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« Advanced Noise Control Materials!!]
» What’s important about a noise control material?

» Cost

» Safety

» Weight

» Volume

» Recyclability
> ...

> ...

> Acoustical Performance
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* Near-field damping: dissipating

% power through viscous interaction

° e k between the porous medium and the
_JJ Airborne noise \ Sound evanescent acoustical near-field of
the panel associated with sub-critical
panel motion[?-7]

absorption
Structure-induced noise

/\ _ :
w E—
D U Nea"f'e'd Treated stiff panel
Structural damping
vibration

* Objectives: modeling, predicting and optimizing the near-field damping
performance of conventional sound absorbing materials (fiber, foam, etc.),
so that a properly-designed porous layer can achieve both structural
damping and sound absorption at the same time - save weight and cost
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Main Idea

 Periodic Structure in Practical Scenarios

Nadeau et al., J. of Aircraft (1999) Klos et al., Noise-Con (2005) Room 3057, Herrick Labs

-

Fibrous Treatment Frames Modeled as E;/;znly Spaced, Id\e‘ntlcal Dlscontrnurtres

Fuselage Panel *

Boundary Layer Ex0|tat|on Modeled as Convectlve Pressure Wave

-

« Model the periodic structure, evaluate and optimize the damping of the treatment

4
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General Approach W Mimuacs

« Connecting damping material’s properties and performance

Optimized - N > | Porous Layer :> Acoustical
Microstructure | Vicro-Bu Bulk Properties | ~‘coustics Modell properties
Relations (AFR) (TMM)
L Near-Field Damping
Optimization Model (NFD)

Damping Properties based on Panel’s Spatial & Frequency Domain Response

« AFR: micro-bulk relations for porous media made of fibers!é

«  TMM: bulk-acoustical relations!®19 including Johnson-Champoux-Allard
(JCA) modell'l, Biot theory!!-151 and B.C.s interpretation!!3.16]

* NFD: acoustical-damping relations including Euler-Bernoulli beam theory,
wavenumber-space Fourier transforml1’] and power analysis(18]

» TMM + NFD + AFR provides an micro-damping model to maximize fibrous
media’s damping performance by optimizing their microstructures

RASD 2019, Lyon, France 5
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» Fibrous layer is assumed to be limp, 3 cm thick with bulk density 10 kg/m3
* Fiber solid material densities: pgiass = 2730 kg/m?, ppo1ymer = 910 kg/m?>

z Air half-space Beam T_heory & o Governing
T_,X Fibers: 3 cm, 10 kg/m3 Acoustics Model Equation of
Panel H: :> Motion
Constraint Convective  Constraint :
(m, k,Jis)  pressure (my, ky, 3y, 5)) Fourier
Transform(2
Damping <:| Frequency Frequency
Loss Power Injection Domain Inverse Fourier Domain
Factor Method[2% | Response Transform 2 Response
Governing Equation
2*w(x, t) 2°w(x, t)
D T oxt msT Reaction forces due to constraints
Convectlve pressure (N, N T A
= —p,(x,t) H 1~"_e_+i“f_:lfl’_x_1l- 5 Fl,id(x - xl,i) + Z Ml,id(x - xl,i)
\:1_ ___________ : __________ y
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Parameters
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Air half-space Air half-space

t x

1 mm > > > > —.
aluminum Convective pressure Assign large m, Convective pressure
panel k|, \]| and S| to
(a) clamp the panel (b)
NFD model COMSOL finite element model
10-2 | | \ 3
——NFD analytical model| ]
— COMSOL validation
107
w
£ 10"
any
3
© 107
=
10 ¢
10-7 I I I I | I I I |

0 100 200 300 400 500 600 700 800 900 1000
Frequency [Hz]
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Wavenumber Response " rorrront

