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The receptance technique has been used most frequently to analyze the vibrational 
response of structures that may be idealized as a set of substructures connected at one or 
more discrete points. However, the receptance technique can also be used to analyze the 
response of structures connected along particular types of line junctions. In this paper, an 
extension to the receptance technique is presented that makes use of a generalized Fourier 
series approach to allow the evaluation of both the free and forced response of systems 
comprising components connected through spatially distributed junctions. The present 
extension is shown to reduce to the previous line receptance definition in the appropriate 
limit. The general distributed receptance formulation is demonstrated here through 
application to two problems involving coupled rods. The results obtained using the 
distributed receptance technique were found to compare well with the matching analytical 
solutions. 

© 1996 Academic Press Limited 

l. INTRODUCTION AND BACKGROUND 

The receptance technique allows the dynamic response of a complex structure to be 
modelled through the systematic combination of component receptance models; i.e., the 
receptance of each component is found, and then they are linked together to form a global 
receptance matrix. By using the receptance model, both the free and forced response of 
a structure may be evaluated. A feature of the receptance method is that the individual 
component receptances may be found by different means; i.e., some of the receptances may 
be found analytically, some may be found by using finite element or other numerical 
methods, and some may be found by experiment. The application of the receptance 
technique to many simple elements is discussed by Bishop and Johnson [l ] and its 
application to plates and sheJls is discussed by Soedel [2]. 

The receptance, rt.v, is defined as the displacement, u,, at location i normalized by a 
harmonic force, jj, applied at location j; i.e., 

IXq = U;/jj. 

More precisely, the receptance can be written as 

( - _ ) u(x,,ro )lrc.:a -1, 
rt. Xi,Xj,W = /(- ) , 

Xj,W 

(1) 

(2) 

where x is the spatial co-ordinate vector and ro is the radian frequency of the harmonic 
excitation force. In general, a receptance may be considered to be a component transfer 
function that can be combined with other component receptances to generate system 
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response equations when they are coupled by using force and displacement compatability 
conditions. As originally proposed, each component is characterized by a set of receptance 
transfer functions. that relate the forces and responses at a set of discrete locations; these 
methods are therefore particularly useful when applied to systems whose components are 
connected in a point-wise manner. In this paper, the receptance definition in equation (2) 
will be extended from a point-to-point receptance transfer function to a region-to-region 
receptance transfer function where a region may be a point, a line or a two-dimensional 
area. Region-to-region coupling allows the receptance technique to be used to analyze 
structures having any type of connection between their components. 

The line connection was the first type of distributed connection that was considered in 
the context of the receptance method. Three types of line receptances will briefly be 
reviewed here. 

When Wilken and Soedel [3,4] first applied the receptance method to plate and shell 
structures, the components of the systems they considered were required to be connected 
in a point-wise manner except in one case when a line connection was considered. They 
demonstrated that the spatial dependence of the receptance along a line connection could 
be eliminated from the system characteristic equation when the mode shapes of the 
unconnected components were identical along the line joining them. In that case it is 
possible. to define a line receptance as 

(3) 

where um is the coefficient of the mth mode of the displacement response and f,,. is the mth 
coefficient of the expansion of the connection force in terms of the modal basis functions. 
By using this definition, the characteristic equation of the combined system may be found 
as if the line connected components were connected pointwise. Soedel and his colleagues 
have applied the concept of the line receptance to frame-stiffened, simply supported 
rectangular panels, ring-stiffened cylindrical shells [3,4], cylinders stiffened or terminated 
by circular plates, (e.g., end caps) [5,6], continuous rectangular plates [7], and cylindrical 
polygonal ducts [8,9]. Note that it is not possible to solve a forced response problem by 
using the receptance defined in equation (3), since it is a self-receptance, i.e., «,,,,,,, and forced 
response problems require knowledge of transfer receptances. 

The forced response of line connected systems can, however, be calculated by using the 
line transfer mobilities derived by Cuschieri [10] in the course of analyzing a problem 
involving the forced response of two coupled, flat plates. When re-formulated as a 
receptance,_ Cuschieri's line mobility becomes 

(1.mj = Um/fj, (4) 

where um is the mth modal displacement in response to a point force, fj, applied at 
locationj. 

Later, Huang and Soedel [1 IJ defined a third line receptance. It is also a transfer 
receptance, and it relates the displacement at a point i, u,, to the mth coefficient of the 
expansion of the connection force in terms of the modal basis functions, f.,; i.e., 

(5) 

The transfer line receptances, equations (4) and (5), can be combined with the self line 
receptance, equation (3), to analyze either the free or forced response .of structures 
featuring a combination of line and point connections. For example, Huang and Soedel 
applied all three types of line receptances to predict the forced response of a cylinder with 
a plate welded across each end [I I]. 
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It should be emphasized that the three line receptances defined above can only be used 
to couple components that have identical mode shapes along the line joining them. 

Note also that when several component connections are involved, the "bookkeeping" 
required by the receptance technique can be tedious. To facilitate the manipulation and 
solution of the system equations, the receptance equations may be written in matrix form. 
As the number of components in the system increases, however, it becomes more and more 
awkward to couple the component receptance equations. The coupling involves 
application of the force and displacement compatability equations between each 
component. That coupling may be automated, however, by using the graph theory 
approach developed by Jetmundsen et al. [12] and later extended by Gordis et al. [13]. 

