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Abstract

Machine learning pipeline typically consists of several sequential stages such
as data pre-processing, feature engineering and core model selection with a
large number of alternative operations in each stage. To design a machine
learning pipeline for a given data set, not only the operations at each stage
have to be carefully selected with expertise, but also the hyper-parameters
for some operations (especially for core models) need to be tuned because of
their large impact on predictive performance. Automated machine learning
(AutoML) aims to automatically design machine learning pipelines without
human intervention, which especially benefits people with limited experience
in machine learning.

However, machine learning pipeline design is characterized by condi-
tional dependency, which means that the hyper-parameters are conditional
on operations at each stage and become relevant only when the correspond-
ing operations are selected. This is also called Combined Algorithm Selection
and Hyper-parameter optimization (CASH) problem in Auto-WEKA’s Au-
toML approach.

This thesis is proposed to solve this hierarchical hyper-parameter space
problem by combining reinforcement learning with Bayesian optimization,
where the stages in machine learning pipeline are modeled as a sequential
decision process to be learned by reinforcement learning agent and the con-
ditional (discrete or continuous) hyper-parameters are tuned by Bayesian
optimization, which is dubbed as ML-ReinBo. Furthermore, some empiri-
cal experiments are also performed to compare ML-ReinBo with the state of
art AutoML systems like Auto-sklearn and TPOT, as well as popular opti-
mization methods such as Random Search, Irace and TPE. The results show
that ML-ReinBo performs favorably in most cases.
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1 Introduction

As subset of artificial intelligence, machine learning has achieved great suc-
cess in a wide range of application areas and has changed our life incredibly,
which has largely increased the demand for machine learning systems in re-
cent years.

However, for a given data set, to get better predictive performance, we
often have to carefully design the machine learning pipeline (Figure 1) by se-
lecting appropriate pre-processing method, engineering features and choosing
classification/regression model, as well as configuring a good set of condi-
tional hyper-parameters, which requires a lot of expert knowledge and is
especially unfriendly to non-expert users. Manually exploring the pipelines
costs a lot of work and generally does not lead to models with satisfactory
accuracy.

In stead of making decisions among such a large amount of potential
operations and hyper-parameters by ourselves, automated machine learning
(AutoML) helps to automatically generate a data analysis pipeline with op-
timized hyper-parameters, which provides opportunity to users with limited
machine learning expertise to train high-quality models and also makes ma-
chine learning more applicable in a variety of real-world problems.

Figure 1: Machine learning pipeline optimization
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The growing number of machine learning models and hyper-parameters
in recent years makes it totally impossible to evaluate all potential pipelines.
An AutoML system is proposed to search in the machine learning pipeline
space and find a well-performing architecture for a given data set. To build
an efficient AutoML system is particularly difficult for two main reasons:

- Machine learning pipeline evaluation is typically very expensive in terms of
computational time. During the search process, an efficient AutoML sys-
tem need to make a trade-off between exploration (of unseen situations)
and exploitation (of current knowledge) and make the best of computa-
tional resources to find better pipeline configurations.

- An AutoML system optimizes pipeline stages and the hyper-parameters
simultaneously. However, it is remarkable that the hyper-parameters are
conditional on the selected operations at each stage. More specifically, only
when Support Vector Machine (SVM ) is chosen as core model, it makes
sense to specify the hyper-parameters C and σ, and once the model naive
Bayes is selected, C and σ become irrelevant while laplace becomes valid
now. This hierarchical structure of hyper-parameters makes the optimiza-
tion of machine learning pipeline much more complicated, which is also
called Combined Algorithm Selection and Hyper-parameter optimization
(CASH) problem in Auto-WEKA’s AutoML approach[17].

Some state of art AutoML systems like Auto-sklearn[13] and Auto-
WEKA[17] use sequential model-based algorithm configuration (SMAC)[15]
method to solve CASH problem while Tree-based Pipeline Optimization Tool
(TPOT)[24] optimizes machine learning pipelines with genetic programming
(GP)[2] algorithm. However, this thesis will address this problem by combin-
ing reinforcement learning with Bayesian optimization, efficiently to design
machine learning pipeline and tune conditional hyper-parameters, which is
dubbed as ML-ReinBo here.

We describe the main structure of this thesis now. Some previous work
related to optimization algorithms and popular AutoML systems would be
reviewed in Section 2. Section 3 includes the methodology of reinforcement
learning and Bayesian optimization involved in our proposed ML-ReinBo
algorithm. The most important part of this thesis is the introduction of ML-
ReinBo algorithm and it will be described in detail in Section 4, explaining
how the states and actions of reinforcement learning algorithm are defined
in our case and in which way Bayesian optimization is integrated in a rein-
forcement learning process. Section 5 will introduce the baselines we set to
be compared with ML-ReinBo and the specific empirical experiment settings
and results will be presented in Section 6.

4



2 Related work

2.1 Optimization algorithms

As mentioned above, machine learning pipeline optimization is restricted to
resources because of its time-consuming property. Some optimization algo-
rithms aim to determine the best configuration in a limited amount of time
by reasonably allocating resources to candidate configurations, which can be
classified as budget-based optimization algorithms and the most representa-
tive one would be racing algorithm.

F-Race[6] is a racing algorithm for selecting the best configuration of
parameterized algorithms based on statistical approaches. The essential idea
is to evaluate a given finite set of candidates iteratively on a stream of in-
stances. After each iteration, some candidate configurations, which have
performed significantly worse than others regarding to Friedman test with
post-hoc analysis for pairs, will be eliminated and only surviving ones will be
evaluated for further iterations. As the evaluation proceeds, this approach
focuses more and more on the most promising candidate configurations.

An important part in F-Race is how to define the set of candidate con-
figurations of the first step. One way is iterated F-Race, which constructs
a probability model for a candidate solution. At each iteration, a sample of
candidates are evaluated to update the probability model to bias the next
sampling towards the better candidate solutions until some termination cri-
terion is satisfied. The Irace package[19] implements the iterated racing
procedure, which is an extension of the Iterated F-race procedure.

Hyperband[18] is a relatively new method for tuning hyper-parameters
of algorithms. In this case, hyper-parameter optimization is formulated as a
pure-exploration non-stochastic infinite-armed bandit problem. The Succes-
sive Halving algorithm uniformly allocates predefined resource like iterations,
data samples or features to a set of hyper-parameter configurations, throws
out the half configurations with worst performance and repeats until one
remains. However, for a fixed budget, it is not clear whether we should
consider many configurations with a small average training time or a small
number of configurations with a long average training time. Hence, Hyper-
band performs the Successive Halving algorithm with several possible values
of number of configurations at the cost of more work than just running Suc-
cessive Halving for a single value. By doing so, Hyperband is able to exploit
situations in which adaptive allocation works well, while protecting itself in
situations where more conservative allocations are required.

