Chun, W. H. K. (2011) Programmed Visions: Software and Memory, Cambridge, MA: MIT Press.
diSessa, A. (2000) Changing Minds: Computers, Learning and Literacy, Cambridge, MA: MIT Press.
Guzdial, M. (2015) Learner-Centered Design of Computing Education: Research on Computing for Everyone, San Rafael,

CA: Morgan & Claypool Publishers.

References

Abelson, H., G. Sussman, and J. Sussman (1996) Structure and Interpretation of Computer Programs, 2nd edn. Cambridge,
MA: MIT Press.

Aneesh, A. (2006) Virtual Migration: The Programming of Globalization, Durham, NC: Duke University Press.
Berners-Lee, T. and M. Fischetti (1999) Weaving the Web, New York, NY: HarperBusiness.
Black Girls Code (2014) “About Us,” retrieved from www.blackgirlscode.com/what-we-do.html.
Bolter, J. D. (1991) Writing Space: Computers, Hypertext, and the History of Writing, 1st edn. Hillsdale, NJ: Lawrence

Erlbaum.
Brandt, D. (2001) Literacy in American Lives, Cambridge, U.K.: Cambridge University Press.

P R O G R A M M I N G A S L I T E R A C Y

451

Brandt, D. (2014) The Rise of Writing: Redefining Mass Literacy, Cambridge, U.K.: Cambridge University Press.
Chun, W. H. K. (2011) Programmed Visions: Software and Memory, Cambridge, MA: MIT Press.
Code.org. (2013) “Leaders and Trend-setters All Agree on One Thing.” retrieved from www.code.org/quotes.
diSessa, A. (2000) Changing Minds: Computers, Learning and Literacy, Cambridge, MA: MIT Press.
Ensmenger, N. (2010) The Computer Boys Take Over, Cambridge, MA: MIT Press.
Greenberg, A. (2015) “3D Printed Gun Lawsuit Starts the War Between Arms Control and Free Speech,” Wired,

retrieved from www.wired.com/2015/05/3-d-printed-gun-lawsuit-starts-war-arms-control-free-speech/.
Guzdial, M. (2008) “Education: Paving the Way for Computational Thinking,” Communications of the ACM 51(8),

25–27.
Hayles, N. K. (2005) My Mother Was a Computer, Chicago: University of Chicago Press.
Kay, A. (1993) “The Early History of Smalltalk,” ACM SIGPLAN Notices 28(3), 69–95.
Kay, A. and A. Goldberg (2003 [1977]) “Personal Dynamic Media,” in N. Wardrip-Fruin and N. Montfort (eds.)

The New Media Reader, Cambridge, MA: MIT Press, pp. 393–404.
Kemeny, J. (1983) “The Case for Computer Literacy,” Daedalus 112(2), 211–30.
Kemeny, J. and T. Kurtz (1968) “Dartmouth Time-Sharing,” Science 162(3850), 223–28.
Knuth, D. (1992) Literate Programming, CSLI Lecture Notes, United States: Center for the Study of Language and

Information.
Montfort, N., P. Baudoin, J. Bell, I. Bogost, J. Douglass, M. C. Marino, M. Mateas, C. Reas, M. Sample, and

N. Vawter (2012) 10 PRINT CHR$(205.5+RND(1)); : GOTO 10, Cambridge, MA: MIT Press.
Nelson, T. H. (1987) Computer Lib / Dream Machines, Redmond, WA: Microsoft.
Ong, W. (1982) Orality and Literacy, London: Routledge.
Papert, S. (1980) Mindstorms: Children, Computers, and Powerful Ideas, New York, NY: Basic Books.
Pea, R. D. and D. M. Kurland (1984) “On the Cognitive Effects of Learning Programming,” New Ideas in Psychology

2(2), 137–68.
Perlis, A. (1962) “The Computer and the University,” in M. Greenberger (ed.) Computers and the World of the Future,

Cambridge, MA: MIT Press.
Poster, M. (2011) “Introduction,” in Flusser V. Does Writing Have a Future? Minneapolis, MN: University of

Minnesota Press.
Prensky, M. (2008) “Programming Is the New Literacy,” Edutopia, retrieved from www.edutopia.org/literacy-

computer-programming.
Rushkoff, D. (2010) Program or Be Programmed: Ten Commands for a Digital Age, OR Books. Kindle file.
Samuelson, P., R. Davis, M. D. Kapor, and J. H. Reichman (1994) “A Manifesto Concerning the Legal Protection

of Computer Programs,” Columbia Law Review 94(8), 2308–2431.
Soloway, E. and J. C. Spohrer (eds.) (1988) Studying the Novice Programmer, London: Psychology Press.
UNESCO Institute for Statistics (2015) “Adult and Youth Literacy,” United Nations Educational, Scientific and Cultural

Organization, UIS Fact Sheet 32, retrieved from www.uis.unesco.org/literacy/Documents/fs32–2015-literacy.pdf.
U.S. Census Bureau (2009) Households with a Computer and Internet Use 1984–2009, retrieved from www.census.gov/

hhes/computer/.
van Rossum, G. (1999) Computer Programming for Everybody (Revised Proposal), Reston, VA: Corporation for

National Research Initiatives, retrieved from www.python.org/doc/essays/cp4e.
Vee, A. (2012) “Text, Speech, Machine: Metaphors for Computer Code in the Law,” Computational Culture 2,

retrieved from computationalculture.net/article/text-speech-machine-metaphors-for-computer-code-in-the-law.
Vee, A. (2013) “Understanding Computer Programming as a Literacy,” Literacy in Composition Studies 1(2), 42–64.
why the lucky stiff (2003) “The Little Coder’s Predicament,” retrieved from viewsourcecode.org/why/hacking/

theLittleCodersPredicament.html.
Wing, J. (2006) “Computational Thinking,” Communications of the ACM 49(3), 33–35.

A N N E T T E V E E

452

