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In recent years, due to the increasing ubiquity of Internet and mobile devices, 

mobile reading on smart watches and smartphones is experiencing rapid growth. Despite 

the great potential, new challenges are brought. Compared to traditional reading, mobile 

reading faces major challenges such as encountering more frequent distractions and 

lacking portable and efficient technique to deeperly understand and improve it. 

Fortunately, the development of the hardware and software of mobile devices 

provide an opportunity to track users’ behavior and physiological signals accurately in a 

low-cost and portable manner. In this thesis, I explored the usage of low-cost mobile 

sensors to solve the measurement challenges of reading. 

I used the low-cost mobile sensing techniques on mobile devices to understand 

and improve the degree and quality of reading. In this thesis, I first present SmartRSVP, a 

reading interface on smart watches that leverages eye-gaze contact tracking technique 

and heart rate sensing technique to facilitate reading under distractions. I then present 

Lepton, an intelligent reading system on smart phones that tracks eye-gaze periodical 

patterns and sensing the screen touching behavior to monitor readers’ cognitions and 

emotions during reading. Lastly, I present StrategicReading, which uses the implicitly 

captured eye gaze patterns, scrolling motions, and log histories to monitor users’ reading 

strategies and performance during multiple-sources online reading. 
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1.0 INTRODUCTION 

In recent years, the increasing ubiquity of the Internet and mobile devices 

enormously affects reading and brings new challenges. Coming with portability, capacity, 

free sources, and gain of space [76], mobile reading is experiencing rapid growth. Among 

all kinds of mobile devices, smartphones and pads are commonly used for reading. 

According to a recent survey, reading activities on smartphones and pads, such as reading 

articles on a browser or dedicated social media apps and reading messages in email 

clients or instant messaging (IM) apps, took around 2 hours per day in the United States 

in 2016, accounting for 15% of the waking activity time [65]. Besides smartphones and 

pads, reading on small-screen wearable devices is flourishing as well. Taking advantage 

of staying on users’ wrists 24/7, smart watches and wristbands can assist the access of 

frequent reading tasks amd important notifications. Despite the great potential, both 

watch-size and phone-size mobile reading faces new challenges.  

There are at least three major challenges when a user reads text messages on a 

smart watch. First, most of today’s smart watches use a small display, approximately 1.5-

inch diagonal, which only affords showing three or four words per line. Therefore, a user 

has to rely on more frequent lateral eye gaze movements, i.e. saccade, during reading. 

Second, more scrolling actions are needed due to the limited number of words per screen. 

Such scrolling operations not only exacerbate the notorious “fat finger problem” but also 

occupy both of a user’s hands. Third, text reading on smart watches increases the 

probability of divided attention and interruptions [52].  

Although the pocket-size screen reading avoids the problem of watch-size screen 

reading, it has new challenges due to the complexity of its reading contents and purposes. 
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When reading on smart watches, readers tend to quickly acquare key information from 

small messages or emails. Comparatively, the reading on smart phones and pads has 

various contents and is for diversified purposes. Readers read newspapers, magazines, 

books, and etc. on smart phones and pads. The challenges are no longer how to display 

information to the users as on smart watches. Instead, it is important to let the user better 

consume the contents. The first step is to understand reading on such pocket-size devices. 

First, compared to media consumption channels, such as watching videos, the 

passive nature of mobile reading and the complicated reading context might cause 

attention decline, non-linear reading patterns and context distractions. Despite the highly 

diversified contexts, practitioners today still rely heavily on coarse-grained metrics such 

as click-through-rate (CTR) and dwell time to understand and adapt to users’ reading 

behavior on mobile devices [87][32][25]. These approaches have been proven to be 

inadequate because of the sparsity and indirectness of the signals. Second, little attention 

is paid to higher-level mobile reading skills. In a complicated mobile reading 

environment, the skill set for processing a single print text is insufficient for performing 

the complicated reading tasks for learning and working purposes [17]. Measuring, 

understanding and improving higher-level mobile reading skills are important and critical 

for both research and practice, but they still remain unexplored.  

Many new techniques have been proposed to address the challenges faced by 

watch-size and phone-size mobile reading. Existing techniques have pros and cons.  

1.1 Related Work: Reading on Watch-Size Devices 
 

Researchers propose to address the display affordance problem, tedious scrolling 

problem, distractive environment problem when reading on watch-size screens. 
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To solve the text display and scrolling problem on watch-size screens, some 

researchers have used Rapid Serial Visual Presentation (RSVP)1 as a speed-reading 

technique on small-screen devices [13][62][77]. RSVP has both spatial and temporal 

efficacy when compared with traditional reading [51] and it is proved to have the 

potential of increasing the reading speed without sacrificing the comprehension level 

[77][85][62][63][75]. The adaptations of words’ exposure time in RSVP [62][63][6][85] 

further reduce the negative effects of RSVP on attentional blink [70], repetition blindness 

[44], higher visual attention demands [13], higher recovery cost [70], and higher 

cognitive workload [62][63][77]. However, the content-based speed adaptations are not 

environmentally adaptive, especially in distractive environments. 

To facilitate such reading in a distractive environment, gaze-aware interfaces are 

usually used to process visual distractions during RSVP reading. For example, Hansen et 

al [37] demonstrated the feasibility of using a commercial gaze tracker to control RSVP 

playback. Dingler and colleagues [22] demonstrated gaze controlled RSVP with a head-

mounted gaze tracker and visual markers. Although gaze-aware interfaces are attentive to 

the environments and intuitive to use, they are restricted by the sensing techniques. 

Current gaze detection techniques rely on the detection of the muscle movement around 

the eyes or the relative position of the pupil to the rest of eyes. Dedicated eye trackers can 

accurately detect gaze movements, but they face challenges of costly deployment, 

uncomfortable usage, and calibration requirement problems. Besides dedicated eye 

                                                

1 Rapid Serial Visual Presentation (RSVP) is a visualization technique that displays textual information one word at a 

time1 in sequential order.  
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trackers, smartphones are also able to estimate eye gaze by processing the image frames 

captured from the front-cameras. For example, EyePhone [57] monitors the positions of 

gazes from the front camera of a smartphone and uses the gaze to perform hand-free 

operations on the smartphone. Leveraging smartphones to track gaze is low-cost and 

portable but lacks stable accuracy in regards to the phone-to-face distance [55].  

Besides gaze tracking, a variety of behaviors and physiological signals, such as 

heart rates [36][74][43], galvanic skin responses (GSR) [40][86], facial expressions and 

Electroencephalography (EEG) [73] have been explored to infer learner cognitive and 

affective states in different interaction tasks, such as learning [43][21], operating user 

interfaces [74], and gaming [36]. However, existing intelligent interfaces also require 

extra-dedicated sensors to track behavior or physiological signals.  

1.2 Related Work: Reading on Pocket-size Devices 
 

To improve current naiive approaches (i.e. CTR and dwell time) to understand 

reading and to have a higher level understanding of complex reading strategic processes, 

researchers proposed and designed the new methods. 

Researchers are attempting to replace the CTR and dwell-time based approaches 

to understand reading behaviors. Afflerbach [1] has determined that theoretical models 

[65][66][49], self-reports [19][23][17], different sensors especially gaze [11][12][8] are 

representative and widely used to monitor and understand internet-based reading 

behaviors, comprehension and emotions. The theoretical models gave a great push to 

screen reading analysis while making a slow progress on mobile reading due to limited 

scale analysis. In comparison, self-report continuously plays a centrol role in research 

works focused on understanding online reading, although its accuracy and convenience 
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are criticized. With the development of new techniques, understanding reading by 

observing the reading behaviors, such as gaze, are flourishing rapidly. Eye movement 

features extracted from eye trackers are used to interpret reading cognitive processes 

[47], comprehension [7][56], reading proficiency [16], reading engagement, etc. Rayner’s 

survey [71] provided a detailed review on how the visual information related to reading. 

Besides eye movement, other behaviors, such as mouse control motions [46][81][58][18] 

are also good indicators of users’ affections and cognitions. Scrolling actions on touch-

screen reading devices are detected [4][88] and analyzed to understand reading 

progresses [12][31]. Existing approaches either require dedicated sensors or cannot 

directly predict reading cognition and affections. The portability, cost, and availability 

prevented the wide adoption of such methods on smartphones beyond lab settings. 

Compared to the flourishing works on understanding single-page mobile readings, 

the research on understanding online reading strategic processes focuses on desktops 

[19][17][23][20][5]. Such methods highly rely on verbal reports to understand reading 

strategy; these methods have at least three major challenges. First, think-aloud reading 

might cause a negative impact on readers’ cognitive engagement and affect the strategic 

processes [17]. Second, accuracies of readers’ self reports on cognitive tasks are 

considerably various [28]. Some readers lack the ability to accurately express their 

thoughts. Third, verbal reports are time and labor consuming to generate and grade. 

These challenges prevent the large-scale understanding of reading strategies. 

1.3 Research Overview 
 

In summary, expressive and fine-grained sensing are crucial to 

understand/improve mobile reading on watch-size and pocket-size mobile devices. 
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Therefore, this thesis explores the usage of low-cost mobile sensing techniques to 

understand/improve mobile reading on small-screen wearable devices and smartphones.  

Three types of low-cost mobile sensing techniques are investigated, including the 

photoplethysmography (PPG) sensing of users’ heart rate signals, camera-based gaze 

tracking of users’ eye movements, and resistive sensing of users’ screen touching and 

scrolling behaviors.  

The challenges of reading on watch-size devices are caused by limited screen 

affordance, therefore, we developed SmartRSVP (Chapter 2), an attentive speed-reading 

system to facilitate text reading on small-screen wearable devices (Figure 1). SmartRSVP 

uses camera-based facial alignment and eye gaze tracking techniques to determine 

whether a user is paying visual attention to Rapid Serial Visual Presentation (RSVP) 

reading or not, and then leverages the visual attention information to play/pause the 

presentation of dynamic texts. At the same time, SmartRSVP uses heart-rate variability 

(HRV) features to infer the user’s cognitive workload, which is further used to regulate 

the speed of RSVP in real time. Overall, SmartRSVP leverages real-time visual attention 

tracking and implicit physiological signal sensing to make text reading via Rapid Serial 

Visual Presentation (RSVP) more enjoyable and practical on smart watches.  

The challenges of reading on pocket-size devices are caused by complex reading 

contents and the lack of continuous and deeper understanding of users’ cognitive states, 

therefore, we developed two Systems, Lepton (Chapter 3) and StrategicReading (Chapter 

4) to track users’ cognitive states during single-page and multi-page reading tasks. 

To better understand single-page reading cognitions and affections on unmodified 

smartphones, we developed Lepton (Chapter 3), an intelligent mobile reading system 
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with a set of dual-channel sensing algorithms to achieve rich and fine-grained 

understanding of users’ reading behaviors, comprehension, and engagement. Lepton 

tracks the periodic lateral patterns, i.e. saccade, of users’ eye gaze via the front camera 

and infers their muscle stiffness during text scrolling via a Mass-Spring-Damper (MSD) 

based kinematic model for touch events. Overall, Lepton combines a visual tracking 

channel via the front camera and a kinematic channel by tracking scrolling operations on 

a touch screen to monitor and improve mobile reading activities.  

We then developed StrategicReading (Chapter 4), a system that inherits the 

behavior sensing techniques from Lepton, to further automate the understanding of higher 

level cognitive states such as reading strategic processes and reading performance during 

an multi-page online reading task. In addition, StrategicReading system also tracks the 

evolvement of cross-page behavior that are detected by logging the searching and 

clicking history. Overall, StrategicReading reliabaly predicted users strategic processes 

and their reading performance via unmodified mobile phone sensors during an online 

reading task. 

The three types of sensing techniques can be classified into two groups: 

physiological signal sensing and users’ behavior sensing (Figure 1). The heart rate 

sensing of PPG signals is physiological signal sensing. With the ability to stay on a user’s 

wrist 24/7 and collect the user’s physiological signals implicitly, smart watches can be a 

promising test bed for the next generation of intelligent user interfaces. PPG signals are 

proven to be efficient on tracking mind wandering while watching online videos [67]. 

SmartRSVP project further explores it in the context of small-screen reading. The 

camera-based gaze tracking technique is a type of behavior sensing technique. Compared 
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to gaze tracking with dedicated sensors, the accuracy of camera-based gaze tracking is 

much lower. To solve this problem, our work avoids using the absolute gaze locations; 

instead, we use the relative period patterns of gaze movements. In SmartRSVP project, 

users’ gaze can be still during reading because we adopted the optimal recognition point 

(ORP) of rapid serial visual presentation (RSVP) that displays textual information one 

word at a time in a sequential order and all words’ gaze fixation points stay at a fixed 

location. Without gaze movements, binary attention detection along with a low-pass filter 

was used to increase the accuracy. Lepton and StrategicReading systems used periodic 

lateral pattern based gaze features because the normal text reading enables the line-by-

line gaze period movements. The scrolling sensing is another type of behavior sensing 

technique. Compared to existing research on finger scrolling motions, our work leveraged 

the new scrolling features and provided a direct indication of reading comprehension and 

engagement. All signals in these projects were tracked via built-in sensors in a regular 

smartphone, thus eliminating the requirement of dedicated sensors.  
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Figure 1. Major Components of The Thesis: Implicitly sensing behavior and 

physiological data to better understand mobile reading. 

1.4 THESIS STATEMENT AND HYPOTHESIS 
 

This thesis systematically explores the usage of behavioral signals and physiological 

signals implicitly collected via a “sensorless” approach at low-cost to understand, model 

and improve mobile reading. 

We have the following hypothesis: 

Hypothesis 1: A physiological and behavior signal-based perceptual and affect-

aware interface will effectively control text displaying on watch-size devices. 

Hypothesis 2: Users’ reading comprehension and engagements will be accurately 

predicted by camera-based gaze signals and emotion-dependent scrolling changes. 
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Hypothesis 3: Using users’ behavior sensing signals, the authentic online reading 

strategy and reading performance on smartphones will be accurately predicted.  

1.5 THESIS CONTRIBUTION 
 

This thesis is the first attempt of building a perceptual and affect-aware interface 

to control text displaying on watch-size devices; This thesis creatively investigated the 

processing of the noisy camera-based gaze signals and emotion-dependent scrolling 

changes during reading on pocket-size devices and proved the probability to predict 

reading comprehension and engagements using such signals; This thesis is the first 

attempt to automate the detection of complex reading strategies via multi-channel sensing 

techniques.  