Another popular category of optimization algorithms is Bayesian op-
timization, also known as sequential model-based optimization (SMBO) for

5



general algorithm configuration[15], which is a powerful method for solving
such black-box optimization problems. It iterates between fitting surrogate
models and using them to make choices about which configurations to inves-
tigate.

Tree-structured Parzen Estimator Approach (TPE)[5] is a spe-
cial instantiation of SMBO, but conventional SMBO could not deal with the
conditional hyper-parameters. Instead of using Gaussian Process as a sur-
rogate, TPE uses Parzen Window to construct two non-parametric density
estimators on top of a tree like hyper-parameter set. Expected improvement
induced from lower and upper quantiles density estimators is used to select
new candidate proposal from points generated through ancestral sampling.

BOHB[12] is a combination of Bayesian optimization and Hyperband.
It relies on Hyperband to determine how many configurations to evaluate,
but it replaces random selection of configurations at the beginning of each
Hyperband iteration by a model-based search. Once the desired number of
configuration for the iteration is reached, the standard Successive Halving
procedure is carried out.

2.2 AutoML systems

Auto-Sklearn[13] is an AutoML system based on the Python machine learn-
ing library scikit-learn[25], and Auto-Weka[17] is an AutoML system based
on Java library weka[14]. Both of them use sequential model-based algo-
rithm configuration (SMAC)[15] to solve CASH problem. SMAC is also a
sophisticated instantiation of the general SMBO framework. Auto-Weka and
Auto-Sklearn transform the conditional hierarchical hyper-parameter space
into a flat structure, where SMAC handles conditional hyper-parameters by
instantiating inactive conditional parameters to default values and uses ran-
dom forest to focus on active hyper-parameters[15]. A potential drawback for
this method is that the surrogate model needs to learn upon a high dimen-
sional hyper-parameter space, which accordingly might need a large sample
of observations to be sufficiently trained, while in practice, running machine
learning algorithm is usually very expensive. Additionally, it is not clear
what effects the default values will play since the conventional random forest
training algorithm is intact in SMAC.

Another popular AutoML system is Tree-based Pipeline Optimiza-
tion Tool (TPOT)[24], which is also built on top of scikit-learn. TPOT
automatically designs and optimizes machine learning pipelines with genetic
programming (GP)[2] algorithm. The machine learning operators are used
as genetic programming primitives, which will be combined by tree-based
pipelines and the GP algorithm is used to evolve such tree-based pipelines
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until the “best” pipeline is found. Similar methods also include Recipe[10].
However, this family of method does not scale well[23].

A new approach to AutoML system is ML Plan[23], which uses a Monte
Carlo Tree Search alike algorithm to search for pipelines and also configures
the pipeline with hyper-parameters. Task is expanded based on best-first
search, where the score is estimated by a randomized depth first search by
randomly trying different sub-tree possibilities on a Hierarchical Task Net-
work. To ensure exploration, ML-Plan gives equal possibility to the starting
node in a Hierarchical Task Network and then use a best-first strategy for
searching at the lower part of the network. Potential drawback for this
method is that the hyper-parameter space is discretized, which might es-
sentially loses good candidates in continuous spaces since large continuous
hyper-parameter spaces would be essentially hard to discretize.

2.3 Reinforcement learning based optimization

The idea of ML-ReinBo is firstly inspired by MetaQNN[1], which uses Q
learning to search convolutional neural network architectures.

The learning agent in MetaQNN is trained to sequentially choose CNN
layers using Q-learning with an ε-greedy exploration strategy and the goal is
to maximize the cross-validation accuracy. Explicitly, each state is defined as
a tuple of all relevant layer parameters: layer type, layer depth, filter depth,
filter size, stride, image size, fc size, terminate. The parameter layer type
can be selected from convolution (C), pooling (P), fully connencted (FC),
global average pooling (GAP) or softmax (SM).

In Neural Architecture Search (NAS) framework[32], instead of us-
ing Q learning, the authors use Recurrent Neural Network as the reinforce-
ment learning policy approximator to generate variable strings to represent
various neural architecture forms. The reward function is designed to be
the validation performance of the constructed network. The reinforcement
learning policy is trained with gradient descent algorithm, specificially RE-
INFORCE. The architecture elements being searched are very similar to
MetaQNN.

Inspired from MetaQNN and NAS, ML-ReinBo assumes the machine
learning pipeline to be optimized could be represented by a variable length
string, but could use both Deep Q Learning and Tabular Q Learning. More
importantly, the elements of the neural architecture are mostly factor vari-
ables like layer type or discretized elements like filter size, while in our case,
ML-ReinBo deals heavily with continuous hyper-parameters (C and σ for
Radial Basis Function kernel SVM). To jointly optimize the discrete pipeline
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choice and associated continuous hyper-parameters, we embed Bayesian op-
timization inside the reinforcement learning agent.

A most recent work [31] also combines pipeline search and hyper-parameter
optimization in a reinforcement learning process, however, they use R learn-
ing for the reinforcement learning part and most importantly, the hyper-
parameters are randomly sampled during the reinforcement learning pro-
cess. An extra stage is needed to sweep the hyper-parameters using hyper-
parameter optimization technique.

3 Methodology

3.1 Reinforcement learning

There are three important subfields of machine learning: supervised learning,
unsupervised learning and reinforcement learning. In supervised learning, it
requires the algorithm to generalize from labeled training data to unseen situ-
ations while an unsupervised learning algorithm is to detect hidden structure
of input data without labeled responses such as Clustering. As one area of
machine learning, reinforcement learning is different from supervised learning
and unsupervised learning. Instead, it helps us to solve sequential decision
problems and focuses on maximizing the reward or performance, which in-
volves finding a balance between exploration (of uncharted territory) and
exploitation (of current knowledge)[16][27].

Reinforcement learning algorithm is popular in game applications like
Atari[20], but it could also be generalized to solve some other tasks. Typ-
ically, we set up a reinforcement learning task with an agent and an envi-
ronment. The agent can interact with the dynamic environment by taking
actions (Ai) at different states (Si) and receiving feedback or rewards (Ri)
from the environment.

Figure 2: Agent interacts with environment in Reinforcement Learning.

The environment is commonly a Markov Decision Process (MDP)[29],
where the future is independent of the past given the present and as a result,

8



the next state and reward only depend on the current state and action. A
rule/policy π is used to guide behaviours of the agent in the environment,
which describes the probabilities of taking each action at each state. Since
the agent is reward-motivated, it is supposed to continually learn how to
select better actions to maximize reward and find the optimal policy.

