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The receptance technique has been used most frequently to analyze the vibrational
response of structures that may be idealized as a set of substructures connected at one or
more discrete points. However, the receptance technique can also be used to analyze the
response of structures connected along particular types of line junctions. In this paper, an
extension to the receptance technigue is presented that makes use of a generalized Fourier
series approach to allow the evaluation of both the free and forced response of systems
comprising components connected through spatially distributed junctions. The present
extension is shown to reduce to the previous line receptance definition in the appropriate
limit. The general distributed receptance formulation is demonstrated here through
application to two problems involving coupled rods. The resuits obtained using the
distributed receptance technique were found to compare well with the matching analytical

solutions.
© 1996 Academic Press Limited

1. INTRODUCTION AND BACKGROUND

The receptance technique allows the dynamic response of a complex structure to be
modelled through the systematic combination of component receptance models; i.e., the
receptance of each component is found, and then they are linked together to form a global
receptance matrix. By using the receptance model, both the free and forced response of
a structure may be evaluated. A feature of the receptance method is that the individual
component receptances may be found by different means; i.e., some of the receptances may
be found analytically, some may be found by using finite element or other numerical
methods, and some may be found by experiment. The application of the receptance
technique to many simple elements is discussed by Bishop and Johnson [1] and its
application to plates and shells is discussed by Soedel [2].
The receptance, oy, is defined as the displacement, u;, at location i normalized by a
harmonic force, f;, applied at location j; i.e.,
oy = wiff}. 8y
More precisely, the receptance can be written as
= = =Y ff,ﬂ))!ga;xnx,
N(X(,X},(D) j(:?,,w) ’ (2)
where # is the spatial co-ordinate vector and o is the radian frequency of the harmonic
excitation force. In general, a receptance may be considered to be a component iransfer

function that can be combined with other component receptances to generate system
1
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response equations when they are coupled by using force and displacement compatability
conditions. As originaily proposed, each component is characterized by a set of receptance
transfer functions- that relate the forces and responses at a set of discrete locations; these
methods are therefore particularly useful when applied to systems whose components are
connected in a point-wise manner. In this paper, the receptance definition in equation (2)
will be extended from a point-to-point receptance transfer function to a region-to-region
receptance transfer function where a region may be a point, a line or a two-dimensional
area. Region-to-region coupling allows the receptance technique to be used to analyze
structures having any type of connection between their components.

The line connection was the first type of distributed connection that was considered in
the context of the receptance method. Three types of line receptances will briefly be -
reviewed here.

When Wilken and Soedel [3,4] first applied the receptance method to plate and shell
structures, the components of the systems they considered were required to be connected
in a point-wise manner except in one case when a line connection was considered. They
demonstrated that the spatial dependence of the receptance along a line connection could
be eliminated from the system characteristic equation when the mode shapes of the
unconnected components were identical along the line joining them. In that case it is
possible to define a line receptance as

Comm == uml{fm’ | (3)

where u,, is the coefficient of the mth mode of the displacement response and f,, is the mth
coefficient of the expansion of the connection force in terms of the modal basis functions.
By using this definition, the characteristic equation of the combined system may be found
as if the line connected components were connected pointwise. Soedel and his colleagues
have applied the concept of the line receptance to frame-stiffened, simply supported
rectangular panels, ring-stiffened cylindrical shells [3,4], cylinders stiffened or terminated
by circular plates, (e.g., end caps) [5,6], continucus rectangular plates [7], and cylindrical
polygonal ducts [8,9]. Note that it is not possible to solve a forced response problem by
using the receptance defined in equation (3), since it is a self-receptance, i.e., 0., and forced
response problems require knowledge of transfer receptances.

The forced response of line connected systems can, however, be calculated by using the
line transfer mobilities derived by Cuschieri {10] in the course of analyzing a problem
involving the forced respomse of two coupled, flat plates. When re-formuiated as a
receptance, Cuschieri’s line mobility becomes -

Ol == U m ) (4)

where u, is the mth modal displacement in response to a point force, fj, applied at
location j. '

Later, Huang and Soedel [11] defined a third line receptance. It is also a transfer
receptance, and it relates the displacement at a point i, u, to the mth coefficient of the
expansion of the connection force in terms of the modal basis functions, fu; i.e.,

i == ul/,'fm ° (5)

The transfer line receptances, equations (4) and (5), can be combined with the self line
receptance, equation (3), to analyze either the free or forced response of structures
featuring a combination of line and point connections. For example, Huang and Soedel
applied all three types of line receptances to predict the forced response of a cylinder with
a plate welded across each end [11].
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It should be emphasized that the three line receptances defined above can only be used
to couple components that have identical mode shapes along the line joining them.

Note also that when several component connections are involved, the “bookkeeping”
required by the receptance technique can be tedious. To facilitate the manipulation and
solution of the system equations, the receptance equations may be written in matrix form.
As the number of components in the system increases, however, it becomes more and more
awkward to couple the component receptance equations. The coupling involves
application of the force and displacement compatability equations between each .
component. That coupling may be automated, however, by using the graph theory
approach developed by Jetmundsen ef al. [12] and later extended by Gordis ez al. [13].

In addition to the receptance technique, other procedures have been developed that can
accommodate distributed connections between components. Green function methods and
the finite element method will next be discussed briefly.

