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Abstract

Mixture Models as CUB and CUP models provide the opportunity to mo-
del discrete human choices as a combination of a preference and an uncer-
tainty structure. In CUB models the preference is represented by shifted
binomial random variables and the uncertainty by a discrete uniform distri-
bution. CUP models extend this concept by using ordinal response models
as the cumulative model for the preference structure. To reduce model
complexity we propose variable selection via group lasso regularization.
The approach is developed for CUB and CUP models and compared to a
stepwise selection. Both simulated data and survey data are used to inves-
tigate the performance of the selection procedures. It is demonstrated that
variable selection by regularization yields stable parameter estimates and
easy-to-interpret results in both model components and provides a data-
driven method for model selection in mixture models with an uncertainty
component.

Keywords: Mixture Models; Variable Selection; lasso, CUB model; CUP model

1 Introduction

Mixture models are widely used to model heterogeneity in populations. D’Elia
and Piccolo (2005) proposed a mixture type model for ordinal responses that
accounts for the psychological process of human choices. The model has been
investigated and extended in a series of papers for example by Piccolo and D’Elia
(2008), Iannario and Piccolo (2012b) and Iannario and Piccolo (2012a). The ba-
sic concept of the so-called CUB model is that the choice of a response category
is determined by a mixture of feeling and uncertainty. Feeling refers to the de-
liberate choice of a response category determined by the preferences of a person
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while uncertainty refers to the inherent individual’s indecision. The first com-
ponent is modelled by a binomial distribution, the latter by a discrete uniform
distribution across response categories. An introduction and overview is given in
Piccolo and Simone (2019). The CUP model described in Tutz et al. (2017) and
further developed by Tutz and Schneider (2019) extends this concept by using
any ordinal model as the cumulative model for the preference structure.
In this type of models the right choice of covariates is essential to get sensible
models. Even for a moderate number of covariates simple methods as all-subset
selection are too time consuming so that other techniques are in demand. Using
penalization techniques as lasso by Tibshirani (1996) can overcome this issue.
Previous work on variable selection in mixtures focused on mixtures of normal
densities and mixtures where the weights do not depend on covariates. Khalili
and Chen (2007) used the lasso approach for mixture models and chose a penalty
function which is proportional to the mixture weight. Further work was done
by Luo et al. (2008) who propose to penalize the coefficients within and between
Gaussian components and Städler et al. (2010) focus on high dimensional settings
where p >> n. But regularization has not been used to investigate the structure
of CUB and CUP models with a specific discrete component and weights that
depend on individual-specific covariates. In the following we show how to adopt
the lasso framework to CUB and CUP models and compare the approach to a
forward selection procedure.

The article is organized as follows. First, in section 2 the models are briefly
described. In section 3 we discuss variable selection by a step procedure and
the proposed lasso method, followed by section 4 about computational aspects
of estimation, initialization and convergence. In section 5 we provide results of a
simulation study and in section 6 we use the SHIW and ALLBUS survey to show
the applicability of the methods on two real data problems. Finally the results
are summarized.

2 Model Class

Let the probability that an individual i chooses the category r from ordered
categories {1, . . . , k} given explanatory variables zi,xi be composed of the indi-
vidual’s propensity towards uncertainty and preference structure. The mixture
distribution has the general form

P (Ri = r|xi) = πiPM(Yi = r|xi) + (1− πi)PU(Ui = r), (1)

where πi is the propensity or mixture weight, PM(Yi = r|xi) is a model for
the preference, and the uncertainty component PU(Ui = r) is determined by
a uniform distribution with probability 1/k for each response category. The
uncertainty is assumed to include all kinds of indecision related to the nature
of human choices like willingness to respond, lack of time, partial understanding
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etc. The probability πi is assumed to be linked to covariates by the logit model

logit (πi) = zTi β , i = 1, 2, . . . , n . (2)

The CUB and CUP models, used in this article, only vary in the choice of the
preference component. The preference structure in CUB models (combination
of uncertainty and binomial) is modelled by a shifted binomial distribution br(.)
with parameter ξ, that is,

br(ξi) =

(
k − 1

r − 1

)
ξk−ri (1− ξi)r−1, r ∈ {1, . . . , k},

where ξi is linked to the covariates xTi by

logit (ξi) = γ0 + xTi γ , i = 1, 2, . . . , n . (3)

The so called CUP model (combination of uncertainty and preference), descri-
bed in Tutz et al. (2017), uses any ordinal model. A traditional model is the
cumulative logit model

log

(
P (Yi ≤ r|xi)
P (Yi > r|xi)

)
= γ0r + xTi γ, r = 1, . . . , k − 1.

(see Agresti, 2013; Tutz, 2012). The CUP models are more flexible and can handle
complex ordinal data structures. However, the intercept parameters depend on
the number of categories k so that more parameters have to be estimated.
Both models use covariates to model the preference structure and the weights. In
general the covariates zi and xi may be identical, completely different or overlap.
It should be mentioned that the omission of the uncertainty component typically
yields biased parameter estimates.

3 Variable Selection

Since there are two sets of covariates, variable selection is an major issue in
mixture models. Let X contain all possible variables which can be selected for
the two independent sets of z and x, which are linked to the parameters β and
γ, respectively. It is typically not known which variables are relevant for the
weights (z) and which for the preference structure (x) so that variable selection
has to handle two separate effect structures. We propose a variable selection
based on penalty terms that are tailored to the problem of selecting variables in
two components and compare it with a stepwise procedure.
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3.1 Stepwise Variable Selection

Two traditional methods are the forward and backward selection. The latter
allows that all available explanatory variables are included in both components
and the model complexity is reduced stepwise. Especially in mixture models too
many possibly correlated covariates can lead to model degeneracy and conver-
gence problems so that the estimates in the fit are hardly trustworthy or the
complete model can not be fitted.
Alternatively, one might use a forward search procedure. Here the selection pro-
cess starts with a basic model as the intercept model. In the first step all models
with one covariate in any part of the model are fitted. Then the model with the
strongest improvement in terms of a specific criterion is selected. In the next
step the procedure continues with this selected model and all remaining covari-
ates are evaluated. The procedure continues until no improvement is detected.
In each step a covariate is assigned to only one of the two variable sets z and x.
If a covariate is selected for one of the two sets, it is still possible that the same
covariate is selected for the other variable set later. Several criteria can be used:

AIC(β̂, γ̂) = −2l(β̂, γ̂) + 2df(β̂, γ̂),

BIC(β̂, γ̂) = −2l(β̂, γ̂) + log(n)df(β̂, γ̂),

or the likelihood-ratio test with

lq = −2[l0(β̂, γ̂)− l(β̂, γ̂)]
a∼ χ2(|df(β̂, γ̂)− df0(β̂, γ̂)|),

where the likelihood of the previous model is compared to the likelihood of the
enlarged model. Since the likelihood-ratio test uses the difference of deviances we
refer to it also as “deviance” criterion. That variable is selected that yields the
largest improvement in AIC or BIC or the smallest p-value of the likelihood-ratio
test. If there are several p-values that are numerically close to zero, the model
with the largest deviance difference is selected. When the AIC/BIC does not
improve or the p-value of the likelihood-ratio test is larger than 0.05 the forward
selection is terminated. The estimation of these models is performed as described
in Section 4.1. The initializations and convergence checks are described in detail
in section 4.2.
Backward/forward strategies have the disadvantage that they are rather variable.
The instability of stepwise regression models was demonstrated, for example, by
Breiman (1996). Moreover, the standard errors computed for the final model
are not trustworthy because they simply ignore the model search. The larger
the available number of variables the more models have to be estimated so that
these techniques may not work well for very large data sets.
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3.2 Variable Selection by Penalization

We propose to use a version of the lasso (Tibshirani, 1996) that is adapted to
the mixture models to obtain a procedure that is not limited by the number of
variables and produces stable results. The penalized log-likelihood that is to be
maximized is given by

lp(β,γ) = l(β,γ)− Jλ(β,γ),

where l(β,γ) denotes the un-penalized log-likelihood and Jλ(β,γ) is a specific
penalty term that enforces the selection of variables in both model components.
Let the vectors zi and xi be partitioned into zTi = (zTi1, . . . ,z

T
ig) and xTi =

(xTi1, . . . ,x
T
ih) such that each components refer to a single variable. For example,

the vector zij can represent all the dummy variables that are linked to the j-th
variable, or represent the power functions of the j-th variable if one includes poly-
nomial terms. The corresponding predictors are zTi β and xTi γ with corresponding
partitioning of the parameter vectors, βT = (βT1 , . . . ,β

T
g ) and γT = (γT1 , . . . ,γ

T
h ),

respectively. Then the proposed penalty has the form

Jλ(β,γ) = λβ

g∑

j=1

√
dfβj
‖βj‖2 + λγ

h∑

j=1

√
dfγj‖γj‖2, (4)

where λβ and λγ are the tuning parameters for the selection of x and z variables,
respectively. The weights dfβj

are defined as the number of parameters collected

in the corresponding parameter vector βj, the weights dfγj are defined in the same

way. ‖‖2 is the unsquared L2-Norm so that the penalty enforces the selection of
variables in the spirit of the group lasso (Yuan and Lin, 2006) rather than selection
of single parameters.

All covariables have to be standardized to ensure that the selection of variables
does not depend on their scale. Categorical variables have to be orthonormalized.
The parameters λβ, λγ can be used to enforce specific selection properties. If
λβ → ∞ no explanatory variables are included in the mixture component and
selection is restricted to the effect of explanatory variables on the structured
response. If λγ → ∞ no explanatory variables are included in the structured
response part and selection is confined to the mixture component. If no specific
structure is pre-specified λβ, λγ can take any value and can be chosen in a data
driven way. A simplification that is tempting is to set λβ = λγ. It might be
sufficient in some applications but it should be used with care.

To select a certain model the use of a selection criterion is needed. In mixture
models cross validation can be very time consuming so that we propose the use
of AIC or BIC,

AIC(β̂, γ̂) = −2l(β̂, γ̂) + 2edf(β̂, γ̂),

BIC(β̂, γ̂) = −2l(β̂, γ̂) + log(n)edf(β̂, γ̂),
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where edf(β̂, γ̂) is the effective degrees of freedoms of the mixture model. For each
parameter set β̂ and γ̂ the effective degrees of freedoms are calculated separately
by

edf(β̂, γ̂) = edf(β̂) + edf(γ̂)

= 1 +

g∑

j=1

edf(β̂j) + I +
h∑

j=1

edf(γ̂j),

where 1 refers to the intercept β0 and I to the number of intercepts γ0. The CUB-
model consist of 1 + 1-intercepts and the CUP-model of 1 + (k − 1)-intercepts.
g and h denote the number of the penalized variables. Following Yuan and Lin
(2006) the effective degrees of freedom of each variable are computed by

edf(β̂j) = 1(‖β̂j‖2 > 0) + (dfβj
− 1)

‖β̂j‖2
‖β̂ML

j ‖2
,

edf(γ̂j) = 1(‖γ̂j‖2 > 0) + (dfγj − 1)
‖γ̂j‖2
‖γ̂ML

j ‖2
.

If a variable is not penalized the edf are identical to dfβj
and dfγj , respectively.

To find the best model the procedure has to be optimized with reference to all
sensible combinations of the tuning parameters λβ and λγ. We focus on the BIC
criterion to find the best model with the lowest BIC value. A two-dimensional
grid of λ-values is investigated and parallelized in the following way. One di-
mension is kept fixed while the other dimension is varied. By repeating this line
search all combinations of tuning parameters are covered. For example, using a
15× 15 grid results in a 15 times 1× 15 line. The advantage of this approach is
that we can use parallized computing architecture but also include the results of
the previous model for the initialisation of the current model. This saves com-
puting time and leads to non-degenerated results because the fit of the current
model should be close to the fit of the previous model with a slightly different
tuning parameter. Nevertheless we still use several random initialisations which
are described in Section 4.2 to ensure that the fit is not conditioned on the pre-
vious results.
Using a complete random choice of tuning parameter combinations can be pa-
rallelized even better, but previous knowledge about model results can not be
included easily. Another promising approach is the use of model based optimiza-
tion as described in Bischl et al. (2017) to replace the more time consuming grid
search.