In addition to the receptance technique, other procedures have been developed that can 
accommodate distributed connections between components. Green function methods and 
the finite element method will next be discussed briefly. 

Nicholson made use of a Green function to develop an integral formulation for the free 
response of line-stiffened plates [14]. However, since his approach is not receptance-based, 
it does not lend itself to a building block representation of multi-component structures. 
Nicholson used his approach to solve a number of example problems similar to those also 
considered by Soedel and his colleagues [3,4]. The complexity of the example problems 
was limited by the difficulty of deriving a Green's function for a plate having general 
boundary conditions. 

Kelkel [15] has also discussed the use of a Green function approach to derive $e 
receptance matrix for free-free rectangular plates that are stiffened by coupled beams. A 
large part of Kelkel's paper is devoted to deriving an approximate Green function and the 
associated point-connected receptance matrix for a free-free plate. The Green function 
involved a truncated triple summation and was obtained by analyzing four symmetric and 
antisymmetric problems. A complete analysis required the solution of four associated 
problems, each having carefully selected boundary conditions. This type of plate analysis 
is typical of the work of Gorman (16]. By coupling the plate Green function'and the Green 
function of a beam with a Fourier series expansion of the shared displacements, Kelkel 
was able to derive the Green function, and then the receptance matrix, for a plate 
reinforced along a line by a coupled beam. Kelkel's method of coupling the beam and plate 
has been generalized in the present work to allow the development of a receptance for 
distributed connections. 

The finite element method is very commonly used to model systems having distributed 
connections. The finite element method is usually based on stiffness equations rather than 
receptance equations, since it is easier to assemble the system equations for large numbers 
of components when using the stiffness matrix formulation. The two approaches can be 
related, however, since the dynamic stiffness matrix that appears in the finite element 
method, i.e., [K - ro2 M], where K is the stiffnes~ matrix, co is the frequency in radians per 
second, and M is the mass matrix, is the inverse of the receptance matrix. If the terms in 
the dynamic stiffness matrix cannot be determined analytically, they can be measured, 
although with some difficulty. To measure Di/, the displacemeni u1 resulting from a unit 
load applied at location i must be measured when all other external degrees of freedom 
are fixed. The stiffness measured in this way is usually called the " blocked" stiffness. Owing 
to the difficulty of experimentally fixing structural degrees of freedom, experimentally 
determined stiffnesses are rarely used to replace analytical stiffnesses. In addition, it is 
difficult to apply true point forces within the finite element method. A force applied at a 
node in a finite element representation does not represent a point force, but rather a 
distributed force the shape of which is described by a polynomial shape function. 
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Nonetheless. the finite element method remains the most commonly used technique for 
analyzing systems with distributed connections. 

The Green function approach and the finite element method can both be used to couple 
extended components over a distributed region. In addition, several researchers have also 
made special provision to accommodate point-wise coupling between discrete and 
extended components in their analysis tools. For example, Hallquist and Snyder [l 7J 
considered the response of beams and plates coupled through point-connected viscous 
dampers. Recently, Tzioufas et al. (18] presented a method for coupling multiple 
point-connected discrete-distributed systems in the time domain. Particular attention was 
paid to a staged algorithm that could be used to solve the system eigenvalue problem. In 
addition, a technique called the Structural Analysis Method was developed by Pesterev and 
Tavrizov [19] to synthesize system models from the combination of distriQuted-finite 
structures interacting at a finite set of points. Their method makes use of Green functions 
to model the components and is described in terms of operator terminology. The major 
result of the Pesterev and Tavrizov Structural Analysis Method is the system receptance 
matrix (also called the Modal Force Matrix). The system eigenvalue problem is then solved 
by finding the frequencies at which the system receptance matrix is zero. Recall that even 
though the techniques described in this paragraph can be applied to mixed 
distributed-discrete systems, none of them can accommodate distributed connections; i.e., 
connections over a two-dimensional region. 

From this survey of earlier work, it was concluded that the analysis procedures that can 
be used to represent distributed connections are as foJlows: line receptance analysis. the 
Green function approach and finite element analysis. Both the line receptance approach 
and finite element analysis provide modular, ready-to-use·elements for synthesizing system 
equations. The Green function approach is flexible and may be applied to a great many 
problems, but it is not easily expressed in modular form, and analytical integration over 
the distributed connection region is usually required. Thus Green function methods do not 
have the same potential for the development of plug-in building blocks as do the line 
receptance and the finite element methods. The use of distributed receptances also appears 
to have several advantages when compared with the finite element method. In the finite 
element method, the solution is based on fitting a set of shape functions at every point 
of the system. In contrast, the use of the distributed receptance involves fitting a set of 
shape functions only over a distributed junction, a more economical procedure. In this 
resepct, the distributed receptance technique is similar to the boundary element method. 
In addition, since the concept of the distributed receptance may be easily used in 
combination with analytical solutions for component responses, discretization difficulties 
in optimization problems that occur when the finite element method is used [20,21] can 
be avoided. Also, true point sources and distributed loads of any type may both be 
modelled using the distributed receptance technique. FinaJly, note that when using the 
receptance technique, the system response is found by multiplying the system receptance 
matrix by the forcing vector (instead of by solving a matrix equation as in stiffness-based 
methods); thus the effect of each term in the receptance matrix on the system response 
is clear. 