3.1.1 Tabular Q Learning

A reinforcement learning episode always starts from an initialized state S0.
At each state St ∈ S, the available actions space is denoted as ASt . Suppose
an action At of ASt is taken at St, the state would transition to another
state St+1 and the agent receives a reward Rt from the environment. But
for a sequential decision problem, our goal is to maximize cumulative future
rewards instead of the immediate reward. Hence, following a given policy π,
the state value function is defined as

Vπ(s) = Eπ[Rt + γRt+1 + γ2Rt+2 + ...|St = s] (1)

where Rt is the immediate reward and we use γ ∈ [0, 1] as a discount factor for
future rewards since the immediate reward is always preferable than delayed
reward. Analogously, taking action a at state s and then following the given
policy π, the action value function can be defined as

Qπ(s, a) = Eπ[Rt + γRt+1 + γ2Rt+2 + ...|St = s, At = a] (2)

According to the Bellman Equation[11], the value function can also be written
as

Vπ(s) = Eπ[Rt + γVπ(St+1)|St = s] (3)

Qπ(s, a) = Eπ[Rt + γQπ(St+1, At+1)|St = s, At = a] (4)

The optimal value function is the maximum value function over all possible
policies:

V ∗(s) = max
π

Vπ(s) and Q∗(s, a) = max
π

Qπ(s, a), ∀s ∈ S a ∈ A (5)

Hence, if we find V ∗(s) or Q∗(s, a), the problem is solved since the optimal
policy π∗ could be easily derived by choosing action with the maximum action
value at each state, namely a greedy policy.

Dynamic programming can be applied to find the optimal value function
and optimal policy π∗ in MDP by iteratively updating value function and
policy according to Equation (3), but it requires model of the environment,
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which means that the state transitions and rewards given the action are fully
known in advance. However, most problems are not in this case. As in our
case, the reward is unknown until the machine learning pipeline is completely
configured with hyper-parameters and trained to return the cross validation
accuracy.

Another solution is Temporal-difference (TD) learning, which instead
samples (St, At, Rt, St+1) from the environment and performs updates based
on the current estimates[28]. In each step, the action value function is up-
dated by

Q(St, At)←− Q(St, At) + αδt (6)

δt = Rt + γQ(St+1, At+1)−Q(St, At) (7)

where α is the learning rate and δt is TD error, which is the difference between
the previous estimate of action value Q(St, At) and the newly computed
target value Rt + γQ(St+1, At+1) based on Equation (4).

Q-Learning[30] is one of the TD algorithms. Tabular Q Learning updates
the estimates in a Q-table by taking the maximum value of all available
actions at the next step, thus,

δt = Rt + γmaxa∈AQ(St+1, a)−Q(St, At) (8)

according to the Bellman Equation again. Therefore, in Q-Learning we up-
date the action value function in each step by

Q(St, At)←− Q(St, At) + α(Rt + γmaxa∈AQ(St+1, a)−Q(St, At)), (9)

During the sample process, Q-Learning selects the action of highest value
at each state with an ε-greedy strategy, which makes a trade-off between ex-
ploration and exploitation. We do not want to always choose the action with
highest value because the agent need to learn more about the environment.
Therefore, at each state, the agent picks an uniformly random action with
probability ε and chooses the best action according to current policy π with
probability of 1− ε. The ε is set relatively high at the beginning of learning
process for enough exploration and then reduced to exploit the knowledge
and select the best action. And iteratively updating each pair of state and
action for enough times will yield correct Q values. The complete Q-Learning
algorithm is shown in Algorithm 11.

1In practice, we can also use experience replay in Q-Learning to circumvent the highly
correlated samples.
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Algorithm 1 Q-learning

Initialize Q(s, a) arbitrarily
for each episode do

Initialize s
for each step of episode do

Choose a from As using policy derived from Q-table (with ε-greedy)
Take action a, observe r, s′

Q(s, a)←− Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]
s←− s′

end for
end for

3.1.2 Deep Q Network (DQN)

The Tabular Q Learning is implemented by creating a Q-table and updating
each pair of state and action value estimate as mentioned above. However,
this is not scalable, since it would not be efficient at all in case of a huge
state space. Deep Q Network[21] creates a neural network to approximate
the Q values instead.

Algorithm 2 Deep Q Learning

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̂ with weights θ− = θ
for episode = 1, M do

Initialize s0
for t = 1, T do

Select a random action at with probability ε
otherwise choose at = argmaxaQ(st, a; θ)
Take action at, observe rt and st+1, store (st, at, rt, st+1) in D
Sample random mini-batch (sj, aj, rj, sj+1) from D
Set yj = rj if episode terminates at step j + 1

otherwise yj = rj + γmaxa′Q̂(sj+1, a
′; θ−)

Perform a gradient descent step on (yj −Q(sj, aj; θ))
2 with respect to

network parameters θ
Every C steps reset Q̂ = Q

end for
end for

DQN takes the current state St as input and output a vector of Q-
values for each possible action at the given state through a neural network. It
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stores all experience of actions, state transitions and rewards (St, At, Rt, St+1)
in memory D, but during the learning, it only uses a random sample (or
mini-batches) from D to update neural networks, which is called Experience
Replay. This increases the learning speed and also reduces correlations in
the observation sequence[21]. The complete algorithm of DQN is presented
in Algorithm 2.

3.2 Bayesian optimization

Bayesian optimization is a sequential design strategy for global optimiza-
tion of black-box functions[22], which is a type of Model-based Optimization
(MBO). It aims to find the global optimum of an objective function f(x),
which doesn’t require derivatives and it instead uses a cheap probabilistic
surrogate model, a prior distribution, to estimate the objective function and
then decides, via a learning criterion (acquisition function), where the next
query point should be. Bayesian optimization is specially useful when the
objective function has no closed-form expression or the evaluation of f(x) is
extremely expensive.

Two major choices that must be made in Bayesian optimization are the
surrogate model and acquisition function. The commonly used surrogate
model is Gaussian Process (GP)[26], which is defined by the property that
any finite set of N points {xn ∈ X}Nn=1 induces a multivariate Gaussian
distribution on RN . A Gaussian Process is fully specified by a mean function
m(·) and a covariance function k(·, ·). For a finite set of x1, · · · , xt ∈ X , the
corresponding random variables f(x1), · · · , f(xt) have the distribution:f(x1)

...
f(xt)

 ∼ N

m(x1)

...
m(xt)

 ,
k(x1, x1) · · · k(x1, xt)

...
. . .