6



4 Computational Aspects

4.1 Estimation with the EM-Algorithm

The mixture models considered in the previous sections can be estimated by an
adapted version of the EM algorithm proposed by Dempster et al. (1977). Given
the observed category yi the likelihood contribution of observation i is

Pr(yi|zi,xi) = πi PM(yi|xi) + (1− πi)PU(yi) yi ∈ {1, . . . , k} (5)

yielding the log-likelihood

li(β,γ) = {log(πi) + log(PM(yi|xi))}+ {log(1− πi) + log(1/k)}

The corresponding penalized log-likelihood is obtained by including the proposed
penalty term yielding

li(β,γ) = {log(πi) + log(PM(yi|xi))}+ {log(1− πi) + log(1/k)}

− λβ
g∑

j=1

√
dfβj
‖βj‖2 − λγ

h∑

j=1

√
dfγj‖γj‖2,

and for all observations

lc(β,γ) =
n∑

i=1

[{log(πi) + log(PM(yi|xi))}+ {log(1− πi) + log(1/k)}]

− λβ
g∑

j=1

√
dfβj
‖βj‖2 − λγ

h∑

j=1

√
dfγj‖γj‖2.

The EM algorithm uses the complete likelihood treating the membership to the
uncertainty or structure component as missing data. Let z∗i take the value 1 if
observation i belongs to the structure component and zero if observation i belongs
to the uncertainty component. Then the complete penalized log-likelihood is
given by

lp(β,γ) =
n∑

I=1

z∗i {log(πi) + log(PM(yi|xi))}+ (1− z∗i ) {log(1− πi) + log(1/k)}

− λβ
g∑

j=1

√
dfβj
‖βj‖2 − λγ

h∑

j=1

√
dfγj‖γj‖2,

where the probability πi depends on the individual characteristics by

πi = 1/(1 + e−z
T
i β).

Within the EM algorithm the log-likelihood is iteratively maximized by using
an expectation and a maximization step. During the E-step the conditional
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expectation of the complete log-likelihood given the observed data y and the
current estimate θ(s) = (β(s),γ(s)),

M(θ|θ(s)) = E(lp(θ)|y,θ(s))

has to be computed. Because lp(θ) is linear in the unobservable data z∗i , it
is only necessary to estimate the current conditional expectation of z∗i . From
Bayes’s theorem follows

E(z∗i |y,θ) = P (z∗i = 1|yi,xi,θ)

= P (yi|z∗i = 1,xi,θ)P (z∗i = 1|xi,θ)/P (yi|xi,θ)

= πiPM(yi|xi,θ)/(πiPM(yi|xi) + (1− πi)1/k) = ẑi
∗.

This is the posterior probability that the observation yi belongs to the structure
component of the mixture. For the s-th iteration one obtains

M(θ|θ(s)) =
n∑

i=1

{
ẑ∗

(s)

i log(πi) + (1− ẑ∗(s)i ) log(1− πi)
}
− λβ

g∑

j=1

√
dfβj
‖βj‖2

︸ ︷︷ ︸
M1

+
n∑

i=1

{
ẑ∗

(s)

i log(PM(yi|xi) + (1− ẑ∗(s)i ) log(1/k)
}
− λγ

h∑

j=1

√
dfγj‖γj‖2

︸ ︷︷ ︸
M2

M1 and M2 can be estimated independently from each other but most traditional
methods, such as Fisher-Scoring, can not be used because the derivatives do not
exist. This problem can be solved with the fast iterative shrinkage-thresholding
algorithm (FISTA) of Beck and Teboulle (2009) which is implemented in the
MRSP package by Pößnecker (2019) and is used for the maximisation problem
of β and γ, which can be formulated generally as

θ̂ = argmax
θ∈Rd

lp(β,γ) = −argmin
θ∈Rd

lp(β,γ) = argmin
θ∈Rd

− l(β,γ) + Jλ(β,γ). (6)

FISTA belongs to the class of proximal gradient methods in which only the unpe-
nalized log-likelihood and its gradient is necessary. The solution for the unknown
parameters θ of the unpenalized log-likelihood in iteration t+ 1 is given by:

θ̂(t+1) = θ̂(t) +
1

ν
∇l(θ̂(t)),

where ν > 0 is the inverse stepsize parameter. This estimator converges to
the ML estimator so that each update of θ̂(t) can be considered as an one-step
approximation to the ML estimator based on the current iterate. This can be
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used to define a searchpoint u. To motivate the procedure with penalty the
equation (6) is reformulated by Lagrange duality to

θ̂ = argmin
θ∈C

(−l(θ)),

where C = {θ ∈ Rd|Jλ(β,γ) ≤ λ} is the constraint region corresponding to
Jλ(β,γ). Given u, the proximal operator associated with the penalty Jλ(θ) is
then defined by

P(u) = argmin
θ∈Rd

(
1

2
‖θ − u‖2 + Jλ(θ)

)

and leads to

θ̂(t+1) = Pλ
ν
(θ̂(t) +

1

ν
∇l(θ̂(t)).

In a first step the penalty is ignored and a step toward the ML estimator via first-
order methods creates a search point. Then this search point is projected onto
the constraint region C to account for the penalty term. A detailed description
is given in Tutz et al. (2015).