Nicholson made use of a Green function to develop an integral formulation for the free
response of line-stiffened plates [14]. However, since his approach is not receptance-based,
it does not lend itself to a building block representation of multi-component structures.
Nicholson used his approach to solve a number of example problems similar to those also
considered by Soedel and his colleagues [3,4]. The complexity of the example problems
was limited by the difficulty of deriving a Green’s function for a plate having general
boundary conditions.

Kelkel [15] has aiso discussed the use of a Green function approach to derive the
receptance matrix for free—free rectangular plates that are stiffened by coupled beams. A
large part of Kelkel’s paper is devoted to deriving an approximate Green function and the
associated point-connected receptance matrix for a free—free plate. The Green function
involved a truncated triple summation and was obtained by analyzing four symmetric and
antisymmetric problems. A complete analysis required the solution of four associated
problems, each having carefully selected boundary conditions. This type of plate analysis
is typical of the work of Gorman [16]. By coupling the plate Green function and the Green
function of a beam with a Fourier series expansion of the shared displacements, Kelkel
was able to derive the Green function, and then the receptance matrix, for a plate
reinforced along a line by a coupled beam. Kelkel’s method of coupling the beam and plate
has been generalized in the present work to allow the development of a receptance for
distributed connections.

The finite element method is very commonly used to model systems havmg distributed
connections. The finite element method is usually based on stiffness equations rather than
receptance equations, since it is easier to assemble the system equations for large numbers
of components when using the stiffness matrix. formulation. The two approaches can be
related, however, since the dynamic stiffness matrix that appears in the finite element
method, i.e., [K — o’M], where X is the stiffness matrix, o is the frequency in radians per
second, and M is the mass matrix, is the inverse of the receptance matrix. If the terms in
the dynamic stiffness matrix cannot be determined analytically, they can be measured,
although with some difficulty. To measure D, the displacement u; resulting from a unit
load applied at location i must be measured when all other external degrees of freedom
are fixed. The stiffness measured in this way is usually called the “blocked” stiffness. Owing
to the difficulty of experimentally fixing structural degrees of freedom, experimentally
determined stiffnesses are rarely used to replace analytical stiffnesses. In addition, it is
difficult to apply true point forces within the finite element method. A force applied ata
node in a finite element representation does not represent a point force, but rather a
distributed force the shape of which is described by a polynomial shape function.
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Nonetheless, the finite element method remains the most commonly used technique for
analyzing systems with distributed connections.

The Green function approach and the finite element method can both be used to couple
extended components over a distributed region. In addition, several researchers have also
made special provision to accommodate point-wise coupling between discrete and
extended components in their analysis tools. For example, Hallquist and Snyder [17]
considered the response of beams and plates coupled through point-connected viscous
dampers. Recently, Tzioufas et a/. [18] presented a method for coupling multiple
point-connected discrete-distributed systems in the time domain. Particular attention was
paid to a staged algorithm that could be used to solve the system eigenvalue problem. In
addition, a technique called the Structural Analysis Method was developed by Pesterev and
Tavrizov [19] to synthesize system models from the combination of distributed-finite
structures interacting at a finite set of points. Their method makes use of Green functions
to model the components and is described in terms of operator terminology. The major
result of the Pesterev and Tavrizov Structural Analysis Method is the system receptance
matrix (also called the Modal Force Matrix). The system eigenvalue problem is then solved
by finding the frequencies at which the system receptance matrix is zero. Recall that even
though the techniques described in this paragraph can be applied to mixed
distributed-discrete systems, none of them can accommodate distributed connections; i.e.,
connections over a two-dimensional region.

From this survey of earlier work, it was concluded that the analysis procedures that can
be used to represent distributed connections are as follows: line receptance analysis, the
Green function approach and finite element analysis. Both the line receptance approach
and finite element analysis provide modular, ready-to-use elements for synthesizing system
equations. The Green function approach is flexible and may be applied to a great many
problems, but it is not easily expressed in modular form, and analytical integration over
the distributed connection region is usually required. Thus Green function methods do not
have the same potential for the development of plug-in building blocks as do the line
receptance and the finite element methods. The use of distributed receptances also appears
to have several advantages when compared with the finite element method. In the finite
element method, the solution is based on fitting a set of shape functions at every point
of the system. In contrast, the use of the distributed receptance involves fitting a set of
shape functions only over a distributed junction, a more economical procedure. In this
resepet, the distributed receptance technique is similar to the boundary element method.
In addition, since the comcept of the distributed receptance may be easily used in
combination with analytical solutions for component responses, discretization difficulties
in optimization problems that occur when the finite element method is used [20,21] can
be aveoided. Also, true point sources and distributed loads of any type may both be
modelled using the distributed receptance technique. Finally, note that when using the
receptance technique, the system response is found by multiplying the system receptance
matrix by the forcing vector (instead of by solving a matrix equation as in stiffness-based
methods); thus the effect of each term in the receptance matrix on the system response
is clear. ' ;

In summary, component synthesis methods are well developed in the context of
receptance and stiffness approaches, have been presented in many variations and have been
applied to many problems. However, when system components are joined over a
distributed area, the finite element method is the only general purpose method currently
available for analyzing the problem. For certain problems involving distributed
connections, the line receptance method may be used while the Green function approach
may be applied to other types of problems.
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The present work entailed the extension of the recepiance method to general distributed
connections, thereby expanding the types of problems that may be addressed by using the
receptance method.