1.6 THESIS OUTLINE 
 

This chapter has illustrated the background of our research. In the following chapters, I 

will present the detailed projects. Chapter 2 presents the design and evaluatation of 

SmartRSVP to facilitate text reading on small-screen wearable devices by leveraging 

real-time visual attention tracking and implicit physiological signal sensing. Chapter 3 

presents the Lepton that facilitates understanding single-page mobile reading by 

leveraging a visual tracking channel via the front camera and a kinematic channel by 

tracking scrolling operations on a touch screen. Chapter 4 presents the StrategicReading 

that automates the tracking of mobile reading strategic processes and reading 

performance. Chapter 5 summarizes my thesis work.  
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2.0 SMARTRSVP: TOWARDS ATTENTIVE SPEED 

READING ON SMALL SCREEN WEARABLE DEVICES 

 

To support reading on watch-size screens, we desgined and implemented 

SmartRSVP, an attentive speed reading system, on smart watch. SmartRSVP detects 

users’ divided visual attention via eye gaze tracking and internal cognitive workload via 

physiological signal sensing during mobile reading on smart watch, and provides 

interventions to make reading more efficient.  

2.1 Introduction 
 

Small-screen wearable devices are flourishing nowadays. By staying on users’ 

wrists 24/7, smart watches can assist users’ access of frequent tasks and important 

notifications. Smart watches are also ideal for tracking users’ activities and physiological 

signals for personal wellbeing. Although many new interaction techniques [14] and input 

modalities [38][45] have been proposed for smart watches during recent years, it remains 

a major challenge to read textual information on smart watches. 

There are at least three major challenges when a user reads text messages on a 

smart watch. First, most of today’s smart watches use a small display approximately 1.5-

inch diagonal, which only affords showing three or four words per line. Therefore, a user 

must rely on more frequent lateral eye gaze movements, i.e. saccade, during reading. 

Second, more scrolling actions are needed due to the limited number of words per screen. 

Such scrolling operations not only exacerbate the notorious “fat finger problem” but also 

occupy a user’s both hands. Third, text reading on smart watches increases the 
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probability of divided attention and interruptions. Paradoxically, the growing amount and 

type of information accessible via smart watches increases our exposure to such reading 

interfaces. 

 

Figure 2. SmartRSVP continuously monitors the visual attention of a user via real-

time image processing and infers the user’s cognitive workload via implicit 

physiological signal sensing. SmartRSVP uses the visual attention to play/pause 

dynamic text presentation and adjusts text displaying speed via the inferred 

cognitive workload. 

To address these challenges, we present SmartRSVP (Figure 2), a novel speed 

reading system to facilitate text reading on small screen wearable devices. SmartRSVP 

leverages real-time visual attention tracking and implicit physiological signal sensing to 

make text reading via Rapid Serial Visual Presentation (RSVP) more enjoyable and 

practical on smart watches. SmartRSVP uses camera-based facial alignment and eye gaze 

tracking techniques to determine whether a user is paying visual attention to reading or 

not and then leverages the visual attention information to play/pause the presentation of 

dynamic texts. At the same time, SmartRSVP uses heart-rate variability (HRV) features 

to infer the user’s cognitive workload, which is further used to regulate the speed of 



 23 

RSVP in real time. Overall, SmartRSVP exploits both the spatial and temporal efficacy 

of the RSVP technique, and reduces its workloads in both visual attention and cognitive. 

This study offers three major contributions.  

1. We present SmartRSVP, a perceptual and affect-aware intelligent interface to 

facilitate text reading on wearable devices via visual attention tracking and 

implicit cognitive state sensing.  

2. We propose novel algorithms and interaction designs to make text reading via 

RSVP more enjoyable and practical for text reading on small-screen wearable 

devices.  

3. We show the feasibility, accuracy, robustness, and usability of SmartRSVP via 

four user studies involving 60 participants in total. 

2.2 Design 
 

Figure 2 shows SmartRSVP in action. SmartRSVP displays text via RSVP, and 

continuously monitors the visual attention and cognitive states of the user. SmartRSVP 

will pause the text display if 1) there is no human face in the camera viewport, or 2) the 

user’s eye gaze is not in direct contact with the watch screen. SmartRSVP also infers the 

cognitive workload of the user via implicit PPG sensing through a dedicated PPG sensor 

or a back camera. The word speed of RSVP will be adjusted based o the cognitive 

workload.  

SmartRSVP includes four major components: 1) The RSVP module; 2) 

Algorithms for tracking and using the owner’s visual attention; 3) A statistical model to 

predict the internal cognitive states of a user; and 4) The speed regulation module.  
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2.2.1	RSVP	
 

We use a 20dp monospace font (average height = 8.1mm) to render words in our 

RSVP module. This font size provides good legibility on a 1.5-inch watch screen, and 

can display a 12-character-word without line breaking or resizing. SmartRSVP also 

aligns each word in the Optimal Recognition Point (ORP) [10] and visualizes the ORP in 

red color (Figure 2).  ORP intends to make the gaze fixation point of a word stay at a 

fixed location to avoid unintended saccades when the gaze fixes on words of different 

lengths [10]. We use a monospace font to ensure all ORPs having the same width and 

adjacent words with the same length being aligned at the same location. The display 

speed of our RSVP module can vary from 200 wpm to 500 wpm. Users can manually tap 

the watch interface to play or pause the text display on SmartRSVP.  

2.2.2	Visual	Attention	Tracking	
 

Due to the limited availability of front facing cameras on smart watches, we used 

a Google Nexus 5x smart phone running Android 6.0 to simulate a 42.0mm by 5.9mm 

smart watch screen. This choice follows practices of existing research on smart watches 

[14][15][61], we allocate the same physical region on Nexus 5x for display and touch 

input.  

Each image frame captured by the front camera goes through the following three 

steps to derive a binary outcome on visual attention. 1) Face detection: A Viola-Jones 

face detector [84] is used to detect the existence and location of a human face; 2) Face 

Alignment: We use Cascaded Pose Regression [24] to estimate the facial orientation and 

landmark points on a face; 3) Eye contact estimation: Similar to [55][78], we relied on 
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the location of the pupil relative to the rest of the eye to estimate the direction of eye 

gaze. We used the Qualcomm Snapdragon SDK to accelerate the tracking process. The 

per-frame image processing time was 17ms, and we can achieve 21 frames per second on 

the hexacore Snapdragon 808 CPU in the Nexus 5x. 

 

Figure 3. Visual Attention Tracking via face detection and eye contact estimation. 

The x-axis is time (~17 sec). Row (a) is the predicted horizontal eye gaze locations: 

Row (b) is the predicted vertical eye gaze locations. Green circles highlight moments 

when a user is not having gaze contact with his smart watch. 

Given the small display size of smart watches, it’s not necessary to estimate the 

absolute location of eye gaze on the watch. Instead, we trained a binary eye contact 

classifier from five volunteers: taking the union of all volunteers visual attention range, 

gazes within the union range will be treated as paying visual attention. We also used a 

0.5sec low-pass filter to reduce false positives and false negatives from per-frame 
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estimations. Figure 3 shows the continual output of the eye gaze prediction algorithm and 

the binary eye contact estimations.  

2.2.3	Cognitive	State	Inference	
 

SmartRSVP infers users’ cognitive states via commodity camera-based PPG 

sensing through the back camera of smart phones. We chose to use the back camera 

instead of the optical heart rate sensor on a smart watch for PPG sensing because current 

SensorManager API in Android Wear only reports average heart rates within a fixed time 

window, rather than raw waveforms of PPG signals. We expect cleaner PPG signals and 

higher prediction accuracies if we can access raw waveforms from dedicated optical heart 

rate sensors on smart watches in the future. SmartRSVP uses the LivePulse algorithm 

[36] to extract the raw PPG waveforms.  

We use a fixed-size sliding window to extract features from the temporal PPG 

signals. We extract 9 dimensions of heart rate and HRV features (Table 1) from each 

window. After normalization, these 9 dimensions of features are used to train a statistical 

classifier to predict user cognitive workload within this sliding window.  

2.2.4	Speed	regulation	
 

We used a one-way binary adaptation strategy similar to BACh [90] to adjust the 

text display speed dynamically. This adaptation strategy has been proven to be effective 

by existing research [90] because it avoids the confounders in number, durations and 

scale of adaptations. SmartRSVP tracks users’ PPG signals during reading and decreases 

the speed of RSVP by 100wpm if a multitasking activity is detected from users’ PPG 

signals.  
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The reduction speed was chosen by a 4-user pilot study, where 100wpm was the 

minimum reduction that could be noticed by all users.  

Feature Definition 

MHR Average heart rate 

SDHR Standard deviation of heart rates 

rMSSD 
The square root of the mean squared 

adjacent RR intervals’ difference 

pNN12 
Percentage of more than 12ms difference 

between adjacent RR-intervals 

pNN20 
Percentage of more than 20ms difference 

between adjacent RR-intervals 

pNN50 
Percentage of more than 50ms difference 

between adjacent RR-intervals 

MAD 
Median of absolute deviation of RR-

interval 

AVNN Average RR-interval 

SDNN Standard deviation of the RR-intervals 

Table 1. Heart Rate and HRV Features extracted from raw PPG waveforms. 

2.3 Experiments & Results 
 

We ran a total of four user studies to investigate different aspects of SmartRSVP. 

In the first study, we directly compared SmartRSVP with today’s standard reading 

interface on smart watches and traditional RSVP in a sitting condition. We further 

investigated the robustness and efficacy of SmartRSVP in standing and walking 

conditions in the second study. In the third study, we benchmarked accuracies of the 
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cognitive-state inference module in SmartRSVP. In the fourth study, we evaluated 

usability and efficacy of the whole SmartRSVP system in action. 

2.3.1	User	Study	1	
 

This study evaluated the efficacy of the visual attention tracking channel of 

SmartRSVP and directly compared it with traditional RSVP and normal watch reading 

interface in a sitting posture.  

2.3.1.1	Participants		
 

18 participants (3 females) between 19 and 46 years of age (µ=26) participated in 

the study. All participants were undergraduate or graduate students from a local 

university.  

None of the participants had previous experience with RSVP.  

2.3.1.2	Apparatus	
 

Our experiments were completed on a Google Nexus 5x Smartphone with a 5.2 

inch 1920 x 1080 pixels display, 1.8 GHz hexacore SnapDragon 808 CPU running 

Android 6.0. 

There were three conditions: normal watch reading interface (NWR), traditional 

RSVP (T-RSVP), and SmartRSVP (Figure 4) in this study. NWR used a 20dp sans serif 

(Droid Sans) font for text display to replicate today’s reading interfaces on smart 

watches, which shows about three or four words per line and eight lines per screen.  
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Figure 4. Three reading interfaces in the study. From left to right: Normal Watch 

Reading Interface, Traditional RSVP interface, and SmartRSVP. 

Thirty unique email pieces were chosen from Enron email database for this phase, 

as emails were short, frequent tasks on today’s smart watch. They have comparable 

length (µ = 47 words or 3.5 sentences) and difficulty (average Flesch-Kincaid score = 

68.65, σ = 14.97).  

 

Figure 5. Distracters (random 3-digit numbers) appear on a 15-inch laptop screen 

on the left-hand side of a participant. Left:  reading an email message via 

SmartRSVP; Right: turning left to read the distracter. 

To simulate reading activities under divided visual attention, we put a 15-inch 

laptop on the left-hand side of the participant (Figure 5). When the participant was 

reading, once every 4 to 6 seconds, the laptop generated a beep sound, and a 3-digit 

random number was shown on the laptop screen for 2 seconds. Once the participant heard 
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the beep sound, she was required to look at the 3-digit number (Figure 5, right) and read 

the number out loud. The participant could resume the reading task after reading the 

number out loud. We placed 3 distracters for each email message. 

2.3.1.3	Procedure	
 

This user study included a single session for 30 minutes. The session started with 

the introduction of the three interfaces and distractions. Once completed, participants 

practiced reading on the three interfaces with distractions for 10 min to get familiar with 

user study system, distractions, the genre of reading materials and comprehensive 

questions. Participants read a set of 10 emails on each interfaces, 3 sets in total. Both sets 

and interfaces were randomly selected for each participant. Participants were asked to 

stop the RSVP whenever they desired. We placed 3 distracters for each email message. 

After finishing each email, the participant answered one question to test the text 

comprehension. At the end, participants were asked to complete a questionnaire to 

provide the subjective feeling of the three interfaces. 

2.3.1.4	Design	&	Analysis	
 

The study used within-subjects design with three interfaces: NWR, T-RSVP, 

SmartRSVP (Figure 4).  

After reading each email, the participant answered one question to test of reading 

comprehension. There are three levels of text comprehension, i.e. literal, inferential, and 

evaluative [27]. We only used literal questions, i.e. recalling key information that was 

explicitly stated in the email, in our study because we focused on evaluating and 
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comparing reading interfaces rather than testing the language and logical skills of 

participants. We investigated the following metrics across three interfaces tested:  

• False positive and false negative rates of the visual attention tracking module. 

• Comprehension rate, equaling to the percentage of correctly answered questions. 

• Reading efficiency (E), defined as: E = !
!
×c, where D denoted reading duration 

(including distractions), W was the number of words, and c was comprehension 

rate [77][42]. 

• Subjective ratings on a 5-point Likert scale. 

2.3.1.5	Results		
 

The false positive rate of visual attention tracking in SmartRSVP was 24.02%, 

and false negative rate was 3.7%. 

Figure 6 shows the average comprehension rates of the three reading interfaces. 

The comprehension rates and corresponding standard deviations were 52.2% (σ=0.16), 

23.9% (σ=0.11), and 57.5% (σ=0.20) respectively.  

Repeated measures of analysis of variance showed a significant main effect 

(f=23.16, p<0.0001) incomprehension rates among the three reading interfaces. Pairwise 

mean comparison (t-tests) with Bonferroni correction showed that the comprehension rate 

of NWR was significantly higher than T-RSVP (t(17)=-6.27, p<0.0001). The 

comprehension rate of SmartRSVP was also significantly higher than T-RSVP (t(17)=-

6.32, p<0.0001). However, Difference in the comprehension rates was not significant 

between NWR and SmartRSVP (t(17)=0.88, p=0.39). Similar results were discovered on 

reading efficiency. For NWR, T-RSVP, and SmartRSVP, the reading efficiencies and the 
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corresponding standard deviations were 65.16 wpm (σ=19.49), 43.93 wpm (σ=21.42), 

and 67.16 wpm (σ=18.65). There were significant differences in reading efficiency 

between NWR vs. T-RSVP (t(17)=-3.02, p<0.005), and between SmartRSVP vs. T-

RSVP (t(17)=-3.37, p<0.005).  

 

Figure 6. Comprehension rates by reading interfaces 

Figure 7 shows the subjective ratings of perceived comfort across three interfaces. 