...
k(xt, x1) · · · k(xt, xt)


 (10)

with

m(x) = E[x]

k(x, x′) = E[(x−m(x))(x′ −m(x′))]

where x, x′ ∈ X .
k(·, ·) is also called kernel function and the choice of k(·, ·) is crucial

for Gaussian Process. A very popular choice is squared exponential kernel
function:

kSE(x, x′) = exp(− 1

2l2
‖x− x′‖2) (11)

where l > 0 is a length scale parameter.
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Based on Gaussian Process we can predict the distribution of the next
point xt+1, given the previous observations (x1, y1), ..., (xt, yt). Supposem(x) =
0 and y1:t = [y1, · · · , yt], then based on Gaussian process property we have
the joint distribution:[

y1:t

yt+1

]
∼ N

(
0,

[
K k
kT k(xt+1, xt+1)

])
(12)

where

K =

k(x1, x1) · · · k(x1, xt)
...

. . .
...

k(xt, x1) · · · k(xt, xt)


k = [k(xt+1, x1) k(xt+1, x2) · · · k(xt+1, xt)]

And the predictive distribution can be generated as

P (yt+1|(x1, y1), · · · , (xt, yt), xt+1) = N (µt(xt+1), σ
2
t (xt+1)) (13)

where

µt(xt+1) = kTK−1y1:t

σ2
t (xt+1) = k(xt+1, xt+1)− kTK−1k

To select the next point, on one side, we should exploit the current
knowledge and take a point with highest probability to be the new maximum
to accelerate convergence. On the other side, we should also explore larger
regions, which might be sub-optimal currently but the maximum of f(x)
may be located there with high probability[3], in order to avoid falling into
a local optimum. Therefore, Bayesian optimization applies an acquisition
function, e.g. Expected Improvement, which makes a trade-off between high
mean value (exploitation) and high variance (exploration). The Expected
Improvement acquisition function is given by:

αEI = E[yt+1 − y∗]P (yt+1 > y∗)

= Φ(Z)(µt(xt+1)− y∗) + φ(Z)σt(xt+1)

where y∗ is the current best value, Z = µ(xt+1)−y∗
σt(xt+1)

, Φ and φ are the cumula-
tive distribution function and probabilistic density function of the standard
normal distribution respectively. And the next point xt+1 to be selected is
supposed to have the highest expected improvement.
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4 ML-ReinBo

A machine learning pipeline potentially consists of several stages and there
are various available operations at each stage to be selected. This process
could be formulated as a task of searching the pipeline space with a rein-
forcement learning agent to maximize the final model accuracy.

For example, a supervised classification machine learning task could be
solved in a 3-stage process including data pre-processing, feature engineer-
ing and classification model selection, where at each stage there are several
available operations (for instance, Principal Component Analysis could be
an operation at the stage of feature engineering and Support Vector Ma-
chine could be a potential choice at stage of classification model selection).
A reinforcement learning agent is supposed to learn how to select the best
operation at each stage to maximize the accuracy of final model for a given
data set.

ML-ReinBo models the pipeline composition process as a reinforcement
learning episode, where a particular operation at stage i is treated as an
action ai, taken upon a particular state si, which is supposed to include pre-
vious information of actions taken from starting state s0 until the current
stage. Asi denotes all potential operations/actions at state si. Suppose the
machine learning pipeline has K stages, then one complete episode consists
of a chain of states s0, s1, ..., sK and the pipeline search space could be de-
noted by

∏K
i=1Asi , where

∏
denotes the Cartesian Product. Accordingly,

the pipeline search task then becomes to find an optimal policy π to decide
which action from Asi to select at a particular state si, or specifically in
Q-learning, to estimate the state-action values in Q-table.

At end of each episode, a machine learning pipeline is generated by the
reinforcement learning agent with current policy π and ε-greedy strategy,
which is, however, an incomplete pipeline. Aside from the pipeline operation
itself, a set of conditional hyper-parameters Φai for operation/action ai at
stage i also need to be specified before we can train the model. For instance,
Φai could be hyper-parameter rank of PCA for keeping the number of top
features or hyper-parameters C and σ for classification model SVM. Thus,
a complete pipeline search space would be

∏K
i=1A(Si; Φ(Ai)), where Φ(Ai)

denotes the conditional hyper-parameter space at stage i, which means that
the conditional hyper-parameters could be involved in the model training
phase only when the relevant operation/action has been selected during the
reinforcement learning phase. During the composition process, a current
uncomplete pipeline can not be evaluated until the operations (especially
the final learner) are configured with hyper-parameters and trained on the
data. Therefore, Bayesian optimization is applied here to search for the
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hyper-parameters and evaluate configured machine learning pipelines.
Running MBO at end of each episode for large number of iterations

could help to find optimal conditional hyper-parameters, which is however
quite expensive, since machine learning pipeline evaluation is typically time-
consuming as mentioned in Section 1. Instead, ML-ReinBo would only run
MBO with a small budget at end of each episode and then store the hyper-
parameters and corresponding cross-validation accuracy (or loss values) for
the generated pipeline in a MBO surrogate dictionary (memory dictionary).
Then if the pipeline is sampled again by reinforcement learning agent, the
surrogate model could be retrieved from the dictionary to facilitate further
searching using MBO. In that case, ML-ReinBo will allocate more resources
to better pipelines as reinforcement learning agent focus more and more
on pipelines with higher accuracy, and avoids wasting time on unpromising
pipelines. The Figure 3 shows the main process of ML-ReinBo.

Figure 3: Main process of ML-ReinBo

4.1 Algorithm

The main procedure of ML-ReinBo algorithm is described by Algorithm 3. At
the starting point, the policy π is initialized arbitrarily and a MBO surrogate
dictionary is prepared for storing model information. At the beginning, re-
inforcement learning agent performs with a high ε, so that different pipelines
could be tried out randomly to ensure enough exploration, and it decreases
as time goes by to accelerate convergence. Each sampled pipelines at end of
each episode is trained by MBO PROBE (Algorithm 4), where MBO searches
the hyper-parameter space for a few steps, which depends on the dimension
of the conditional hyper-parameters. Specifically, MBO would run further
nprobe ∗ length(hyperparameters) iterations based on MBO surrogate mem-
ory, or (ninit+nprobe)∗length(hyperparameters) for a new generated pipeline.
And as a result, hyper-parameter space with higher dimension could get more
sampling budgets (iterations) of MBO after each episode. And then the cur-
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rent best performance (or least loss value) found by MBO will be taken as
reward to guide the reinforcement learning agent towards a better policy.