In summary, component synthesis methods are wen developed in the context of 
receptance and stiffness approaches, have been presented in many variations and have been 
applied to many problems. However, when system components are joined over a 
distributed area, the finite element method is the only general purpose method currently 
available for analyzing the problem. For certain problems involving distributed 
connections, the line receptance method may be used while the Green function approach 
may be applied to other types of problems. 
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The present work entailed the extension of the receptance method to general distributed 
connections, thereby expanding the types of problems that may be addressed by using the 
receptance method. 

2. DERIVATION OF RECEPTANCES WITH DISTRIBUTED CONNECTIONS 

When extending the definition of a receptance to accommodate distributed connections 
between the individual components, it is convenient to start from the receptance definition, 
in equation (2), that can be rewritten as 

u(xi,cu)l,@a-£1 = a.(x1,XJ,W)/{XJ,CO). , (6) 

A generalized Fourier series approach (see, for example, Churchill and Brown [22D will 
be used here to extend the point-connection receptances to accommodate general 
distributed connections. An example system with a distributed connection is shown in 
Figure 1. 

The displacement and force response terms in equation (6) need to be replaced by 
approximate forms when the contact is distributed over an area. The displacement, u(xi,co) 
at location x, is approximated as 

oo N1 

u(x,,co) - L Um(w)<l>m(X;) ~ L u,,.(co)</),,.(x,) ~ q,(x,)Tu(co), (7) 

~. 

and the force f(x1,co) at location xi is approximated as 

/(xi>w) = r,J,.(co)t/l.(x1) ~ f1,,(co)t/Jn(X1) ~ i{,(x1)1]{_w), (8) 
n~o n•o 

where the t/>m(x,)'s are a set of shape functions used to describe the displacement over area 
i, and the ef,.(x1)'s are a set of shape functions used to describe the force over area j . The 
displacement shape function contribution coefficients, u(m), are given by 

(9) 

but if the displacement shape functions, q,(x,), are orthonormal, the matrix in equation 
(9) reduces to the identity matrix, and the mth shape function coefficient, um(w ), is simply 

(10) 

Figure 1. Subcomponents A and B joined along line L. 
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The force shape function contribution coefficients, l{ro ), may be defined in a similar 
manner. The shape functions may be selected from any set of complete functions. 
However, in regions that will be connected in the combined structure, the same shape 
functions must be used in both components. 

When multiple point forces drive the system, equation (6) becomes 

(11) 

The response due to a distributed force may be found by approximating the distributed 
force as a large number of point forces. As the number of point forces, N1, goes to infinity, 
the summation in equation (11) may be replaced by an integral, to give 

u(.i;,Ct> )l.i@1,,.,AJI = i a(X1,X1,W )f(x;,Ct> )dA1. 
. AJ 

(12) 

The distributed force,/(.x1,ro), in equation (12), may be approximated by using equation 
(8) to give 

u(x,,w )l.i@1f,.,A1J = {L cx(x,,x;,co )i{,(x1)T dA1 }]{co). (13) 

From equation (13) the generalized receptance vector that relates the displacement 
spectrum at a point to the force shape function contribution coefficients,l{co), is given by 

(14) 

The receptance that relates the force over an area, Ah to the displacement over another 
area, A,, may be obtained by extending equation (13) to account for a distributed response. 
This can be done by taking equation (9) (that defines the displacement shape function 
participation factors in terms of the displacement field) and substituting it into equation 
(13) as a definition of the displacement field. That operation results in 

The receptance matrix that relates the force shape function participation factors to the 
displacement shape function participation factors is then 

A special case of the receptance that relates a force over a distributed region to a 
displacement over a distributed region is the case in which the force and displacement are · 
both distributed over the same region. In this case the receptance is 



JSV-MS 1500 

DISTRIBUTED CONNECTIONS BY RECEPTANCES 7 

The receptance that relates a point force to a distributed field may be obtained by 
substituting equation (6) into equation (9), which results in 

The receptance vector that relates a point force to the displacement shape function 
participation coefficient vector is then 

(19) 

The distributed receptances that were developed in this section may be used in the same 
way as standard point receptances; i.e., to derive the characteristic equation, mode shapes 
and forced response of the system. In the case in which subcomponent alpha isis joined to 
subcomponent fJ at the distributed region i, the force and displacement over region i on 
subcomponent a are approximated by 

u•1(x;,cn) = 'ip(x,Yu"'(ro) 

and 

.f1(x,,ro) = °q}(x,)?1(ro ), 

respectively. The force and displacement over region i on subcomponent 
approximated by 

u•{x,,ro) = "if,(:x;)Tufl•(ro) 

and 

.f1(x;,ro) = 'ip(x,)l'f•(ro ), 

respectively. Any externally applied load in region i is approximated by 

f x'{x,,ro) = q,(x,r'Jx''((JJ ). 