For given θ(s) one computes in the E-step the weights ẑ∗
(s)

i and in the M-step
maximizes M(θ|θ(s)) (or rather M1 and M2), which yields the new estimates

β(s+1) = argmaxβ

n∑

i=1

{
ẑ∗

(s)

i log(πi) + (1− ẑ∗(s)i ) log(1− πi)
}
− λβ

g∑

j=1

√
dfβj
‖βj‖2

γ(s+1) = argmaxγ

n∑

i=1

ẑ∗
(s)

i log(PM(yi|xi))− λγ
h∑

j=1

√
dfγj‖γj‖2.

The E- and M-steps are repeated alternatingly until the difference lp(θ
(s+1)) −

lp(θ
(s)) is small enough to assume convergence. To account for different sizes of

the log-likelihood we define

∣∣∣ lp(θ
(s+1))− lp(θ(s))

rel.tol/10 + |lp(θ(s+1))|
∣∣∣ < rel.tol

as stopping criteria. rel.tol is the relative tolerance which has to below a certain
value, such as 1e− 6, to assume convergence. λβ and λγ span a two-dimensional
grid of tuning parameter space. Dempster et al. (1977) showed that under weak
conditions the EM algorithm finds (only) a local maximum of the likelihood
function. Hence it is sensible to use meaningful start values to find a good
solution of the maximization problem, which is described in the next section 4.2.
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4.2 Initialization and Convergence

Using meaningful starting values is a crucial point in mixture models. Misspeci-
fied starting values can lead to degenerated results, can be time consuming and
can lead to poor estimation results. In the literature several methods were propo-
sed as described in Baudry and Celeux (2015) and Karlis and Xekalaki (2003). In
the random setting several random start values are chosen and all models are run
until convergence. Then the best fit is selected. In the small EM strategy a large
number of short runs are evaluated which do not have to converge completely.
Only the model with the best fit is run until full convergence.

We use a special version of the small EM that refers to the model class con-
sidered here so that we use several different configurations. The mixture model
components are restricted to two components so that for every observation only
πi and its complement 1− πi need to be chosen which has to sum up to 1. From
experience we know that the mean weight for the uncertainty component (1− π̄)
is in most cases between 0.1 and 0.4. By using this information we are able to
create meaningful scenarios which are more likely to be close to a realistic so-
lution. The first strategy is to use a fixed weight for all πi, i = 1, . . . , n. Here
we chose πi = 0.9 and πi = 0.7 which correspond with a realistic weight for the
uncertainty component (1− πi) of 0.1 and 0.3, respectively.

The second strategy is drawing the weights πi so that they are not constant for
all observations. For example if we choose the value 0.7 and its complement 0.3 we
assign randomly one of this two values to πi. Because of the randomness we repeat
the sample strategy at least two times for the chosen value resulting in two weight
vectors π1,π2. To ensure that we have obtained different realizations we calculate
for each observation the quadratic difference between π1 and π2 and compute
the sum over all observations. If π1 and π2 are identical the computed sum is
zero so that π2 would be replaced by a new random sample. As a rule of thumb
the overall sum has to be larger than 0.1 ·n to accept π2 as a valid initialization.
Thus, the sample strategy produce several weight vectors for one chosen value.
Here we used 0.9 as well as 0.7 leading to four different initializations. Together
with the two constant initializations we obtain at least six configurations which
are run until small convergence defined as rel.tol < 0.01 or until the maximal
numbers of em-iterations equal to 60 depending on which criteria is reached first.
The one with the best result is selected and is run until complete convergence
(rel.tol < 1e− 6 or maximal numbers of em-iterations equal to 200). One E- and
one M-step is defined as one em-iteration.

Every time the model is called we use at least these six configurations re-
gardless if we use the stepwise selection or the penalization. In the latter we
may also include another weight initialization. As described in section 3.2 we
use a line search to find the best tuning parameter combination. Thus from the
second position onwards we can use the computed weights of the previous tuning
parameter combination as initialization for the current weights. Since at the be-
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ginning of each line search less information about a realistic model is available,
we use more configurations for initialization. It consists of the constant choice
and two samples of the values 0.6, 0.7, 0.8 and 0.9.

Dempster et al. (1977) showed that the EM-algorithm converges to a local
maximum which is measured in this models by a small difference in the (penali-
zed) Likelihood. A priori we have little information about the exact geometrical
shape of the likelihood so that in practice several problems may be occur.

It is well known that the speed of convergence is slow near to the maximum.
If the density close to the maximum is very flat we experienced that the difference
criterion in the (penalized) likelihood may be too strong. So the rule of likelihood
difference is supplemented by a maximum number of em-iterations which can be
used. Since the number of em-iterations is in most cases a backstop rule, we
usually use a higher number of possible em-iterations which we think should
usually not be reached. An exception is the initialization part of the algorithm
where the algorithm should not run until complete convergence.

In some cases the (penalized) likelihood may jump between several values
without approaching a maximum. This can be solved by adjusting the step-size
or, if necessary, taking the best values even if the criterion of small differences in
likelihood is not completely reached.

If the starting values are too close to the maximum it may happen that the
algorithm diverges from the maximum or a good solution. For this case we
implemented some checks to ensure that the best composition is used instead
of using a solution which is worse but satisfying the criterion of small difference
in (penalized) likelihood. During the EM-algorithm we keep the last ten results
to be able to jump back to a previous solution. If this problem occurs between
different starting values we select the next best solution. On the other hand we
also want to allow the algorithm to search for a better solution. So we allow the
algorithm to carry on after a dis-improvement of the likelihood in the first six
em-iterations. If the algorithm still does not detect a better likelihood we jump
back to the best solution found so far.

On rare occasions the parameters found may be close to the edge of the
parameter space. Especially if almost all estimated mixture weights are close to
zero or one. In this case we imposed a threshold of 1e−06 to prevent the weights
of being exact zero or exact one. Nevertheless if all mixture weights are close to
one for one of the two components a mixture model may be questionable. In case
of doubt we recommend to have a look at the estimated mixture weights.

