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Abstract

Empirical applications of spatial voting approaches frequently rely on ordinal

policy scales to measure the policy preferences of voters and their perceptions about

party or candidate platforms. Even though it is well known that these placements

are affected by uncertainty, only a few empirical voter choice models incorporate

uncertainty into the choice rule. In this manuscript, we develop a two-stage approach

to further the understanding of how uncertainty impacts on spatial issue voting.

First, we model survey responses to ordinal policy scales where specific response

styles capture the uncertainty structure in issue placements. At the second stage,

we model voter choice and use the placements adjusted for the detected uncertainty

as predictors in calculating spatial proximity. We apply the approach to the 2016

US presidential election and study voter preferences and perceptions of the two

major candidate platforms on the traditional liberal-conservative scale and three

specific issues. Our approach gives insights into how voters attribute issue positions

and spatial voting behavior, and performs better than a voter choice model without

accounting for uncertainty measured by AIC.

Keywords: Ordinal Policy Scales, Issue Placements, Uncertainty, Spatial Voting, Mix-

ture Models
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1 Introduction

Spatial voting approaches assume that citizens elect parties or candidates that offer policy

platforms that coincide with their preferences. Empirical applications frequently rely on

ordinal policy scales to determine the citizens’ policy preferences and their perceptions

about party platforms. This practice presupposes that (1) voters have well-defined indi-

vidual preferences about public policy issues, and (2) parties take certain policy positions

and voters perceive these platforms. It is well recognized that uncertainty influences these

placements. Within spatial voting approaches, uncertainty is mainly considered as one

that stems from candidate or party platforms (Shepsle 1972; Enelow and Hinich 1981).

The literature argues that ambiguous or vague position taking (or campaigning) and li-

mitation in voter information cause uncertainty in the positions a candidate or party

represents and therefore in the decision of voters. Recently, it has been reasoned that

voters might not be equipped with consistent and well-structured policy preferences as

well (Stoetzer 2017). As a consequence, uncertainty seems to play a central role in both

perceptions of party platforms and voters’ policy preferences. However, there are only

a few neo-Downsian empirical models that incorporate voter uncertainty into the choice

rule (Bartels 1986; Gill 2005; Berinsky and Lewis 2007).

The purpose of this paper is twofold. First, we aim to understand what drives survey

response variability in political perceptions and policy preferences: how are the percep-

tions of party platforms and policy preferences of voters structured and what role does

uncertainty play in these perceptions and placements? Second, we want to further the

understanding of how uncertainty impacts on spatial issue voting behavior. We develop

an approach that allows studying the behavioral implications of uncertainty in political

perceptions and policy preferences and its consequences for political representation. The

approach consists of two analysis steps. First, we model survey responses to ordinal policy

scales where specific response styles capture the uncertainty structure in issue placements.

We use the so-called BetaBin model (Tutz and Schneider 2019; Mauerer and Schneider

2019), which belongs to the class of mixture models for ordinal responses. The model

permits accounting for both the placement and uncertainty structure of survey responses,

which can be modeled by covariates. In addition, it allows modeling specific response
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patterns, such as the tendency to select the middle category (see, e.g., Aldrich et al. 1982;

Alvarez and Franklin 1994) or the tendency to choose extreme categories (Baumgartner

and Steenkamp 2001; Vaerenbergh and Thomas 2013). At this first stage, we determine

the positions on the policy scales accounting for uncertainty. At the second stage, we mo-

del voter choices and use the adjusted placement values estimated by the mixture model.

This procedure allows us to improve the vote choice model by accounting for individual

uncertainty in issue placements.

The empirical application uses survey data from the 2016 US presidential election and

examines how voters’ perceptions of candidate platforms are structured on the traditional

liberal-conservative dimension and specific policy issues. The results indicate that voter

show much less uncertainty in placing themselves than in attributing positions to the

candidates. Our findings also suggest, for instance, that voter who identify themselves

with the Democratic or Republican party, respectively, tend to push their self-placements

toward the perceived candidate platforms. Furthermore, our approach improves model

performance measures at all stages.