(20) 

. (21) 

p are 

(22) 

(23) 

(24) 

The compatibility equations then become equations in terms of the unknown shape 
function coefficients. The compatibility equations to be satisfied over region i are the· 
continuity of displacement, 

(25) 

and the force balance, 

(26) 

. The equations developed in this section provide a formalism for applying the receptance 
method to systems having distributed connections. The extended definition of the 
receptance has been developed so that problems featuring distributed connections can be 
solved in a manner similar to problems featuring point connections. 
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3. DISTRIBUTED RECEPTANCES FOR COMPONENTS DEFINED BY MODAL 
PARAMETERS 

The displacement, u, of any linear, elastic structure can be modelled by using a linear 
partial differential equation (or by using a set of linear partial differential equations) that 
has the form 

~{u,} - lu, - mii, == -q,, (27) 

where !1' is a linear stiffness operator, l is the equivalent viscous damping factor, m is a 
mass term (usually mass per unit length or mass per unit area), q is the force applied to 
the system and the subscript t denotes a time-dependent variable. When a harmonic time 
dependence of the form, u, = ud'01

, is assumed, equation (27) becomes 

~{u} - jwhl + nuiiu = -q. (28) 

After applying boundary conditions to equation (28), the eigenvalue problem can be 
solved. (Note that when calculating the receptance of a component that will be combined 
with other components to calculate a system response, the boundary conditions should be 
those that are present when the component is disconnected from the rest of the system.) 
The eigenvalues are the natural frequencies, wk, and the eigenvectors are the mode shapes, 
U1:(x). The displacement is then given by 

where 

is the modal damping coefficient and 

i qUr,(x)dA 

Qk=----

m i ~(x)dA 

(29) 

(30} 

(31) 

is the modal forcing function. In equation (31), the integral is over the entire component, 
region A, as defined in Figure I. 

3.1. RESPONSE TO A POINT FORCE 

When the force, q, is a point force acting at location, j, i.e., 

(32) 

the modal forcing function is 

ijj(w )b(x1)U1c(x)dA 

Qr,= A = /j,((J))Uk(X1) 

mi Ui(x)dA mi Ui(x)dA 

(33) 
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The corresponding displacement response is 

and thus the receptance for a system described in terms of modal parameters is 

3.2. RESPONSE TO A DISTRIBUTED FORCE 

When the force, q, is a distributed force acting over region, j, as expressed by 

q = jj(xJ,ro) ~ i/i(x):l{ro )"lt(x,A1), 

where d// is a unit step function defined as 

'fl(x,A) = g: 
the modal forcing funtion is 

xeA, 
otherwise, 

f i]i(x)1Jt:m)Uk(.i)d/l(.i,A1)dA f 'i/i(x1)TUk(.i1)dA1 

9 

(34) 

(35) 

(36) 

(37) 

L J~ 
Qk = -------=-----~w). (38) 

mi Ui(.i)dA m 1 l/i(.i)dA 

The corresponding displacement response is 

3.3. CALCULATION OF THE DISTRIBUTED RECEPTANCES FROM MODAL POINT-TO-POINT 

RECEPTANCES 

(39) 

The modal form of the point-to-point receptance in equation (35) may be substituted 
into equations (14), (19) and (16) to give the modal forms of the three distributed 
receptances. The generalized receptarice that relates a distributed force to a point 
displacement is found to be 

(40) 
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The generalized receptance that relates a point force to a distributed displacement is 

(41) 

and the generalized receptance that relates a distributed force to a distributed displacement 
is 

3.4. CALCULATION OF THE DISPLACEMENT DUE TO A DISTRIBUTED FORCE USING 

THE GENERALIZED RECEPTANCE 

Equation (40) can be used to calculate the displacement at a point, x,, as 

Thus the displacement at location x, is 

N, uk(xi) L Uk(x1)ili(x1)dAj 
L . , 

k= 

1

m(wi - w2 + 2jCkwkw>(i U1dA) 

T 

l 

(42) 

(43) 

(44) 

Note that equation (44) is the same as the displacement calculated using direct modal 
expansion when the structure is excited by a distributed force of the form, 
]{w)·= 'i/i(x):/(_(J)), as in equation (39), thereby validating the generalized receptance that 
relates a distributed force to a point displacement (equation (40)). 

4. SHAPE FUNCTION SELECTION 

Up to this point, the shape functions, efJ and 1/t, have not been specified, except that any 
shape functions that represent a function over the same region of the combined structure 
must be identical over that region. Also, it was implied that 'if,(x,Yii(m) was an acceptable 
approximation of/(x1,ro). Many different shape functions will satisfy these criteria. In this 
section, specific shape functions or classes of potential shape functions will be considered. 
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4.}. ORTHONORMAL SHAPE FUNCTIONS 

When the shape functions that are used to approximate the displacement, q,(ro ), are 
orthonormal over the region i, then the matrix lf,.,q,(x,)'if,(x,)TdA;] becomes the identity 
matrix and its inverse can be removed from all the definitions of the receptance matrices 
in which it appears. In general, that is the only simplification that follows from using 
orthonormal shape functions. 

