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Notation and Symbols

BM
⊗
BN product-σ -algebra generated by {M×N : M ∈ BM,N ∈ BN }

θ ∈ Rd If θ is a random variable: θ maps to Rd

C+(0,a) standard half-Cauchy distribution on the positive reals with scale parameter a
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1 Introduction

Often in data analysis the situation arises where not all parameters of a model can be
well identified through the data. In these situation one possible way to estimate the
model is via variable selection, which is a process where a subset of the most informa-
tive predictors is chosen, s.t. for this subset the model can be estimated for.
Variable selection can be carried out with a frequentist approach, e.g. lasso feature
selection, or a Bayesian approach with so-called shrinkage priors. The most popular
shrinkage priors are the spike-and-slab priors and the horseshoe priors. By using the
horseshoe priors one applies global shrinkage to all variables, but allows for informa-
tive variables to locally escape the shrinkage. In this thesis the horseshoe priors are
extended to the case of variables, which posses a grouped structure. Hence the priors
are denoted as grouped horseshoe priors. In section (2) the Bayesian inference of the
grouped horseshoe priors is rigorously introduced, and how this inference can it be ex-
ecuted computationally. In section (3) the grouped horseshoe priors are shown. With
these priors it is possible to estimate additive models, for which in this thesis an sug-
gestion for the optimal hyperparameter of the grouped horseshoe priors is derived in
section (3.3). Also in this thesis the performance and shrinkage qualities of these priors
are measured in two simulation studies (4) and benchmarked (5) in two real data sets
against the other variable selection methods, which are mentioned above.
In this thesis it is shown, that the horseshoe prior in setting of grouped variables per-
forms robustly in low and high sparsity data situations and can compete with other
commonly used variable selection methods.
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2 Basic Concepts

The foundation of Bayesian horseshoe priors is based on the inference of the posterior
distribution of the parameters, which can be attained by combining the prior knowledge
of the parameters and the likelihood of the data, and will be introduced in section
2.1. In order of carrying out this inference it is necessary to sample from the posterior
distribution. In most cases this posterior distribution can be neither expressed in an
analytical form nor are there standard samplers for it. Hence the Hamiltonian Monte

Carlo (HMC) method and its derivative No-U-Turn Sampler (NUTS) will be shown in
section 2.2, with which it is possible to sample from the posterior distribution even in a
high dimensional case. To express in this Bayesian framework the structure of grouped
variables, on which in section 3.2 the grouped horseshoe priors will be later applied,
additive models will be introduced in section 2.3.

2.1 Bayesian inference

In Bayesian statistics the inference is carried out on the posterior distribution of a pa-
rameter θ , after taking into account the realization of data x. In order of defining
this posterior distribution thoroughly some rigorous definitions are needed: Let X and
T denote the sample space and parameter space, i.e. θ ∈ T and x ∈ X . Their σ -
algebras will be called respectively BX and BT . Also let the family of sampling distri-

bution P := {Pθ : θ ∈ T }, where Pθ is a probability measure over (X ,BX ). With
these definitions a general statistical experiment can be defined as (X ,BX ,P) and
for any given probability measure µ on (T ,BT ) a Bayesian experiment can be identi-
fied with (T ×X ,BT

⊗
BX ,Πµ,P), where Πµ,P is the joint distribution of parameter-

observation, s.t. ∀T ∈ BT ,X ∈ BX :

Πµ,P(T,X) =
∫

T
Pθ (X)µ(dθ). (2.1.1)

The measure µ will be called the prior distribution of the parameter. The predictive

distribution of the observations Pµ,P is the marginal distribution of Πµ,P on (X ,BX ),
s.t. ∀X ∈ BX :

Pµ,P(X) = Πµ,P(T ,X). (2.1.2)
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Eq. (2.1.1) can be rewritten with the predictive distribution (2.1.2) and the family of
posterior distributions {µP(·| x) : x ∈ X}, s.t. ∀T ∈ BT ,X ∈ BX

Πµ,P(T,X) =
∫

X
µP(T | x)Pµ,P(dx). (2.1.3)

Under the assumption that the Bayesian experiment (T ×X ,BT
⊗
BX ,Πµ,P) is domi-

nated in the Bayesian setting (if not other stated, this will be assumed for the rest of the
thesis) it can be shown (see [Polpo et al. (2015)]), that a posterior distribution for given
x can also be expressed with the Radon-Nikodym derivative, s.t. ∀T ∈ BT :

µP(T | x) =
∫

T
dPθ

dλ
(x)µ(dθ)∫

T
dPθ

dλ
(x)µ(dθ)

, (2.1.4)

where (X ,BX ,P) is dominated by a finite measure λ . The function dPθ

dλ
is called like-

lihood function. A class PC of prior distributions is said to be a conjugate family for a
class F of likelihood functions if µP(T | x) ∈ PC ∀T ∈ BT ,X ∈ BX .
Building on these definitions inference concepts can be introduced: An adequate choice
of a point estimate to determine the location of the parameter θ depends on the under-
lying loss function. If a quadratic loss function L is chosen, i.e. L(θ , θ̂) = ||θ − θ̂ ||22,
the expected loss Eθ∼µ(L(θ , θ̂)) is minimized by the posterior mean

θ̂ = Eθ |x∼µP (θ | x), (2.1.5)

if it exists (see [Berger (1985)]). A 100(1−α)% credible set is a set C ⊂ T , s.t.

1−α ≤ P(C| x) = µP(C| x). (2.1.6)

Which means that the parameter θ has the subjective probability of (1−α) that θ ∈C.
Because C is not unique, additional constraints can be imposed on the solution. If the
size of C, which can be defined as S(C) := µ(C), is minimized one gets under mild
conditions the 100(1−α)% HDP credible set as described in [Berger (1985)], if there
exists a posterior density pθ | x. The 100(1−α)% HDP credible set is defined as

C = {θ ∈ T : pθ | x(θ | x)≥ k(α)}, (2.1.7)

where k(α) is the largest constant, s.t. C is a 100(1−α)% credible set.
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2.2 HMC and NUTS

As already seen, for carrying out the Bayesian inference the posterior distribution µP

is needed. In general solving Eq. (2.1.3) or Eq. (2.1.4) for the posterior distribution is
only in trivial cases analytically possible. Hence one tries to approximate the distribu-
tion by sampling from it. In most cases there is no standard sampler for µP . Assume
there exists a corresponding probability density function p(θ) to µP . Then one way
to overcome this problem is to use the HMC method, where a sequence of random
samples are drawn from a known distribution using Hamiltonian dynamics. In HMC in
order to sample a parameter θ , for which it holds that θ ∼ µP and θ ∈Rd , an auxiliary
variable ρ is typically drawn from a multivariate normal distribution, s.t.