Algorithm 3 ML-ReinBo

Require: dataset D, operations and Hyper-parameters
Initialize Policy π
Initialize MBO Surrogate Dictionary R ← ∅
while Budget not reached do

Roll-out a unconfigured pipeline
∏
ai according to policy π

Get hyper-parameters set for the ground pipeline Λ(
∏
ai) =

∏
i Φai

Reward R← MBO PROBE(
∏
ai,Λ,R)

Update Policy π with reinforcement learning algorithm
end while

Algorithm 4 MBO PROBE(
∏
ai,Λ,R)

Require:
if R{

∏
i ai} = ∅ then

generate initial design of size ninit for surrogate model;
for j in 1 : ninit do

evaluate each design by initiating the pipeline with corresponding
hyper-parameters.

end for
initialize R{

∏
i ai}

end if
for j in 1 : nprobe do

propose new point according to surrogate model R{
∏
ai}

evaluate new point
end for
return y ← best accuracy until now

4.2 Design of state space

For a reinforcement learning algorithm, the most crucial part is to encode
the state space. Two reinforcement learning variants will be introduced in
this thesis with different state encoding styles, i.e. the Tabular Q learning
and the Deep Q learning. For both methods, we use the implementation
in rlR2. A simple example of potential operations for a 3-stage supervised
classification task is listed in the following Table.

2https://smilesun.github.io/rlR/
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Table 1: Available operations/actions at each stage

Stage operation/Action

1 Pre-process Scale Certer NA
2 Feature filter PCA FilterAnova NA
3 Classifier KNN Xgboost SVM

An operation of “NA” here is used to indicate that no operation would
be taken in the corresponding stage to add more flexibility to the pipeline
space.

4.2.1 State space design with Tabular Q Learning

Each state in the Tabular Q learning is defined as a string of variable length.
At the beginning of each episode it is initialized with S0 = “s”. At a state
of Si, if action Ai ∈ ASi

is taken according to current policy π, it transitions
to state Si+1 = Si.append(Ai), thus, the state string is always extended
with actions in sequence and the transition between states is deterministic.
Therefore, state Si always contains all historical information from start to
i-th stage. For the example in Table 1, if the available actions at each stage
are denoted as 1 to 3, then a state string of “s213” indicates a trajectory of
“Center” - “PCA” - “SVM”.

Figure 4: An example of state transition in Tabular Q Learning.

It is notable that we have 3 available operations for each stage here, but
actually the number of potential actions at each state in Tabular Q Learning
has not to be the same.
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4.2.2 State space design with DQN

In the common DQN framework, unlike in Tabular Q learning, each state
must be encoded as numerics of same dimension and the number of actions
at each state has also to be the same, since DQN uses a neural network to
proximate Q values and the output layer has a prefixed dimension.

Each state in our case could be encoded as a flat vector of all relevant
operations. Starting from S0 = (0, 0, 0.., 0), each element corresponds to
one specific operation. In case of the example above with 3 stages and 3
operations for each stage, each state has a dimension of 9 (3*3). If Ai is
selected at state Si, the corresponding element for the operation/action will
be changed from 0 to 1, i.e. Si+1: Si[Ai] = 1. An example of state transitions
in DQN is shown in Figure 5.

Figure 5: An example of state transition in DQN.

It would never happen that one operation has been selected more than
once because the agent always steps in a direct and acylic way and operations
in each stage are totally different. Hence, all previous information can be also
tracked from state Si. Another two possible encoding styles of states in DQN
could be found in Appendix.

5 Baselines

To evaluate the general empirical behavior of the ML-ReinBo algorithm ob-
jectively, we performed some popular optimization algorithms and the state
of art AutoML systems in the empirical experiments as baselines.
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5.1 Random search

A straight-forward method for machine learning pipeline search is Random
Search through ancestral sampling, which is most widely used strategy for
hyper-parameter optimization. It is a natural baseline against which to judge
one model-based or more complex optimization algorithm. In this thesis, the
ancestral sampling of pipeline components and hyper-parameters is imple-
mented by the R package parabox3 , which provides functionality to specify
a graph-structured configuration space and the conditional ancestral sam-
pling on the conditional space.

5.2 Tree-structured Parzen Estimator Approach (TPE)

The second comparison algorithm is TPE[5], which is a sequential model-
based optimization (SMBO) approach and also a powerful method for solving
such black-box optimization problem. Unlike the common Gaussian-process
based approach, TPE uses Parzen Windows to construct two non-parametric
densities on top of a tree like hyper-parameter set, which enables it to solve
problems with hierarchical space. TPE is implemented by Python library
Hyperopt[4] for optimizing discrete and conditional dimensions.

5.3 Irace in pipeline search

Irace[19], an extension of Iterated F-race, searches the configuration space
effectively with some probability model p(X) defined over the parameter
space X. Since Irace allows conditional hyper-parameter inputs, the machine
learning pipeline space can be easily set up according to the API of Irace.
Specifically, each configuration in Irace corresponds to a machine learning
pipeline candidate and the instances in this case could be the data set with
different hold-out (or cross-validation) resampling strategies. Thus, Irace
will evaluate each machine learning pipeline with average performance on
many different hold-out (or cross-validation) datasets, throw significantly
worse candidates through Friedman-test and focus more and more on the
most promising pipelines.

5.4 Auto-sklearn

Auto-sklearn[13] is an automated machine learning toolkit to automatically
find a high-quality machine learning pipeline, which is built upon the scikit-
learn machine learning library. Auto-sklearn extends the idea of Auto-

3https://github.com/smilesun/parabox
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WEKA[17], uses meta-learning to speed up the optimization process and
builds ensemble of models. But the core algorithm of Auto-sklearn is still
SMAC[15], which is proposed to be compared with ML-ReinBo in this thesis.

5.5 Tree-Based Pipeline Optimization Tool (TPOT)

Another AutoML system to be compared with ML-ReinBo is TPOT[24], one
of the very first AutoML methods, which is also built on top of scikit-learn.
It is based on genetic programming algorithm and considers pipelines with
multiple pre-processing steps as well as multiple ways to ensemble or stack
the algorithms. It could construct machine learning pipelines of arbitrary
length using scikit-learn algorithms and xgboost. TPOT provides several
configuration space possibilities. For example, the default configuration of
TPOT in document searches over a broad range of pre-processors, feature
constructors, feature selectors, models, and parameters. Some of these op-
erators are complex and may take a long time to run. However, the light
configuration of TPOT uses a built-in configuration with only fast models
and pre-processors.

6 Empirical experiments

6.1 Search space

ML-ReinBo is implemented in R in this thesis mainly with packages rlR4,
mlr [8], mlrMBO [9] and mlrCPO5, where rlR provides APIs for the reinforce-
ment learning algorithms, mlr as well as its extensions mlrMBO and mlrCPO
conducts hyper-parameters tuning process and trains machine learning mod-
els. However, ML-ReinBo algorithm could actually be implemented with any
machine learning library.

Notably, it is almost impossible to set up a perfectly fair comparison
framework for the baseline methods above, since different machine learning
libraries include different pre-processing operators and algorithms and even
the implementation of the same algorithm could also vary across different
libraries.