2. DERIVATION OF RECEPTANCES WITH DISTRIBUTED CONNECTIONS
When extending the definition of a receptance to accommodate distributed connections
between the individual components, it is convenient to start from the receptance definition,
in equation (2), that can be rewritien as

u(%,0)gs.-5, = A(, T, @Y%, 0).. ©)

A generalized Fourier series approach (see, for example, Churchill and Brown [22]) will
be used here to extend the point-connection receptances to accommodate general
distributed connections. An example system with a distributed connection is shown in
Figure 1. ' :

' The displacement and force response terms in equation (6) need to be replaced by
approximate forms when the contact is distributed over an area. The displacement, u(%,®)
at location ¥ is approximated as

0

u(5,0) = 3 un(@a(R) 3 un(@)n(E) ~ FEYH), %)

m =0

and the force JS(%,w) at location %; is approximated as
w=0

S5) = TI@WE) = 31 @NE) = FETw), ®

where the ¢.(%)’s are a set of shape functions used to describe the displacement over area
i, and the ¥,.(%,)’s are a set of shape functions used to describe the force over area j. The
displacement shape function contribution coefficients, #(w), are given by

i#(w) = [ J &5(&)5(3?:)7(1‘4,]*!{ f $(x"g)u(f.r,w)d.4,}, : )]

but if the displacement shape functions, ¢(¥;), are orthonormal, the matrix in equation
(9) reduces to the identity matrix, and the mth shape function coefficient, u,(w), is simply

um(w) e j ‘fsm(fi)u(jivw)d/il' ! (10)

Figure 1. Subcomponentis A and B joined along line L.
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The force shape function contribution coefficients, {w), may be defined in a similar
manner. The shape functions may be selected from any set of complete functions.
However, in regions that will be connected in the combined structure, the same shape

functions must be used in both components.
When muitiple point forces drive the system, equation (6) becomes

N
w(Fs, 0 Wie sz = 1oty = 2 (e, %y, 0 Y%y, ) (11)
=1 ’

The response due to a distributed force may be found by approximating the distributed
force as a large number of point forces. As the number of point forces, N,, goes to infinity,
the summatic_m in equation (11) may be replaced by an integral, to give

u(JE,-,a))[,@mM} e f ae(f,,fc),w)f(x",-,w)dA;. (12)
.

The distributed force, f{%;,w), in equation (12), may be approximated by using equation

(8) to give

u(%i, 0 reies = {f o ()'f;,.fj,a)ﬂ(i,)TdAj}f(w). (13)

45
From equation (13) the generalized recepiance vector that relates the displacement
spectrum at a point to the force shape function contribution coefficients, flw), is given by

Gy, (@) = {f a(fl,ff,w)w(fi)dﬂj}- (14)

¢4

The receptance that relates the force over an area, 4, to the displacement over another
area, 4,, may be obtained by extending equation (13) to account for a distributed response.
This can be done by taking equation (9) (that defines the displacement shape function
participation factors in terms of the displacement field) and substituting it into equation
(13) as a definition of the displacement field. That operation results in

i) = [ f iﬁ(x‘;)&(f;)’dzl,]_ [ f J a?(:a,:E,,m)a(f,)w(f,)TdAjdA,}tw). ' (15)
A A1 4; 5

The receptance matrix that relates the force shape function participation factors to the
displacement shape function participation factors is then

o= | [ swpcren| || [ awsopeperaas)  ao

A

A special case of the receptance that relates a force over a distributed region to a
displacement over a distributed region is the case in which the force and displacement are -
both distributed over the same region. In this case the receptance is

=1
i

focg,,. (@)} = [ J‘ a(fi)i(fz)TdA:! [ Ja(fi,fi,w)a(fx)a(fi)TdA;dA;]. a7

Ay
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The receptance that relates a point force to a distributed field may be obtained by
substituting equation (6) into equation (9), which results in

i(w) = [ f E(J?:)a(f:)'d/is]ml[f a(f,,f,,co)&i(f,-)dAl]/(@,w). | (18)

The receptance vector that relates a point force to the displacement shape function
participation coefficient vector is then

(@) = [ f a(f,)as(rc.-)?dm]"[ f a(f.-,f,,w)a(x,)dA,]. (19)

The distributed receptances that were developed in this section may be used in the same
way as standard point receptances; i.e., to derive the characteristic equation, mode shapes
and forced response of the system. In the case in which subcomponent « is joined to
subcomponent § at the distributed region i, the force and displacement over region i on
subcomponent « are approximated by

(%) = &) () (20)
and
P4E0) = BETP (), e

respectively. The force and displacement over region ¢ on subcomponent f are
approximated by ‘

ui(F,w) = $E) M (w) (22)
and y
(%, 0) = §(F) Pw), (23)
respectively. Any externally applied load in region / is approximated by
| S, 0) = NP w). 24

The compatibility equations then become equations in terms of the unknown shape
function coefficients. The compatibility equations to be satisfied over region i are the
continuity of displacement,

ﬂ’l(w) = ﬁﬂi(m), (25)
and the forece balance,
Fil@) + Piw) = P*(w). (26) .