ρ ∼N (0,Σ), (2.2.1)

where ρ ∈ Rd and the covariance matrix Σ ∈ Rd×d . With the joint density p(ρ,θ) a
so-called Hamiltonian can be defined with regards of the canonical distribution as

H(ρ,θ) =− log p(ρ,θ) =− log p(ρ| θ)︸ ︷︷ ︸
=:T (ρ| θ)

− log p(θ)︸ ︷︷ ︸
=:V (θ)

, (2.2.2)

where T is called kinetic energy and V the potential energy. In general a Hamiltonian
can be defined as follows: Let ρ(t),θ(t) be functions, s.t. ρ,θ : R→ Rd , and H(ρ,θ)

be a scalar function sufficiently smooth. H is called a Hamiltonian if it holds that
∀i ∈ {1, . . . ,d} :

dρi

dt
=

∂H
∂θi

,

dθi

dt
=−∂H

∂ρi
.

(2.2.3)

It can be shown that the Hamiltonian dynamics (2.2.3) is reversible and preserves vol-
ume, which can even hold for the discretized version of the differential equations (see
Brooks et al. (2011)). With the leapfrog integrator, which uses a discrete time step ε ,
this can be achieved and Eq. (2.2.3) can be solved numerically stable (see Brooks et al.
(2011)). Transitioning from a state (ρ,θ) to a new state (ρ∗,θ ∗) in the leapfrog scheme,
firstly a new ρ is drawn independently of θ and previous values of ρ and secondly L

leapfrog steps are applied. One step of the leapfrog integrator can be summarized as
follows:
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1. A half-step update is made for the auxiliary variable ρ:

ρ ← ρ− ε

2
∂V
∂θ

2. With the new ρ the parameter θ is updated with a full-step:

θ ← θ + εΣρ

3. Another half-step update of ρ is performed with the updated θ :

ρ ← ρ− ε

2
∂V
∂θ

After L leapfrog steps the proposal state (ρ∗,θ ∗) is accepted as the new state with a
probability of

min(1,exp(H(ρ,θ)−H(ρ∗,θ ∗))).

Otherwise (ρ,θ) is returned as the new state and hence also serves as the new initial-
ization for the next iteration. This is called the Metropolis Acceptance Step.
The series of θ returned by this scheme is also called a chain. As described in Durmus
et al. (2017) under certain regularity conditions and control of the tail of the posterior
distribution µP this chain is irreducible and (Harris) recurrent and µP is its so-called
invariant distribution. For a chain with these properties and under some additional
assumptions it can be shown that with the use of ergodic theorems, that the chain con-
verges for almost every starting parameter θ0 in distribution to µP and the law of large
numbers and the central limit theorem are still valid, s.t. inferences (2.1.5) and (2.1.7)
can be carried out approximately on a converged chain (see Meyn and Tweedie (1993)).
The convergence speed of HMC is highly influenced by the hyper-parameters, i.e. the
number of steps L, the step-size ε and the covariance matrix Σ. One scheme to tune the
parameter L is NUTS. The advantage of using NUTS consists in its auto-tuning capa-
bility without the need to execute pre-runs. The general idea of NUTS can be described
as follows: For the state (ρ,θ) the Hamiltonian dynamics are simulated randomly both
forwards and backwards in time to guarantee time reversibility. In every iteration the
steps taken in one direction are doubled. The algorithm is stopped for a current (θ̃ , ρ̃)
when

d
dt
||θ̃ −θ ||22

2
= (θ̃ −θ)T d

dt
(θ̃ −θ) = (θ̃ −θ)T

Σρ̃ < 0,
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i.e. the expected squared jump distance would shrink and the dynamics could be de-
scribed as an U-turn. From these simulated states new proposals are sampled (for
further details refer to Hoffman and Gelman (2014)).

2.3 Bayesian approach to additive models

Here the basic terminology related with additive models from a Bayesian perspective
is recalled and the notation that will be used in the following is fixed. As a reference it
is relied on Fahrmeir and Kneib (2011).
To study additive models firstly an understanding of univariate polynomial smoothing
is helpful. For n observation-pairs (xi,yi), where y is the output and x is its covariate,
with univariate polynomial smoothing a polynomial spline f (x) can be found, which
fulfils

yi = f (xi)+ εi, (2.3.1)

where εi ∼ N (0,σ) for an Gaussian observation model. This polynomial spline f of
degree D over M+1 (not necessarily equidistant) knots can be mathematically equiva-
lent expressed in different spline bases, s.t.

f (x) =
K

∑
k=1

γkBk(x), (2.3.2)

where K = D+M. Commonly used spline bases are Truncated power series and B-

splines. In this thesis the B-splines basis will be used, because of its superior numerical
stability and its more adaptive Bayesian interpretation. Important to note is that B-
splines form a local basis. With Eq. (2.3.2) Eq. (2.3.1) can be written as a linear model
for all observations, s.t.

y = Xγ + ε, (2.3.3)

where X contains the basis function evaluated at the observed covariate x.
With higher node (and polynomial) degree polynomial splines are more prone to over-
fitting. To counter this P-splines are used. Because for B-splines γ represents local
regression coefficients, high differences of neighbouring γi should be penalized. Hence
the so-called penalized least-squares (PLS) criterion can be formulated for B-splines
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with equidistant knots as

PLS(λ ) = ||y−Xγ||22 +λ ||Ddγ||22 = ||y−Xγ||22 +λγ
T DT

d Dd︸ ︷︷ ︸
=:K

γ, (2.3.4)

where Dd ∈ R(K−d)×K is the so-called difference matrix of order d and K the penalty
matrix. The PLS criterion can be equivalently defined by using a dth random walk prior
distribution for γ , s.t.

p(γ,σ2| y) ∝ p(y| γ,σ2)p(γ| τ2)p(σ2)p(τ2)

∝ exp(− 1
2σ2 ||y−Xγ||22)(

1
τ2 )

rank(K)/2 exp(− 1
2τ2 γ

T Kγ)·

· p(σ2)p(τ2),

(2.3.5)

where typically prior distributions of σ2 and τ2 are chosen, s.t.