Concerning the potential impact of different machine learning libraries
and different operations, Random Search through ancestral sampling, Irace
and TPE also take mlr and mlrCPO as backends to evaluate machine learn-
ing models and search the same machine learning pipeline space as ML-

4https://smilesun.github.io/rlR/
5https://github.com/mlr-org/mlrCPO
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ReinBo does. In the empirical experiments, we set up a 3-stage of machine
learning pipeline process for supervised classification tasks including pre-
processing, feature filtering and classifier selection. At each stage, 5 poten-
tial operations/actions are provided, where the operations are constructed
by mlrCPO (listed in Table 2) and could be integrated with mlr to perform
machine learning pipeline evaluations.

Table 2: Operations/Actions in Experiments

Stage Operation/Action

1 Preprocess cpoScale cpoScale(center=FALSE) cpoScale(scale=FALSE) cpoSpatialSign* NA
2 Feature Filter cpoPca cpoFilterKruskal cpoFilterAnova cpoFilterUnivariate NA
3 Classifier classif.ksvm classif.xgboost classif.ranger classif.naiveBayes classif.kknn

* Normalize values row-wise

The relevant conditional hyper-parameters for the operations are listed
in Table 3. This pipeline pool (operations and hyper-parameters in Table
2 and 3) is used for ML-ReinBo, Irace pipeline search, TPE, and Random
Search through ancestral sampling in the empirical experiments.

Table 3: List of Hyper-parameters

Operation Parameter Type Range

Anova,Kruskal,Univariate perc numeric (0.1,1)
Pca rank integer (p/10,p)
kknn k integer (1,20)
ksvm C numeric (2−15,215)
ksvm sigma numeric (2−15,215)
ranger mtry integer (p/10,p/1.5)
ranger sample.fraction numeric (0.1,1)
xgboost eta numeric (0.001,0.3)
xgboost max depth integer (1,15)
xgboost subsample numeric (0.5,1)
xgboost colsample bytree numeric (0.5,1)
xgboost min child weight numeric (0,50)
naiveBayes laplace numeric (0.01,100)

However, the search space are different for Auto-sklearn and TPOT since
they are based on Python library scikit-learn. The default configuration space
of TPOT contains a lot of operators while the light version of TPOT pro-
vides only fast models and pre-processors. The light TPOT is therefore less
time-consuming but it could probably lead to lower accuracy in consequence.
For this reason, we compare ML-ReinBo with both TPOT with the default
configuration and TPOT with light configuration, and we call them TPOT
and TPOT light respectively in case of any confusion. As for Autosklearn,
we use the default search space and it has wrapped a total of 15 classifiers,
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14 feature pre-processing methods and 4 data pre-processing methods from
scikit-learn. Furthermore, we do not use meta-learning in Auto-sklearn and
also disable the ensemble process in comparison with ML-ReinBo.

6.2 Benchmarking datasets

A set of standard benchmarking datasets of high quality are collected from
OpenML-CC186 and OpenML100 repository[7], which are rather well-curated
from many thousands and have diverse numbers of classes, features, obser-
vations, as well as various ratios of the minority and majority class size. The
information for these datasets are listed in the following table.

Table 4: Datasets from the OpenML repository. Information of each dataset
listed here: the OpenML task id and name, the number of classes (nClass),
features (nFeat) and observations (nObs), as well as the ratio of the minority
and majority class sizes (rMinMaj)

id name nClass nFeat nObs rMinMaj omlcc18 oml100

14 mfeat-fourier 10 77 2000 1.00 TRUE TRUE
23 cmc 3 10 1473 0.53 TRUE TRUE
37 diabetes 2 9 768 0.54 TRUE TRUE
53 vehicle 4 19 846 0.91 TRUE TRUE

3917 kc1 2 22 2109 0.18 TRUE TRUE
9946 wdbc 2 31 569 0.59 TRUE TRUE
9952 phoneme 2 6 5404 0.42 TRUE TRUE
9978 ozone-level-8hr 2 73 2534 0.07 TRUE TRUE

125921 LED-display-domain-7digit 10 8 500 0.65 FALSE TRUE
146817 steel-plates-fault 7 28 1941 0.08 TRUE FALSE
146820 wilt 2 6 4839 0.06 TRUE FALSE

6.3 Experiment settings

Considering different performances of hardware like various types of CPU,
Memory configurations and so on, instead of using running time as budget,
the number of pipeline configurations to be evaluated during the optimiza-
tion process is used in the experiments here as budget for each algorithm.
Specifically, each algorithm is assigned with resources of 1000 times of a 5-fold
cross-validation (CV5 ) resampling process to search in the machine learning
pipeline space for a given data set.

Accordingly, for a given task, each algorithm could evaluate (at most)
1000 pipeline configurations with CV5 resampling strategy on the data set
and then take the pipeline with the least value of mean miss-classification

6https://www.openml.org/s/99
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error (mmce) as the best model. However, Irace trains each pipeline on many
different instances due to its racing property while other algorithms evaluate
each candidate configuration with CV5 only once. As a result, we found
Irace could only search much less pipelines within the budget of 1000 times
of CV5 in the previous experiments and performed obviously worse than
others. For this reason, we give Irace a budget of 5000 (1000*5) times of
hold-out resampling strategy now, thus, each instance in Irace is defined as
a different hold-out dataset, which allows Irace to search more pipelines and
the budget is kind of equivalent to 1000 times of CV5 for other algorithms.
And Irace will take the pipeline with the least average mmce across different
instances as the best model.

It should be aware that there are two types of errors, thus, the optimiza-
tion error we get during the optimization process to find the best model, and
another more reliable error we should consider – test error.

Since the optimization process has potential overfitting behavior, a nested
cross-validation (NCV ) strategy is used to evaluate the generalization capa-
bility of algorithms. The original data set D is partitioned into Dopt and Dtest

for calculating optimization error and test error. Specifically, Dopt and Dlock

are created by a CV5 resampling strategy, which means that the dataset D
is partitioned into 5 subsets of equal size and in the b-th iteration, the b-th
subset is used as Dtest, while the union of the remaining parts forms Dopt.
The split of Dopt and Dtest corresponds to the outer loop of NCV and we
always have D = Dopt

⋃
Dtest and Dopt

⋂
Dtest = ∅.

In each iteration, thus, in the inner loop of NCV, Dopt is used for algo-
rithm to find the best pipeline within the budget of 1000 times of CV5 while
Dtest, which has never been seen during the optimization process, is used to
test the best pipeline. The performance of the algorithm on the data set will
be finally calculated by the average value of 5 testing errors on Dtest.

Besides, as the search space we defined in Section 6.1 is relatively small,
we would only apply ML-ReinBo with Tabular Q Learning in the empirical
experiments.