The length of each bar represents the average perceived comfort of each platform. The 

color grids represent the portions of each rating score within the bar. The subjective 

ratings of perceived comfort were 3.78 (σ = 0.73), 2.06 (σ = 0.96), and 3.28 (σ = 0.94) for 

SmartRSVP, T-RSVP and NWR respectively. There were significant differences in 

subjective rating between NWR and T-RSVP (t(17)=-3.87, p<0.0005), as well as between 

SmartRSVP and T-RSVP (t(17)=-6.14, p<0.0001). Although SmartRSVP received higher 

subjective ratings in comfort when compared with NWR, the difference was not 

significant (t(17)=1.75, p=0.08).  
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Figure 7. Subjective ratings on perceived comfort on a 5-point Likert scale (1 = not 

comfortable at all, 5 = very comfortable). 

All 18 participants provided positive feedback on the use of eye-gaze as an 

implicit control channel for RSVP. Among them, 15 participants rated the visual attention 

tracking and control channel in SmartRSVP "responsive".  

2.3.2	User	Study	2	
 

This follow-up study further evaluated the usability, efficacy, and robustness of 

SmartRSVP’s visual attention tracking channel during standing and walking conditions. 

2.3.2.1	Participants		
 

12 participants (5 females) between 18 and 34 years of age (µ=23) participated in 

the study (Figure 8). All participants were undergraduate students or graduate students 

from a local university.  

1 2 3 4 5

SmartRSVP

T-RSVP

NWR

1-Not	Comfortable	at	All 2 3 4 5-Very	Comfortable
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Figure 8. Sample participants in study 2.  

2.3.2.2	Apparatus	
 

Apparatus were the same as the user study 1, expect:  

1) We excluded the T-RSVP interface to simplify the experimental design. When 

compared with the sitting posture in study 1, the standing and walking conditions do not 

bring additional benefit to T-RSVP over SmartRSVP. 

2) The participants completed all the tasks on a treadmill in a local gym (Figure 

8). The speed of the treadmill was set to 1.5mph for the walking posture.  

2.3.2.3	Procedure	
 

User study 2 was a single 30 min session. The session started with the 

introduction of the two interfaces, i.e. SmartRSVP and NWR. Once completed, 

participants practiced reading on the two interfaces with distractions for 10 min to get 

familiar with user study system, treadmill, distractions, the genre of reading materials and 

comprehensive questions. After finishing each article, the participant answered two literal 

questions to test the text comprehension.  
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2.3.2.4	Design	&	Analysis	
 

The study was a within-subject 2*2 factors design. The factors and levels were: 

• Posture: Standing vs. Walking 

• Interface: SmartRSVP vs. NWR 

Posture and interfaces were randomly ordered for each participant. Each 

participant completed an article under a unique combination of conditions, leading to 

2*2=4 articles for the study.  

Following user study 1, we used two literal questions after each article to test 

users’ comprehensions. 

2.3.2.5	Results		

 

Figure 9. Average comprehension rates by postures. 

Figure 9 shows the average comprehension rates of the NWR and SmartRSVP by 

reading posture. The comprehension accuracies were 77.3% (NWR + Standing, σ=0.69), 

68.2% (NWR + Walking, σ=0.81), 63.6% (SmartRSVP + Standing, σ=0.61) and 70.8% 

(SmartRSVP + Walking, σ=0.66). No significant difference was found on comprehension 

accuracies in either reading platforms (t(11)=-0.55, p=0.58) or postures (t(11)=-0.11, 

p=0.91). Besides comprehension rates, we also measured reading efficiencies, which 
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were 177.3 wpm (NWR + Standing, σ=93.98), 163.5 wpm (NWR + Walking, σ=110.17), 

129.1 wpm (SmartRSVP + Standing, σ=59.61), and 170.2 wpm (SmartRSVP + Walking, 

σ=117.67). Again, neither reading platforms (t(11)=-0.71, p=0.48) nor reading postures 

(t(11)=0.46, p=0.64) had significant impact on reading efficiency. 

 

Figure 10. Subjective ratings on perceived comfort for NWR and SmartRSVP (1 = 

Strongly Disagree, 5 = Strongly Agree). 

The subjective ratings of perceived comfort in general were 4.55 (σ = 0.52) for 

NWR+Standing, 3.18 (σ = 0.98) for SmartRSVP+Standing, 3.27 (σ = 1.01) for 

NWR+Walking, 3.55 (σ = 0.93) for SmartRSVP+Walking (Figure 10).  

Participants preferred NWR over SmartRSVP in standing posture. At the same time, 

participants preferred SmartRSVP over NWR in walking posture. 
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Figure 11. HeatMaps of aggregated eye gaze by postures. Top row: NWR+Standing 

and NWR+Walking; Bottom Row: SmartRSVP+Standing and 

SmartRSVP+Walking. 

We also collected users’ raw gaze data (the estimated gaze point from our 

algorithm) to quantify the impact of reading techniques and body movements on gaze 

patterns, and to investigate the robustness of camera-based gaze tracking technique in 

SmartRSVP (Figure 11). From corresponding Heatmaps we can see that the raw eye gaze 

locations were less scattered for SmartRSVP (bottom row) than NWR. At the same time, 

walking (right column) can cause slightly more distributed gaze distributions than 

standing (left column).  

2.3.3	User	Study	3	
 

This study evaluates the cognitive workload detection module of SmartRSVP.  

2.3.3.1	Participants		
 

The same participants were recruited as user study 1.  
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2.3.3.2	Apparatus	
 

The same device and the same environment were used as user study 1.  

We adopted the color counting task [73] to induce the internal cognitive workload 

changes. We included two conditions: the focused condition and the multitasking 

condition. In focus condition, users were asked to concentrate on reading without external 

distractions. In multitasking condition, a computer placed on the side spoke the names of 

nine different colors randomly at the speed of one second per word. Participants were 

told to read as well as count the number of times the two target colors, i.e. “yellow” and 

“white”, were spoken. Conditions and articles were all assigned to users in random 

orders. 

2.3.3.3	Procedure	
 

This user study includes a single 30min session. Participants read two news 

articles, one under the focused condition, the other under the multitasking condition. Both 

articles and conditions were randomly assigned. After reading each article, participants 

rated their focus level, and answered 5 questions to test the comprehension. 

2.3.3.4	Design	&	Analysis	
 

The study used a within-subjects design with two cognitive workload levels on 

SmartRSVP interface. 

2.3.3.5	Results		
 



 39 

The average comprehension rates for focus and multitasking were 56.67% and 

26.67% respectively.  

We trained both user-independent and user-dependent models on the collected 

PPG waveforms to predict a participant's focus/multitasking status when using 

SmartRSVP. We used the leave-one-participant-out technique to train the user-

independent models and used two-fold cross-validation to train the user-dependent 

models. 

For each PPG sequence collected, we went through the following three steps to 

extract the features for our statistical models. 1) Signal segmentation: we used a moving 

window to split each PPG sequence into fixed-size chunks; 2) Feature extraction: we 

extracted 9 dimensions of heart rate and HRV features (Table 1) from each chunk via the 

LivePulse algorithm [36]; 3) Feature Normalization: we normalized features via 

MeanSTD.  We tested different combinations of window number, window size (10s, 

15s… 40s), window overlaps (0%-50%), and different initial padding to find the optimal 

parameters for the classification models.  

 

Figure 12. The classifiers’ optimal kappa by local window size in user independent 

models. 
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We explored the use of support vector machine with radial basis function kernel 

(RBFSVM), K-nearest neighbor (KNN) and Decision Tree (DT) classifiers to train and 

predict users' cognitive workloads.  

We found the RBFSVM model using two 25s windows (0% overlap, a 6s gap 

between windows) and ignoring the first 20 seconds of signals led to the best overall 

performance (accuracy = 77.5%, precision = 78.3%, recall = 85.0%, kappa=0.55) (Figure 

12) for user-independent classification. Figure 13 shows the results for user dependent 

models by window size and classifier. The highest Kappa was 0.64 when using a 40 sec 

local window and a RBFSVM classifier.   

 

Figure 13. The classifier's optimal Kappa by local window size in 2-fold user 

dependent models.  

2.3.4	User	Study	4	
 

This study investigated the usability and efficacy of the speed regulation module 

of SmartRSVP in action. Our goals were two-fold: 1) determine whether SmartRSVP 

was able to identify users’ focus/multitasking internal cognitive state in everyday tasks, 

2) whether the dynamic speed adjustments by SmartRSVP were effective.  

2.3.4.1	Participants	
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14 participants (6 females) between 25 and 33 years of age (µ=29) participated in 

the study. All participants were undergraduate or graduate students from a local 

university. Only one participant had previous experiences in RSVP.  

2.3.4.2	Apparatus	
 

We adopted the same device, internal distractors and reading environment as in 

user study 3. 

2.3.4.3	Procedure	
 

This user study included a 20min training session and a 40min testing session. For 

each participant, the training session was conducted approximately at the same time of 

the day but one week before the testing session.  

The training session followed the same procedures as study 3. At the beginning of 

the testing session, participants were informed that the real-time speed regulation 

function was enabled. Participants then read in a different and random ordered article for 

each trail. At the end of each trail, participants first reported counted color if the 

distraction was enabled, and then completed five short answer questions about the article. 

2.3.4.4	Design	&	Analysis	
 

We used a within-subjects design in this study. The testing session has a 2 

(focused vs. multitasking) * 2 (simple threshold classifier vs. RBFSVM classifier) 

factorial design. Therefore, each participant completed 2+2*2=6 sessions in the study. 

We adopted a simple threshold based classifier (TH classifier) as the baseline. 

The TH classifier calculates the one-dimensional MHR in HRV features to determine a 
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user’s cognitive state. We used this condition to simulate traditional practices [74] that 

predict cognitive workload from heart rate variability signals in the HCI community. A 

multitasking event was trigger by the TH classifer if the user’s MHR of testing window 

aligned outside µ!"#$% ± 2σ!"#$% range of the focus distribution, and the MHR aligned to 

the side of µ!"#$% as µ!"#$%!!"#$%&' did. RBFSVM classifier was chosen since it performed 

the best among three classifiers tested in user study 3.  

2.3.4.5	Results		
 

We discarded two users due to corrupted data. In the training phase, we used the 

same three-step procedures to process users’ raw PPG signals and got training instances.  

To avoid carry over effects, we used 20s initial padding in both training and testing 

phase.  

 Baseline (TH) RBFSVM 

Accuracy 50% 70% 

Precision 50% 83.33% 

Recall 40% 50% 

Table 2. The live performances SmartRSVP in study 4. 

As shown in Table 2, our RBFSVM based classifier consistently achieved better 

prediction accuracies than the TH classifier (baseline). The relative improvement in 

accuracy was 40% (Table 2).  
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Figure 14. Subjective ratings on a 5-Point Likert scale. 

Overall, our users reported positive experiences with speed adjustment module in 

SmartRSVP (Figure 1). Users considered SmartRSVP’s speed adaptations were relevant 

to their cognitive workload (µ=3.8, σ=1.03) and would like to use SmartRSVP in the 

future (µ=4.1, σ=0.99).  

2.4 Discussions 
 

This research is our initial attempt to design an attention and cognitive state-aware 

speed reading interfaces on wearable devices. We have intentionally make the following 

trade-offs to achieve a good balance among robustness to environmental changes, ease of 

use, and minimal calibration efforts.  

First, we focused on detecting the type of cognitive workload (i.e. focused vs. 

multitasking) rather than detecting the continual levels of each type. We found such 

coarse grained detection results are sufficient to regulate the speed of RSVP dynamically 

with good accuracies and robustness.  

Second, we chose a one-way, fixed speed adaptation strategy [90] because we 

wanted to ensure that our adaptive algorithm will at least do no harm to the reading 

process. Multi-way detections will reduce the detection accuracy and more importantly, 
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incorrectly increasing the reading speed may lead to disruptive experiences from users. 

Both experimental results and qualitative feedback from users confirmed this design 

decision.  

2.5 Limitations and Future Work 
 

Despite promising results, we have only scratched the surface of the design space 

of SmartRSVP. There are several limitations of this research that to be explored in the 

future. First, our studies were conducted in indoor and consistent lighting conditions. It is 

harder to track users’ visual attention reliably outdoors with inconsistent lighting 

conditions, e.g. the camera may be overexposure under direct sunshine. In addition to 

designing more robust algorithms, it would be important to leverage built-in motion 

sensors such as the GPS, accelerometers and gyroscope in the watch to both infer the 

context of the users (i.e. indoor, outdoor, moving, not moving) and estimate the 

orientation and dynamic posture of the smart watch for more accurate predictions; 

Second, as discovered in our study, there were both challenges and opportunities to 

provide feedback for the current text presentation when a user was not paying visual 

attention to the display. In this project, we didn’t include extra feedback other than speed 

reduction. We believe tactile feedback could play an important role here. It will be 

interesting to explore the feasibility, type, and level of tactile feedback in no visual 

contact state of SmartRSVP in the future; Third, although we confirmed the feasibility of 

speed adaptation according to users’ cognitive workloads in SmartRSVP, principled 

research is necessary to further investigate the design space of dynamic speed adaptation 

(e.g. optimal latency and scale of speed change) which is lack in this project; Fourth, 

some participants reported unwanted speed reductions which could be eliminated by 
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inventing a mixed- initiative approach for the fine-grained control of display speed, 

where both users and the intelligent interface can change or confirm the reading speed in 

a complementary manner. The use of wrist gestures could be served as a mixed-initiative 

control channel in SmartRSVP; To evaluate the visual and cognitive control on RSVP 

display, we exclude the existing content-based adaptation of RSVP, such as adjusting the 

word- level display durations based on the predicted importance. Such adaptations are 

orthogonal to SmartRSVP adaptations, therefore could be explored in context of 

SmartRSVP. Other than that, enabling regressions via gesture-based interactions 

[53][54], and reminding users (via tactile feedback, sound, or visualizations) about 

important upcoming messages, could also be explored in the context of SmartRSVP.  

 

2.6 Conclusion  
 

We proposed SmartRSVP, a novel speed reading system to facilitate text reading 

on watch-size screens. SmartRSVP leverages camera-based visual attention tracking and 

implicit physiological signal sensing to make text reading via Rapid Serial Visual 

Presentation (RSVP) more enjoyable and practical on smart watches. In a set of four user 

studies, we found that SmartRSVP lead to significantly higher comprehension rate 

(57.5% vs. 23.9%) when compared with traditional RSVP. The current implementation of 

SmartRSVP was capable of supporting more realistic conditions such as walking in a 

gym with satisfactory performance and subjective preference. SmartRSVP can predict 

users' cognitive workloads with an average accuracy of 77.5% (kappa=0.55) in a user- 

independent model. Finally, SmartRSVP can adjust the speed of RSVP based on users’ 

cognitive workload with 83.33% precision.  
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3.0 LEPTON: UNDERSTAND MOBILE READING VIA 

CAMERA BASED GAZE TRACKING AND KINEMATIC 

TOUCH MODELING 

 

To explore the opportunities to achieve rich and fine-grained understanding of 

users’ mobile reading behaviors, we propose Lepton, an intelligent mobile reading 

system that captures readers’ reading comprehension and engagements through a set of 

dual-channel sensing algorithms. Lepton tracks the periodic lateral patterns, i.e. saccade, 

of users’ eye gaze via the front camera, and infers their muscle stiffness during text 

scrolling via a Mass-Spring-Damper (MSD) based kinematic model for touch events. 