4.2. MODAL SHAPE FUNCTIONS 

In the case in which a modal description is used to specify the point-to-point receptances, 
it may be advantageous to select shape functions that are the same as the modes of one 
of the components over the region i or j. In general, no simplification results from selecting 
the shape functions to coincide with the modes. However, the approximations to the 
displacement and force fields should provide better results with fewer terms in the series 
when the shape functions are made up of the characteristic shapes of the subsystem. 

If the modal shape functions happen to be orthogonal over the distributed contact 
region, then the form of the distributed receptances will be simplified. Selection of the 
modal functions as the shape functions gives 

and 

As an example of the modal receptance, equation (40) becomes 

ri,u (a>) ::z 
.I 

Nk 'Uk(X1) L Uk(X1)V(.i1)dA1 

I: ~ 

" ~ 

1

m(wl - w2 + 2jCkwkw{i UldA) 

(4S) 

(46) 

(47) 

when the modal shape function, equation ( 45), is used. If the modes are orthonormal over 
the entire subcomponent, then 

i UldA = 1. (48) 

If the modes are orthogonal over the contact region, then 

(49). 

where EL, is the elementary vector with all-zero elements, except for the kth element which 
is unity, and 

Ufc = i Uk(xi)Uk(i1)dAi . 
A1 

(50) 
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There is also an elementary matrix, ELlj, which contains all-zero elements except for the 
ijth element, which is unity. When the orthogonality condition is met (equation (49)), the 
kth element of equation (47) reduces to 

(le> ( ) Uk(x;)U; 
a.,uf (J) = 

m(wf- w2 +_2j(1irokw{i UldA) 
(51) 

Over region i , the kth element of equation (41) becomes 

,t1 ( ) _ u;uk(x1> 
rig,," CQ -

m(rol- ai + 2j,kro1cro{i UldA) 
(52) 

and when regions i and j coincide, equation (42) becomes a diagonal matrix in which 

(53) 

is the kth diagonal term. 
The more common case is the. one in which the shape function is the same as a portion 

of the mode shape, and is orthogonal to a portion of the modal shape functions. In this 
case, the mode shape function, Uk(x1), can be rewritten as 

(54) 

where the k modal index has been reparameterized into an m and n pair of modal indices, 
the spatial co-ordinates, x1, have been split into two sets of co-ordinates, xJ and xJ' 
(typically these are now each a single co-ordinate, but in general they are vectors), and 
the modal shape function has been split into two parts which correspond to the new 
co-ordinate definition. The m and n indices also correspond to the new split co-ordinate 
definition. Selection of the shape functions to be the second part of the modal functions 
(that is, the part that varies over the contact region) gives 

tft,,(xJ') = U:.'(.iJ') (55) 

and 

tJ>,,(xt) = U!' (xn (56) 

The modal receptance that relates a distributed force to a point displacement, equation 
(40), for this second class of modal shape functions becomes 

N,,, N,, 

a,,,,<w> = L L 
m c lrJ:11::J 

U,,,.(x,) ( U~(xJ)U:.'(xj')D"(xj')dxJ' 
JAi 

(57) 
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when the modal shape function, equation (55), is used. The orthogonality condition over 
the contact region is 

i u::(xj')U"(xj)dxj' = U!"ELn, 
AJ 

(58) 

where EL1c is the elementary vector and 

u::' = l u:: (xJ')2dxJ'. 
Ai 

(59) 

When the orthogonality condition is met (equation (58)), the summation over n sums Nn 
orthogonal vectors which reduce to a single vector. The nth element of the distributed 
receptance «,;lw) in equation (57) becomes 

(60) 

In the case of the receptance that relates a point force to a distributed displacement, 
the mode shape function, Uk(x1), can be rewritten as 

(61) 

Substitution of the mode shape function, equation (61), and the displacement shape 
function, equation (56), into equation (41) gives 

(62) 

Then, application of the orthogonality condition (which is the same as equation (58), 
except that j is now replaced with i ) to equation (62) gives 

(63) . 

for the nth element of tXrA.,(w). 
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When distributed regions i and j coincide, and upon substitution of equation (54) for 
the mode shape, equations (55) and (56) for the shape functions, and the replacement of 
j with i, equation (42) becomes 

where 

and 

[(J,] = f D"(xr)D''(xt'f dx:' 
JA, 

cp; = i u:..cxnu::(x:')'CJ"(xf')dxf'·. ,,, 

(64) 

(65) 

(66) 

After applying the orthogonality conditions expressed in equations (58) and (59), equation 
(64) becomes a diagonal matrix in which 

(67) 

is the nth diagonal term. 

S. COMPARISON WITH LINE RECEPTANCES 

As mentioned in the opening section of this paper, the line receptance technique has been 
applied to a variety of problems in which the joining substructures had identical mode 
shapes over the line connection and the mode shapes were orthogonal over the line 
connection [2,3,5,6, 11). In this section, a general presentation of the line receptance as it 
is used for free response problems will be developed. The modal distributed receptance 
definition with the appropriate modal characteristics, equation (53), will be evaluated for 
a line connection. The distributed receptance formulation will be shown to be identical to 
the line receptance formulation when applied to aa problem in which the line receptance 
can be used. 

