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Challenge
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• Advanced Noise Control Materials[1]

 What’s important about a noise control material?

 Cost 

 Safety

 Weight

 Volume

 Recyclability

 …

 …

 Acoustical Performance
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Objective: 

Multifunctionality
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Structural 
vibration

Airborne noise

Porous layer 

Near-field 
damping

Treated stiff panel

Sound 
absorption

Structure-induced noise

• Objectives: modeling, predicting and optimizing the near-field damping 

performance of conventional sound absorbing materials (fiber, foam, etc.), 

so that a properly-designed porous layer can achieve both structural 

damping and sound absorption at the same time  save weight and cost

• Near-field damping: dissipating 

power through viscous interaction 

between the porous medium and the 

evanescent acoustical near-field of 

the panel associated with sub-critical 

panel motion[2–7]
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Fuselage Panel

Fibrous Treatment Frames Modeled as Evenly-Spaced, Identical Discontinuities

Boundary Layer Excitation Modeled as Convective Pressure Wave

• Periodic Structure in Practical Scenarios

Room 3057, Herrick LabsNadeau et al., J. of Aircraft (1999) Klos et al., Noise-Con (2005)

Main Idea

• Model the periodic structure, evaluate and optimize the damping of the treatment
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General Approach

• Connecting damping material’s properties and performance

• AFR: micro-bulk relations for porous media made of fibers[8]

• TMM: bulk-acoustical relations[9,10] including Johnson-Champoux-Allard 

(JCA) model[11], Biot theory[11–15] and B.C.s interpretation[13,16]

• NFD: acoustical-damping relations including Euler-Bernoulli beam theory, 

wavenumber-space Fourier transform[17] and power analysis[18]

 TMM + NFD + AFR provides an micro-damping model to maximize fibrous 

media’s damping performance by optimizing their microstructures

RASD 2019, Lyon, France

Damping Properties based on Panel’s Spatial & Frequency Domain Response

Near-Field Damping 
Model (NFD)

Acoustics Model
(TMM) 

Acoustical 
Properties

Porous Layer 
Bulk Properties

Porous Layer 
Microstructure Micro-Bulk 

Relations (AFR)

Optimization

Optimized 
Microstructure



NFD Modeling

Air half-space

Panel

Constraint

(ml, kl, Jl, sl)

Constraint

(ml, kl, Jl, sl)

x

z

Convective 

pressure
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Spatial &

Frequency

Domain 

Response
Inverse Fourier 

Transform [2]

Fourier 

Transform[2]

Damping 

Loss

Factor
Power Injection 

Method[15]

Wave# &

Frequency

Domain 

Response

Beam Theory & 

Acoustics Model[2]
Governing 

Equation of 

Motion

Governing Equation

𝐷
𝜕4𝑤 𝑥, 𝑡

𝜕𝑥4
+𝑚𝑠

𝜕2𝑤 𝑥, 𝑡

𝜕𝑡2

= −𝑝1 𝑥, 𝑡 + 𝐹𝑒+𝑖𝜔𝑡𝑒−𝑖𝑘𝑣𝑥 +

𝑖=1

𝑁𝑙

𝐹𝑙,𝑖𝛿 𝑥 − 𝑥𝑙,𝑖 +

𝑖=1

𝑁𝑙

𝑀𝑙,𝑖𝛿 𝑥 − 𝑥𝑙,𝑖

Convective pressure

Reaction forces due to constraints

• Fibrous layer is assumed to be limp, 3 cm thick with bulk density 10 kg/m3

• Fiber solid material densities: 𝝆𝒈𝒍𝒂𝒔𝒔 = 𝟐𝟕𝟑𝟎 𝐤𝐠/𝐦𝟑, 𝝆𝒑𝒐𝒍𝒚𝒎𝒆𝒓 = 𝟗𝟏𝟎 𝐤𝐠/𝒎𝟑

Fibers: 3 cm, 10 kg/m3
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IDFT Sampling 

Parameters



Convective pressure
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x

z

1 mm 

aluminum 

panel

𝑥 = −0.5 𝑥 = 0.5𝑥 = −1.5 𝑥 = 1.5

Convective pressure

𝑥 = −0.5 𝑥 = 0.5

(a) (b)

Model Validation

NFD model COMSOL finite element model

Air half-space Air half-space

Assign large ml, 
kl, Jl and sl to 

clamp the panel

Fibers: 3 cm, 20000 Rayls/m, 10 kg/m3 Fibers: 3 cm, 20000 Rayls/m, 10 kg/m3

𝑥 = 0 𝑥 = 0



Fuselage Structure 

Wavenumber Response

Identical aluminum constraints with size 5 cm

x 5 cm (ml = 6.75 kg/m, kl = 2.66×10 kg/(s2∙m),

Jl = 0.0028 kg∙m, sl = 1.11×10 kg∙m/(s2)) are

evenly distributed along the panel with

separation of 1 m

x

z

Ma=0.8

(Subsonic)