3.1 Introduction 
 

Mobile reading is experiencing rapid growth in the era of smartphones [91]. 

According to a recent survey, mobile reading activities, such as reading articles on a 

browser or dedicated social medias apps, and reading messages in email clients or instant 

messaging (IM) apps, is around 2 hours per day in the United States in 2016 [65], 

accounting for 40% of the daily time with mobile devices [65]. Despite such promising 

progressions, reading non-pleasure contents on mobile devices for working or learning is 

still challenging. Recently, Neilson discovered that comprehension drops from 39.18% to 

18.93% after switching from desktop screens to mobile-sized screens [59]. Indeed, 

compared to media consumption channels such as watching videos [83], the passive 

nature of mobile reading and the more complicated reading context lead to declined 

attention and increased non-linear reading pattern [52].  
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Despite the highly diversified contexts, practitioners today still rely heavily on 

coarse-grained metrics such as click-through-rate (CTR) [87][32] and dwell time to 

understand and adapt to users’ reading behavior on mobile devices. Such approaches 

have been proven to be inadequate [25] because of the sparsity and indirectness of such 

signals. For example, extended dwell time may imply desirable content, increased 

difficulty, or even distractions.   

 

Figure 15. The architecture of Lepton: the visual channel (top) tracks the periodical 

patterns of users’ eye gaze via the smart phone embedded front-facing camera. The 

kinematic touch channel (bottom) analyzes users’ scrolling touch behavior via a 

Mass-Spring-Damper (MSD) model. 

We present Lepton, an intelligent mobile reading system and a set of dual-channel 

sensing algorithms, to achieve rich and fine-grained understanding of users’ reading 

behaviors on unmodified smartphones. Lepton tracks the periodic lateral patterns, i.e. 

saccade, of users’ eye gaze via the front camera and infers their muscle stiffness during 

text scrolling via a Mass-Spring-Damper (MSD) based kinematic model for touch events. 

Overall, Lepton combines a visual tracking channel via the front camera and a kinematic 
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channel by tracking scrolling operations on a touch screen to monitor and improve 

mobile reading activities.  

Lepton system offers three major contributions:  

• We propose a novel set of periodic lateral pattern-based gaze features that can be 

tracked via a widely-used but low-accuracy embedded front-facing camera of a 

smart phone. 

• We use a physiological model of hand-arm dynamics (MSD model) to quantify 

users’ muscle stiffness during scrolling operations and then infer their attention in 

reading on smart phone.  

• By combining rich features from both the visual tracking channel and the 

kinematic touch channel, we show that we can significantly improve the 

accuracies to predict users’ comprehension and engagements in reading.  

 

3.2 Design 
 

Lepton uses a visual tracking channel and a kinematic channel to facilitate 

understanding reading comprehension and engagements. 

3.2.1	Visual	Tracking	Channel	
 

Feature Definition 

PR Predicted periodic lateral patterns divided by number of lines in reading material 

STDX Standard deviation of x-axis of gazes 

STDY Standard deviation of y-axis of gazes 

rMSLL The square root of the mean squared adjacent predicted line lengths' difference 

rMSLD The square root of the mean squared adjacent predicted line durations' difference 
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M1ADLL Mean of absolute deviation of predicted line lengths 

M1ADLD Mean of absolute deviation of predicted line durations 

M1ADLY Mean of absolute deviation of line mean Y-axis of gazes 

MADLL Median of absolute deviation of predicted line lengths 

MADLD Median of absolute deviation of predicted line durations 

MADLY Median of absolute deviation of line mean Y-axis of gazes 

STDLL Standard deviation of predicted line lengths 

STDLD Standard deviation of predicted line durations 

STDLY Standard deviation of line mean Y-axis of gazes 

Table 3. Periodic lateral pattern based eye gaze features 

Traditional eye features are related to gaze fixations and saccades, e.g. mean and 

standard deviation of fixations’ durations and saccades length [71]. Since we trade the 

accuracy from embedded sensors to improve feasibility, traditional eye features are no 

longer suitable. We proposed the periodic lateral pattern-based eye gaze features (Table 

3). As our proposed gaze features are built upon periodic lateral pattern detection, we 

defined two metrics to evaluate the periodic lateral pattern detection accuracy: A) Lines 

read by a reader, and B) the existence of reread/skip action.  

In this paper, we aimed to understand English text reading on portrait smartphone, 

which reads left-to-right in the horizontal direction, and top-to-bottom in the vertical 

direction. To represent gaze points, a traditional computer graph coordinate system is 

used to represent the smart phone screen. Such system uses the top-left corner as the 

origin and the y-axis goes downward increasing in value,, and expresses how a reader 

reads down the screen. If a reader reads line by line from the beginning to the end of a 

text page, the horizontal axis (x-axis) of his/her gazes should appear in a zig-zag periodic 
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lateral pattern as he/she consumes a line and sweeps back to consume another line [55]. 

Therefore, the x values of gaze were used to predict the periodic lateral patterns. 

The front-facing camera of a Google Nexus 5x smart phone captures each image 

frame during reading. The frames are then passed through Qualcomm Snapdragon SDK 

to extract gaze coordinates [33]. The per-frame image processing time is 17ms, which 

can achieve around 20 frames per second on the hexacore Snapdragon 808 CPU in the 

Nexus 5x. 

 

Figure 16. The framework for getting periodic lateral patterns. Top to Bottom: the 

process begins with horizontal (x-axis) gaze signals; through preprocessing, 

LivePulse algorithm and merging consecutive shorts, the final periodic lateral 

patterns were achieved. 
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3.2.1.1	Line	detection	
 

Our goal is to detect the lines a user read on a portrait phone screen with normal 

display text size (around 25 lines per screen). For each reading sample (Figure 16), the 

list of a reader’s horizontal gaze data (x values) went through preprocessing, detecting 

peak/valley of periodic lateral pattern, and merging consecutive short patterns. For the 

preprocessing, we interpolated, scaled and detrended the gaze signals after the removal of 

noisy data at the beginning and the end. Then an IIR filter (around 2.5 Hz cutoff 

frequency) was used to process the gaze signals.  For the peak/valley detection, all local 

maximums and minimums were first labeled as potential peaks and valleys. Then we 

used the LivePulse algorithm [36] to shrink the number of potential peaks and valleys. 

Lastly, the consecutive short line predictions were merged since our reading materials are 

paragraph-based. A set of gaze points between two selected valley points was considered 

as a periodic lateral pattern.  

3.2.1.2	Action	(reread	&	skip)	detection		
 

We used a X-line-counting action detection method to detect reread and skip 

actions, which calculated the number of lines as in A., and then compared this number 

with the number of lines on the page. If the detection number was larger than a certain 

ratio of the ground truth number, it was considered as reread. Similarly, we classified a 

sample as skip condition if the ratio was smaller than a certain ratio. We iterated through 

different values of ratios in experiment data, and found the optimized ratios for reread 

and skip condition.  



 52 

Another option of action (reread/skip) detection was using vertical (y-axis) gaze 

data based on the following observations: 1) when a reader reads line by line, the vertical 

axis (y-axis) of gazes follows an increasing step shape (Figure 17. a) within a fixed 

viewport of the reading material; 2) When the reader rereads, his/her vertical gaze 

location plunges to a certain point, and then follows the increasing step shape (Figure 17. 

b); and 3) When the reader skips, the vertical gaze data shoots up to a certain point and 

then follows the increasing step shape (Figure 17. c).  

 

Figure 17. A reader's vertical gaze shape (y values) when (a) reading consecutively 

from top to bottom, (b) reading from top to bottom but rereading a set of 

paragraphs, (c) reading from top to bottom but skiping a set of paragraphs 

In Y-only action detection method, we passed the vertical gaze data through 

outlier removal, an FIR filter, and sliding window action classifier to detect the actions. 
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Outlier removal was aimed to remove the occasional peaks on y values (Figure 17) 

caused by eye blinking. A simple FIR average filter was used to remove signal noises. In 

sliding window action classifier, we defined a y value at time t as f t , and we classified a 

sample as reread if there is at least one window that satisfies: 

f t!"# − f t!
t!"# − t!

< 0 <  
f t! − f t!"#
t! − t!"#

   

                                  where t!"# − th1 < t! < t!"# − th2  

                                       and t!"# + th2 < t! < t!"# + th1 

Similarly, we classify a sample as skip if: 

0 <
f t!"# − f t!
t!"# − t!

<  
f t! − f t!"#
t! − t!"#

 

                                  where t!"# − th1 < t! < t!"# − th2  

                                       and t!"# + th2 < t! < t!"# + th1 

 

Figure 18. Sliding window reread action classifier. We classify a sample as reread if 

there is at least one window which has: 𝒇 𝒕𝒎𝒊𝒅 !𝒇 𝒕𝒊
𝒕𝒎𝒊𝒅!𝒕𝒊

< 𝟎 <  𝒇 𝒕𝒋 !𝒇 𝒕𝒎𝒊𝒅
𝒕𝒋!𝒕𝒎𝒊𝒅

 where 

𝐭𝒎𝒊𝒅 − 𝐭𝐡𝟏 < 𝒕𝒊 < 𝐭𝒎𝒊𝒅 − 𝐭𝐡𝟐 and 𝐭𝒎𝒊𝒅 + 𝐭𝐡𝟐 < 𝒕𝒋 < 𝐭𝒎𝒊𝒅 + 𝐭𝐡𝟏. 
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3.2.2	Kinematic	channel	
 

Besides eye movements, scrolling motion is one of the most important 

information sources during reading. Muscle activity/tension can be affected by emotions 

such as engagement. Researchers proved that the emotions causing muscle changes could 

be detected by mass-spring-damper (MSD) system when doing two-dimensional tasks 

[81][39]. However, this theory has seldom been used in reading analysis. Taking 

advantage of the rich sensors in smart phones, we proposed to track, understand and use 

the effects of reading emotions on scrolling action via a single MSD system. 

The MSD model takes the input force from the finger(s) and arm, and outputs the 

scrolling characters such as trajectory. The MSD system consists of a mass (m) 

representing the reader’s arm and finger(s), attached to a spring component (spring 

constant k) and a viscous damper (damping coefficient c) representing the muscle 

elements of the arm and finger. The mass oscillates at a rate related to the tension of the 

spring, and the oscillation decays exponentially based on the friction of the damper. 

Therefore, the damped frequency (ω) and damping ratio (ζ) of each MSD dimension can 

describe the scrolling movements of such dimension. We adopted the correlation between 

the parameters and muscle stiffness in [81]: ω ∝ k and ζ ∝ !
!
.  

The input of the MSD model is the force from the finger(s) and arm and the 

output is the scrolling characters. However, only the scrolling characters could be 

observed in our study. Therefore, we used linear predictive coding (LPC) to invert the 

input and output of the MSD model. LPC signal model predicts future signals based on 

the linear combination of the observed signals in the past: 



 55 

x! = a!x!!!

!

!!!

 

where x n  is the predicted signal value, x!!!  the previous observed values, a!  the 

predictor coefficients, and p the order of the predictors [41]. To optimize a!, we used 

least square error. 

LPC takes the input of the observed scrolling change along each dimension, e.g. dx and 

the corresponding time t on the x-axis scrolling dimension, and produces a sequence of 

coefficients that defines the characteristic polynomial of the MSD system. We take the 

complex root (r) of the predicted polynomials, which reveals the damping characteristics 

of the MSD model in this case: damping frequency ω = ℑ(r) , damping ratio ζ = ℜ(!)
!

 

[81]. 

Besides x and y scrolling dimension as in [81], three more dimensions were 

included, i.e. touch size, touch pressure and touch orientation ratio during scrolling.  

3.3 Experiments 
 

Our experiment consisted of two phases. In phase 1, we qualified the gaze 

periodic lateral pattern detection accuracy to prove the validity of periodic lateral pattern 

based gaze features. In phase 2, we used two proposed channel features along with the 

traditional dwell time related features to understand reading comprehension and reading 

emotions. 

3.3.1	Participants	
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25 participants (9 females) ranging from 19 to 35 years old (µ =26.32, σ =3.96) 

were recruited for the study. All participants have experiences with reading news on 

smart phone. None of the participants have dyslexia or emotional disorder.  

3.3.2	Apparatus	
 

Our experiment was completed on a Google Nexus 5x Smartphone with a 5.2 inch 

1920 x 1080 pixels display, 1.8 GHz hexacore SnapDragon 808 CPU (64-bit ARMv8-A), 

5MP front-facing camera and running Android 6.0. We used 15px display text size and 

portrait screen mode for both phases. 

3.3.2.1	Phase	1	
 

For each participant, the three reading articles in this task were randomly chosen 

from four New York Times articles, ranging 559 to 640 words (µ=588.50, σ=35.43) with 

comparable difficulties (average Flesch-Kincaid reading ease = 29.03, σ = 8.10). In phase 

1, we aimed to test the performance of X-line-counting action detection method and Y-

only action detection method. Therefore, a flipping page design was used to avoid the 

possible confounding changes of vertical gaze data caused by the changing of viewport 

by scrolling. Each article was divided into 3 pages (around 25 lines each flipping page, 

more than 90% of full screen). A flipping page button was designed at the bottom right of 

each page. 

The study of this phase had three conditions, i.e. normal, reread and skip. Under 

the normal condition, we asked the participants to read each line once, and line by line in 

a sequence. After finishing each page, participants clicked the flipping page button to 

continue to the next page (or stop if finished with the article). Under the reread condition, 
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participants read in a similar manner but were required to read a randomly highlighted 

section twice. Under the skip condition, participants were asked to skip a randomly 

grayed-out section when reached. 

3.3.2.2	Phase	2	
 

In phase 2, each participant read 3 articles. The articles in this task were chosen 

from the New York Times, ranging 459 to 567 words (µ=500.33, σ=58.29) with 

comparable difficulty (average Flesch-Kincaid reading ease = 33.3, σ = 6.59). In order to 

include both the visual tracking channel and the kinematic channel in this phase, we used 

scrolling design (X-line-counting action detection method was used for action detection) 

in order to enable scrolling tracking. Each article had around 59 lines on a single page.  

3.3.3	Procedure	
 

The entire procedure was around an hour for each participant. Each procedure 

began with an entrance survey questionnaire about the participant’s personal background 

and reading experiences. Once finished, two reading phases were conducted in a 

sequence. Before each phase, a 10 min warm-up session was conducted to introduce and 

let the participant get familiar with our setup. In each phase, the participant was asked to 

answer three short-answer comprehension questions as well as rate his/her reading 

emotions including focus level, confidence of understanding and engagement after each 

article reading. 
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Figure 19. Sample participants in experiment (phase 2). 