_ The equations developed in this section provide a formalism for applying the receptance
method to systems having distributed connections. The extended definition of the
receptance has been developed so that problems featuring distributed connections can be
solved in a manner similar to problems featuring point connections.
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3. DISTRIBUTED RECEPTANCES FOR COMPONENTS DEFINED BY MODAL
PARAMETERS
The displacement, u, of any linear, elastic structure can be modelled by using a linear
partial differential equation (or by using a set of linear partial differential equations) that

has the form .
-?{ug} e lﬁl = mﬁ' = i (27)

‘where % is a linear stiffness operator, 4 is the equivalent viscous damping factor, m is a
mass term (usually mass per unit length or mass per unit area), g is the force applied to
the system and the subscript 7 denotes a time-dependent variable. When a harmonic time
dependence of the form, , = &, is assumed, equation (27) becomes

P{u} — jolu + mo’u = —q. (28)

After applying boundary conditions to equation (28), the eigenvalue problem can be
solved. (Note that when calculating the receptance of a component that will be combined
with other components to calculate a system response, the boundary conditions should be
those that are present when the component is disconnected from the rest of the system.)
The eigenvalues are the natural frequencies, «;,, and the eigenvectors are the mode shapes,
Ux(%). The displacement is then given by

5 ) = O:Up(%) T QUi (%)
(E,0) = ,E:,mi — w? + 2l ,;lmf — @* + 2§Cneto’ 9
where _
Ck = A/meg (30)
is the modal damping coefficient and
f qU.(%)dA4
Q= G1)
m f Ui(x)d4
4

is the modal forcing function. In equation (31), the integral is over the entire component,
region 4, as defined in Figure 1.

3.1. RESPONSE TO A POINT FORCE
When the force, ¢, is a point force acting at location, J, i.e.,

g = flw)5(%;), (32)
the modal forcing function is
f Si(@)é(x)U(x)dA
s B = ﬁ(w) Uk(f:i) . (33)
mf Ui(x)d4 mf Ui(x)d4

O
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The corresponding displacement response is

w(E) = ¥ ) Un(®) (@)
m{w; — @’ + ZjCk@kw)( J U,"ldA)
A

k=1

and thus the receptance for a system described in terms of modal parameters is

a(jhfj’w) - % Uk(x-')Uk(x-I) .
m(w; — * + 2j£km&w)(f UidA)

k=1t

3.2. RESPONSE TO A DISTRIBUTED FORCE

When the force, g, is a distributed force acting over region; J, as expressed by

g = fi(%,0) = YR RoYU(E,4)),

~ where % is 2 unit step function defined as

. i, XeA,
Ux,4) = {O, otherwise,

the modal forcing fuation is

f@(f)’f(w)Uk(f)‘W(f,Al)dA j V(%) Un(%;)d 4,
A A

O
mf Ui{(%)dA m f UX(%)dA
A A

The corresponding displacement response is

; {f TEAR N (fi)dAj} Uk(f )
u(¥,w) = kz 4 - Aw).
) miw} — @* + 2j£,,wm)(f UiidA)

3.3. CALCULATION OF THE DISTRIBUTED RECEPTANCES FROM MODAL POINT-TO-POINT

RECEPTANCES

Rw).

(34)

(33

(36)

(37

(38)

39

The modal form of the point-to-point receptance in equation (35) may be substituted
into equations (14), (19) and (16) to give the modal forms of the three distributed
receptances. The generalized receptance that relates a distributed force to a point

displacement is found to be
i‘: Un(%:) {4, Ue(Z)P(X,)d 4, .
k=
‘m(of — o + ZjCkmkw)( f Usz)
. A

&3,'.-3 ,(m) =

(40)
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The generalized receptance that relates a point force to a distributed displacement is

) fu,,(x,)a(xadmuk(ff)

G, (@) = U $(f:)$(2a)TdAs]' kX' = C3))
sl " (ot — o + 23'{@,@)(.[ Usz)

and the generalized receptance that relates a distributed force to a distributed displacement
is '

sl
[#,,, (@)] = [f ﬁ(ff)ﬁ(fi)TdA;]

] { { Uk(f,-)a(f;)dm}{ f | v«:@){/}@)d@}*
& LJa 4 o 42)

mlwi — * + 2ng¢0,,0))<£ U’,;dA)
A

k=1

3.4. CALCULATION OF THE DISPLACEMENT DUE TO A DISTRIBUTED FORCE USING
THE GENERALIZED RECEPTANCE
Equation (40) can be used to calculate the displacement at a point, x;, as

U g s, = (G (@)} T, @3)

Thus the displacement at location x; is

T

. Un(%:) f V(R (%) d4;
u( %, 0) = kz . 3 : (44)
) mi{w; — @* + ZjCkwkw)(J‘ U,%dA)

A

Note that equation (44) is the same as the displacement calculated using direct modal
expansion when the structure is excited by a distributed force of the form,
Ro)= §(X)fw), as in equation (39), thereby validating the generalized receptance that
relates a distributed force to a point displacement (equation (40)}.

4. SHAPE FUNCTION SELECTION

Up to this point, the shape functions, ¢ and i, have not been specified, except that any
shape functions that represent a function over the same region of the combined structure
must be identical over that region. Also, it was implied that (% )"#(w) was an acceptable
approximation of f(%,w). Many different shape functions will satisfy these criteria. In this
section, specific shape functions or classes of potential shape functions will be considered.
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4.1. ORTHONORMAL SHAPE FUNCTIONS

‘When the shape functions that are used to approximate the displacement, $(w), are
orthonormal over the region 7, then the matrix [[,@(%)$(%)7dA4;) becomes the identity
matrix and its inverse can be removed from all the definitions of the receptance matrices
in which it appears. In general, that is the only simplification that foliows from using

orthonormal shape functions.