The geometry of a general line receptance connection is shown in Figure 1. The mnth 
mode shape of component A is defineQ as 

u,, • .,(x) = uL.(xL)u:.,,.(x') 

and the mnth mode shape of component B is defined as 

Ua.,.(x) = UdxL)U;,_,(x'), 

{68) 

(69) 

where XL is the co-ordinate along the connecting line, the co-ordinate vector, x', contains 
all of the co-ordinates except x, Ut.,.(xL) is the nth mode shape along the line connection, 
U~...(x') is the part of the mode shape of subcomponent A that is not along the line · 



JSV-MS 1500 

DISTRIBUTED CONNECTIONS BY RECEPTANCES 15 

connection, and u;,.,(.i') is the part of the mode shape of subcomponent B that is not along 
the line connection. 

First, assume that the forcing function along the line connection is of the form 

/L,,(xL,w) = F(w)U1.,(xL). (70) 

Then the displacement response at location xi on subcomponent A is 

where F..,,(co) is 

and .if is the location of the line. Because the mode shapes are orthogonal along the line, 
the final form of the modal force participation factor is 

forn = p, 
forn #:p, 

where 

or 

u;_,. = 1 UL,,(.iL)1dxL , 

The receptance, «,(.i;,L,w ), is defined as 

( - L ) u(.i;,ro) 
«, X1, ,CO = I' ( ) 

JL, XL,CO 

(74) 

(75) 

(76) 

«, x,, ,w - u ( ) £, • ( _. L ) _ 1 ~ [ U ' • (iiL)UL, u,. (X; )U ,.(x,) ] (?7) 

L,. Xi m=I mA(wt. - (1)
2 + 2KA..,,WA.,,,.w>(f. U;,pdA) 

The receptance, a,(L ,L,w ), that relates a line load to a line displacement, is 
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In a similar manner, the receptance on structure Bis 

P,(L,L,w) == PLL, = L ________ ..........___,,_ ____ . (79) . 
11
"' [ U;, (xf)UL ] 

m= 

1 

ma(wi.,. - a>2 + 2jCs""'WB;..,.w{i. U;,pdA) 

There are N, characteristic equations of the combined system and the pth one is 

ixu,(w) + Pup(w) == 0. (80) 

When the generalized distributed receptance formulation is used, the receptances along 
the line junction are given by equation (67). For component, A, the receptance is a diagonal 
matrix, in which 

is the nth diagonal term. Similarly, for component B, the receptance is a diagonal matrix 
in which 

Pa.== ~~,..,(w) = L 11,,, Xu B. (82) N,. { U' ( -,\2U'" } 

m = I ms(OJ.i.,. - W
1 + 2K.s..,Ws..,W >(LB m ... dA) 

is the nth diagonal term. 
The characteristic equation for the system is 

(83) 

or 

l[ixu(ro )]+ [P;;(ro )]I == 0. (84) 

Because the matrices are diagonal, equation (84) reduces to 

N• 

}: (rx11 .. + Pil, • .> = o. (85) 
«= I 

Equation (85) produces Nn equations of the form 

(86) 

The characteristic equation developed from the line receptance formulation, equation (80), 
is the same as the characteristic equation developed from the distributed receptance 
formulation, equation (86), when it is recognized that L in the line receptance formulation 
plays the same role as i in the distributed receptance formulation, and that the definition 
of Ut in the line receptance formulation is the · same as the definition of UZ:, in the 
distributed receptance formulation. 
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Figure 2. One rod with area 2A.. 

6. EXAMPLE PROBLEMS FEATURING DISTRIBUTED CONNECTIONS 

The application of distributed receptances will be demonstrated by using rod problems. 
The rod problems were selected since corresponding analytical solutions were also 
available. Since the modal form of the distributed receptance is used, the problems involve 
the use of the distributed receptances in connection with two modal systems coupled 
through a distributed junction and, as such, demonstrate much of the complexity of joining 
complex structures. 

6.2. TWO IDENTICAL RODS JOINED ALONG THEIR LENGTH 

The receptance matrix for longitudinal vibration of a rod is [1] 

(IX] = [IX11 0!12]. = 
IX21 IX22 

1 [coskL 1 ] 
kEA sinkL 1 coskL ' 

(87) 

and thus the drive-point receptance for longitudinal vibration of a rod of length L , area 
A, Young's modulus E and density pis 

au = coskL _ i__[ __ l_ + ~ i ] 
kEA sinkL - pA. L 2ro2 £.. ro2 

- ro2 
' n•1 n 

(8~) 

where k = rojAIEA is the wavenumber of longgitudinal wave propagation in the rod and 
ro~ = (mr./L) EA/pA is the nth natural frequency of the rod. The rod in Figure 2, with 
length L, area 2A, Young's modulus E and density p, has a drive-point receptance of 

coskL l 
')lu =. 2kEAsinkL = ~°'11 (89) 

and thus the displacement response at node 1, due to an applied force F at node I is 

(90) 

If the single rod in Figure 2 is separated into two identical rods, each with area A, joined 
along their lengths as in Figure 3, the line receptance formulation may be used to find the 
displacement response u1 due to the force F. The receptance equations for the identical, 
line-connected rods are 