The difference in the (penalized) likelihood is the main criteria of convergence.
Only in the case of non-regular behaviour other criteria may be used. Different
starting values not only help to find the best maximum but also help to avoid
degenerated results.
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5 Simulation

To illustrate whether the two selection methods are able to select the “true”
covariates we use simulated data with effects and white noise variables with no
effects. For n = 3000 observations and k = 5 response categories we generate five
metric covariates from a standard normal distribution (N(0, 1)) and six categori-
cal covariates. We use the same 11 covariates for x and z, but the effects differ.
The first two columns of Table 1 contain the exact values for β and γ used in the
simulation. We want to use almost all possible combinations so that some effects
of β and γ are identical and some differ. Also the covariates with no effect are
sometimes identical (e.g. Continous_5) and in other cases there is an effect for
only one of the parameters β and γ (e.g. Continous_1+4). In both parameter
sets there are two continuous and three categorical covariates with no effects.

We use also relative small parameter values to create a realistic setting and
to examine whether the size of the effect may have an impact on the different
selection methods. The effects of the continuous covariates are 0.2, 0.3, 1, −1 and
2. Three categorical covariates are binary with the effect strength −0.2, 1 and
0. The other three categorical covariates consist of four, four and five categories.
Only for the first of them we use effect sizes different from zero namely 0.2, 0.4
and 0.8. The other multi-categorical variables are white noise. The constants in
the CUP model are −2.391,−1.221,−0.259, 1.023 and in the CUB model −1.5.

We generate S = 20 samples from the CUP- and CUB-model each following
the described structure and selected variables with the penalization approach and
forward selection. For the CUB and CUP model we present in Table 1 the number
of times the covariate was selected depending on the used selection technique and
the model. The last row includes the π-deviations, which measure the difference
between the estimated individual mixture weights π and the true values, defined
by

π-Deviation =
1

S

S∑

j=1

(
1

n

n∑

i=1

|πij − π̂ij|
)
,

where S is the number of simulated data sets, n the number of observations in
each data set, πij is the true mixture weight of the i-th observation in the j-th
simulation, and π̂ij is the corresponding estimated mixture weight. We compute
the absolute differences on each individual mixture weight and use the average
over all observations and all samples as a measurement of discrepancy.

Both the penalization and forward selection technique show good results.
Both techniques selected covariates with clear effects (−1,1 and 2) in almost 100%
and show worse performance with smaller effect size of the parameters. But the
penalization technique selected more often covariates with smaller effect size than
the forward selection. For example looking at Categorical_1 the penalization
technique selected these covariates in 30% and 95% of the cases in the CUB mo-
del compared with only 10% or 65% of the cases using forward selection. The
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Table 1: Result of simulated data

Simulated Selected CUB Selected CUP
Penalize Forward Penalize Forward

Covariates β γ β γ β γ β γ β γ

Continous_1 0 0.3 0% 100% 0% 100% 0% 100% 0% 100%
Continous_2 -1 1 100% 100% 100% 100% 100% 100% 100% 100%
Continous_3 2 2 100% 100% 100% 100% 100% 100% 100% 100%
Continous_4 0.2 0 60% 0% 20% 0% 40% 25% 15% 0%
Continous_5 0 0 5% 0% 0% 0% 5% 5% 0% 0%
Categorical_1 -0.2 -0.2 30% 95% 10% 65% 10% 95% 0% 25%
Categorical_2 1 1 100% 100% 100% 100% 95% 100% 90% 100%
Categorical_3 0 0 0% 0% 0% 0% 0% 15% 0% 0%
Categorical_4:2 0.2 0.2 20% 100% 0% 100% 0% 100% 0% 95%
Categorical_4:3 0.4 0.4 20% 100% 0% 100% 0% 100% 0% 95%
Categorical_4:4 0.8 0.8 20% 100% 0% 100% 0% 100% 0% 95%
Categorical_5:2-4 0 0 0% 0% 0% 0% 0% 5% 0% 0%
Categorical_6:2-5 0 0 0% 5% 0% 0% 0% 0% 0% 0%

π-Deviation 0 0.044 0.033 0.056 0.037

same behaviour applies for the CUP model. The selection of the β-parameters,
which are linked to the mixture weights, seem to be more difficult for both se-
lection techniques than the selection of the γ-parameters. The Continous_1 and
Continous_4 are characterized by nearly the same effect size (0.3 and 0.2), but
differ very much in their selection frequency. While Continous_1 was selected
for γ in 100% correctly, the covariate Continous_4 was only selected in 60% at
the most correctly for the β-parameter. Similar consequences can be drawn from
the covariate Categorical_4. The covariate was selected in almost 100% of the
cases for γ, but very rarely for β.

Table 2 summarizes the results of Table 1 by investigating how often effects
that are zero and effects that are different from zero are detected correctly by the
two selection methods. The forward selection technique never selected covariates
with a true effect of zero while the penalization approach shows small false positive
rates. However, the penalization approach performs distinctly better in detecting
variables that have a non-zero effect. Both methods show lower rates in detecting
effects for β than for γ.

The computed π-deviations displayed in Table 1 are very small for both se-
lection methods given the average size of the simulated π = 0.8011 and that both
selection methods are not always able to select all covariates correctly. Figure 1
displays the original deviations for all samples resulting in 60, 000 observations in
each boxplot. Most of them are very close to zero. The penalty approach shows

13



Table 2: Summary of simulated data

Type Parameters Selected CUB Selected CUP
Penalize Forward Penalize Forward

Zero effects
β 1% 0% 1% 0%
γ 1% 0% 10% 0%

Non-zero effects
β 68% 55% 57% 51%
γ 99% 94% 99% 87%

higher variability and forward selection seems to yield lower discrepancies than
the penalization approach.1
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Figure 1: Simulation: Boxplots of π-Deviations for the different selection met-

hods.