σ
2 ∼ IG(aσ ,bσ ),τ

2 ∼ IG(a,b). (2.3.6)

Note because K has no full rank, which can be clearly seen from its construction,
this means that for γ a degenerate Gaussian distribution is assumed. By introducing a
parameter u, for which it holds that

u =

[
Id 0
0 Dd

]
︸ ︷︷ ︸

=:S

γ, (2.3.7)

i.e. the first d terms are the first d terms of γ and the last K−d terms the d’th differences
of γ , Eq. (2.3.5) can be reparametrized as

p(u,σ2| y) ∝ p(y| u,σ2)p(u| τ2)p(σ2)p(τ2)

∝ exp(− 1
2σ2 ||y−XS−1u||22)p(u| τ)

· p(σ2)p(τ2),

(2.3.8)

where u| τ ∼ N(0,τ2Z) with diagonal covariance matrix Z.
Now considering the case of multiple covariates x1, . . . ,xp for an output y ∈ Rn it is
possible to extend the smoothing splines analogously to this multivariate setting, but
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by doing this the number of parameter rises quickly and so does the amount of data,
which would be needed to identify these. Hence one commonly used technique is to
restrict the model to an additive structure, s.t. the so-called additive model1 for y can
be written as

y = Uβ +
ms

∑
i=1

fi(xi)+ ε, (2.3.9)

where ε ∼N (0,σ2) and U ∈Rn×mp denotes the model matrix of predictors u1, . . .uml ,
which are modelled linearly, with associated parameter vector β ∈Rmp and fi the vector
of one dimensional smoothing function to the corresponding covariate xi, which is
defined ∀i ∈ {1, . . . ,ms}. Every fi can expressed as

fi(xi) = ( fi(xi1), . . . , fi(xin))
T = (

Ki

∑
k=1

γikBi
k(xi1), . . . ,

Ki

∑
k=1

γikBi
k(xin))

T . (2.3.10)

To ensure the identifiability of the single fi an artificial centring constraint is introduced,
s.t. ∀i ∈ {1, . . . ,ms} it holds that

n

∑
j=1

fi(xi j) = 0. (2.3.11)

The linearity of Eq. (2.3.10) can be expressed, s.t.

fi(xi) = Xiγi. (2.3.12)

With Eq. (2.3.12) the additive model (2.3.9) can be written as

y = Uβ +
ms

∑
i=1

Xiγi + ε. (2.3.13)

To estimate the regression coefficients of the additive model (2.3.13) without overfitting
the extended PLS criterion, which is to be minimized, based on the estimated output
η = Uβ +∑

ms
i=1 Xiγi can be used, which can be formulated as

PLS(γ1, . . . ,γms,β ) = (y−η)T (y−η)+
ms

∑
i=1

λiγ
T
i Kiγi, (2.3.14)

1In this thesis only additive model containing one dimensional splines will be used, but in general
additive model can be also composed from higher dimensional smoothing functions.
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where Ki is the penalty matrix of fi. In the Bayesian framework the extended PLS
criterion can be modelled, s.t. it holds for the posterior distribution of the regression
coefficients that

p(γ1, . . . ,γms,β ,τ
2
1 , . . . ,τ

2
ms
,σ2| y) ∝(

1
σ2 )

n/2 exp(− 1
2σ2 (y−η)T (y−η))·

· p(β ) ·
ms

∏
i=1

(
1
τ2

i
)rank(K)/2 exp(− 1

2τ2
i

γ
T
i Kiγi)·

ms

∏
i=1

p(τ2
i ) · p(σ2),

(2.3.15)

i.e. the posterior mode of γi, . . . ,γms fulfils the PLS criterion. Typically a weakly infor-
mative prior distribution is used for β , s.t. β ∼N(c,C), where C is a ’large’ covariance
matrix. Because in this setting the sample density of y is normal and by using the fact
that the normal distribution is a conjugate family for these, it can be easily shown that
the full conditional β | · ∼ N(µβ ,Σβ ) with

Σβ = σ
2(UT U+σ

2C−1)−1, (2.3.16)

µβ =
1

σ2 Σβ (UT (y−η +Uβ )+σ
2C−1c). (2.3.17)

In a similar fashion for the reparametrization (2.3.7) it can be shown that for ul = Slγl

it holds that ul| · ∼ N(µul ,Σul) with

Σul = σ
2(X̃T

l X̃l +
σ2

τl
Z−1

l )−1, (2.3.18)

µul =
1

σ2 Σul X̃
T
l (y−

ms

∑
i=1,i6=l

X̃iui−Uβ ), (2.3.19)

where X̃l = XlS−1
l .
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3 Bayesian horseshoe

When applying the Bayesian horseshoe technique for variable selection so-called horse-
shoe prior distribution is assumed for the parameters of interest, which main idea con-
sist in using a global shrinkage parameter while allowing for an informative parameter
to escape the shrinkage through a local shrinkage parameter. The mathematical foun-
dations of this type of prior distribution is described in section 3.1. In section 3.2 these
ideas will be extended to the case of grouped variables. In situations where the param-
eters can not be identified well through the data, the hyperprior choice of the global
shrinkage parameter can influence the results strongly. Because of this a possible hyper
prior choice is introduced in section 3.3. The implementation of the horseshoe priors,
which will be applied on simulated data in section 4, uses ideas from section 3.4.