(91-93) 

~ a 

@ ® 
I fJ 

Figure 3. Two identical rods joined along their length. 
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By applying the force and displacement compatibility boundary conditions, 

the force vector acting on component fJ is found to be 

Fffl = [«22 + P22J- 1a.2,F, 

(94,95) 

(96) 

By substituting the interface force into equation (91), the drive-point displacement is found 
to be 

(97) 

At node 2, the nth . component of the generalized receptance that relates a distributed 
force to a distributed displacement in modal form is given by equation (64). lf the modal 
damping assumption is replaced by a structural damping that allows the damping to be 
applied by means of a complex Young's modulus, i.e., 

E = E(l + j'f), 

where j = J=t, equation (64) becomes 

(98) 

(99) 

The other distributed receptances are found from equations (40) and (42). The free-free 
mode shapes of each of the rods is given by 

U.(x) = cos((nn/L)x). (100) 

Since both rods have the same natural frequencies, the generalized receptance is in the same 
form as the line receptance that has been used primarily by Soedel [2]. In the line receptance 
formulation, the shape functions are selected to be the same as the mode shapes; i.e., 

tj,.(x) = cos((mr/L)x). (101) 

Thus, the mnth component of the distributed receptance along node 2, equation (99), 
becomes · 

form= n, 
«<-1 (ro) = 

'8.-42.-IJ 

0, form:/= n. 
(102) 

The mth component of the distributed receptances that relate nodes I and 2 is given by 

(103) 

and 

1 
form= 0, 

(104) 
form¢ 0. 
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~.____" __ I _/J -

@ ® 
Figure 4. The two-rod receptance problem: the configuration with a point junction. 

In addition, since the rod P is identical to rod ex, 

where 

pA(w!- w2)' 

o. 

Wm= (mn/L)jEA/pA. 

form= n, 

form-:/- n, 

19 

(105) 

(106) 

Substitution of equations (102), (103), (104) and (105) into the last term of equation (97) 
gives 

<i!i[cx22 + PnJ-1<i21F= ff cx~~~1(w) 
m~o 

F [ 1 "" 1 ] F 
=pAL -ro2 + L ci -ai = -2°'11 

n, m l m 
(107) 

and equation (97) becomes 

-u, = ½cx11F, (108) 

which is the same as the result given in equation (90) for the receptance of a rod having 
twice the area of the individual component rods. Thus the distributed receptance (and line 
receptance) formulation gives a result identical to the analytical solution predicted by 
using the point-to-point receptance. In this case the distributed receptance formulation 
provided an exact solution for the response of the rod having twice the area, since the 
series of shape functions was not truncated. In practice, when more complicated 
structures are joined the series will need to be truncated and the results will only 
approximate the exact analytical solution. The accuracy of the approximation will be 
governed by how well the displacement response of the interface can be represented by 
the shape functions, <Pn. 

6.2. TWO RODS OF DIFFERENT LENGTHS JOINED ALONG THEIR LENGTH 

Although the above example involved a simple problem, equation (97) represents the 
drive-point displacement of any two-component system. By connecting a rod having area 
A to the end of the rod considered in the first example, one obtains the geometry shown 
in Figure 4. The displacement at node 1 in Figure 4 may be found from equation (97) to 
be 

(109) 
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where the receptances are given by 

coskL 

and 

where 

IXu = IXn = - 2kEA sinkL' 

coskL 
Pn = - kEA sinkL' 

k = wjpA/EA. 

1 
2kEAsinkL 

(110,111) 

(112) 

(113) 

By substituting equations (l 10), (111) and (112) into equation (109), the displacement 
response at node 1 is found to be 

_ (l - 3cos2kL) F 
u, - 6kEA sinkLcoskL · (114) 

The same problem can be represented differently, however, For example, in Figure 5 
the problem is represented such that rod « of length L and area A, and rod {J of length 
2L and area A, are joined along a distributed line-connection at node 2. The displacement 
response at node 1 is then given by equation (97), where · 

coskL 2[ l 00 I] 
IX, 1 = kEA sinkL = pAL - 2w2 + L co2 - co2 ' ·-· ,, 

(115) 

and the distributed receptances are defined by equations (40), (41) and (42). Rod a is the 
same as the rod ex that was considered in the line receptance example above. Thus, when 
the same shape functions, cos(mcx/L), are used, the distributed receptances for rod ex are 
given by equations (102), (104) and (103), where 

Wm= (mn/L)jEA/pA. (116) 

The distributed receptance of rod Pat node 2 is obtained from equation (42) and can 
be rewritten as 

rl .... ________ a __ _. 

CD ® 
fJ 

Figure 5. The two-rod receptance problem: the configuration with a line junction. 
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U! = cos((m1r./2L)x), en!=~;~. 

After substituting 

t/>m(X) = cos((mrc/L)x) 

into equation (117), the receptance of rod pis found to be 

where 

2 
{P22(cn )] = pAL2 

.½ 0 0 

0 1 0 

0 0 1 

. ( ) sin(nx) smcx = , 
1tX m= 

I 
2 

' ;; = 
N,,. 