3.3.4	Design	and	Analysis	

3.3.4.1	Phase	1	
 

We used a within-subject design with three conditions in phase 1, i.e. normal, 

reread and skip as described in the apparatus. Under each condition, a participant read 

one article with 3 flipping pages. We randomized both the conditions and the articles. 

One participant’s data was discarded due to the corrupted data. In total, we have 24 

subjects * 3 conditions * 1 article * 3 flipping pages = 216 page level samples. Since we 

were aimed to evaluate the periodic lateral pattern detection accuracy, we evaluated the 

two metrics: line detection and condition (normal/reread/skip) classification in each 

sample. 
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We used mean absolute error, mean absolute percentage error, root mean squared 

error and correlation to evaluate the line detection. Precision-recall curve was used to 

analyze the condition predictions. 

3.3.4.2	Phase	2	
 

In phase 2, we conducted a within-subject study to evaluate the feasibility of 

detecting reading comprehension and emotions via visual and kinematic channel features. 

Each of the participants read 3 news articles about different topics including gaming, 

astronomy, and fitness. We randomized the sequence of the articles for each participant. 

The participant was asked to read each article according to their reading habit, and scroll, 

skip or reread whenever they desired (Figure 19). In this paper, we used comprehensive 

questions answer rate to measure reading comprehension, and users’ self-rated 

concentration (cognitive), interestingness (affective), confidence of understanding 

(affective) to understand users’ reading engagement. After reading each article, the 

participant was asked to answer three comprehension questions as well as rate reading 

engagements including concentration level, confidence of understanding, and 

interestingness on a 7-point Likert scale. Forward-stepwise features selection method was 

used to investigate the visual and kinematic channel features and their effects on reading 

comprehension and emotions. Based on the selected features, the gains of understanding 

reading comprehension and emotions were evaluated by the root mean square error and 

R2 value of linear analysis.  

3.4 Results 

3.4.1	Phase	1	–	Line	detection	
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We compared three methods, i.e. SwitchBack, Read All Lines, and Periodical 

Patterns Detection in line detection, where our proposed Periodical Pattern Detection 

outperformed the other methods in all aspects (Table 4). 

  SwitchBack Read All Lines Periodical Pattern Detection 

Mean absolute 

error 
4.91 5.68 3.56 

Mean absolute 

percentage error 
0.20 0.31 0.16 

Root mean 

squared error 
6.66 7.66 4.65 

Correlation 0.70 0.15 0.83 

Table 4. Line detection via SwitchBack (baseline 1), read all lines once (baseline 2) 

and periodical pattern detection methods. 

Two baseline approaches were used to evaluate line prediction performance. 

SwitchBack method was implemented as a baseline with the same procedure and 

parameter as described in [55]. SwitchBack iterated different values to get the best 

threshold of gaze-periodic length for detecting the change of lines. The other baseline 

was made based on the assumption that each user will read every line once within a 

flipping page.  

As shown in Table 4, our proposed periodic lateral pattern detection method 

achieved 0.83 correlations, and outperformed both baselines in all aspects.  

3.4.2	Phase	1	–	Action	(reread	&	skip)	detection	
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For each action (condition), we calculated the precision and recall of this 

condition versus all other conditions. The cutoff speed was used as our baseline: the 

reading is considered under skipped condition when a reader reads a page faster than a 

skip cutoff speed. Similarly, reread detection is defined when the reading is slower than a 

reread cutoff speed. Through the iteration between 100wpm~500wpm, we found that the 

optimized reread cutoff speed is 150wpm and skip cutoff speed is 250wpm for our 

participants.  

The precision-recall curve was shown in Figure 20 and Figure 21 corresponding 

to reread and skip condition. Through the calculation of the area under curve (AUC) for 

reread condition and skip condition (Table 5), we found that periodic lateral pattern 

counting outperforms both baseline and the y-only method. This result also testifies the 

sufficiency of periodic lateral pattern detection accuracy. 

 

Figure 20. Reread condition precision-

recall curve 

 

Figure 21. Skip condition precision-

recall curve 
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Method Reread Skip 

Baseline 0.69 0.79 

Y-only 0.58 0.31 

X-line-counting 0.73 0.88 

Table 5. Area under curve (AUC) for reread and skip conditions. 

 

3.4.3	Phase	2	–	Reading	comprehension	and	engagements	
 

To predict reading comprehension and emotion, we proposed three sources of 

features: traditional, gaze and kinematic (Table 6).  

 

Sources 
Feature Group 

(Count) 
Examples 

Traditional 

(TF) 

Dwell time (1) Page duration, etc. 

Speed Related (2) Speed on word level, etc. 

Kinematic 

(SF) 

MSD related (40) 
Statistical features related to five 

dimensions of MSD parameters 

Scroll trail related 

(5) 

Number of scrolls, mean duration of 

scrolls, etc. 

Gaze (GF) Periodic lateral Details in Table 3. 
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pattern based (14) 

Table 6. Three sources of features: traditional, gaze and kinematic, for predicting 

reading comprehension and engagements. 

Forward step-wise features selection method was used to select the significant 

features from the three sources of features (Table 7).  

We found that PR, MADLL, and MADLD were the most influential ones in gaze 

source.  

Features Concentration Confidence  
Interesting-

ness 
Comprehension 

mean 

CY  
1.62** - 2.10** - 

min WY  2.07** - - - 

min WX 2.15** - - - 

mean CP - - 1.20* 0.78* 

std CP -2.44** -3.05* - - 

mean 

WR 
- - - 6.94*** 

max WR  2.90* - - - 
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MAD 

lineDur  
- -1E-03** - - 

MAD 

lineLen  
- - -3E-04* - 

Table 7. The correlation and corresponding p-value of the features selected for 

reading engagements and comprehensions via forward step-wise feature selection 

method from all features bundle, where *: p-value <0.05; **: p-value <0.01; ***: p-

value <0.001. 

In Kinematic source, the features related to vertical scrolling movement and 

scrolling pressures were the most influential ones in the kinematic source. When a reader 

scrolls during reading, the vertical direction movements are more obvious than horizontal 

direction. As the reader focuses or engages with reading, the tightly loaded muscles of the 

readers’ arm and fingers cause the increase of MSD model damping ratio. The damping 

frequency increases when the muscles stretched during focusing and decreases when the 

muscle thickened during engaging. When the reader has high engagement, the finger 

pressure increases with low variance. 

Features Concentration Confidence Interestingness Comprehension 

TF (3) 1.00(0.11) 1.07(0.33) 1.46(0.09) 0.86(0.17) 

SF (16) 0.96(0.32) 1.20(0.29) 1.42(0.27) 0.92(0.21) 

GF (3) 1.03(0.05) 1.22(0.13) 1.47(0.07) 0.91(0.07) 
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TF+SF 0.92(0.40) 1.07(0.47) 1.38(0.34) 0.87(0.32) 

TF+GF 1.00(0.14) 1.04(0.39) 1.44(0.14) 0.86(0.20) 

TF+SF+GF 0.89(0.46) 1.04(0.51) 1.37(0.38) 0.84(0.39) 

Table 8. The root mean square error and the corresponding R2 value when linearly 

modeling reading concentration, confidence, interestingness and comprehension via 

tradition features (TF), scrolling features (SF) and gaze features (GF). 

Therefore we updated the three sets of selected features to better predict users’ 

comprehension and emotions: 1) In kinematic source, MSD related features were reduced 

from 5 dimensions to only vertical scrolling and pressure dimensions; and 2) In gaze 

source, only PR, MADLL and MADLD were included. As shown in Table 8, we found 

that the combination of three sets worked the best for predicting reading emotion and 

comprehension. Scrolling features, among three single sets, worked the best. 

To validate the model with selected features, we used 10-fold cross validation 

method to observe the correlation change. After 100 times iteration, the result in Table 9 

proved that the understand of reading comprehension and emotions can be improved by 

taking pattern-based gaze features and kinematic features into consideration. 

Features Concentration Confidence Interestingness Comprehension 

TF (3) 0.26 0.50 0.25 0.30 

SF (16) 0.22 0.21 0.21 0.11 

GF (3) 0.12 0.29 0.15 0.18 
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TF+SF 0.27 0.38 0.26 0.20 

TF+GF 0.23 0.55 0.19 0.31 

TF+SF+GF 0.36 0.47 0.28 0.26 

Table 9. The correlation coefficient on 10-fold cross validation via linearly modeling 

reading concentration, confidence, interestingness and comprehension via tradition 

features (TF), scrolling features (SF) and gaze features (GF). 

3.5 Discussions 
 

When designing Lepton, our major goal is to achieve scalable understanding of 

mobile reading activities. Such a goal has at least two implications in design: 1) we 

choose support rather than change existing reading behaviors among mobile users. For 

example, we assume that users will read an article in portrait mode; 2) We choose not to 

include additional sensors (e.g. gaze trackers, and EEG headbands) or hardware 

modifications to existing smartphones. Such changes will prevent us from deploying 

Lepton in large scale; 3) We choose to complete all the sensing and inference algorithms 

on device. Otherwise intermittent Internet connections may break Lepton. Even so, 

turning on the front camera during reading may still raise concerns from privacy-sensitive 

users.  

3.5.1	Periodic	Saccade	Tracking	
 

There are two advantages for the periodic saccade tracking channel in Lepton. 

First, it achieves a good balance in both accuracy and robustness when compared with 
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alternative approaches such as dwell time and camera-based gaze fixation tracking; 

Second, this periodic saccade tracking channel is calibration free. It relies on the periodic 

changes of lateral gaze movement rather than absolute locations of gaze fixations. 

Essentially speaking, our approach replaces word-level fixation tracking to line-level 

periodic saccade tracking. Robust line-level reading process tracking can help us to have 

a deeper understanding of mobile reading activities in large scale.  

The error rate of our reproduced SwitchBack algorithm was higher than that in the 

original literature [55] (mean absolute percentage error increased from 3.9% to 20%). We 

suspect the difference was caused by two reasons: First, Lepton runs in portrait mode 

rather than the landscape mode of SwitchBack [55]. The lateral gaze movement distance 

in landscape mode is at least 1.5 times longer than the distance in portrait mode. As such, 

a global threshold in SwitchBack [55] could not detect the line break accurately. The 

landscape mode also leads to fewer number of lines per screen, hence reducing the space 

of possible line numbers; Second, SwitchBack highlights the next line to read if a reader 

switches visual attention. As such, SwitchBack won’t be able to generate a line number 

larger than the total number of lines. Meanwhile, Lepton allows rereading and a user can 

read more lines per screen than the number of lines displayed.  

The Y-only action detection also had a much lower accuracy when compared with 

X-line-counting action detection in our study. After taking a closer look at the failure 

cases together with experimental videos recorded, we noticed that most of the failures 

were triggered by large body movements. We noticed that posture adjustments in reading 

have a much stronger impact on gaze estimations in the y-axis than the x-axis. We 
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suspect accelerometer signals may give us hints when a user is adjusting body posture in 

reading. Such information can help us improve Y-only action detection in the future.  

3.5.2	Modality	Comparison	
 

As shown in section 3.4.3, the combination of the periodic saccade channel and 

the kinematic channel in Lepton can significantly improve the prediction accuracy of 

comprehension and engagement when compared with mainstream signals such as dwell 

time. According to Table 7, periodic saccade features worked better in predicting reading 

confidence, while scrolling signals alone worked better in predicting reading 

comprehension, concentration, and engagement. One possible explanation could be - 

confident users have smooth paces in reading, i.e., all lines are read at a steady speed, 

except for the short lines. A theoretic analysis on it is lack in this research and could be 

explored in the further.  

The periodic saccade channel and the kinematic channel can complement each 

other in signal frequency and usage environments. The periodic saccade channel can give 

us continual observations on line-by-line reading processes. Meanwhile there are fewer 

scrolling operations per page. For example, in task 2, there were 4 to 78 scrolls per article 

(µ=18.87, σ=13.48), accounting for around one fourth of the total reading time 

(µ=23.58%, σ=0.18). In comparison, there were around 24 periodic saccade patterns per 

page. There are also advantages in the kinematic channel. The kinematic channel in 

Lepton is not sensitive to posture changes and illumination changes, while the periodic 

saccade channel is sensitive to major posture changes and will not work in dark 

environments.  
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3.5 Limitations and Future Work 
 

We have limitations in this research and we plan to explore the following 

directions in the near future. First, Lepton primarily focuses on understanding line-level 

reading progress and page-level comprehension and engagement, can we use Lepton, 

together with supplemental information such as application logs, to understand high-level 

reading strategies on mobile devices? For example, how could a user search, compile, 

and read a set of articles to understand a controversial topic, such as “mountaintop coal 

mining removal”; Second, we plan to explore interactive technologies, such as 

personalized recommendation, smart highlighting, or in-situ quizzes when low 

engagement is detected; Third, we are interested in exploring privacy-preserving 

techniques to minimize users’ concerns on camera-based gaze tracking during reading; 

Fourth, we are interested in exploring supplemental sensing channels, such as motion and 

location, in mobile reading. For example, Bronzaft and McCarthy [9] discovered that the 

environmental noises had a significant impact on comprehension. We believe that 

understanding users’ mobile context will be important towards facilitation their reading 

experiences as well. Last, we evaluated periodic lateral pattern tracking as well as actions 

detection on flipping page design and applied it in scrolling based page design. As 

claimed in previous sections, flipping page design was chosen to test the validity of 

horizontal and vertical gaze signals, which helped avoid possible confounding changes of 

vertical gaze signals caused by the viewport changes during scrolling. However, the 

validity of inheritating flipping-page-based gaze features for analyzing scrolling-page-

based reading decrease the explanation power of our result. 
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3.6 Conclusion 
 

We presented Lepton, a dual-channel mobile reading system and algorithms, to 

understand readers’ comprehension and emotions during mobile reading. Lepton tracks 

the periodic lateral patterns of readers’ eye gaze in the visual tracking channel and 

models readers’ scrolling behavior in the kinematic channel. Lepton leverages signals 

from these two channels to infer readers’ comprehension and emotions during reading. 

We found Lepton was able to 1) detect readers’ periodic lateral pattern with 0.83 

correlation on line detection and 0.73 (reread) and 0.88 (skip) AUC sizes on condition 

detection; 2) predict users’ comprehension (318.18% increment in R-square), focus 

(54.55%), confidence (322.22%), and engagement (129.41%) more accurately compared 

to using traditional features. 
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4.0 STRATEGICREADING: MEASURING STRATEGIC 

READING ON SMARTPHONE AUTOMATICALLY 

 

Our previous studies have shown the validity of gaze- and touch- tracking 

techniques on unmodified smartphones to help us better understand comprehension and 

emotions during single page text readings. In this chapter, I leverage such techniques to 

understand online reading strategies and performance, and the difficulties of negotiating 

and learning from complex digital resources.  