3.1 Mathematical foundations

In Piironen and Vehtari (2017) the horseshoe prior is introduced as an estimation model
for an observed p-dimensional vector b| β ∼N(β ,Σ), where β is assumed to be sparse.
In this model it is assumed ∀i ∈ {1, . . . , p} that

βi| λi,τ ∼ N(0,λ 2
i τ

2), λi ∼ C+(0,1), τ ∼ C+(0,1). (3.1.1)

To understand the properties of this model better a linear Gaussian regression model is
assumed for section 3.1, s.t. for an observed output y it holds that

y =Uβ + ε, (3.1.2)

with ε ∼ N(0,σ2). In the case of the linear Gaussian model (3.1.2) if follows from
Eq. (3.1.1) that the prior distribution of β is s.t. β ∼ N(0,τ2∆), where ∆ is a diagonal
matrix with λ 2

i as its diagonal entries. By plugging these values into Eq. (2.3.17) one
gets that the posterior expected mean of β

µβ = (UT U+σ
2 1

τ2 ∆
−1)−1UT y. (3.1.3)
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Since ∆ is a diagonal matrix Eq. (3.1.3) can be rewritten as

µβ = τ
2
∆(σ2(UT U)−1 + τ

2
∆)−1 (UT U)−1UT y︸ ︷︷ ︸

=:β̂

, (3.1.4)

where β̂ denotes the maximum likelihood solution. In the case of zero mean and un-
correlated predictors with unit variance it holds that UT U ≈ nI, s.t. Eq. (3.1.4) can be
component-wisely approximated as

µβ j = (1−κ j)β̂ j, (3.1.5)

where
κ j =

1
1+nσ−2τ2λ 2

j
(3.1.6)

is the so-called shrinkage factor for the j’th component of β . This name makes sense,
since nσ−2τ2λ 2

j > 0 it follows that κ j ∈ (0,1) and hence the limiting case of κ =

1 represents full shrinkage, where µβ j = 0, and the other limiting case of κ = 0 no
shrinkage, where µβ j = β̂ j. Consequently, one sees from Eq. (3.1.6) that with smaller
n/σ2, i.e. the ratio of the size of the data to the variance of the errors2, shrinkage is
more likely. This relation also holds for τ and λ , s.t. an informative variable βk can
escape the global shrinkage with a ’large’ associated λk. By using Eq. (3.1.1) and
applying the transformation theorem it can be shown, that the conditional density of κ j

p(κ j| τ,σ) =
1
π

σ−1τ
√

n
(nσ−2τ2−1)κ j +1

1
√

κ j
√

1−κ j
. (3.1.7)

For nσ−2τ2 = 1 it holds that κ j ∼ Beta(1
2 ,

1
2) and its a horseshoe resembling density

can be seen in Fig. 1, from which the name of this method was derived. While under
nσ−2τ2 = 1 equal probability mass is distributed on shrinkage and no shrinkage, un-
der nσ−2τ2 = 0.1 more mass is distributed towards 1, which means that shrinkage is
favoured.

2For a Gaussian observation model the variance of the errors σ2 quantifies how informative the data
is.
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Figure 1: Conditional density of the shrinkage factor κ j for nσ−2τ2 = 1 (solid) and for
nσ−2τ2 = 0.1 (dashed).

3.2 Extending horseshoe prior to the case of grouped variables

In this chapter the general idea of Xu et al. (2016) is used and applied on additive
models with penalized splines. In these additive models two natural group structures
arise:

1. A categorical predictor with mG1 + 1 levels can be modelled with mG1 dummy
coded variables, which represent a group of mG1 linear predictors.

2. A smoothing function with parameter u ∈ RK1 also can be seen as a group of K1

parameters.

Because one usually wants a smooth function defined on the whole domain and does
not want to select categorical predictors level-wise, the horseshoe prior can straightfor-
wardly be extended for this grouped structures, s.t. for an additive model as defined in
Eq. (2.3.9), where the g linear predictors are categorical with mGi +1 levels and where
the parameter vector u j ∈ RK j of the ms smoothing functions,

β | τ2,λ 2
11, . . . ,λ

2
1g ∼ N(0,τ2Dλ1), (3.2.1)

∀ j ∈ {1, . . . ,ms} u j| τ,λ2 j ∼ N(0,τ2
λ

2
2 jZ j), (3.2.2)
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where Dλ1 = diag(λ 2
11ImG1

, . . . ,λ 2
1gImGg

) and

λ1i ∼ C+(0,1), λ2i ∼ C+(0,1), τ ∼ C+(0,1).

This means every group structure has one local shrinkage parameter. Hence the whole
group is either shrunken as a whole or stays unshrunken.

3.3 Hyperprior choice for global shrinkage parameter

In Piironen and Vehtari (2017) it is shown that for the global shrinkage parameter the
choice of scale 1 can produce suboptimal results in settings where τ can not well be
identified by the data, e.g high ratio of number of parameter to number of data or
very noisy data. Hence the authors propose to introduce τ0 as an hyper-parameter,
s.t. τ ∼ C+(0,τ0) and show that an good way to choose this parameter for a Gaussian
observation model is by using an guess of the number of relevant variables p0 of of all
the D to be shrunken variables, s.t.

τ0 =
p0

D− p0

σ√
n
, (3.3.1)

where σ2 is the variance of errors and n the number of observations.
In this thesis it will be shown, that this choice of τ0 is still reasonable in the setting of
grouped variables as discussed in section 3.2:
Now consider the grouped variables setting of section 3.2. Every group has its own
local shrinkage coefficient κi j. From the prior distribution of κi j (3.1.7)3 it follows that

E(κi j| τ,σ) =
1

1+σ−1τ
√

n︸ ︷︷ ︸
=:µκ

. (3.3.2)

3Since the structures of Eq. (2.3.17) and Eq. (2.3.19) are similar and Z is a diagonal covariance
matrix the derivation of κ in the setting of a smooth function can be carried out in the same manner as in
section (3.1).
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Since κi j is typically either near zero or near one it motivates the definition of effective
number of parameter meff as

meff =
g

∑
i=1

(1−κ1i)mGi +
ms

∑
j=1

(1−κ2 j)K j. (3.3.3)

By taking the expectation of Eq. (3.3.3) it follows that

E(meff| τ,σ) = (1−µκ)(
g

∑
i=1

mGi +
ms

∑
j=1

K j)︸ ︷︷ ︸
=:D

=
σ−1τ

√
n

1+σ−1τ
√

n
D. (3.3.4)

By solving Eq. (3.3.4) for τ for an guess of the effective number of parameter p0 the
same proposal as presented in Eq. (3.3.1) is derived. One can see from Eq. (3.3.4) that
meff and τ are clearly linked and if one wants to keep the prior on meff consistent for
different data situations, τ should scale with

√
n/σ . The suggested integration of τ0

in the model is done by using τ ∼ C+(0,τ0), because then the median of τ = τ0 and
the heavy tails of the half-cauchy distribution allows for a higher adaptivity to the data.
The integration can be done in other ways than using τ ∼ C+(0,τ0), e.g. fixing τ to τ0

or using τ ∼ N+(0,τ0). The effects of these other approaches are discussed in Piironen
and Vehtari (2017).