4.2. MODAL SHAPE FUNCTIONS

In the case in which a2 modal description is used to specify the point-to-point receptances,
it may be advantageous to select shape functions that are the same as the modes of one
of the components over the region i or j. In general, no simplification results from selecting
the shape functions to coincide with the modes. However, the approximations to the
displacement and force fields should provide better results with fewer terms in the series
when the shape functions are made up of the characteristic shapes of the subsystem.

¥f the modal shape functions happen to be orthogonal over the distributed contact
region, then the form of the distributed receptances will be simplified. Selection of the
modal functions as the shape functions gives

¥ (%) = U(%) : 4s5)
and
&) =UO®). ' (46)

As an example of the modal receptance, equation (40) becomes
. Ui(%) f Un(%) (%) 4;
& A

d-.(I"A,-(co) = /,Z] (47)
" m(wl — o + ch,,w,m)( f U’,;dA)

when the modal shape function, equation (45), is used. If the modes are orthonormal over
the entire subcomponent, then

JUidA =1 (48)
Y|
If the modes are orthogonal over the contact region, then
f Un(%)U(x;)d4; = ULEL,, 49
A . .

where EL, is the elementary vector with all-zero elements, except for the kth element which
is unity, and

Ui = J U ®)Un(%)AA;. (50)
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There is also an elementary matrix, ELy;, which contains all-zero elements except for the
ijth element, which is unity. When the orthogonality condition is met (equation (49)), the
kth element of egquation (47) reduces to

m(wi — w* +_2j€kwkw)(j UidA)
4

Suj( ) =

Over region i, the kth element of equation (41) becomes
ULU(%) , 2)
m(w; - &* + 2j§kwkw)( U§M)
A

o, (@) =

and when regions i and j coincide, equation (42) becomes .a'diagonal matrix in which

ue (53)

o (@) =
m(w; ~ w* + 2jCkcokaJ)(f UEdA)
A

is the kth diagonal term.
The more common case is the one in which the shape function is the same as a portion

of the mode shape, and is orthogonal to a portion of the modal shape i‘uncnons In this
case, the mode shape function, Ux(%;), can be rewritten as

Un(%) = Unn(%y) = Un(F U (F]) (54)

where the k& modal index has been reparameterized into an m and z pair of modal indices,
the spatial co-ordinates, %, have been split into two sets of co-ordinates, X/ and %
(typically these are now each a single co-ordinate, but in general they are vectors), and
the modal shape function has been split into two parts which correspond to the new
co-ordinate definition. The m and » indices also correspond to the new split co-ordinate
definition. Selection of the shape functions to be the second part of the modal functions
(that is, the part that varies over the contact region) gives

Yul(%/') = Uy (%) (59
and _
&u(%') = Ui (&7') (56)

The modal receptance that relates a distributed force to a point displacement, equation
(40), for this second class of modal shape functions becomes

Um,(x,)J U,.(Z)U ()0 (x))dx
G @)= Y Y. _ (57
T m(ed, - o + 2jcm,,wmco)( U,andA)
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when the modal shape function, equation (55), is used. The orthogonality condition over
the contact region is

J' Uz (%)U"(% )% = UyELn, (58)
4
where EL, is the elementary vector and

U= f Uz (X7 ydxyf. 59
A

¢

When the orthogonality condition is met (equation (58)), the summation over » sums N,
orthogonal vectors which reduce to a single vector. The nth element of the distributed

receptance &, (w) in equation (57) becomes

g, (@) = ﬁ U (F)Un B UL ‘ o
m(wp, — @ + Zijw,.,,w)(f Cr;ndA)

In the case of the receptance that relates a point force to a distributed displacement,
the mode shape function, Ux(%), can be rewritien as

Ui(%) = Up(%:) = Un(XDUL (). : (61)
Substitution of the mode shape function, equation (61), and the displacement shape

function, equation (56), into equation (41) gives

o) = {[ j D) U"(x:')*df.f']—

X

% 3L UaGNUENT ) Uun(5) } | ©
m=in= ‘m(w;i,, - ml ke Zijwmm)(j UE,},,dA)

Then, applicaiion of the orthogonality condition (which is the same as equatiozi (58),
except that j is now replaced with #) to equation (62) gives

@) = 3 AEHIMED )
m{wl, — &* + Zijw,,,..w_)(j U’;,,,.dA) '

R
A

for the nth element of & (w).
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When distributed regions i and j coincide, and upon substitution of equation (54) for
the mode shape, equations (55) and (56) for the shape functions, and the replacement of
J with i, equation (42) becomes

Ny &, T
il = 01 ¥ 3 Bl . e
e m(w,f.,, — ? 4 Zijnwmw)(f Ur?;mdA)

where
[#] = L U"(x O (%Y dx! (65)
and
B = f U(# YU (YD (5 ) (66)

After applying the orthogonality conditions expressed in equations (58) and (59), equation
(64) becomes a diagonal matrix in which

o Un(Z VU,
o @)=Y S @)
m(wf — o* + Zijw.,.w)( f U“;,,dA)

d(”,
m=1
A

is the nth diagonal term.