4.1 Introduction 
 

The pervasive acceptance, mobile convenience and powerful functionality of 

smartphones makes them an alternative choice to reading devices that replace offline 

papers and PCs for many users, especially adolescents and college students [89]. The 

smartphone is also becoming an influential platform for educational purposes, offering 

diverse domains of reading and learning assistance such as providing course work 

reading tasks [29] and offering self-learning reading materials [30][80].  

To successfully perform the complicated online smartphone reading tasks, users' 

skill set for processing a single page of text is insufficient. For example, in such tasks, it 

is important before comprehending a text to first understand how to locate it and how to 

validate if it is worth reading. Therefore, understanding how users strategically perform 

in such online reading tasks and having a portable and intelligent way to measure their 

performance are important for both research and practical purposes [3][23][5][17].  
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A widely accepted model of online reading strategic processes has four 

components: information location, meaning making, source evaluation and self-

monitoring. The quantity and quality of each model component affect the reading 

performance. Existing literacy studies [19][17] mainly rely on readers’ verbal reports 

during think-aloud reading to interpret and measure the model of the strategic processes. 

However, using verbal reports to understand reading strategies has at least three major 

challenges. First, think-aloud reading might affect readers’ strategic processing and 

consequently might negatively impact researchers’ abilities to accurately observe and 

interpret users’ cognitive engagement [17]. Second, the accuracy of readers’ verbal 

reports on cognitive tasks are considerably varied, depending on individual and 

contextual factors [28]. For example, some readers lack accurate expression of their 

thoughts. Third, verbal reports are time-consuming and labor-intensive to analyze, 

evaluate, and interpret. These challenges prevent an efficiently valid and large-scale data-

informed understanding of strategies employed by readers. 

 
To automatically extract users' strategic processes of online reading tasks without 

verbal reports and users' extra efforts, we took advantage of the mobility and 

functionality of smartphones: sensing users' unnoticeable reading behaviors including 

users' gaze movements, scrolling actions and logging paths during reading. The gaze 

channel captures the perceptual activities in reading. The scrolling channel represents the 

kinematic activities and the logging information records the sessional activities of users. 

We posit that these three channels are complementary and could help us to get a richer 

and deeper understanding towards users’ reading strategies. We created a novel system 

called StrategicReading--a multimodal interface, which automates the detection and 
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evaluation of reading strategies to predict online reading performance on unmodified 

smartphones. First, StrategicReading tracks the periodic lateral patterns of users’ gaze 

movements via the front camera. Second, it infers their muscle stiffness via the Mass-

Spring-Damper (MSD) based kinematic model and determines scrolling types during text 

scrolling. Last, it monitors the evolution of cross-page behavior by logging the searching 

and clicking history. Overall, StrategicReading combines the gaze channel, scrolling 

channel, and logging channel to improve the detection, evaluation, and understanding of 

reading strategies and reading performance. 

To the best of our knowledge, the novelty of this project includes: 

1) This study is the first attempt to understand authentic online reading strategies 

used on smartphones, 

2) This study is the first attempt to automate the detection of complex reading 

strategies via multi-channel sensing techniques.  

4.2 Related Work 
 

A reader’s reading comprehension strategies are developmental in nature, and 

they are learned and practiced until fluency of strategy use is achieved [1]. Research on 

reading strategies has been developed for more than 40 years in order to better understand 

the intricate workings of the mind [64]. Reading strategies can be formulated into 

systematic types of processes, including prior knowledge use, inferential reasoning, self-

regulation, and affective variables related to efficacy and motivation [19].  

Research on online reading strategy has started in the early 90s, where an 

emerging group of research works have examined the differences of reading strategies 

between print text reading and online text reading [50][72][68][9]. Coiro provided a good 
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summary of such differences [19], including the differences caused by visualization of 

contents, quality of contents, and supported functions of online reading, etc. Currently, 

one of the well-accepted conceptual frameworks of online reading strategy includes four 

core online reading processes including (a) information location, (b) meaning making, (c) 

source evaluation, and (d) self-monitoring [1][17].  

Information location involves generating web-search words, strategically 

surveying the search-results pages, and selecting useful hyperlinks from numerous 

conjoined ones. This allows opportunities for readers to learn from texts. Source 

evaluation helps readers to locate reliable and relevant information. Since online 

information varies in accuracy, reliability and usefulness, readers need to be skeptical, 

tentative, and critical in examining information sources and detecting consistencies or 

conflicts among the sources. Meaning making is a process of constructing meaning from 

the located information. The meaning making process allows readers to identify 

important ideas, build specific intertextual linkage, and elaborate a cross-textual 

understanding. The last process is self-monitoring, according to which a reader knows 

and adjusts her own thinking at a metacognitive level. Readers’ self-monitoring guide 

how they select, apply, and evaluate strategic actions in response to texts, tasks, and 

situations of reading.  

To examine reading strategies, a variety of methods have been used, including 

protocol analysis of verbal reports, theoretical task analyses, eye tracking, protocol logs, 

observations of readers, and self-reports. Afflerbach provided a detailed review of these 

methods [1], among which, verbal protocol analysis, the examination of spoken records 

of readers’ thinking and behavior, is the most frequently picked method to understand 
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online reading strategies [19][5][17][23][20]. The popularity of verbal protocol analysis 

derives from its possibility of getting inside the minds [69], capability of uncovering 

potential cognitive processes [79], and the maturity of its long developed methodology 

[26]. 

However, using verbal reports to understand reading strategy has at least three 

major challenges. First, think-aloud reading might cause negative impact on readers’ 

cognitive engagement and affect their strategic processes [17]. Second, accuracies of 

readers’ verbal reporting on cognitive tasks are considerably various [28]. The 

consistency of doing and saying and the ability of readers’ verbal expressions are not 

always guaranteed. Third, verbal reports are time and labor consuming to generate and 

grade. This limitation prevents the large-scale understanding of reading strategies.  

With the development of technologies, leveraging sensors to track readers’ 

behavior and thoughts is a potential approach to solving such challenges. For example, 

Rayner gave a clear and detailed summary regarding how eye movements relate to 

information processing during reading [71]. Researchers also attempted to interpret 

cognitive processes in reading [47], comprehension strategies [71][7][56], reading 

proficiency [16], and reading engagement via gaze tracking. However, the portability and 

quantitative nature of measurement limits the ability to reveal higher-level strategic 

processes via eye tracking, especially for the task of reading, which involves locating and 

comprehending multiple pages on a smartphone.  

To increase the portability, StrategicReading tracks the gaze movement via the 

front camera of a smartphone.  The required accuracy level can be decreased by tracking 

the periodic return sweep of gaze to estimate the reading position and to predict reading 
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behavior. StrategicReading also infers the users’ muscle stiffness during typing, clicking 

and text scrolling and monitors the reading log data during online reading tasks in order 

to undertake a fine-grained analysis of reading strategies. Overall, StrategicReading 

combines (a) visual tracking channel, (b) kinematic channel, and (c) log channel to 

improve the detection and understanding of reading strategies.  

4.3 Design 
 

To automatically extract users' strategic processes of online reading tasks on a 

smartphone without verbal reports and users' extra efforts, we designed the 

StrategicReading system which leveraged users' gaze movements, scrolling actions and 

logging paths during reading.  

4.3.1 Gaze Movements 

A strong relationship has been discovered between eye movements and cognitive 

processes with the help of eye tracking technologies. Most of the traditional gaze features 

are derived from micro and concise eye movements, such as saccades and fixations, 

which require dedicated eye trackers to accurately observe. 

To prevent disturbing users' reading with extra devices such as the mounted eye 

tracker, we chose to use the front-facing camera of the smartphone to track users' gazes. 

Such a low-cost and low-resolution eye tracking method cannot accurately track the exact 

fixations', saccades' locations, durations and lengths. Therefore, the traditional gaze 

features (e.g. the statistics of fixations and saccades) are no longer applied. Our previous 

project Lepton [35] used periodic pattern based eye gaze features to predict users' 

comprehension and engagement in mobile reading. The Lepton project proved the 
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accuracy of tracking the periodic patterns of saccades and proved the feasibility of using 

such features to predict reading comprehensions. We adopted the features related to 

period lateral gaze patterns to investigate the users' reading strategies and reading 

performance.  

Feature Definition 
PR (f1) Predicted periodic lateral patterns divided by number of lines in reading material 
STDX (f2) Standard deviation of x-axis of gazes 
STDY (f3) Standard deviation of y-axis of gazes 
rMSLL (f4) The square root of the mean squared adjacent predicted line lengths' difference 
rMSLD (f5) The square root of the mean squared adjacent predicted line durations' difference 
M1ADLL (f6) Mean of absolute deviation of predicted line length 
M1ADLD (f7) Mean of absolute deviation of predicted line durations 
M1ADLY (f8) Mean of absolute deviation of line mean Y-axis of gazes 
MADLL (f9) Median of absolute deviation of predicted line lengths 
MADLD (f10) Median of absolute deviation of predicted line durations 
MADLY (f11) Median of absolute deviation of line mean Y-axis of gazes 
STDLL (f12) Standard deviation of predicted line lengths 
STDLD (f13) Standard deviation of predicted line durations 
STDLY (f14) Standard deviation of line mean Y-axis of gazes 

Table 10. The periodic saccade pattern based eye gaze features. 

4.3.2 Scrolling Actions 

In addition to gaze behaviors, the touch-screen of the smartphone offers another 

available behavior channel--the scroll channel. Our previous project, Lepton, which 

proved that the Mass-Spring-Damper (MSD) modeled scrolling behaviors, can reliably 

predict users' comprehension and reading engagement [35]. Therefore, we adopted its 

interpretation method: considering users' arm and finger(s) as a mass (𝑚) attached to 

users' muscles represented as a spring component with spring constant 𝑘 and a damper 

with damping coefficient 𝑐. When the users' are scrolling, the users' scrolling forces are 

determined by their muscle stiffness: The mass oscillates at a rate related to the tension of 

the spring with the damping frequency 𝜔, where 𝜔 ∝ 𝑘. And the oscillation decays 
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exponentially based on the friction of the damper with the damping ratio 𝜁, where 𝜁 ∝ !
!
. 

Our MSD model uses the forces of arm and finger(s) as the input to predict the changes 

of scrolling dimensions, such as scrolling movement on the horizontal direction. To 

observe the scrolling characters 𝜔 and 𝜁, we used linear predictive coding (LPC) to invert 

MSD model's input (muscle stiffness) and output (scrolling characters).  

LPC linearly combines the observed signals to predict the future signals: 

x! = a!x!!!
!
!!! , where x! is the predicted signal value, x!!! is a previously observed 

value at the 𝑖-th order, 𝑎!  is the predictor coefficient at 𝑖, and 𝑝 is the order of the 

predictors. In this process, we used the observed xn and x!!! to calculate the coefficient 

a!. The calculated coefficient a reveals the MSD model damping frequency and damping 

ratio ω = ℑ(r) , ζ = ℜ(!)
!

, where r is the complex root of 𝑎. 

For each scroll, we extracted 5 dimensions of scrolling and each with 2 MSD 

features (ω and ζ). The 5 dimensions included the scrolling movements on horizontal (X) 

and vertical (Y) axes, scrolling touch-pressure (P), touch-size (S) and touch orientation 

ratio (R). 

When applying scrolling features, we aggregated the features of each individual 

scroll into a feature vector using descriptive statistics, such as mean and max. 

4.3.3 Logging Paths 

For the logging path channel, we used two straightforward features. We used the 

number of pages visited by a user as well as the number of search terms used by a user.  
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4.4 Experiment 
 

In this project, our goal was to answer the following three questions:  

G1: Can we automatically extract users' behavior information on a smartphone to 

predict their reading strategies?  

G2: Can we then accurately predict users' phone-based online reading 

performance?  

G3: How is users' reading performance affected by other reading behavior 

information? 

 
To investigate the answers for these questions, we conducted a study that adopted 

the design of the online question-generation reading tasks in previous research [17]. In 

the question-generation reading task, users were asked to generate a critical question on a 

controversial topic based on the information and knowledge gained from the online 

sources. In this project, we also adopted the controversial topic "mountaintop removal 

coal mining" [17], because this topic had been proven to be significant when evaluating 

desktop-based online reading strategic processes for adolescent students. 

4.4.1 Participants and Apparatus 

Forty freshmen and sophomores (11 males) ranging from 18 to 25 years old 

(=18.68, =1.23) were recruited from a local college. Their majors included computer 

science, engineering, biology, political science, psychology, business, linguistics, nursing 

and pharmacy. The limitation to students at these specific academic levels ensured a 

plentiful source of participants and achieved maximum possible significance for the 

chosen topic. 
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Among 40 participants, 39 participants preferred reading in the portrait mode of 

the smartphone. Therefore, our study was conducted on the portrait model. One 

participant had dyslexia. Among all 40 participants, 37 participants' data were valid. 

To avoid the users' reading performance changes due to the capabilities of their 

own phone, our study used a Google Nexus 5X lab phone for all participants to perform 

this task. Our lab phone had StrategicReading, which was a system utilized the Google 

search engine. The users could search and view all the sources from the Internet. 

4.4.2 Experiment Procedure 

The whole study lasted around 2 hours for each participant in two separate days a 

week apart. The first day took around 0.5 hour and the second day around 1.5 hours. 

The study consisted of 6 sessions: 

Session 1 (Day 1): Participants were asked to respond to a researcher-developed 

background knowledge assessment related to the controversial topic. The rest of the study 

was continued at least one week after this session to minimize the carry-over influence of 

the assessment material on the online reading task.  

Session 2 (Day 2): Participants were then asked to finish a training session, in 

which participants familiarized themselves with our system and question generation task. 

The training session also aimed to help participants understand the characteristics of 

high-quality questions through examples and discussions.  

Session 3 (Day 2): Participants then conducted the 20-minute online reading task 

on the StrategicReading app in a Nexus 5X smartphone connected to the Internet. 

Participants were encouraged to use up the entire 20 min for online reading. During this 
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session, the phone screen was recorded simultaneously and participants were not allowed 

to write notes.  

Session 4 (Day 2): After the completion of the online reading task, participants 

repeated the knowledge assessment in session 1. 

Session 5 (Day 2): After finishing the post-reading knowledge measurement, 

participants then generated and wrote up a critical question regarding the topic. 

Participants were not allowed to look back to the phone during this session. 

Session 6 (Day 2): Finally, participants reviewed the in-session recorded videos 

and gave retrospective verbal reports of their moment-to-moment thinking processes. 

4.4.3 Metrics Design 

Our study was designed to understand and prove the possibility of automating the 

prediction of reading performance and reading strategic processes via users' behavior 

information.  