3.4 Practical aspects

When using NUTS (2.2) to sample from the posterior distribution of a horseshoe prior
model, so-called divergent transition can occur (as described in Piironen and Vehtari
(2015)), where the step size of the leapfrog integrator is so big that some features of
the target distribution can not be depicted, i.e. the estimation becomes biased. To
encounter this the general step size can be made smaller or a reparametrization, s.t.
the geometry of the posterior distribution is simplified, can be used or both. For
this thesis the parametrization as suggested in Peltola et al. (2014)(codes at https:
//github.com/to-mi/stan-survival-shrinkage) is used, where a parameter ν

with ν ∼ C+(0,v0) is not directly sampled from the half-cauchy distribution, but in-
stead auxiliary parameters r1,r2 are introduced, s.t.

ν = r1
√

r2. (3.4.1)

https://github.com/to-mi/stan-survival-shrinkage
https://github.com/to-mi/stan-survival-shrinkage


18

When r1 ∼N(0,v0) and r1 ∼ InvG(0.5,0.5) it follows that ν ∼C+(0,v0). By sampling
ν indirectly with r1 and r2 the number of divergent transition is lowered, but still a
relatively small step size is needed.

4 Simulations

To test the capabilities of the grouped horseshoe priors separately, two simulation stud-
ies are conducted. On the one hand a model only consisting of factor variables is esti-
mated and different choices of the hyperparameter τ0 are compared in section 4.1, while
on the other hand a pure smooth function model is estimated in section 4.2 and com-
pared to estimations done by other variable selection methods such as spikeSlabGAM
(see Scheipl (2010)) and GAMSEL (see Chouldechova and Hastie (2015)), where an
overlap group-lasso penalty is used.
Both simulation studies are special cases of the additive model (2.3). In general when
U,X1, . . . ,Xms are created by a data generating process (DGP) the ”true” predictor η

can be evaluated for given coefficient vectors β ,γ1, . . . ,γms as η = Uβ +∑
ms
i=1 Xiγi and

the response y as y= η +ε . The number of all variables with non zero influence will be
denoted as D. To control the difficulty of estimating the coefficient vectors and η the so-
called signal-to-noise ratio SNR is used. The SNR is defined as SNR = n sd2

η/∑
n
i=1 ε2

i ,

where sdη =
√

∑
n
i=1(η̄−ηi)2/n, i.e. SNR is the ratio of the systematic variability

(signal) over the unsystematic one caused by the Gaussian error terms ε . To simulate a
certain SNR level the response y can be sampled as yi ∼ N(ηi,sd2

η/SNR).
For every model 3 different prior specifications are compared:

• ’strict’ prior with p0 = 1,

• ’optimal prior with p0 = true number of non zero influence coefficients,

• ’loose’ prior with p0 = D−1.

In this chapter for every prior 4 chains of a size of 500 elements are simulated. For
both simulations an adequate model based on the ”true” predictors is estimated and its
MSE, which will be called OracleMSE, is compared to the MSEs produced by the other
methods.
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4.1 Linear predictor scenario

In this simple setting the shrinkage property of the grouped horseshoe prior is investi-
gated in the case of categorical predictors solely. As a reference a linear model only
based on the non-zero influence variables is estimated, which will be referred as the
”oracle”-model for chapter (4.1). The DGP is described in section (4.1.1) and the re-
sults are discussed in (4.1.2).

4.1.1 Data generation

The DGP of this setting can be described as follows:

• n = 100 observations,

• SNR = 0.1,1,5,

• 9 categorical variables are defined as ∀i ∈ {1,2,3}

– the ’small-sized’ groups Gi1 with levels g11,g12,g13,

– the ’medium-sized’ groups Gi2 with levels g21, . . . ,g25,

– the ’large-sized’ groups Gi3 with levels g31, . . . ,g39,

• the 9 to the Gi j associated coefficient vectors are defined as

– β11 = (0,1,2),

– β12 = (0,1,4/3,5/3,2),

– β13 = (0,1,8/7,9/7, . . .2),

– ∀i ∈ {2,3}, j ∈ {1,2,3} βi j = 0,

• two subscenarios are defined as

– a ’low sparsity’ scenario: Generate 6 covariates from Gi1,Gi2,Gi3 with i ∈
{1,2}, i.e. 3 of which have zero influence, s.t. the true linear predictor is

η =
3

∑
j=1

1{g1 j}(x1) ·β11, j +
5

∑
j=1

1{g2 j}(x2) ·β12, j +
9

∑
j=1

1{g3 j}(x3) ·β13, j,
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– a ’high sparsity’ scenario: Generate 9 covariates from Gi1,Gi2,Gi3 with
i∈ {1,2,3}, i.e. 6 of which have zero influence, s.t. the true linear predictor
remains as

η =
3

∑
j=1

1{g1 j}(x1) ·β11, j +
5

∑
j=1

1{g2 j}(x2) ·β12, j +
9

∑
j=1

1{g3 j}(x3) ·β13, j,

• m = 100 replications per setting.

The predictive MSE is evaluated on test data sets with 5000 observations. The quality
of shrinkage is compared with the MSE of the parameter estimates β̂i, which is defined
as

1
m

m

∑
i=1
|β − β̂i|22.

4.1.2 Results
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Figure 2: MSE / OracleMSE grouped by priors with different level of shrinkage.

In this simulation study there are two main objectives. Firstly to measure how the
strictness of the shrinkage affects the overall quality and secondly if the shrinkage is
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influenced by the size of the groups. The coefficient vectors have been scaled, s.t. they
span the same interval, in order of making the groups comparable.
In Fig. (2) it can be seen that the distributions of the MSEs for SNR = 0.1, 5 differ not
greatly. Also the different level of sparsity does not seem to have an structural effect on
these distributions. Solely for SNR = 1 it can be observed, that with looser shrinkage
the MSEs are drawn to slightly smaller values. For SNR = 0.1 it can be observed in
Fig. (3a) that the large-sized group performs worse in terms of MSE of the parameter
estimates. For SNR = 1 the strictness of the prior influences the parameter MSE of the
large-sized groups the most, s.t. for a loose prior the large-sized groups perform better
then the medium-sized groups. For the small-sized groups the lowest parameter MSEs
can be observed in this setting, but also a comparably large range of parameter MSEs
can be seen for these groups. By comparing all figures of Fig. (3) it can be concluded
that for smaller SNR values with stricter prior the parameter MSE of non-zero influence
variable descends and the parameter MSE of zero influence variable ascends slightly.
For SNR ≥ 5 the strictness of the prior impacts lesser the MSEs. Additionally it can
be observed that with a higher SNR the MSEs of the parameter estimates get smaller.
Also it can be stated that while the size of the group has an effect on the performance in
nearly all settings the level of sparsity has only an minor effect in some cases, i.e. the
grouped horseshoe priors appears to be quite robust against different levels of sparsity.
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(a) SNR = 0.1: MSE of all groups of parameter estimate grouped
by priors with different level of shrinkage.