6.4 Experiment results

Optimization process

At first, an overview of the optimization process is provided in Figure 6, where
ML-ReinBo is compared with TPE and Random Search through ancestral
sampling. These 3 algorithms searched the same machine learning pipeline
space defined in Section 6.1 and each algorithm was given a budget constraint
of 1000 times of CV5 on each data set to find the best configuration with
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least mmce during the optimization process.
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Figure 6: Average optimization error across 10 trials. In each trial, ML-
ReinBo, Random Search and TPE search the same pipeline space and each
algorithm is allocated with the same budget of 1000 times of CV5 resam-
ling process. The average best performance (least mmce) achieved by each
algorithm across 10 trials is plotted here against budget.

We performed 10 runs for each algorithm on each data set and plot the
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average optimization errors across the 10 independent trials against budget in
Figure 6. Irace is excluded here because it uses different resampling strategy
(hold-out) while Auto-sklearn and TPOT are not shown here due to the
different search spaces.

As can be seen from Figure 6, in most cases, explicitly for 9 of the
11 benchmarking datasets/tasks we collected from OpenML repository (ex-
cept for cmc and kc1), ML-ReinBo found a good configuration faster than
TPE and Random Search through ancestral sampling during the optimization
process, and the average least mmce ML-ReinBo achived within the budget
constraint is always lower or almost equal to the other two algorithms.

Validation/Test errors

To evaluate how well the best machine learning pipeline selected by each
algorithm during the optimization process could generalize to unseen data,
the nested cross-validation (NCV ) strategy is used to test the configuration
on the validation data set Dtest. Dtest and Dopt are split by CV 5 and in each
iteration, each algorithm is given a total budget of 1000 times of CV 5 on Dopt

to search for the best configuration as mentioned in Section 6.3. And the
aggregated mmce (mean miss-classification error) value across 5 iterations is
taken as performance measure of algorithms. This NCV process is repeated
10 times for each algorithm on each task/data set with different seeds and the
mean value across these 10 runs are shown in Table 5. Meanwhile, the distri-
bution of the explicit 10 aggregated values for each algorithm are displayed
in Figure 7.

Table 5: Average performance (mmce) of algorithms across 10 trials. 10 in-
dependent runs are performed for all algorithms on each data set and in each
run the aggregated mmce based on NCV is taken as performance measure
for each algorithm. Each value in this table is the mean value of the aggre-
gated mmce values across 10 trials and the bold-faced values indicate that
the algorithm does not perform significantly worse than the best algorithm
on the corresponding task based on Mann-Whitney U test.

name ML-ReinBo Irace Random search TPE Auto-sklearn TPOT light TPOT

mfeat-fourier 0.1269 0.1225 0.1581 0.1542 0.1412 0.1490 0.1451
cmc 0.4488 0.4453 0.4500 0.4485 0.4470 0.4506 0.4457
diabetes 0.2426 0.2431 0.2455 0.2436 0.2483 0.2413 0.2452
vehicle 0.1580 0.1611 0.2020 0.2117 0.1679 0.2057 0.1784
kc1 0.1358 0.1339 0.1353 0.1351 0.1421 0.1438 0.1380
wdbc 0.0274 0.0299 0.0341 0.0348 0.0299 0.0264 0.0353
phoneme 0.0911 0.0900 0.0912 0.0920 0.0902 0.1016 0.0893
ozone-level-8hr 0.0591 0.0585 0.0598 0.0601 0.0588 0.0603 0.0577
LED-display-domain-7digit 0.2678 0.2685 0.2696 0.2702 0.4738 0.2622 0.2608
steel-plates-fault 0.2128 0.2112 0.2146 0.2330 0.2041 0.2601 0.1985
wilt 0.0126 0.0131 0.0161 0.0159 0.0132 0.0164 0.0141
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A Mann-Whitney U test can test whether a randomly selected value from
one sample will be less than or greater than a randomly selected value from
a second sample, which is used here to test whether an algorithm performs
significantly worse than another algorithm based on the 10 aggregated mmce
values for the individual task.
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Figure 7: Boxplots for performance of algorithms in 10 trials of NCV resam-
pling strategy. For each algorithm, the distribution of the 10 performance
values based on NCV for each task is plotted here underlying mean values
in Table 5.

The bold-faced values in Table 5 indicate that the algorithm does not
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perform significantly worse than the best algorithm on the corresponding
task/data set. In addition, the test result between ML-ReinBo and other
algorithms is shown in Table 6.

As shown in Table 5 and Figure 7, overall, Irace and ML-ReinBo empir-
ically perform the best in comparison with other algorithms, where Irace has
the best performance (statistically not worse than the best one) for 9 of 11
tasks and ML-ReinBo performs almost equally to Irace for all tasks except for
mfeat-fourier. At the same time, both Irace and ML-ReinBo have relatively
shorter box range than other algorithms in most cases, which indicates that
they have more stable behaviours. On 8 of the 11 datasets, ML-ReinBo has
even shorter box range than Irace. And we also found that within the 5000
of hold-out budget, the number of configurations that Irace has evaluated
varies from 499 to 930.

Table 6: Comparison between ML-ReinBo and other algorithms on 11 bench-
marking datasets based on Mann-Whitney U test. Each pair of algorithms
are tested with the 10 values from boxplot in Figure 7 on each dataset to
check whether they significantly win or lose to each other with con (signifi-
cance level α = 0.05).

Irace Random search TPE Auto-sklearn TPOT light TPOT

ML-ReinBo
win 0 4 5 5 6 4
tie 10 7 6 5 5 5
lose 1 0 0 1 0 2

TPOT is among the best on 5 of 11 datasets and not surprisingly, it has
performed considerably better than TPOT light in the empirical experiments
since TPOT light has smaller search space with only fast models and pre-
processors. However, according to the Mann-Whitney U test, even TPOT
with the default configuration space has only won ML-ReinBo on 2 datasets
and lost on 4 datasets.

Auto-sklearn without meta-learning and ensemble method performs the
best on 4 of 11 datasets. It is better than Random Search and TPE in most
cases but compared to ML-ReinBo, it has only won once and behaved worse
than ML-ReinBo on 5 of 11 datasets. And it performs extremely bad on the
task LED-display-domain-7digit as plotted in Figure 7.

As mentioned in Optimization process, ML-ReinBo found a good ma-
chine learning pipeline faster than Random Search through ancestral sam-
pling and TPE. In terms of the validation errors, ML-ReinBo also performed
much more better than them, where ML-ReinBo has significantly won Ran-
dom Search on 4 of 11 tasks, won TPE on 5 of 11 tasks and for other tasks
they produced almost equally good results.
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Computing time

The budget constraint in this thesis is the number of configuration pipelines
to be evaluated regarding the resampling strategy. Comparing the algorithms
in this way instead of computing time has ignored the cost of complexity
of each algorithm, thus, how each algorithm works to select configuration
pipelines during the optimization process. For example, the time to update
Q-table in reinforcement learning and the Bayesian optimization method in
ML-ReinBo, the Friedman test and the update of model to select configu-
rations in each iteration in Irace. The following Figure shows the average
time that each algorithm took to implement one NCV process per task in
the empirical experiments.
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Figure 8: Sorted barplot of the running time for each algorithm in average.
The value reported here corresponds to the average running time of each
algorithm per data set based on the NCV strategy.