6 Applications

6.1 Life Well-Being in the Survey on Household Income and Wealth

In the following, the methods are applied to the data from the Survey on House-
hold Income and Wealth (SHIW) by the Bank of Italy, which are earlier used by
Gambacorta and Iannario (2013). The data set consists of 3816 respondents from
the wave of 2010. The response is the happiness index indicating the overall life
well-being measured on a Likert Scale from 1 (very unhappy) to 10 (very happy).
25 covariates as, for example, age, marital status, area of living and educational
degree are included in the model selection.

1Note that the πij-differences of the penalization approach based on the penalized estimates.

14



First we describe the used penalization approach and then the forward se-
lection. Then both techniques are compared and some parameter interpretations
are given.
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Figure 2: SHIW: Grid of lambda values to find the best model for CUB (left)

and CUP model (right).

6.1.1 Penalization

To illustrate the proposed penalization we use both the CUB and the CUP-model.
A 15 times 15 grid of λβ and λγ-values is used to find the best combination of the
tuning parameters regarding to the lowest BIC-value. The tuning parameters
are transformed by log(λ + 1) because they were created on a logarithm scale
and to avoid very large negative values when λ-values are close to zero. Figure 2
shows the results of the 225 models each for the CUB-model on the left hand side
and for the CUP-model on the right. If both tuning parameters are zero (right
corner) an unpenalized model is estimated. In this case all available covariates
are included. On the opposite corner (left) the model is close to an intercept
model.

In this application the BIC-surfaces for the two models are quite different. In
the CUB-model the choice of the tuning parameter for the β-covariates seems to
be more important than the choice of the preference covariates. So it is advisable
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to use a smaller grid to find the λβ-value than the λγ-value. In the CUP-model
both dimensions of the tuning parameters seem to be more equally important.

The lowest BIC value was found at 16450 with log(λβ+1) ≈ 3.42 and log(λγ+
1) ≈ 2.66 in the CUB-model and at 16478 with log(λβ + 1) = log(λγ + 1) ≈ 2.86
for the CUP-model. The tuning parameters are not the same but are found in a
similar region. Choosing only identical λ-values leads to a slightly worse BIC of
16462 in the CUB-model but with the same selected variables. This is consistent
with the nature of lasso regularization which not only selects covariables but also
shrinks variables towards zero. It is not unusual that new variables do not enter
the model at every grid point in both model components. In general a grid of
several tuning parameters should be used, but in this application the restriction
on λβ = λγ would be sufficient.

To get a better understanding of the mechanism of the variable selection we
cut Figure 2 into slices and look at the development of both coefficient sets β
and γ. Because of the two-dimensional grid one dimension is fixed to the selected
λ-value and the other varies from high penalty (5.02) to low penalty (1.89). The
lower the penalty the more parameters enter the model. Each line type in the
coefficient paths stands for one parameter group. Because of the penalty term
there are some parameters which are selected in both parameter set as for example
marital status or area of living and others which are only selected in one of the
two sets.

Figures 3 and 4 display the results for the CUB- and CUP-model, respecti-
vely. In the first and second row the development of the γ- and β-parameter are
displayed. In the third row the resulting boxplots of the weights π are shown.
The weights are calculated by using the individual characteristics and estimated
β-coefficients. In the first column λγ is fixed to the best λγ-value and λβ varies.
So the effect of penalization of the β-parameters specifying the weights are shown
for β, γ and the weights. In the second column λβ is fixed and λγ varies so that
the penalty for the parameters determining the weights do not change.

In the CUB-model two different λ-values are found at log(λβ + 1) ≈ 3.42 and
log(λγ+1) ≈ 2.66 to receive the lowest BIC value. On the left column in Figure 3
the λγ-parameter is fixed at 2.66 and the penalty for the β varies.

Looking at the β-coefficients in the left column shows that at 5.02 no covariates
are selected and the model for the weights only consists of the intercept. The
πi-values are 0.534 for all observations because no individual covariable is present.
By adding covariables to the model the weights πi are adjusted by the individual
characteristics of persons and change individually. However the median of the
distribution stays almost the same. The more covariables enter the model the
variance increase so that the discriminatory power increase, too. But as we can
see from Figure 2 using much variables in the β-part increase the BIC-values so
that in this case the better discriminatory power does not compensate the higher
number of variables. The best trade off between number of variables and model
fit according to BIC is found at 3.42. While the β-coefficients are changing the
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γ-parameters, displayed in the upper left corner, stay nearly constant.
When λβ is fixed at 3.42 and only the penalty for the structure component

λγ changes, as displayed in the right column, the graphs are swapped. Now the
coefficients for β are nearly constant while more and more γ-coefficients enter
the model. The weights are almost constant. Note that at the maximum of λγ
already parameters are non-zero. In contrary to a flexible λβ there is not a pure
intercept model for log(λγ + 1) = 5.02.
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Figure 3: SHIW: Standardized coefficient paths of β and γ and π for fixed

lambda (left) and fixed c.lambda (right) in the CUB model.
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Figure 4: SHIW: Standardized coefficient paths of β and γ and π for fixed

lambda (left) and fixed c.lambda (right) in the CUP model.
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The behavior in the CUP model is different. The left column of Figure 4
shows the results for λγ fixed at 2.86 and a flexible λβ-parameter. The first time
β-Parameter entering the model is much later than in the CUB models. Until
2.86 a pure intercept model is fitted where nearly no uncertainty component is
present, because the π-values are close to 1. At 2.86 some parameters are non-
zero and the marginal median weight declines to 0.664. Then again the variance
enlarge with more covariates but the marginal median does not change much.
At 2.86 the coefficients for γ also change even if the penalty is not changed for
γ. That’s may be the result of the very different weights which are used for the
structured component. Before and after this cutpoint the coefficients of γ are
nearly constant.

The results for a fix λβ at 2.86 is displayed in the right column of Figure 4.
With less penalty more and more γ-coefficients enter the model. Even though
λβ does not change, the β-coefficients are not constant and consequently also the
weights πi change substantially.
Both the CUB- and CUP-model detect a reasonable combination of parameter
and the CUB-model seem to be more stable than the CUP-model in this appli-
cation.