 

 

Figure 22. Study Overview 

4.4.3.1	Reading	Performances	
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Two types of reading performance were targeted in this project.  

The first type was the knowledge gain, which was the growth of users' knowledge 

and understanding of the topic after performing this online reading task. To collect users' 

knowledge gain, we implemented knowledge assessment sessions before and after users' 

online reading task (study session 1 and session 4). We adopted the same knowledge 

assessment questionnaire of the topic "mountaintop removal coal mining" from previous 

research [17]. The questionnaire had 10 multiple-choice questions, 10 true-or-false 

questions and 5 short-answer questions. These questions were targeting general 

information, in-depth knowledge, and critical thinking on the topic. The information gain 

was the improvement of scores from prior to post knowledge assessments. 

The second type of reading performance was the quality of the user's generated 

question. Following the grading rubrics in previous research [17], the generated critical 

question was graded from three perspectives: validity, relevance and significance. The 

grading of validity was based on the soundness of the supported details users' provided in 

the generated questions to support the topic. Relevance was graded by the closeness 

between the generated questions and the topic. Significance addressed how well such 

generated critical question would facilitate critical and multi-perspective thinking. Each 

of the three perspectives had four quality levels when grading: lacking-0, partial-1, 

adequate-2 and complete-3. The score range of a generated critical question was from 0 

to 9. 

4.4.3.2	Reading	Strategic	Processes	
 

The online reading task required users to process, filter, comprehend and digest 

multiple sources of contents. The reading strategies for complex online reading were 
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summarized into four categories: information location, meaning making, source 

evaluation and self-monitoring [17]. These strategies were investigated and proved by 

desktop online reading tasks [17]. Given the similarity of desktop and smartphone online 

reading, our project inherited such strategic modeling for our project.  

Information Location 

Information location is the core strategy for users to navigate to the information. 

During this process, users apply meaningful search terms to conduct the information 

searches. Among the search results, users select relevant links and reject irrelevant ones.  

Meaning Making 

Meaning making is the information absorbing process. Given the contents, users 

understand important information within each link or page, as well as building 

intertextual relationships among the absorbed information and elaborating a meta-level 

understanding of the overall concept.  

Source Evaluation 

Source evaluation is the strategic process that helps users to filter out the 

unrelated or unreliable sources in order to increase the efficiency of online reading. 

During the source evaluation process, users determine the reliability of a source and the 

source's significance to investigate the issue. In addition, users also determine the 

relevant sources and they progress and link the sources to their reading needs.  

Self-Monitoring 

Self-monitoring is a strategic process that helps users to adjust and refine their 

own understanding of the concept by interacting with the online contents. This process 

includes the gradual changes within each of the other three strategic processes. 
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According to previous research, the self-monitoring process is at a metacognitive 

level and hard to materialize, and can be primarily represented by the other three strategic 

processes. Therefore, in this project, we only include the first three. Table 11 represents 

the strategies that we would like to automatically predict. 

 

Information 
Location 

s1 Search terms (Applying search terms & conducting information searches) 
s2 Links (Selecting relevant links & rejecting irrelevant ones) 

Meaning 
Making 

s3 Within textual comprehension (understanding important information) 

s4 
Cross textual comprehension (building intertextual relationships and 
elaborating a metalevel understanding) 

Source 
Evaluation 

s5 Topic relevance (determining relevant sources and linking it to topic) 

s6 
Source reliability (Author & discerning reliable sources & assessing each 
source's significance to read) 

Table 11. The reading strategic processes 

The reading strategies were to be predicted via our three channel features. 

Therefore, it was important to have the ground truth of their scores to check the 

performance of our predictions. We counted the numbers of the appearances of a user's 

strategic reading processes (s1-s6) from his/her retrospective verbal report as the labels of 

the ground truth. Domain experts authorized the quality of the grading.  

4.5 Results 
 

Following our three goals, we analyzed the results in four sections: 1) Before 

other analyses, we first looked into the rationality of adopting strategic reading processes 

from desktops to smartphones, we then 2) auto-extracted reading strategies, 3) predicted 

reading performance and 4) investigated other patterns.  
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4.5.1 Rationality of Adopting Reading Strategic Processes from Desktop to 

Smartphone 

Although the reading strategic processes that we used in this project were proven 

to be valid on a desktop online reading environment [17], when adapting from the 

desktop to the smartphone, the validity of the strategic processes was unexplored. Before 

we used the strategic processes in the result analysis, we first proved their validity on the 

smartphone online reading environment. 

 
Figure 23. Path analysis of the three strategies (information location, meaning 

making, and source evaluation) and the critical questioning quality: The correlation 

coefficient between the frequencies of strategies and the quality of critical questions 

(p<0.001 ***, p<0.01 **, p<0.05 *). 

A path analysis, similar to a previous project [17], was generated using the 

correlations among these strategies' appearance frequencies as well as the correlations 

between strategic processes and the quality of the generated questions (Figure 23). 
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Significant correlations were found among strategic processes and between 

strategic processes and the quality of the generated questions. Such results were 

consistent with the analysis of the desktop environment. These results proved that the 

strategies could reliably predict reading performance during online reading tasks on smart 

phones.  

4.5.2 Auto-extract Reading Strategies 

We processed and analyzed the three types of readers' behavior data (gaze, 

scrolling and logging data) and used them to predict users' reading strategies. 

4.5.2.1	Gaze	Channel	
 

First, we observed the linear correlation coefficients between gaze features and 

the appearance frequencies of strategic reading processes across the participants (Table 

12).  

Among all the gaze features, the predicted number of lines (PR) had positive 

correlation with the within-textual comprehension of the meaning making process (s3), 

where the correlation coefficient was 0.59 (p<0.001). In addition, features related to line 

durations differences had a negative correlation with within-textual comprehension, for 

example rMSLD had the correlation coefficient -0.54 (p<0.001), M1ADLD with 

correlation coefficient -0.52 (p<0.01) and STDLY with correlation coefficient -0.54 

(p<0.001). 

 

 

 



 87 

 

		
Information 

Location Meaning Making Source 
Evaluation 

s1 s2 s3 s4 s5 s6 

Gaze 
Features 

PR 0.18 0.15 0.59*** 0.3 0.37* 0.07 
STDY 0.01 0.31 -0.34* -0.24 -0.03 -0.02 

rMSLD -0.21 -0.1 -0.54*** -0.3 -0.35* -0.01 
M1ADLD -0.23 -0.09 -0.52** -0.29 -0.35* 0.01 
M1ADLY 0 0.27 -0.35* -0.23 -0.03 -0.05 

MADLL -0.13 -0.15 0.35* 0.18 0.28 0.01 
MADLD -0.17 0.02 -0.38* -0.23 -0.28 0.06 
STDLD -0.21 -0.1 -0.54*** -0.3 -0.35* -0.01 
STDLY -0.01 0.28 -0.39* -0.25 -0.05 -0.04 

Scrolling 
Features 

meanWX -0.05 0.16 0.09 0.08 0.33* -0.01 
meanCY 0.09 -0.16 -0.34* -0.11 0.04 -0.17 
meanWP -0.2 -0.05 -0.43** -0.25 -0.11 -0.25 
meanWS 0.06 0.2 -0.42** 0.05 0.1 0.12 
meanWR -0.01 0.09 -0.48** -0.14 0.03 -0.1 

stdWX -0.1 -0.14 -0.11 -0.34* -0.14 -0.07 
stdWS 0.14 0.16 0.39* -0.04 -0.03 0.09 
stdCS 0.04 -0.17 0.47** -0.03 -0.13 0.01 

varWX -0.1 -0.13 -0.11 -0.34* -0.14 -0.07 
varWS 0.13 0.17 0.39* -0.04 -0.03 0.09 
varCS 0.03 -0.18 0.47** -0.03 -0.13 0.01 

medianWP -0.12 -0.06 -0.51** -0.18 -0.11 -0.13 
medianWS 0.03 0.24 -0.33* 0.03 0.15 0.09 
medianWR -0.01 0.09 -0.47** -0.16 0.05 -0.14 

rangeWR -0.48** -0.08 -0.25 -0.15 -0.26 -0.06 
# scrolls 0.22 0.33* -0.19 0.24 0.08 0.39* 

Logging 
Features 

# domains visited 0.54*** 0.43** 0.01 0.23 0 0.50** 
# search terms used 0.79*** 0.21 0.04 0.37* 0.06 0.15 

Table 12. Correlation coefficients between three channel behavior features and 

reading strategies' frequencies (p<0.001 ***, p<0.01 **, p<0.05 *). Features  without 

significant correlation with strategic processes were not listed in this table. 

4.5.2.2	Scrolling	Channel	
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The linear correlations between scrolling features and strategic reading processes 

were also explored. The representative scrolling features, which had significant 

correlations with some strategic processes, were shown in Table 12.  

The scrolling pressures and touch-size could be used to predict users' within-

textual comprehension of meaning making (s3): the more a user used within-textual 

comprehension strategy, the more relaxed the user was when compared with performing 

the other strategies because we observed decreased muscle damping frequencies of 

pressure (WP), touch-size (WS) and touch-ratio (WR) caused by muscle relaxation. For 

example the mean and median of the damping frequency of pressure (WP) had the 

correlation coefficients -0.43 (p<0.01) and -0.51 (p<0.01). The results were presented in 

Table 12. 

Besides the within-textual comprehension strategy, some strategic processes were 

also significantly correlated with scrolling feature. Stable scrolling muscle frequencies on 

horizontal directions indicated more use of cross-textual comprehension (s4). The 

standard deviation and variance of WX both had the correlation coefficient -0.34 

(p<0.05) with cross-textual comprehension. We also observed that the increased number 

of scrollings led to more use linking selection (s2) and source reliability checking (s6), 

where the correlation coefficients were 0.33 (p<0.05) and 0.39 (p<0.05). 

4.5.2.3	Logging	Channel	
 

For the features in the logging channel, we observed that the information location 

strategic processes (search terms used strategic process s1 and the linking selection s2) 

could be highly significantly indicated by the logging features (Table 12). The number of 

domain visited by a user had 0.54 (p<0.001) and 0.43 (p<0.01) correlations with s1 and 
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s2. And the number of search terms used accurately revealed s1 with correlation 0.79 

(p<0.001).    

The user's cross-textual comprehension (s4) was also reflected by using more 

search terms. And users' source reliability checking (s6) was positively related to the 

number of domains the users visited.  

4.5.2.4	Overall	Comparison	
 

With the selected features in Table 12, we evaluated the root mean square error 

and R2 value of the linear model (Table 13), and found that the combination of three sets 

had the largest R2 value for all six strategies. 

  s1 s2 s3 s4 s5 s6 
GF 2.3(0.23) 1.85(0.41) 4.58(0.64) 3.9(0.17) 2.17(0.19) 3.18(0.15) 

SF 2.53(0.32) 1.98(0.5) 6.42(0.48) 3.48(0.51) 2.38(0.28) 2.77(0.52) 

LF 1.44(0.62) 1.93(0.19) 6.79(0) 3.54(0.14) 2.15(0.01) 2.58(0.29) 

GF+SF 2.36(0.58) 2.03(0.63) 3.69(0.88) 3.41(0.67) 2.27(0.54) 2.83(0.65) 

GF+LF 1.28(0.78) 1.87(0.44) 4.37(0.7) 3.51(0.38) 2.25(0.2) 2.83(0.38) 

SF+LF 1.54(0.77) 1.98(0.55) 6.58(0.5) 3.11(0.65) 2.27(0.41) 2.72(0.58) 

GF+SF+LF 1.2(0.91) 2.18(0.64) 3.79(0.89) 2.5(0.85) 2.21(0.63) 2.95(0.67) 

Table 13. The root mean square errors (the smaller the better) and the 

corresponding R2 value (the larger the better) for predicting reading strategies via 

gaze (GF), scroll (SF) and logging channel features (LF). 

We also evaluated the correlation coefficients in user-independent linear 

regression models via a leave-one-subject-out validation (Table 14) and found that the 

features in gaze and logging channels helped improve the correlation coefficients on 

predicting strategies. 
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  s1 s2 s3 s4 s5 s6 
GF -0.07 0.15 0.92*** 0.89*** 0.89*** 0.87*** 

SF -0.34* -0.12 0.78*** 0.75*** 0.75*** 0.73*** 

LF 0.75*** 0.58*** 0.9*** 0.88*** 0.88*** 0.88*** 
GF+SF -0.05 0.02 0.86*** 0.81*** 0.8*** 0.78*** 

GF+LF 0.73*** 0.55*** 0.92*** 0.9*** 0.9*** 0.88*** 
SF+LF 0.43*** 0.3* 0.77*** 0.75*** 0.75*** 0.74*** 

GF+SF+LF 0.57*** 0.29* 0.85*** 0.84*** 0.82*** 0.79*** 

Table 14. Correlation coefficients by leave-one-subject-out validation on linear 

regression models via different feature channels and different combinations of 

feature channels. 

From all the above results, every strategic process can be predicted via some 

channels of users' behaviors (Table 15).  

Strategic 
Processes 

Channels 
of Features 

s1 S+L 
s2 G+S+L 
s3 G+S 
s4 S+L 
s5 S 
s6 G+S+L 

Table 15. The strategic processes and their corresponding significantly correlated 

channels of features. G-Gaze, S-Scrolling, and L-Logging channel.  

4.5.3 Predict Reading Performance 

The primary reason for understanding users' strategic processes was to better 

predict and improve the users' reading performance. Therefore, whether we could 

accurately predict the users' reading performance was critical and important. As 

mentioned above, we had two important criteria to measure the reading performance: 

information gain (IG) and the quality of the users' generated questions (CQ).  
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In this section, we aimed to compare the predictions qualities of reading 

performance via strategic processes and users' behavior features. 

There were almost 100 features of the three behavior sensing channels. To avoid 

over-fitting, a stepwise feed-forward method was used to select the most significant 

features. For each iteration, the stepwise feed-forward method found the most significant 

feature that achieved the lowest p value in predicting the outcome when combined with 

the existing selected features (if any), and added it into the selections. It continued this 

process until no additional features combining with selected features could achieve 

p<0.05.  

To compare the performance between the strategies and our three channel 

features, we used R-square and root mean square error (RMSE). Lower RMSE is better, 

higher R-square is better. 

		 IG CQ 
CQ-
Relevance CQ-Validity 

CQ-
Significance 

Strategies NaN 0.33 (0.36) 0.33 (0.42) 0.36 (0.30) 0.39 (0.30) 
3ChannelFeatures 0.20 (0.28) 0.29 (0.54) NaN 0.30 (0.56) 0.33 (0.51) 
Table 16. Linear fitting model of the selected features from each feature-group to 

predict reading performances. The results were presented in RMSE(R-square). NaN 

means no significant features found. 