2 Uncertainty in Policy Preferences and Platforms

Survey responses to ordinal policy scales are frequently used to measure the policy prefe-

rences of the electorate and perceptions of party or candidate policy platforms. In public

opinion research, several studies assess variability in policy preferences and examine com-

peting explanations based on uncertainty, ambivalence or equivocation. Some studies

explore specific attitudes towards, for instance, abortion, racial policies or European in-

tegration (Alvarez and Brehm 1995, 1997, 1998, 2002; De Vries and Steenbergen 2013),

others explore variability in Left-Right placements (Harbers, De Vries and Steenbergen

2013).

However, there is also work that argues that relying on individual placements and per-

ceptions of party locations might cause difficulties due to interpersonal incomparability of

survey responses or rationalization processes. The first difficulty arises when respondents

have a subjective understanding of issue scales, the so-called differential-item functioning

(Brady 1985), which distorts the placements. Starting with the Aldrich-McKelvey sca-
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ling method (Aldrich and McKelvey 1977), a considerable amount of research proposes

statistical procedures to correct for the interpersonal incomparability of survey responses

to issue scales (see, e.g., Hare et al. 2015; Poole et al. 2016; Poole 1998). Based on issue

scale data, these approaches provide estimates for self-placements and party locations to

construct common underlying latent policy dimensions.

The second difficulty stems from rationalization processes that induce distortions in

attributing issue positions to parties or candidates. Markus and Converse (1979) already

introduced the concepts of persuasion and projection. Persuasion means that voters are

persuaded by the parties or candidates so that they change their positions to bring them

closer to the position of favored parties. Projection means that voters project their own

positions onto parties they favor, i.e., a tendency to adjust the policy location of parties

they prefer. Drawing from balance theory (Heider 1946, 1958) and the social judgment-

involvement approach (Sherif and Hovland 1961), two types of projection effects can be

distinguished: assimilation and contrast (see, e.g., Merrill III, Grofman and Adams 2001;

Merrill III and Grofman 1999; Conover and Feldman 1982, 1981; Granberg and Brown

1992; Granberg and Brent 1980; Granberg and Jenks 1977; Granberg 1987; Feldman and

Conover 1983). The first effect is based on the argument that respondents assimilate

the stances of parties they prefer by reducing the perceived distance between their policy

preferences and the party they favor to move them closer to their own preferences. The

latter refers to the effect that respondents tend to contrast the positions of parties they

dislike, i.e., respondents project parties they dislike away by exaggerating the ideological

distance to those. To evaluate these effects, Merrill III, Grofman and Adams (2001),

for instance, divide the respondents into two groups, supporters and non-supporters of a

particular party. Then, they relate the self-placement to the median candidate placement,

separately for the two groups at the population level. Their results indicate that in

many cases, the group of supporters behaves differently than non-supporters in placing

the candidates. For instance, the more conservative the supporters place themselves on

average, the higher the median placement of the supported candidate.

The existing literature offers a few approaches to measure and model variability and

uncertainty in issue placements. One approach is to directly measure uncertainty by

4



asking respondents to report how certain they are about party or candidate platforms

(e.g., Alvarez and Franklin 1994), or to adjust the 7-point or 11-point policy scales by

range formats (see, e.g., Tomz and Van Houweling 2009; Aldrich et al. 1982; Alvarez

1999).

Another way to measure uncertainty is to rely on indirect methods. Harvey (1976)

introduced the heteroscedastic regression framework, which models the variance of the

disturbance by predictors and is applied, for instance, in Harbers, De Vries and Steenber-

gen (2013); De Vries and Steenbergen (2013). Alvarez and Brehm (1995), for example,

use a heteroscedastic binary probit model. Bartels (1986) infers uncertainty from patterns

in missing data, based on the idea that respondents who are uncertain are not able to

provide placements at all. In a two-stage procedure, he first relies on a model of survey

responses where non-responses indicate uncertainty and are a function of attributes of

the candidate, the voter, and the political setting. In the second stage, the estimated

probabilities of non-response are used to examine the impact of uncertainty on voting

behavior, applying a linear probability model in both analysis steps. Aldrich et al. (2018)

follow a similar approach. First, they estimate the probability of not placing themselves

or at least two parties on ordinal scales. Then, they use these probabilities as well as ot-

her covariates to evaluate the variability in the difference between the individual-specific

party placement and the sample mean party placement.