®

7 Air half-space dentical alumi _ ith size 5
entical aluminum constraints with size 5 cm
: : 3
| X Fibers: 3 cm, 20000 Rayls/m, 10 kg/m x 5 cm (m, = 6.75 kg/m, k, = 2.66X 10 kg/(sm),
x=-15 x=-0.5 x=0.5 x=15 J,=0.0028 kg'm, s, = 1.11 X 10 kg-m/(s?)) are
3mm ~ ~ ~ ~ evenly distributed along the panel with
aluminum panel  Convective pressure wave excitation separation of 1 m

10000+ Velocity Level [dB],' Velocity Level ‘[d?] ‘ 10000
,l' -50 -50 i -50
/ 5
/ 8000
— i) S-100 100 f 1-100
F S Tk F ey
.; 600! v 'l -; 6000 -; 6000
g : / 150 2 | 150 2 -
g ! g T 3
g 4000 f i g 46080 g 4000
LI‘: cv 4 -200 Lt 200 WL | -200
2000 i 2000 l <000
i A v i) -250 i i -250
Tl Sty ol
-0500 0 500 500 -500 500
Wavenumber [rad/m] Wavenumber [rad/m] Wavenumber [rad/m]
(a) (b) (c)
Ma=0.8 Ma=1.0 Ma=1.2
(Subsonic) (Sonic) (Supersonic)

RASD 2019, Lyon, France
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Velocity Response Spectrum-

Air half-space

LX Fibers: 3 cm, 20000 Rayls/m, 10 kg/m?

x =-—0.5 x?él x = 0.5
3mm Al oongtraint. Convective  Constraint
Panel (k. J,s) pressure my, kp, Jp, S)

Observation Pointat x=0.11m
-20

A
o
—

&
o
;
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Velocity Level [dB]
b3

— Bare fuselage structure

Fuselage structure treated by the limp fibrous Iayer’r
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(a)
Ma=0.8
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PURDUE

A

Observation at x =0.11 m

Vibration peaks below f_ were
reduced by 5-15 dB by the
fibrous layer

Observation Point at x =0.11 m

-20
—Bare fuselage structure
— Fuselage structure treated by the limp fibrous layer

40

&
S
T~

f_= 4008 Hz

»“M

Velocity Level [dB]
[e ]
o

-
o
o

-120

140 L a i pnbil ;
10" 102 10° i o0t

Frequency [Hz] fcv :5772 H 7
(b)
Ma=1.2
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Fuselage Structure

Velocity Response Spectrum

x = —0.

Air half-space

LX Fibers: 3 cm, 20000 Rayls/m, 10 kg/m?

5 x=11 x=0.5
*

N N

.
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PURDUE

Zoom into 100-1000 Hz to see the
peak reduction

Choose the peak at certain
frequency as an observation point

20 Observation Point at x =0.11 m

— Bare fuselage structure
—Fuselage structure treated by the limp fibrous layer

-40
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-80
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—
o
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(b)
Ma=1.2
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Air half-space ]
LX Fibers: 3 cm, 20000 Rayls/m, 10 kg/m? * A‘bOUt_ 15dB reducthn of
x=—05 x=.0.5 vibration can be achieved at
3mM Al Consraint CONVECHive . Constraint modal peak frequency f = 420 Hz
Panel  (m,k,J,s) pressure  (m k., ) (Ma=0.8) or f =531 Hz (Ma=1.2)

5z Observation frequency = 420 Hz Observation frequency = 531 Hz

-55

Velocity Level [dB]
Velocity Level [dB]

\ I | I u

95 || . . - \ :
| |‘ —— Bare fuselage structure ' 95 | —— Bare fuselage structure
100 \| — Fuselage structure treated by the limp fibrous layer 100 —— Fuselage structure treated by the limp fibrous layer
05 0 0.5 s 0 05
Distance [m] Distance [m]
(a) (b)
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Fuselage Treatment =
Damping Loss Factor !