6.1.2 Forward Selection

Using forward selection no choice of tuning parameters is necessary. Figure 5
displays the forward selection process for the CUB (left) and CUP-model (right).
The y-axis shows the value of the used criteria and the x-axis the selected vari-
ables. In the case of the likelihood-ratio test we display the estimated deviance
as well as the corresponding p-values. The selected variable is the result of es-
timating several models and choosing the variable with the greatest impact at
that stage of the selection process. The last covariate on the x-axis on the right
is the first one which is not selected and where the algorithm stopped. At the
beginning the reduction is mostly the highest. The criteria seem to have a great
impact on how and which variables are chosen. In the CUB model on the left
hand side referring to BIC results in a sparer model than using the likelihood-
ratio test or deviance. Not only the number of variables but also the order of
selected variables are different. The model constructed by the deviance includes
also all variables from the smaller model selected by the BIC. In the CUP case
the deviance criterion surprisingly results in a sparer model than using the BIC
criterion. However, there are some variables which are only included in one of
the models. For example gender and income is only selected in the model with
the deviance criterion. The selection process between the CUP and CUB model
seems to be also different. Some covariates are selected in both models by both
criteria and some are only available in a certain model.
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Figure 5: SHIW: Forward selection for the CUB (left) and CUP model (right).
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6.1.3 Comparison of the Selection Approaches

Table 3 compares both selection methods concerning different selection criteria.
For each criterion the value and (effective) degrees of freedom are given. The
first entry 16450 is the BIC value which results of a variable selection via the
penalization approach for the CUB model with the BIC as optimization criterion
followed by the effective degrees of freedom. The next entry 16288 is the AIC
value of the same selection technique but optimized according to AIC. Thus
each column represents a different model search. In five of the six settings the
penalization approach reach a lower value of the selection criteria than the forward
selection. In all cases the penalization methods selects larger models than the
forward selection.

Table 3: SHIW: Comparison of selection methods

model method criteria
BIC AIC Deviance

value (e)df value (e)df value (e)df

CUB penalize 16450 21.33 16288 42.46 16192 58.99
forward 16453 16 16335 21 16283 25

CUP penalize 16479 35.41 16178 64.27 16038 78.44
forward 16420 26 16389 24 16257 24
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Figure 6: SHIW: Effects of the categorical covariates marital status in CUB-

(left) and CUP-Modell (right) in the structure and uncertainty component.
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6.1.4 Parameter Interpretation

For illustration we use both models and selection techniques optimized according
to BIC. Using the penalization approach we refitted the models to avoid shrinked
coefficients. Note that in this case the goodness-of-fit measurements may be
slightly changed, too. Table 4 shows the result for the CUB model and Table 5
for the CUP model. As already mentioned the number of variables are smaller
using forward selection than the penalization approach in both models. The effect
sizes are similar and show always the same direction. In both components the
CUP-model select more variables than the CUB-model.

Figure 6 illustrates the effects of marital status in the CUP- and CUB-model.
It is not possible to compare the values of the γ-parameter directly because the
models are too different. But for both models the marital status “widow” cor-
responds to high values of unhappiness and high certainty (small 1 − π). In
contrast, the status “married” indicates happiness but a large amount of uncer-
tainty in the response. The order of the marital categories is almost the same in
CUB- and CUP-model, but the connected uncertainty is for them higher in the
CUB-model than in the CUP-model. This is consistent with the overall behavior
of the CUB-model predicting a higher uncertainty than the CUP-model.

Table 4: SHIW: Coefficients of the chosen (refitted) CUB model

Refitted Penalized model Forward Selection
Covariates Concomitant(β) Structure(γ) Concomitant(β) Structure(γ)

Constant 0.554 0.734 0.538 0.586
Marital status: Unmarried 0.381 0.431 0.489 0.368
Marital status: Separated 0.698 0.466 0.834 0.400
Marital status: Widow 0.722 0.492 1.174 0.560
Area: Centre of Italy 0.528 -0.259 0.936 -0.255
Area: South of Italy 0.273 0.100 0.412 0.071
Confidence in people 0.042 -0.042 0.093
Interview atmosphere -0.050 -0.038
Income sufficient -0.113 -0.126
Age (centered) 0.005
Easiness to answer -0.088 -0.133
Income earners -0.018
Reliability of information -0.073 -0.193
Financial liabilities 0.004
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Table 5: SHIW: Coefficients of the chosen (refitted) CUP model

Refitted Penalized model Forward Selection
Covariates Concomitant(β) Structure(γ) Concomitant(β) Structure(γ)

Constant 1.276 0.682
Marital status: Unmarried 0.796 0.757 0.801 0.402
Marital status: Separated 1.169 0.792 1.088 0.361
Marital status: Widow 1.160 0.840 1.429 0.649
Area: Centre of Italy 0.783 -0.514 0.930 -0.680
Area: South of Italy 0.514 0.230 0.633 0.180
Confidence in people 0.055 -0.056 0.128 -0.208
Interview atmosphere -0.051 -0.048
Income sufficient -0.023 -0.170
Age (centered) 0.006 0.008
Easiness to answer -0.167 -0.282
Income earners -0.029
Reliability of information -0.139 -0.211 0.046
Financial liabilities 0.040 -0.012
Foreign 0.203
Real activity -0.002
District size Cat2 0.045
District size Cat3 0.027
District size Cat4 0.271
Family Consumption -0.009

6.2 Enrichment of Cultural Life by Foreigners in the German General
Social Survey

The German General Social Survey (ALLBUS) provided by the GESIS-Leibniz-
Institut für Sozialwissenschaften (2017) collects data on behavior, attitudes and
social structure in Germany. In 2016 a big focus was on attitudes towards mi-
grants, foreigners and religious groups. The 3490 participants were asked to rate
on a 7-point scale whether foreigners enrich the German cultural life from “Com-
pletely disagree” (1) to “Completely agree” (7). The data set consist of over
700 possible variables. We restricted ourself to the 43 most meaningful variables
which would still result in over 200 parameters for the complete model because
of a large number of categorical variables and the two parameter sets α and β.