5. COMPARISON WITH LINE RECEPTANCES

As mentioned in the opening section of this paper, the line receptance technique has been
applied to a variety of problems in which the joining substructures had identical mode
shapes over the line connection and the mode shapes were orthogonal over the line
connection [2,3,5,6,11]. In this section, a general presentation of the line receptance as it
is used for free response problems will be developed. The modal distributed receptance
definition with the appropriate modal characteristics, equation {53), will be evaluated for
a line connection. The distributed receptance formulation will be shown to be identical to
the line receptance formulation when applied to a problem in which the line receptance
can be used.

The geometry of a general line receptance connection is shown in Figure 1. The mnth
mode shape of component 4 is defined as

Ui () = Us, (£)U4(Z) (68)
and the mnth mode shape of component B is defined as
Us, (%) = UL, (£.)U3,(X), (69)

where %, is the co-ordinate along the connecting line, the co-ordinate vector, %, contains
all of the co-ordinates except X, U, (X.) is the nth mode shape along the line connection,
U;. (%) is the part of the mode shape of subcomponent 4 that is not along the line -
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connection, and Up, (%) is the part of the mode shape of subcomponent B that is not along

the line connection.
First, assume that the forcing function along the line connection is of the form

S (%1, 0) = Fl@)U,,(x.). (70)

Then the displacement response at location % on subcomponent A is

U(f],ﬂ)) - %’ % Fm(m)uh(xbi)vl.,(iil) . X (71)
my(wl, — @® + 2j(‘,,mw,.ma))(f U,’,,,,dA)

me=in=]
A4

where F,.(w) is

Fra(@) = ” (e, (xr, )0 (X" — XU, (X )U4, (X)) dx, dF’ - (2

=F(w)U,, (%) j UL, (%) UL, (% )dx, (73)

and %; is the location of the line. Because the mode shapes are orthogonal along the line,
the final form of the modal force participation factor is

. F(w)UAm(fL)U[,m forn = D,
Fnl) = { 0 fored s, (74)
where
Ui’u = JUL,‘(fLyde. (75)
L .

The receptance, o,(%;,L,w), is defined as

(5, L) = el 76)

or

Vs (FDUL UL, (F UL (x1) : a7
mg(e;, — @ + ZjCJ"mw,ww)(j‘ U,’;.,dA)

4,

- 1 &
SR~ ) Z;

The receptance, a,(L,L,w), that relates a line load to a line displaéement, is

’ Ny, 2 =/ 7]
ap(L,L',(D) —_ 2 U; (%)UL, ! (78)
' mu(e,, ~ @' + 2jCA,.wwAWW)U UipdA)
A

=l
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In a similar manner, the receptance on structure B is

Ny 2 Lo/ '
y Vs, (X)L, . (19)
mp(w3,, — & + 23(%“’%“’)([ U;:,,dA)

As

By Lrt2) = Bus, =

There are N, characteristic equations of the combined system and the pth one is
212,(©) + B, (@) = 0. (80)

When the generalized distributed receptance formulation is used, the recept'ances along
the line Juncuon are given by equation (67). For component, 4, the reoeptanoe is a diagonal
matrix, in which

AR -

4 (w,im -+ ZjCA,,mCDAmQ))( Ui MdA)
Ay

4, = Ogy, (@) = 3

is the nth diagonal term. Similarly, for component B, the receptance is a diagonal matrix
in which ‘

NM (4 & Ui ‘ E
Br= B2 (@)=Y Uz, (5 YUS, (82)
me
ms(w%l,,, -0+ Zj‘:&.wﬂmw)( me)

is the nth diagonal term.
The characteristic equation for the system is

l[a&a,«,(w)] + [Bs.m,(w)}l ™ 0 (83)
or '
lioa{e)} + Bu(@)l] = 0. (84)

Because the matrices are diagonal, equation (84) reduces to
N (]
Z (a["lm + ﬁi"om) = 0' ' (85)
a=i

Equation (85) produces N, equations of the form
i, + B, = 0. (86)

The characteristic equation developed from the line receptance formulation, equation (80),
is the same as the characteristic equation developed from the distributed receptance
formulation, equation (86), when it is recognized that L in the line receptance formulation
plays the same role as i in the distributed receptance formulation, and that the definition
of U;, in the line receptance formulation is the same as the definition of U in the
distributed receptance formulation.
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z _ Y

——p

Figure 2. One rod with area 24.

6. EXAMPLE PROBLEMS FEATURING DISTRIBUTED CONNECTIONS

The application of distributed receptances will be demonstrated by using rod problems.
The rod problems were selected since corresponding analytical solutions were also
available. Since the modal form of the distributed receptance is used, the problems involve
the use of the distributed receptances in connection with two modal systems coupled
through a distributed junction and, as such, demonstrate much of the complexity of j jommg

complex structures.