1 

2 

Nn 

21 

(118,119) 

(120) 

(121) 

(124-126) 

By substituting the receptances defined in equations (102), (103), (104) and (121) into 
equation (97), the displacement response of the system shown in Figure S may be found. 
For the purpose of calculation, the rods shown in Figure 5 were assumed to have a Young's 
modulus E of 19·5 >< 10'0N/m2, a density p of 7700kg/m3

, a damping factor 11 of 0·01, an 
area A of 1 ·0 x 10-4m2 and a length L of O· Sm. A comparison of the displacement response 
found using the distributed receptance model, and the displacement response found using 
the point receptance model shown in Figure 4, is presented in Figure 6. The distributed 
receptance formulation provides good results and converges towards the point receptance 
prediction as the number of modes (and hence shape functions) is increased. Note that 
for the sake of simplicity, the number of modes used to predict the modal response was 
made equal to the number of shape functions used to fit the interaction along node 2. 

A case having identical material and geometrical values except that the second rod was 
assumed to be only I ·SL in length was also analyzed. In the point-connected case, the only 
change is that /J22 is now given by 

P,, = --
cos(0·8kL) 

kEA sin(0.8kL). 

In the distributed receptance case, [,822] becomes 

! 
2 0 0 

2 
0 1 0 [·Jl.o,;i/Lo,,T + t IL,,,o-9>,Ftl ,'0·9)11;] L8iz(w )] = 0·9pAL1 2a,f _ ro2 ro' _ w2 , 
0 0 1 pa I P 

(127) 

(128) 
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10-10 .___~ ____ ....._ _ __. __ _._ __ ...__ _ __._ __ ...._ _ ___, 
0 2000 4000 6000 8000 10 000 12 000 14 000 16 000 

Frequency (Hz) 

Figure 6. The displacement response of two rods with different lengths (L and 2L) joined along their length. 
-, Point receptance; ···, distributed receptance with five modes; -·-, distributed rcceptance with ten modes. 

In the distributed receptance case, [Pu] becomes 

1 
2 0 0 

2 0 I 0 [¼/~/Lo.tT + t lb,t&9lf1/LIPf0·9lir] CP22(ro)) = 0·9pAL2 (128) ·ai· - w2 w'fl· - w2 ' 
0 0 1 0 ,-1 P 

10-10 ,....__........, __ ......_ _ __._....:..,..~------__._----'--____ __, 

0 2000 4000 6000 8000 10 000 12 000 14 000 16 000 
Frequency (Hz) 

Figure 7. The displacement response of two rods with different lengths (Land I ·SL) joined along their length. 
-, Point receptance; ·· ·, distributed reccptance with five modes;-~, distributed receptance with ten modes. 
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where 

ro:! = (m1t/l·8L)jEA/pA. (129) 

The displacement response found using the distributed receptance model and the 
displacement response found by using the point receptance model are compared in 
Figure 7: again, good agreement and convergence were obtained. Thus, in the case in which 
the lengths of the two rods are not integer multiples, the distributed receptance formulation 
still provides good results and converges towards the correct response as the number of 
modes (and shape functions) is increased. It appears that the convergence rate is slightly 
faster when the lengths of the rods are integer multiples. However, further work would 
be required to draw a firm conclusion in this respect. 

7. CONCLUSIONS 

In this paper, the receptance matrix formalism has been extended to accommodate 
distributed connections between components. In particular, the extension was based on 
generalized Fourier series concepts. The receptances for distributed connections were 
shown to reduce to the previously developed line receptance formulation in problems for 
which the latter approach is appropriate. The performance of the distributed receptance 
method was demonstrated through two example problems involving rods. The capabilities 
of the distributed receptance method presented here should make it possible to automate 
the development of analytically based models of complex structures more easily, thus 
making them accessible to a wider audience of structural analysts. 

The receptance method can be used to solve both free and forced vibration problems. 
Traditionally, some of the advantages of the receptance method are: (i) that it is well suited 
to cases in which experimental and analytical data are mixed; (ii) that it is particularly 
useful for analyzing systems made up of a small number of components; and (iii) that it 
often provides better insight into the physical mechanisms behind a response than other 
numerical methods. The receptance method had been improved by Jetmundsen et al. [12] 
and Gordis et al. [13] to allow automated assembly of the system receptance matrix. That 
modification allows the receptance method to be used as a general purpose analysis tool, 
much like the finite element method. With the addition here of the ability to model 
arbitrary distributed junctions, the receptance method now provides a potential alternative 
to finite element analysis. 

Some of the advantages of a receptance element method over the finite element method 
are the ability to seamlessly mix analytical, modal, numerical and experimental 
receptances, and the potential to use larger analytical elements. In addition, it should be 
more straightforward to update models with experimental data than it is when using finite 
elements. Note, however, that the use of distributed receptances will be limited by: (i) the 
difficulty in obtaining a closed form Green function for plates and shells having arbitrary 
boundary conditions; (ii) the non-linearity of the eigenvalue problem that requires a 
determinant search; and (iii) the lack of readily available algorithms for assembling the 
system receptance matrix. The lack of a closed form Green function in many cases may 
be overcome by use of a modal model of the system. When using a modal description of 
the component receptances, the receptance method becomes an alternative component 
mode synthesis method. 
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