We applied both proposed methods. For the penalization we used a 19 times
19 grid of λβ and λγ-values to deduce the best combination of the tuning parame-
ters regarding to the lowest BIC-value. The result of this procedure is displayed
in Figure 7. White areas in the contour plots correspond with higher BIC-values
than being able to be displayed in this figure. In this application the surface of
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Figure 7: ALLBUS: Grid of lambda values to find the best model for CUB

(left) and CUP model (right).

both models are quite similar. But in the CUP-model the transition from low to
higher BIC-values is sharper than in the CUB-model even though in both models
the same grid is used. In the CUB-model the lowest BIC was found at 10471 for
log(λβ + 1) ≈ 5.02 and log(λγ + 1) ≈ 3.245. The CUP-model detected the lowest
BIC-value at 10408 with log(λβ + 1) ≈ 3.25 and log(λγ + 1) ≈ 3.42. In both
the CUB and the CUP models no covariables are selected in the β-component.
This results in a pure intercept model for the weights which are constant for all
individuals. The mean mixture weight (1− π̄) is 0.0004 for the CUP-model and
0.33 for the CUB-model. If there are no covariables in β selected, the intercepts
of the cumulative model γ0r in the CUP-model seem to be able to capture the
constant probability of the uniform distribution for all individuals resulting in a
mixture weight for the uncertainty component close to zero. Moreover the BIC
is lower than in the CUB-model with a much higher weight for the uncertainty
component.

Using the forward selection leads to models with covariates in both mixture
components. Figure 8 displays the selection process for the CUB and CUP model,
respectively. Furthermore the selected covariates are quite different between the
CUB and the CUP model. In the first case “foreign literature”, “age”, “hous-
hold income” and “party membership” are selected for z whereas in the CUP
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model only “age” and “eastwest” were chosen which also results in quite different
mixture weights π. The questions of the selected covariates can be found in the
appendix.
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Figure 8: Allbus: Forward selection for the CUB (left) and CUP model (right).

Table 6 summarizes the results for this application. For both models the
BIC value is smaller when using the penalization approach than the forward
selection. Also both selection techniques differ not very much in the estimated
average mixture weight π̄ especially in the CUB model, the models are quite
different. Using penalization results in larger models but without β effects except
of the intercept. On the other hand the selected β-coefficients using forward
selection seem to have not enough impact to reduce the BIC in an reasonable way.
The lowest BIC value was detected for the penalized CUP model with mixture
weight of 0.9996 which is almost a pure cumulative model without uncertainty
component.

Table 6: Allbus: Comparison of selection methods

model method BIC No β No γ π̄

CUB penalize 10470 0 26 0.6747
forward 10524 4 15 0.6273

CUP penalize 10408 0 27 0.9996
forward 10450 2 17 0.8742

This application shows that the penalization approach leads here to lower BIC
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values as the forward selection and stable results even if no β-effects are selected.
Furthermore the best combination of tuning parameters is quite different from
the previous application so that the best tuning parameter combination has to
be estimated for each application separately.

7 Concluding Remarks

We have shown how to adapt the group lasso framework for mixture models
with an uncertainty component and compared it to the forward selection. As
demonstrated in the simulation section both methods show good performance in
selecting the true covariates. The methods allow to decide which variables should
be included in the uncertainty part of the model and/or in the preference part
of the model. Since often covariates are only included in one of the model com-
ponents, the model complexity can be reduced substantially. Although forward
selection often yields sparser models variable selection via stepwise procedures
has some drawbacks. The procedure is rather variable and time-consuming when
the number of covariates increases, and often yields higher goodness-of-fit mea-
surements than the penalization approach. Penalization is more flexible and can
be used in very high dimensional settings.

It is seen from the applications to real data problems that the choice of the
selection method and the optimization criterion determine which final model is
chosen. In the Survey on Household Income and Wealth some variables as “ma-
rital status” and “area of living” were always selected. Regularization methods
yield information on the importance of covariates by visualization of coefficient
paths. Also nonparametric bootstrap samples might be a possibility to evaluate
how often a covariate is selected. However, including the search for the best
tuning-parameter combination without restrictions will lead to huge computing
time. One possibility to save computing time would be the restriction on the tu-
ning parameters to be equal. In the first application this restriction would have
been sufficient. However, further research is necessary to derive a general rule.
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A Appendix

Variable description of some selected covariates of the ALLBUS data:

• Common culture: It is better for a country, if all persons belong to a com-
mon culture?
“completely agree”, “rather agree”, “rather disagree”, “completely dis-
agree”
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• Economic situation: How do you evaluate the current economic situation
in Germany?
“very good”, “good”,“partly good/ partly bad”, “bad”, “very bad”

• Foreign literature: Do you read - at least occasionally - newspapers,
magazines or books in a foreign language?
“yes”, “no”

• Foreign movies: Do you watch - at least occasionally - television broadcast
or movies in a foreign language without subtitles?
“yes”, “no”

• Contact to refugees: Have you had direct personal contact with refu-
gees?
“yes”, “no”

• Internat. experience: Have you stayed during your life for more than
three months in a foreign country?
“yes”, “no”

• Internet: . . . Do you use at least occasionally the internet for private pur-
poses?
“yes”, “no”

• Household size: . . . Do other persons than you live in this household?
“yes”, “no, I live alone”

• Party membership: . . . Are you member of a political party?
“yes”, “no”

• German: German citizen
“yes, only”, “yes, too”,“no”

• Eastwest: Living region
“Old Federal states”, “Newly-formed German states”

• Inglehart Index: Computed from several questions:
“postmaterialist”, “postmaterialist mix”, “materialist mix”, “materialist”

• Age: Age of the respondent

• Household income: Equivalised disposable income

• Share of foreigners: Share of foreigners in living region

• Unemployment rate: Unemployment rate in living region

29