6.2. TWO IDENTICAL RODS JOINED ALONG THEIR LENGTH
The receptance matrix for longitudinal vibration of a rod is [1]

1 G b, i CGSICL i
f] = [an Otzzj—- kEA sinkL[ i coskL]’ 7

and thus the drive-point receptance for longitudinal vibration of a rod -of length L, area
A, Young’s modulus E and density p is

_ coskL 2 [ 1 1
M= TREAsmkL = pAL| 3w° T zco w-]

pe

(88)

where k = w./pA/E4 is the wavenumber of longitudinal wave propagation' in the rod and
= (nx/L)/ EA[pA is the nth natural frequency of the rod. The rod in Figure 2, with

length L, area 24, Young’s modulus E and density p, has a drive-point receptance of

_ . GCoskL
M= T REAsmkL ™" &2

and thus the displacement response at node 1, due to an applied force F at node 1 is
A ﬁ’}’uf"= ‘éﬂluFa : (90)

If the single rod in Figure 2 is separated into two identical rods, each with area A, joined
along their lengths as in Figure 3, the line receptance formulation may be used to find the
displacement response , due to the force F. The receptance equations for the identical,
line-connected rods are

= apF + ti"EF;z, iy = duF [(Zn}ﬁlz, gy = [ﬂzz]sz. (91-93)
F
J—— &
®
B

Figure 3. Two identical rods joined along their length,
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By applying the force and displacement compatibility boundary conditions,
#o=dp, Fot+Fn=0. A {94,95)
the force vector acting on component § is found to be '
Fo=[on+ Bul 'dF. . (96)
By substituting the interface force into equation (91), the drive-point displacement is found
to be
= oy F — &hfon + fu) '@ F. ®7

At node 2, the nth component of the generalized receptance that relates a distributed
force to a distributed displacement in modal form is given by equation (64). If the modal
damping assumption is replaced by a structural damping that allows the damping to be
applied by means of a complex Young’s modulus, ie., '

E=E(l +n), °8)
where j = ./ —1, equation {64) becomes

el = | 0" § ——29C t ©9)
- pA(wS—w’)(fUEdA)
A

The other distributed receptances are found from equations (40) and (42). The free-free
mode shapes of each of the rods is given by

U(x) = cos((nm/L)x). (100)

Since both rods have the same natural frequencies, the generalized receptance is in the same
form as the line receptance that has been used primarily by Soedel [2]. In the line receptance
formulation, the shape functions are selected to be the same as the mode shapes; ie.,

Bu(x) = cos((nn/L)x). (101)

Thus, the mnth component of the distributed receptance along node 2, equation (99),
becomes

|
T Y form=n
2 . m3)? 3
pA(w;, — @) (102)

0, form#n.

Eepny (@) =

The mth component of the distributed receptances that relate nodes 1 and 2 is given by

1
() TN — . N F—
uxm(w) - pA(a),f. — wZ) ; (103)
and
N form =0
wn (@)= PAHCD) (104)

m, form # 0.
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F

— o

@ | ®

Figure 4. The two-rod receptance problem: the configuration with a point junction.

In addition, since the rod § is identical to rod a,

§ ¢
e — form = n,
ot (@) = of (@) = PR )

Basdy (]05)
0, form # n,

where

= (mn/L)JEAJpA. (106)
Substitution of equations (102), (103), (104) and (105) into the last term of equation (97)
gives

| a@nlot; + Pol '@y F = Z ";'i,(w)

m-ﬁ

Fl 1 F
pALL e Zm,,,—-w]— B e

107)

and equation (97) becomes
U = ';‘OﬁnF, {108

‘which is the same as the result given in equation (90) for the receptance of a rod having
twice the area of the individual component rods. Thus the distributed receptance (and line
receptance) formulation gives a result identical to the analytical solution predicted by
using the point-to-point receptance. In this case the distributed receptance formulation
provided an exact solution for the response of the rod having twice the area, since the
series of shape functions was not truncated. In practice, when more complicated
structures are joined the series will need to be truncated and the results will only
approximate the exact analytxcal solution. The accuracy of the approximation will be
governed by how well the displacement response of the interface can be represented by
the shape functions, ¢,.

6.2. TWO RODS OF DIFFERENT LENGTHS JOINED ALONG THEIR LENGTH

Although the above example involved a simple problem, equation (97) represents the
drive-point displacement of any two-component system. By connecting a rod having area
A to the end of the rod considered in the first example, one obtains the geometry shown
in Figure 4. The displacement at node 1 in Figure 4 may be found from equation (97) to
be 4

" = (cqu - é“—”f—;-g—)r (109)
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where the receptances are given by

coskL . 1
W=tp= —goe T, O == —grer (110,111)
and
coskL
Br = — FEdsmkL’ 99
where

k=aoJpAlEA. ‘ (113)

By substituting equatxons (110), (111) and (112) into equatxon (109), the displacement
response at node 1 is found to be

(1 — 3cos’kL)
" = SkEAsmkLcoskL (114)

The same problem can be represented differently, however, For example, in Figure §
the problem is represented such that rod a of length L and area 4, and rod § of length
21 and area A, are joined along a distributed line-connection at node 2. The displacement
response at node 1 is then given by equation (97), where ’

___coskL 2 T
1= “REAsinkL ~ pAL| ~ 2w2+z ] . 84

and the distributed receptances are defined by equations {(40), (41) and (42). Rod « is the
same as the rod o that was considered in the line receptance example above. Thus, when
the same shape functions, cos(nnx/L), are used, the distributed reccptances for rod « are
given by equations (102), (104) and (103), where

@ = (mn/L)/EAJpA. (116)