22

●

●

●

●

●

●
●
●

●●●●●

●

●●
●●
●●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●

●
●●●

●
●

●
●

●
●
●

●
●
●●
●

●●
●●

●
●
●●

●

● ●●●●

●
●

●

●

●●

●

●● ●●●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●●●●

●

●

●

●●●
● ●●●●

●

●
●
●●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●
●

●

●

●
●●
●●●

●

●

●

●
●●

●

●●
●

●

●

● ●

●
●
●

●

●

●
●

●●

●

●

●●●●●●●
●
●●● ●●●

●
●●●●●●

●●
●
●

●●●
●

●

●●
●

●
●●
●

●●●●●●
●
●●●
●
●
● ●

●
●●●●●●●●●●
●

●

●●●●

aggregated small medium large

low
 sparsity

high sparsity

str
ict

op
tim

al

loo
se

str
ict

op
tim

al

loo
se

str
ict

op
tim

al

loo
se

str
ict

op
tim

al

loo
se

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

prior

M
S

E
 o

f p
ar

am
et

er
 e

st
im

at
e 

|β
−

β̂|
22

Influence of parameters zero non−zero

(b) SNR = 1: MSE of parameter estimate grouped by priors with
different level of shrinkage.
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(c) SNR = 5: MSE of parameter estimate of the medium groups
grouped by priors with different level of shrinkage.

Figure 3: MSE of parameter estimate grouped by priors with different level of shrink-
age for SNR = 0.1, 1, 5.
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4.2 Smooth functions scenario

In order of testing the performance of the grouped horseshoe priors in the setting of
smooth functions the simulation study in 4.1.5 of Scheipl (2010) is replicated. As a
reference a conventional GAM (as implemented in Wood (2008)) only based on the
non-zero influence variables is estimated, which will be referred as the ”oracle”-model
for chapter (4.2). The performance is compared with a Bayesian alternative model
approach spikeSlabGAM (see Scheipl (2010)) and the non Bayesian inference based
method GAMSEL (see Chouldechova and Hastie (2015)). The DGP is described in
section (4.2.1) and the results are discussed in (4.2.2).

4.2.1 Data generation

The DGP of this setting can be described as follows:

• n = 200 observations,

• SNR = 5,20,

• 4 functions, which enter the linear predictor, are defined as

– f1(x) = x,

– f2(x) = x+ (2x−2)2

5.5 ,

– f3(x) =−x+π sin(πx),

– f4(x) = 0.5x+1.5φ(2(x−0.2))−φ(x+0.4), where φ is the standard nor-
mal density function.

• Two subscenarios are defined as

– a ’low sparsity’ scenario: Generate 16 covariates, 12 of which have non-
zero influence, s.t. the true linear predictor is

η = f1(x1)+ f2(x2)+ f3(x3)+ f4(x4)+

+1.5( f1(x5)+ f2(x6)+ f3(x7)+ f4(x8))+

+2( f1(x9)+ f2(x10)+ f3(x11)+ f4(x12))).
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– a ’high sparsity’ scenario: Generate 20 covariates, 4 of which have non-zero
influence, s.t. the true linear predictor is

η = f1(x1)+ f2(x2)+ f3(x3)+ f4(x4).

• The covariates are either

– i.i.d.∼ U [−2,2] or

– from an AR(1) process with correlation ρ = 0.7.

• m = 100 replications per setting.

The predictive MSE is evaluated on test data sets with 5000 observations. The quality
of shrinkage is compared with the MSE of the estimated function outputs f̂i, which is
defined as

1
m

m

∑
i=1
| f − f̂i|22.

4.2.2 Results
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with different level of shrinkage with GAM-
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Figure 4: MSE / OracleMSE grouped by priors.



25

In this section grouped horseshoe priors with different levels of shrinkage are com-
pared to each other, spikeSlabGAM, and GAMSEL in the smooth functions setting.
For the horseshoe priors and spikeSlabGAM every covariate is fitted with a p-spline of
order 2 and degree 3 with 20 knots. Default setting consisting of 3 chains of length
500 are used for spikeSlabGAM. For GAMSEL splines of degree 6 with nominal num-
ber of basis elements of 10 are fitted. The regularization parameter λ of GAMSEL is
chosen from 50 10-fold cross validations. It is also evaluated how well the function
approximation is carried out by the different priors. In Fig. (4a) it can be seen that
the level of shrinkage does not seem to affect the performance in terms of the MSE
of the grouped horseshoe priors. Also it can be observed that the grouped horseshoe
priors perform quite robust compared to the other methods. Especially in the case of
correlated covariates this can be noticed, where in the low sparsity scenario the MSEs
of the horseshoe priors are lower distributed than the MSEs of spikeSlabGAM. In the
other cases spikeSlabGAM performs slightly better than the horseshoe priors. For this
simulation GAMSEL performs in terms of MSE far worse as it can be seen in Fig. (4b),
e.g many extreme high values, except for uncorrelated covariates, where for SNR = 5
a clearly better performance in both sparsity scenarios can be observed. The MSEs of
the centred function output estimates seem to have no noteworthy differences for dif-
ferent levels of shrinkage as it can be verified in Fig. (5), except for a slightly better
performance of the more loose shrinkage for SNR = 5 and ρ = 0.7. Which coincides
with the MSE distribution of the different shrinkage levels observed in Fig. (4).