_ « Fibrous layer with lower airflow
_Alr halt-space resistivity is better at reducing lower
Fibers: 3 cm, 10 kg/m3 : .

frequency vibration

x=-0.5 x=0.5
« Idea: optimal bulk/micro structure can

t

3mm Al -opgtraint Convective  Constraint

Panel : : : :
(m, k, 3, ) pressure —— (m, k;, J, ) be find to achieve optimal damping at
Power injection method!16! certain frequency for a given structure
Panel Thickness =3 mm. M = 0.8 Panel Thickness =3 mm. M = 1.2
0.08 Fibrous Layer Thickness = 30 mm. Bulk Density = 10 kg.’m3 0.08 Fibrous Layer Thickness = 30 mm. Bulk Density = 10 kg.ﬁ'lm:i
' e.g., a layer of '
0.07 1 dense, fine ] 0.07 e.g., alayer of — 5000 Rayls/m
oosr | —osomonavem  POlyméyic fibers || oos | CDAISS COAISE e
—— & = 10000 Rayls/m || gIaSS 4flbel’S eg, a Iayer Of
005 005 dense, fine

| e.g., alayer of
- sparse, coarse

Loss Factor
=
(=)
B
Loss Factor
o
R

oos. dlass fibers /\]\\/\ .
N, \f\ ,
0.02 | \ 0.02
VM
0.01 MVJ\’W VY 0.01
0
3 10° 10°

Frequency [HZ] Frequency [Hz]

(a) (b)

Ma=0.8 Ma=1.2
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Glass Fibers vs.
Polymeric Fibers

— finding optimal fiber radius

PURDUE

A

« Larger fiber is better at reducing lower
frequency vibration

 Heavy (e.g., glass) fiber would need a
smaller fiber size than light (e.qg.,
polymeric) fiber to achieve optimal
damping performance

Half-space air

Fibers: 3 cm, 10 kg/m3
x=-0.5 x=0.5

t
3mm Al -opgtraint Convective  Constraint
Panel (k. J,s) pressure My ki 3, S)

=]
o]

—— Opti.rnal Polymeric Fiber Radii for Damping
—»— Optimal Glass Fiber Radii for Damping

—+—Optimal Polymeric Fiber Radii for Damping
—— QOptimal Glass Fiber Radii for Damping

~
~

(2]
T
[=2]

(92
T
(4]
T

S~
T

w
T
w

n

Optimal Fiber Radii at Each Frequency [um]
n

Optimal Fiber Radii at Each Frequency [um]
B

T
-
T

EIJOU 2(I)0 360 400 560 660 700 860 900 1000 l--i‘[)c) 260 3(IJQ 460 5(I)0 660 760 BﬁO 900 1000
Frequency [Hz] Frequency [Hz]
(a) (b)
Ma=0.8 Ma=1.2

* Fiber size was optimized to achieve the largest damping for certain frequency & panel of interests
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Glass Fibers vs.
Polymeric Fibers

— optimal damping loss factor

Half-space air

Fibers: 3 cm, 10 kg/m3
x=-0.5 x=0.5

t
3mm Al Constraint Convective  constraint
Panel (k. J,s) pressure My ki 3, S)

0.2

——QOptimal Damping Achieved by Optimized Polymeric Fiber
-+ QOptimal Damping Achieved by Optimized Glass Fiber
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0.14 -

012

1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000
Frequency [Hz]

(a)
Ma=0.8
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Optimized fibrous layer made of
either polymeric or glass can
achieve equivalent optimal damping

0.2 —+—Qptimal Damping Achieved by Optimized Polymeric Fiber

-+ Optimal Damping Achieved by Optimized Glass Fiber

0.18

0.16

012}

"le,max
o
o

0.08

0.06

0.04 |

0.02

0 I . I . . I | .
100 200 300 400 500 600 700 800 900 1000

Frequency [Hz]

(b)
Ma=1.2

* Fiber size was optimized to achieve the largest damping for certain frequency & panel of interests

15
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s Lightweight fibrous damper parametric study on microscopic properties
» Relatively large fibers are effective at damping low frequency vibration

» Heavy (e.g., glass) fiber would need a smaller fiber size than light (e.qg.,
polymeric) fiber to achieve equivalent optimal damping performance

» Significant levels of damping can be achieved by properly designed fibrous
treatment - multifunctional (absorbing & damping) fibrous layer saves
weight, space and cost

16
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