From the figure, it can be seen that Auto-sklearn is the most time-
consuming algorithm in the empirical experiments. It has taken more than
twice of the time that the second most time-consuming algorithm TPOT
costed in average. TPOT has performed better than TPOT light at the cost
of much more computing time since it includes more complex pre-processors
and models. It is not surprising that it could take less time for ML-ReinBo
and TPE than Random Search since the model-based algorithms focus more
and more on the promising candidate configurations, which sometimes might
be less complex, while Random Search through ancestral sampling samples
pipelines totally randomly, it could take more or less time than model-based
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algorithms. Furthermore, ML-ReinBo spent slightly less time than Irace in
average.

Selected models

Besides comparing the performance of optimization algorithms and AutoML
systems, it is also worth looking into the best machine learning pipelines
selected by each algorithm during the optimization process, which might
guide us to better configure the search space for an AutoML system.

Since ML-ReinBo and Irace have performed the best among all algo-
rithms in the empirical experiments and this thesis is more interested in the
operations defined in Table 2, the frequency of each operation included in
the best models selected by ML-ReinBo and Irace is listed in the following
table.

Table 7: Frequency of each operator selected by ML-ReinBo and Irace in the
empirical experiments.

Preprocess ML-ReinBo Irace Filter ML-ReinBo Irace Classifier ML-ReinBo Irace

Scale 252 126 Anova 146 82 ksvm 252 212
Scale(scale=FALSE) 271 125 Kruskal 176 124 ranger 263 284
Scale(center=FALSE) 9 102 Univariate 85 29 xgboost 14 2
SpatialSign 7 47 PCA 87 91 kknn 17 25
NA 11 150 NA 56 224 naiveBayes 4 27

Compared to the models selected by ML-ReinBo, Irace has chosen more
models without pre-processing or feature engineering. SpatialSign, which
normalize values row-wise, seems not preferred in pre-processing stage. In
feature filtering stage, Kruskal is selected relatively frequently. As for clas-
sifiers, ML-ReinBo and Irace have very similar results that ksvm and ranger
performed the best in most cases.

7 Summary and future work

Inspired by MetaQNN[1], which optimizes the neural network pipeline by
reinforcement learning, we proposed a new AutoML algorithm ML-ReinBo
to design machine learning pipelines with reinforcement learning.

By embedding Bayesian optimization into reinforcement learning, ML-
ReinBo is able to address such problem with hierarchical hyper-parameter
space, where the reinforcement learning agent learns to optimize the pipeline
composition and Bayesian optimization takes care of the hyper-parameters
conditional on the pipeline operations. Considering the evaluation of ma-
chine learning pipeline is typically expensive, similar to Hyperband, Irace

29



and some other AutoML systems, ML-ReinBo is basically to reasonably al-
locate resources to different configurations to balance the trade-off between
exploration and exploitation. Thus, the reinforcement learning policy guides
the agent to select a particular configuration to exploit more hyper-parameter
configurations by Bayesian optimization but also gives it chances to explore
unseen pipelines by ε-greedy strategy. And as time goes on, by decreasing
the possibility of exploring new or sub-optimal pipelines ML-ReinBo focuses
more and more on the most promising configuration pipelines.

We have performed some experiments to evaluate the general empirical
behaviours of ML-ReinBo and set up some baselines with as fair as possible
training budget. The results show that ML-ReinBo found a good config-
uration faster than Random Search through ancestral sampling and TPE
in most cases, and also performed considerably better than them regarding
the test accuracy. Compared to Auto-sklearn without meta-learning and
ensemble method, TPOT and TPOT with light configuration space, ML-
ReinBo also performed more favorably and stably. In addition, we set up
Irace to search machine learning pipeline space and considering its racing
property, we give it 1000*5 hold-out instances instead of 1000 times of CV5
(for other algorithms) to give it more flexibility. The empirical experiments
implied that Irace and ML-ReinBo produced almost equally good results on
the benchmarking datasets.

Compared to other AutoML systems, ML-ReinBo has an advantage of
interpretability because of the use of reinforcement learning algorithm. In
case of using Tabular Q learning, there is a Q table including state-action val-
ues Q(s, a), which could suggest which operation to choose at the next stage
given the current particular state. The larger the value, the more prefer-
able the operation, and the values are iteratively updated by reinforcement
learning algorithm during the optimization process.

For the two ML-ReinBo variants, we recommend using ReinBo-Table
for better sample efficiency. However, ReinBo-DQN could deal with larger
and continuous state space, which could be particularly useful if we want to
combine meta features of the datasets into the reinforcement learning state
space.

For future work, it would be interesting to include meta learning into
ML-ReinBo, which does not only learn how to construct a pipeline and con-
figure it for a given dataset, but also learn how to generalize the learned
policy to a wide range of datasets by learning jointly on the meta features.
Additionally, it would be nice to see how ReinBo performs on jointly opti-
mizing neural architecture and hyper-parameters like learning rate and mo-
mentum, etc. Another possibility could be to optimize the machine learning
pipeline operations with conditional hyper-parameters only with reinforce-
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ment learning, which requires reinforcement learning to deal with conditional
and continuous parameters.
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A Potential state encoding methods in DQN

If we have a lot of available actions at each stage, the encoding method
mentioned in Section 4.2.2 (Figure 5) will not be efficient since the dimension
of the state will grow largely. Another state encoding method displayed by
Figure 9 is inspired by MetaQNN. Instead of stacking all operations in a flat
vector of large dimension, we could use a separate one-hot encoding vector
to present the stage/depth of the current state and another one-hot encoding
vector to indicate which action has be selected in length of available actions
in one stage. Accordingly, the dimension could be largely reduced. But one
drawback might be that each state only contains information of the action
selected in the last step.

Figure 9: State transitions in DQN (2)

Figure 10: State transitions in DQN (3)

The state encoding method in Figure 10 is a more flexible method. It
could take arbitrary operation at each step and if a classifier is selected, the
reinforcement learning episode will terminate. In this case, we take machine
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learning as a totally black box and do not care whether it must firstly have
a pre-processor and then filter the features or whether it has applied 2 kinds
of feature filters for one given data set, which seems uncommon but might
make sense in some special cases. (Like TPOT, it could construct machine
learning pipelines of arbitrary length.)
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