●●●● ●●●●● ●●●●●●●

● ●
●

●●
●

●●● ●
●
●
●●● ●●●●●

●●●●●
●●

●●●●●●●● ●●● ●●●●●●●●

●

●

●

●

●

●●

●
●●●

●

●

●●● ●

●

●● ●●●●●
●●
●

●

●

●
●
●

●

●
●

●● ●●●●●●●● ●●●●●
●

●● ●●●● ●●●●●●

●
●●●●●

●
●●●● ●●●●

●●●●● ●●● ●●●●

●

●

●●● ●●●

●●●● ●●●●●●●●● ●●●●●●●

●

●●●●●

●

●
●

●

SNR = 5

ρ = 0.0

SNR = 5

ρ = 0.7

SNR = 20

ρ = 0.0

SNR = 20

ρ = 0.7

high sparsity
low

 sparsity

str
ict

op
tim

al

loo
se

str
ict

op
tim

al

loo
se

str
ict

op
tim

al

loo
se

str
ict

op
tim

al

loo
se

0.00

0.02

0.04

0.06

0.08

0.00

0.02

0.04

0.06

prior

M
S

E
 o

f f
un

ct
io

n 
ou

tp
ut

 e
st

im
at

e 
|f

−
f̂|

22

Output of function zero nonzero

Figure 5: MSE of function output estimate.
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5 Benchmarking

In this chapter the methods of section (4) are applied on real data sets and their per-
formance is compared. Both data sets are modelled as Gaussian, i.e. the output is
numerical and the error terms are assumed to be normal distributed. In section (5.1)
the output is estimated based only on categorical predictors and in section (5.2) smooth
functions are estimated for all numerical input variables. In this chapter the number of
all coefficients will be denoted as D.

5.1 Automobile

This data set is from the Univerisity of California Irvine Machine Learning Repository
[Dua and Karra Taniskidou (2017)]. The data was compiled by Jeffrey C. Schlimmer
from the following sources:

• 1985 Model Import Car and Truck Specifications, 1985 Ward’s Automotive Year-
book.

• Personal Auto Manuals, Insurance Services Office, 160 Water Street, New York,
NY 10038

• Insurance Collision Report, Insurance Institute for Highway Safety, Watergate
600, Washington, DC 20037

In this data set information of different cars and their price, as described in section
(5.1.1), is contained. The performance of estimating the price based on only the cate-
gorical predictors is evaluated in section (5.1.2).

5.1.1 Data description and modifications

The automobile data set consists of 205 observations with 26 attributes. Of these 26
attributes only the 10 nominal predictors are selected, s.t. the performance can be com-
pared with the gglasso method (see Yang and Zou (2014)). The numerical outcome
variable of interest is the price of the car, which ranges from 5118 to 45400$.
The nominal predictors for the price of one car are the make with 22 different kinds,
whether it runs on diesel or gas, whether its engine is naturally aspirated or turbocharged,
if it has two or four doors, the car body design with 5 different kinds, whether is has
front-wheel drive, back-wheel drive or four-wheel drive, whether the engine is located
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in the front or the rear, different engine-types with 7 different kinds, the number of
cylinder modelled as categorical variable with 7 types, the fuel system with 8 different
kinds. Only complete cases are used, s.t. only 199 observation are used for the estima-
tion of the models.

To create two levels of artificial sparsity in the data the 10 predictors are 1-times/2-
times duplicated, permuted and added to the data set, s.t. the newly added data is
distributed like the original data, but without relation to the outcome.

5.1.2 Comparisons and Results
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Figure 6: RMSE of prediction of 50 shuffle splits.

For this simulation 3 different horseshoe priors are evaluated with p0 = 0.1D,0.25D,0.5D

(note, that D changes with added sparsity). For every prior 4 chains with a size of 200
elements are simulated. Default setting consisting of 3 chains of length 500 are used for
spikeSlabGAM. The regularization parameter λ of gglasso is chosen from 100 5-fold
cross validations. The performance of these methods is compared with their RMSEs,
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which are drawn from 50 valid4 shuffle splits, i.e. 50 times the data set is randomly
divided into training and test data with ratio 4:1.
In Fig. (6) it can be observed that the horseshoe priors differ only slightly for all levels
of shrinkage. Since for the unaltered data the RMSEs of the grouped horseshoe priors
and the linear model follow a similar distribution, it is assumed that the data is not
sparse. All methods seem to be robust against higher levels of sparsity, except for the
linear model as one would expect. For this data set the groups horseshoe priors perform
best in terms of the RMSE, followed by spikeSlabGAM. Only for sparsity two-times
heightened the performance of gglasso is better than the linear model, but still worse
than the Bayesian approaches.

5.2 Boston housing

The data have been taken from the UCI Repository Of Machine Learning Databases
[Dua and Karra Taniskidou (2017)] and are based on Harrison and Rubinfeld (1978). In
this data set information of owner-occupied homes and their neighbourhood in suburbs
of Boston and their median value, as described in section (5.2.1), is contained. The
performance of estimating the median value based on only the numerical predictors is
evaluated in section (5.2.2).

5.2.1 Data description and modifications

The Boston housing data set consists of 506 observations with 14 attributes. Of these
14 attributes only the 12 continuous predictors are selected, s.t. the performance can
be compared with the GAMSEL method (see Chouldechova and Hastie (2015)). The
numerical outcome variable of interest is the median value of owner-occupied homes
in $1000, which ranges from 5 to 50.
The continuous predictors for the median value of owner-occupied homes are the per
capita crime rate by town, the proportion of residential land zoned for lots over 25,000
sq.ft., the proportion of non-retail business acres per town, the nitrogen oxides concen-
tration, the average number of rooms per dwelling, proportion of owner-occupied units
built prior to 1940, weighted mean of distances to five Boston employment centres,
full-value property-tax rate, pupil-teacher ratio by town, the proportion of African-

4A split is accepted, if the test data contains only levels, which are also present in the training data.
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American by town, the lower status of the population.
To create an artificial sparsity in the data the 12 predictors are duplicated, permuted and
added to the data set, s.t. the newly added data is distributed like the original data, but
without relation to the outcome.

5.2.2 Comparisons and Results
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Figure 7: RMSE of prediction of 10 times repeated 5-fold cross validation.