Ma=1.0

(Sonic)

Ma=1.2

(Supersonic)

fcv

fcv = fc

fcv

3 mm 

aluminum panel

𝑥 = −0.5 𝑥 = 0.5𝑥 = −1.5 𝑥 = 1.5
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Convective pressure wave excitation

Fibers: 3 cm, 20000 Rayls/m, 10 kg/m3

(a) (b) (c)

Air half-space



Fuselage Structure

Velocity Response Spectrum

fcv = 2575 Hz

fc = 4008 Hz

Ma=0.8

fcv =5772 Hz

fc = 4008 Hz

Ma=1.2

• Observation at x = 0.11 m

• Vibration peaks below fc were 

reduced by 5–15 dB by the

fibrous layer
Constraint

(ml, kl, Jl, sl)

Constraint

(ml, kl, Jl, sl)

x

z

Convective 

pressure

3 mm Al 

Panel

Fibers: 3 cm, 20000 Rayls/m, 10 kg/m3

𝑥 = −0.5 𝑥 = 0.5𝑥 = 1.1
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(a) (b)

Air half-space



• Zoom into 100–1000 Hz to see the 

peak reduction

• Choose the peak at certain 

frequency as an observation point

observation
observation

Constraint

(ml, kl, Jl, sl)

Constraint

(ml, kl, Jl, sl)

x

z

Convective 

pressure

3 mm Al 

Panel

𝑥 = −0.5 𝑥 = 0.5𝑥 = 1.1
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Fibers: 3 cm, 20000 Rayls/m, 10 kg/m3

Ma=0.8 Ma=1.2

(a) (b)

Air half-space

Fuselage Structure

Velocity Response Spectrum



Fuselage Structure 

Spatial Response

• About 15 dB reduction of 

vibration can be achieved at 

modal peak frequency f = 420 Hz

(Ma=0.8) or f = 531 Hz (Ma=1.2)
Constraint

(ml, kl, Jl, sl)

Constraint

(ml, kl, Jl, sl)

x

z

Convective 

pressure

3 mm Al 

Panel

𝑥 = −0.5 𝑥 = 0.5
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Fibers: 3 cm, 20000 Rayls/m, 10 kg/m3

Ma=0.8 Ma=1.2

(a) (b)

Air half-space



Fuselage Treatment 

Damping Loss Factor

Constraint

(ml, kl, Jl, sl)

Constraint

(ml, kl, Jl, sl)

x

z

Convective 

pressure

3 mm Al 

Panel

𝑥 = −0.5 𝑥 = 0.5
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Fibers: 3 cm, 10 kg/m3

Ma=0.8 Ma=1.2

(a) (b)

Air half-space
• Fibrous layer with lower airflow 

resistivity is better at reducing lower 

frequency vibration

• Idea: optimal bulk/micro structure can 

be find to achieve optimal damping at 

certain frequency for a given structure

e.g., a layer of

sparse, coarse

glass fibers

e.g., a layer of 

dense, fine

polymeric fibers

e.g., a layer of

sparse, coarse

glass fibers e.g., a layer of 

dense, fine

polymeric fibers

Power injection method[16]



Glass Fibers vs.

Polymeric Fibers

– finding optimal fiber radius • Larger fiber is better at reducing lower 

frequency vibration

• Heavy (e.g., glass) fiber would need a 

smaller fiber size than light (e.g., 

polymeric) fiber to achieve optimal 

damping performance

Half-space air

Constraint

(ml, kl, Jl, sl)

Constraint

(ml, kl, Jl, sl)

x

z

Convective 

pressure

3 mm Al 

Panel

Fibers: 3 cm, 10 kg/m3

𝑥 = −0.5 𝑥 = 0.5
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* Fiber size was optimized to achieve the largest damping for certain frequency & panel of interests

Ma=0.8 Ma=1.2

(a) (b)



Glass Fibers vs.

Polymeric Fibers

– optimal damping loss factor

• Optimized fibrous layer made of 

either polymeric or glass can 

achieve equivalent optimal damping

Half-space air

Constraint

(ml, kl, Jl, sl)

Constraint

(ml, kl, Jl, sl)

x

z

Convective 

pressure

3 mm Al 

Panel

Fibers: 3 cm, 10 kg/m3

𝑥 = −0.5 𝑥 = 0.5
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* Fiber size was optimized to achieve the largest damping for certain frequency & panel of interests

Ma=0.8 Ma=1.2

(a) (b)



 Lightweight fibrous damper parametric study on microscopic properties

 Relatively large fibers are effective at damping low frequency vibration

 Heavy (e.g., glass) fiber would need a smaller fiber size than light (e.g., 

polymeric) fiber to achieve equivalent optimal damping performance 

 Significant levels of damping can be achieved by properly designed fibrous 

treatment  multifunctional (absorbing & damping) fibrous layer saves 

weight, space and cost

CONCLUSIONS
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