The distributed receptance of rod 8 at node 2 is obtained from equation (42) and can

be rewritten as
o { J; Uz(x)iﬁ(x)dx}{ J; U,.(x)wx)dx}’

()] = ULEB()? 5163 )de] y ' - , (117
i " pA(wf — wz)(f U,’,’,’dx)
7 [+4

O C)
l B ]

Figure 5. The two-rod receptance problem: the configuration with a line junction.
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- g mu [EA
Ul = cos((mn/2L)x), b= 3T pd” (118,119)
After substituting
Pu(x) = cos((mn/L)x) (120)
into equation (117), the receptance of rod f§ is found to be
[ 1 00
ilLo,;,ILo,,T Lond
[Bo(@)] = 5 A 72| 0 10 [20,,,. = p;l-#”i"’-‘-] (121)
0 0 1

where

Iy = fcos(%x)cos(ﬁg )dx %(smc(z + ﬁ) + smc(% ')) (122,123)

SO R S L p. (24126

N, . N,

By substituting the receptances defined in equations {102), (103), (104) and (121) into
equation (97), the displacement response of the system shown in Figure 5 may be found.
For the purpose of calculation, the rods shown in Figure 5 were assumed to have a Young’s
modulus E of 19-5 x 10'°N/m?, a density p of 7700kg/m?, a damping factor » of 0-01, an
area 4 of 1-0 x 107*m* and a length L of 0-5m. A comparison of the displacement response
found using the distributed receptance model, and the displacement response found using
the point receptance model shown in Figure 4, is presented in Figure 6. The distributed
receptance formulation provides good results and converges towards the point receptance
prediction as the number of modes (and hence shape functions) is increased. Note that
for the sake of simplicity, the number of modes used to predict the modal response was
made egual to the number of shape functions used to fit the interaction along node 2.

A case having identical material and geometrical values except that the second rod was
assumed to be only 1-8 L in length was also analyzed. In the point-connected case, the only

change is that f, is now given by

_ ___cos(0-8kL)
Bn= kEAsin(0.8kL) (123

In the distributed receptance case, [f.:] becomes

100 :
2 :
[Ba(w)] = FOpAL 010 [{DIéMIL;:; + 2IL(;/)09>;»1L$;09MT], (128)
00 1 et
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Figure 6. The displacement response of two rods with different lengths (L and 2L} joined along their length.

—— Point receptance; -,

distributed receptance with five modes; ——, distributed receptance with ten modes.

In the distributed receptance case, [f»] becomes

Buypeme

2
[Ba(@l = 555712

L= T

D

ks

ILMILMT

_a)'

(128)

2 Lol Lo w‘f}
:p. s
=
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Figure 7. The displacement response of two rods with different lengths (L and 1-81) joined along their length.

——, Point receptance; -,

distributed recepiance with five modes; ——, disiributed receptance with ten modes.
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where
w,f = (mufl-8L)./EA[pA. (129

The displacement response found using the distributed receptance model and the
displacement response found by using the point receptance model are compared in
Figure 7: again, good agreement and convergence were obtained. Thus, in the case in which
the lengths of the two rods are not integer multiples, the distributed receptance formulation
still provides good results and converges towards the correct response as the number of
modes (and shape functions) is increased. It appears that the convergence rate is slightly
faster when the lengths of the rods are integer multiples. However, further work would
be required to draw a firm conclusion in this respect.

7. CONCLUSIONS

In this paper, the receptance matrix formalism has been extended to accommodate
distributed connections between components. In particular, the extension was based on
generalized Fourier series concepts. The receptances for distributed connections were
shown to reduce to the previously developed line receptance formulation in problems for
which the latter approach is appropriate. The performance of the distributed receptance
method was demonstrated through two example problems involving rods. The capabilities
of the distributed receptance method presented here should make it possible to automate
the development of analytically based models of complex structures more easily, thus
making them accessible to a wider audience of structural analysts.

The receptance method can be used to solve both free and forced vibration problems.
Traditionally, some of the advantages of the receptance method are: (i) that it is well suited
to cases in which experimental and analytical data are mixed; (ii) that it is particularly
useful for analyzing systems made up of a small number of components; and (iii) that it -
often provides better insight into the physical mechanisms behind a response than other
numerical methods. The receptance method had been improved by Jetmundsen es 2l. [12]
and Gordis e? al. [13] to aliow automated assembly of the system receptance matrix. That
modification allows the receptance method to be used as a general purpose analysis tool,
much like the finite element method. With the addition here of the ability to model
arbitrary distributed junctions, the receptance method now provides a potential alternative
to finite element analysis.

Some of the advantages of a receptance element method over the finite element method
are the ability to seamlessly mix analytical, modal, numerical and experimental
receptances, and the potential to use larger analytical elements. In addition, it should be
more straightforward to update models with experimental data than it is when using finite
elements. Note, however, that the use of distributed receptances will be limited by: (i) the
difficulty in obtaining a closed form Green function for plates and shells having arbitrary
boundary conditions; (ii) the non-linearity of the eigenvalue problem that requires a
determinant search; and (iii) the lack of readily available aigorithms for assembling the
system receptance matrix. The lack of a closed form Green function in many cases may
be overcome by use of a modal model of the system. When using a modal description of
the component receptances, the receptance method becomes an alternative component
mode synthesis method.
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