For this simulation 3 different horseshoe priors are evaluated with p0 = 0.1D,0.2D,0.4D

(note, that D changes with added sparsity). For every prior 4 chains with a size of 100
elements are simulated. Default setting consisting of 3 chains of length 500 are used for
spikeSlabGAM. For GAMSEL splines of maximum number of spline basis function of
10 with a degree of freedom of 5 are fitted. The regularization parameter λ of GAM-
SEL is chosen from 50 10-fold cross validations. Also for reference a linear model and
GAM with splines of degree 6 are fitted.
The performance of these methods is compared with their RMSEs, which are drawn
from 10 5-fold cross validations.
Since the GAM performs better in terms of RMSE than the linear model as it can be
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seen in Fig. (7) it can be concluded that there are non-linear effects in the data. In this
setting spikeSlabGAM has the lowest RMSE values, which are nearly followed by the
RMSE values of the GAM, for both levels of sparsity. The horseshoe priors perform
slightly worse than spikeSlabGAM, but still robust. No difference can be noted for the
different levels of shrinkage. GAMSEL has a similar performance than the grouped
horseshoe priors in this data set, but with some far higher extreme values as it can be
seen in Fig. (7).

6 Conclusions

As this thesis shows the grouped horseshoe priors are able to estimate robustly point
estimates. It is especially robust comparably to the other presented methods against
different levels of sparsity as it can be seen in the simulation study (4.2) and the bench-
marks (5). The linear predictor simulation (4.1) suggests that there is an influence
of the size of the groups, which should be investigated further. For this thesis the
parametrization u of γ as shown in section (2.3) was used. The influence of choosing
an other parametrization could be investigated. Also more studies could be done of
when a chain is sufficiently long for a good point estimate, since it could be shown in
(5.1) that chains of only length 200 produced competitive results. In most cases the
hyperparameter choice did not affect the performance in terms of predictive MSE, but
in some data situations the optimal prior offered a good comprise between estimation
error of the zero and non-zero influence variables, as it could be seen in section (4.1).
Also it must be noted that a drawback of using the full Bayesian Inference is that it is
quite time-consuming as compared to frequentist methods like gglasso or GAMSEL.
Overall the results of the grouped horseshoe priors look promising and more work
should be invested in extending it to the general additive model case and to a broader
family of smooth functions.
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7 Appendix - Stan code

7.1 Linear predictor

data {

int num_data; // number of observations

vector[num_data] Y; // outcome variable

real <lower=0> scale_global; // scale for tau

int <lower=0> num_linparam; // overall number of predictor coefficients

int <lower=0> num_groups; // number of groups

int <lower=0> group_ids[num_linparam ,1]; // assignments of levels

matrix[num_data , num_linparam] X; // model matrix of the inputs

real <lower=1> nu_global; // degree of freedom for the half -t prior for tau

real <lower=1> nu_local; // degree of freedom for the half -t prior for lambdas

}

parameters {

real beta0; // intercept

real logsigma; // log of noise std

// auxiliary variables

vector[num_linparam] z;

real <lower=0> r1_global;

real <lower=0> r2_global;

vector <lower =0>[ num_groups] r1_localB;

vector <lower =0>[ num_groups] r2_localB;

}

transformed parameters {

real sigma; // noise std

real <lower=0> tau; // global shrinkage parameter

vector <lower =0>[ num_groups] lambdaB; // local shrinkage parameter

vector[num_linparam] beta; // regression coefficients

vector[num_data] Y_hat = rep_vector (0, num_data ); // eta

sigma = exp(logsigma );

tau = r1_global * sqrt(r2_global );

lambdaB = r1_localB .* sqrt(r2_localB );

for (m in 1: num_linparam) {

beta[m] = z[m]* lambdaB[group_ids[m,1]]* tau ;

}

Y_hat = Y_hat + X*beta + beta0;

}

model {

r1_global ~ normal (0.0, scale_global*sigma);

r2_global ~ inv_gamma (0.5* nu_global , 0.5* nu_global );

r1_localB ~ normal (0.0, 1);

r2_localB ~ inv_gamma (0.5* nu_local , 0.5* nu_local );

z ~ normal(0, 1);

Y ~ normal(Y_hat , sigma );

}
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7.2 Smooth functions

data {

int <lower=0> num_data; // number of observations

vector[num_data] Y; // outcome

int <lower=0> num_splines; // number of splines

int <lower=0> num_params; // number of predictor coefficients

int <lower=0> len_Bs; // length of flattened transformed model model matrices Bs

int <lower=0> bStart[1, num_splines ];// starting indices of singular B

int <lower=0> bEnd[1, num_splines ]; // ending indices of singular B

vector[len_Bs] Bs; // flattened transformed model model matrices Bs

int <lower=0> gStart[1, num_splines ];// starting indices of coefficients of a singluar predictor

int <lower=0> gLen[1, num_splines ]; // number of coefficients of a singluar predictor

int <lower=0> gEnd[1, num_splines ]; // ending indices of coefficients of a singluar predictor

real <lower=1> nu_global; // degree of freedom for the half -t prior for tau

real <lower=1> nu_local; // degree of freedom for the half -t prior for u

real <lower=0> scale_global; // scale for tau

}

parameters {

real beta0; // intercept

real logsigma; // log noise std

// auxiliary variables

vector[num_params] z;

real <lower=0> r1_global;

real <lower=0> r2_global;

vector <lower =0>[ num_splines] r1_localG;

vector <lower =0>[ num_splines] r2_localG;

}

transformed parameters {

real sigma; // noise std

real tau; // global shrinkage parameter

vector[num_splines] lambda; // local shrinkage parameter

vector[num_params] u; // coefficients of all predictors

vector[num_data] Y_hat = rep_vector (0, num_data ); // eta

tau = r1_global * sqrt(r2_global );

lambda = r1_localG .* sqrt(r2_localG );

sigma = exp(logsigma );

for (i in 1: num_splines ){

u[gStart[1,i]:gEnd[1,i]] = z[gStart[1,i]:gEnd[1,i]] * lambda[i]* tau;

Y_hat = Y_hat + to_matrix(Bs[bStart[1,i]:bEnd[1,i]],

num_data , gLen[1,i]) * u[gStart[1,i]:gEnd[1,i]];

}

Y_hat = Y_hat + beta0;

}
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model {

r1_global ~ normal (0.0, scale_global*sigma);

r2_global ~ inv_gamma (0.5* nu_global , 0.5* nu_global );

r1_localG ~ normal (0.0, 1);

r2_localG ~ inv_gamma (0.5* nu_local , 0.5* nu_local );

z ~ normal (0,1);

Y ~ normal(Y_hat , sigma );

}
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