		 Strategies 3ChannelFeatures 
IG / maxWX+; varWS+; rangeCS+ 
CQ S5, S6 meanWS+;varWR+;medianCY-;#domains visited+ 
CQ-Relevance S5, S6 / 
CQ-Validity S4, S6 meanCY+;varWR+;medianCY-;# domains visited+ 
CQ-Significance S5, S6 stdCY+;stdWR+;medianCY-;# domains visited+ 
Table 17. The features of each domain selected via the stepwise selection method in 

predicting reading performance. 
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The selected features that contributed to predicting reading performances were 

listed in Table 17. Among all the behaviour features from the three channels, we found 

that the scrolling features (maxWX, varWS and rangeCS) were good at predicting 

information gain. The scrolling features (meanWS, varWR, medianCY) and logging 

features (number of domains visited) were reliable for predicting the quality of the 

critical questions. 

From our results, the three channels' features were performing better than 

strategic processes in predicting user information gain and the quality of the critical 

questions. The behavior features were able to assist strategic reading processes in 

understanding users' reading performance.  

In addition to goal 1 and 2, we also explored other potential patterns. 

4.5.4 Potential patterns 

4.5.4.1	Searching	vs.	Reading	
 

During the online reading tasks, there were two major behaviours the users 

performed: searching and reading. We investigated how the users' allocated their time 

and energies in searching and reading, and how such allocation affected their reading 

performance.  

We used the ratio of pages visited for searching purposes to pages visited for 

reading purposes as the indicator for energy allocation. The time allocation was the 

duration ratios between them. 

By observing the correlation coefficients between users' resource allocation and 

the strategic processes and the reading performance (Table 18), we found that the 
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appliance of search terms (s1) linearly revealed such distribution. A user's energy 

allocation on searching was significantly reflected by the search terms the user used 

(correlation coefficient r=0.37, p<0.05), and his/her time spent on searching was highly 

significantly reflected by the application of search terms (correlation coefficient r=0.65, 

p<0.001). 

Other than the linear correlation, we also tried the Logistic regression and SVM 

classification to explore the non-linear effects. A very similar result had been observed 

for logistic regression: there were significant relationships only between the 

search/reading distribution and the search term usage (s1). For SVM classification, we 

used a 10-fold cross validation with 50 iterations to test the results (37 users, 33 for 

training, 4 for testing). And we observed no noticeable results.  

		 s1 s2 s3 s4 s5 s6 IG CQ 
search#/read# 0.37* 0.02 -0.09 0.1 -0.08 -0.11 -0.01 -0.07 

searchDuration/readDuration 0.65*** 0.29 -0.08 0.23 0.01 0.07 -0.2 0.14 
Table 18. The correlation coefficients of search read ratio vs. strategies and reading 

performance. 

4.5.4.2	Domain	Reliability	Levels	
 

The source domain of the contents directly determined the quality and reliability 

of the contents. To better understand the source evaluation strategic processes (s5 and 

s6), we separated users' visited domains into 5 different reliability levels: .edu, .gov, .org, 

.com, and others.  

We used the proportion of pages visited of each level to predict the users' strategic 

processes and their reading outcomes. We grouped .edu and .gov into a reliable group, 

and .org, .com and others into an unreliable group. The following table (Table 19) shows 
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the correlation coefficient of different reliability groups versus strategic processes and 

reading performance.  

		 Reliable Sources Unreliable Sources 
s1 -0.23 -0.07 
s2 0.26 -0.18 
s3 -0.05 -0.23 
s4 -0.13 0 
s5 -0.07 -0.12 
s6 0.34* 0.09 
IG -0.16 -0.34* 

CQ -0.01 -0.11 
CQ-relevance 0.01 -0.02 

CQ-validity -0.05 -0.27 
CQ-significance 0.01 -0.04 

Table 19. The correlation coefficients of reliability-groups count and duration 

distributions vs. strategies and reading performances. (.edu, .gov and into reliable 

group; .com and others as unreliable group) 

We found that the users who had more source reliability checkings (s6) clicked 

and read more pages from reliable sources. The more people clicked and read on 

unreliable sources, the less information the users gained. We also investigated the 

durations within different reliability levels, and found they were not as informative as the 

visited counting. 

4.5.4.3	Scrolling	Habits	
 

To investigate how users' habits of scrolling affected / were affected by their 

reading abilities, we observed the users' scrolling lengths on different directions as well 

as the time they spent on each scroll. We sought to find some scrolling patterns of "good 

readers".  
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First of all, we extracted the statistical features of the users' scrolling lengths and 

durations. We did a t-test on each scrolling feature regarding the reading performance. 

We found that all features rejected the null hypothesis when predicting users' information 

gain and the quality of the generated critical question. We then observed the linear 

correlation between such features and their reading performances (Table 20). We found 

that the vertical length of a scroll was the most informative channel. 

		 IG CQ CQ-Relevance CQ-Validity CQ-Significance 
mean HorzLength -0.19 0.03 -0.06 0.16 -0.01 
mean VertLength -0.11 0.41* 0.33* 0.45** 0.37* 

mean Length -0.11 0.36* 0.28 0.41* 0.32 
mean Dur 0.05 -0.1 -0.12 -0.05 -0.12 

std Horz Length -0.34* -0.04 -0.09 0.05 -0.07 
std VertLength -0.24 0.27 0.24 0.31 0.22 

std Length -0.28 0.3 0.25 0.34* 0.24 
std Dur 0.02 -0.14 -0.16 -0.11 -0.13 

Table 20. Linear correlation coefficient between scrolling pattern features and 

reading performance. 
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Figure 24. Examples of users’ scrolling lengths Comparison 

Therefore, we investigated into the vertical lengths of scrolls. By separating 

vertical scrolling lengths into line-wise (<10% screen length), section-wise (10%~33% 

screen length) and page-wise (>33% screen length) categories, we observed that the more 

information a user gained and the higher quality of his/her generated critical question, the 

less line-wise scrolls he/she would perform. The more section-wise scrolls a user used, 

the better he/she gained the knowledge. The more page-wise scrolls a user used, the 

better he/she created the critical question (Table 21). 

		 IG CQ CQ-Relevance CQ-Validity CQ-Significance 
Line-wise scrolling -0.1 -0.34* -0.24 -0.33* -0.37* 

Section-wise Scrolling 0.33* -0.31 -0.3 -0.32 -0.24 
Page-wise Scrolling -0.25 0.44** 0.39* 0.44** 0.39* 

Table 21. Correlation coefficient of the proportion ratio of different scrolling types 

and reading performance. 
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4.6 Discussions 
 

4.6.1 Channels Comparison 

We found that the features of the three behavior channels (gaze, scrolling and 

logging) worked differently in predicting users' strategic processes and predicting reading 

performances.  

In predicting users' reading strategic processes, the gaze channel was good at 

predicting information location strategic processes as well as the source reliability 

checking strategic processes. In comparison, users' meaning making strategic processes 

were well captured by the scrolling channel features. The logging channel features were 

helpful in predicting strategic processes except the comprehension within one page. 

The raw features in three channels were too coarse to make a reliable and accurate 

prediction of users' reading performance. For gaze channel, we extracted the gaze 

features from search pages and reading pages separately. We found that, the gaze features 

of searching pages could accurately predict the quality of users' generated questions 

(Table 22). For the scrolling channel, we found that the deeper a user got into the topic, 

the longer scrolls the users would use. For logging channel, we separated users' visited 

pages into different reliability level and found that the more time users spent on 

unreliable sources, the less efficient the users got the information.  

		 Accuracy Precision Recall Kappa 
IG 0.6 0.5 0.4 0.2 

CQ 0.8 0.8 0.9 0.6 
CQ-relevance 0.8 0.8 1 0.7 

CQ-validity 0.6 0.7 0.8 0.4 
CQ-significance 0.8 0.8 1 0.7 
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Table 22. Gaze features in predicting users reading performances (SVM 10-fold, 50 

iterations) 

For strategic processes and performance predicting purpose, each channel had its 

own advantages and they could complement each other.  

4.6.2 Sensing Technique 

From the behavior signal observing perspective, the gaze channel provided a 

continuous observation, whereas, the scrolling channel and logging channel had scattered 

observations. During the 20 minutes reading, users' have 164 to 752 scrolls (=363.14, 

=111.49), accounting for 43.23% of their total reading time. The gaze channel, although 

had 100% coverage of reading time, was very sensitive to users' posture changes and the 

environment illumination changes. This limited the usability of such channel in a 

complex environment. However, scrolling channel and logging channel were stable in 

different environments. 

4.6 Limitations and Future Work 
 

Other than gaze tracking and screen sensing techniques, other signals are explored 

in existing research, such as brainwave [71]. We choose not to include such signals so 

that no additional sensors are required during the online reading task. Without extra 

sensors, we preserved the users’ reading behaviors as they read everyday on smart 

phones. 

We adopted the design of the online question-generation reading tasks in a 

previous research [17]. In the task, users were asked to generate a critical question on a 

controversial topic based on the information and knowledge gained from the online 
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sources. We also adopted the controversial topic "mountaintop removal coal mining" 

[17], as this topic had been proven to be significant when evaluating desktop-based 

online reading strategic processes for adolescent students. We used the retrospective 

verbal reports to interpret and measure the model of the strategic processes. However 

some limitations should be noted when interpreting the results. First, the complicated 

strategies require a general and systematic analysis, while the single topic chosen in this 

project might affect the explanatory power of our analysis. Second, the participants’ 

source (freshmen and sophomore) and population (40 participants) might also affect the 

explanatory power of our analysis. Follow-up studies on topics of different perspectives 

with large scale of participants could assist this work. Third, the accuracy of the grading 

of verbal reports might introduce errors. The verbal report itself might introduce errors 

due to the readers’ expression skills and memory bias. We attempted to minimize the 

grading error by letting experts train the grader and letting experts review the grading 

samples.  

 The StrategicReading system requires turning on the front camera and tracking 

users’ logging histories and gazing and scrolling behaviors, which might also raise 

concerns from the users. 

 Despite these limitations, this study creatively uses technologies to understand 

higher level reading strategies. Previous research attempted to use behavior sensing to 

understand low level and local activities such as area of Interests, attention, and reading 

speed. The use of technologies to understand higher level reading strategies is very 

limited and the efforts in this dissertation is the first attempt to bridge this gap. We also 

plan to explore the following directions in the future. First, considering all previous 
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projects observing desktop online reading behaviors, a comparison among platforms (e.g. 

smartphones, desktops and pads). Second, this project’s success of using behavior-

sensing technique on an educational problem provides the possibility of the appliance of 

such technique to other psychology and educational problems. Third, we are interested in 

applying NLP techniques to understand users’ reading contents together with analyzing 

users’ behavior. Lastly, we plan to explore interactive technologies to give the users their 

personal training of how to read well.  

4.7 Conclusions 
 

We created a novel system called StrategicReading--a multimodal interface, 

which automates the detection and evaluation of reading strategies to predict online 

reading performance on unmodified smartphones. First, StrategicReading tracks the 

periodic lateral patterns of users’ gaze movements via the front camera. Second, it infers 

their muscle stiffness via the Mass-Spring-Damper (MSD) based kinematic model and 

determines scrolling types during text scrolling. Last, it monitors the evolution of cross-

page behavior by logging the searching and clicking history. Overall, StrategicReading 

combines the gaze channel, scrolling channel, and logging channel to improve the 

detection, evaluation, and understanding of reading strategies and reading performance. 
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5.0 CONLUCSION 

This thesis systematically explores the usage of implicit behavioral signals and 

implicit physiological signals collected via a “sensorless” and low-cost approach to 

understand, model and improve mobile reading. 

We explored the usage mobile eye gaze sensing and heart rate signal sensing and 

screen touch sensing to facilitate reading under external and internal distractions 

(SmartRSVP) and monitor readers’ cognitions and emotions during reading (Lepton). We 

also creatively applied such behavior sensing techniques to psychology-based educational 

problems to automatically measuring users’ higher-level cognitive process 

(StrategicReading). 

5.1 Contribution 
 

This thesis is the first attempt of building a perceptual and affect-aware interface 

to control text displaying on watch-size devices; This thesis creatively investigated the 

processing of the noisy camera-based gaze signals and emotion-dependent scrolling 

changes during reading on pocket-size devices and proved the probability to predict 

reading comprehension and engagements using such signals; This thesis is the first 

attempt to automate the detection of complex reading strategies via multi-channel sensing 

techniques.  

5.2 Future Work 
 

We developed SmartRSVP (Chapter 2), an attentive speed-reading system to 

facilitate text reading on small-screen wearable devices, to solved the challenges of 
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reading on watch-size devices that are caused by limited screen affordance. Despite 

promising results, we have only scratched the surface of the design space of SmartRSVP. 

There are technology and design of this research that could be explored in the future. 

Regards technology, the gaze tracking of SmartRSVP is sensative to lighting conditions 

(camera may be overexposure under direct sunshine). There are two potential ways to 

solve this problem: 1) designing more robust algorithms, and 2) leveraging built-in 

motion sensors such as the GPS, accelerometers and gyroscope in the watch to both infer 

the context of the users (i.e. indoor, outdoor, moving, not moving) and estimate the 

orientation and dynamic posture of the smart watch for more accurate predictions. 

Regards the design, providing feedback for text presentation and exploring the type and 

level of adaptation could be two future direction. In current SmartRSVP design, we 

choose to not include feedback other than binary, one-way speed reduction to avoid 

confounding results. We believe that providing feedbacks, such as tactile feedback, to the 

users when having speed reduction and having a more intelligent type and level of speed 

reduction could even benefit users seeing the contents on watch-size screens. Other than 

that, enabling regressions via gesture-based interactions [53][54], and reminding users 

(via tactile feedback, sound, or visualizations) about important upcoming messages, 

could also be explored in the future.  

The challenges of reading on pocket-size devices are caused by complex reading 

contents and the lack of continuous and deeper understanding of users’ cognitive states, 

therefore, we developed two Systems, Lepton (Chapter 3) and StrategicReading (Chapter 

4) to track users’ cognitive states during single-page and multi-page reading tasks. The 

future work of reading on pocket-size devices should be in breath and depth. We 
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investigated using users’ eye movements and scrolling motions in Lepton and 

StrategicReading. In the future, exploring supplemental sensing channels, such as 

gyroscope and accelerometers for users’ motions and GPS sensors for users’ locations, in 

mobile reading could be the breath direction. We believe these sensors could benefit in 

understanding users’ mobile context that will be important towards facilitation their 

reading experiences. In depth, the next step after understanding reading is to improve 

reading. We plan to explore interactive technologies, such as personalized 

recommendation, smart highlighting, or in-situ quizzes when low engagement is detected. 

Overall, this thesis is the first attempt to bridge the gap between technologies and 

higher-level reading strategies. Its success provides the possibility of the appliance of 

such technique to other psychology and educational problems in the future.  
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