Campbell (1983b,a) also uses an indirect measure by using sample standard deviations

of placements. Gill (2005) connects uncertainty with the entropy concept. He develops

an approach that provides an aggregate measure of uncertainty by relying on aggregated

responses and information on candidate characteristics, the issue to be assessed, and

the respective survey questions. His uncertainty term is more flexible than the one by

Bartels (1986)’s by allowing it to vary across candidates and issues, but it still assumes

homogenous uncertainty across voters. Rozenas (2013) offers an approach that integrates

variance heterogeneity (Harvey 1976) and non-response (Bartels 1986), resulting in a quite

difficult model with hyper parameters for whom appropriate prior distributions need to

be selected.

The handling of missing values also plays a central role in the study of uncertainty.
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Current approaches treat missing values in diverse ways. Some studies use observed values

only and do not rely on any missing data, such as applications of the pure heteroscedastic

models (e.g., Harvey 1976; Alvarez and Brehm 1995). Others reason that uncertainty

induces missing data in the survey responses (e.g., Bartels 1986; Rozenas 2013). We

believe that the crucial issue here is whether a particular underlying mechanism generates

missing data. Missing values in the response structure might reflect uncertainty, but also

other processes might cause missing data. For instance, respondents might show clear

preferences and political perceptions but refuse to report them due to social desirability.

A lack of motivation or time might also cause that respondents do not provide placements.

In such cases, missing values would embody both certain and uncertain placements. Our

survey response model does not include any missing data (including ‘don’t know’ replies).

Usually, we do not know the true missing-data generating process. Therefore, we assume

that missing data in survey responses to policy scales is not directly linked to uncertainty.

The model of survey responses we develop in this paper, which then forms the basis for

the voter choice model, differs from existing approaches in the following aspects. First,

our approach does not require additional survey questions in which respondents state

how uncertain they are about policy platforms (Alvarez and Franklin 1994) nor does it

adjust the original 7-point or 11-point policy scales (e.g., Tomz and Van Houweling 2009;

Aldrich et al. 1982; Alvarez 1999). Second, the model explicitly takes into account the

ordinal nature of policy scales, which is in contrast to previous studies that use the linear

regression model (e.g., Harbers, De Vries and Steenbergen 2013; De Vries and Steenbergen

2013) or binary outcome-models based on logit/probit link functions (e.g., Alvarez and

Brehm 1995). Especially when dealing with limited ordinal policy scales, it is not clear

whether the distance between each category is equal, which is assumed in the linear

regression framework. In addition, the error terms might be not normally distributed,

and the linear regression might predict values lower, in between or above the limited

ordinal response scale. Third, the model can handle three specific response styles: a

random choice, a tendency to moderate, and a tendency to extreme placements on the

policy scales. This allows detecting particular uncertainty structures that can be modeled

by explanatory variables, in contrast to models such as the heteroscedastic regression
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model (e.g., Harvey 1976; Alvarez and Brehm 1995) where additional scale parameters

are used to model only low or high variance, and therefore rather unstructured variability.

3 Modeling Issue Placements and Spatial Voting un-

der Uncertainty

Our approach proceeds in two steps. In the first stage, we develop a model of survey

responses for ordinal policy scales. Here, we estimate the positions on the policy scales

corrected by uncertainty. In the second stage, we specify a voter choice model that is

based on these adjusted values as the key predictors.

3.1 Stage 1: Survey Response Model

The model of survey responses belongs to the class of mixture models (McLachlan and

Peel 2000; Iannario and Piccolo 2016; Piccolo and Simone 2019) which can be used to

model variability in ordinal response data. As human choices or political perceptions can

be understood as a combination of placement and uncertainty, we rely on a mixture model

with two components

f =
2∑

g=1

πgfg, (1)

where the mixture proportion or weight πg can take values between 0 and 1, and
∑2

g=1 πg =

1. The density f can be described by the combination of f1 and f2. We only consider

density functions that are in accord with the nature of ordinal data. Examples for the

placement component are the cumulative logit model or the adjacent categories model

(Tutz et al. 2017). The uncertainty component allows taking into account specific response

styles. D’Elia and Piccolo (2005) or Tutz et al. (2017), for instance, rely on the uniform

distribution, which reflects a random choice of the response category. We use the BetaBin

model (Tutz and Schneider 2019) that enables us to model both the response styles and

the placement structure in a flexible way. In contrast to other possible approaches, this

model can handle response styles to the middle as well as to extreme categories to model

uncertainty in policy placements.
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The mixture model BetaBin assumes that we observe the response of an individual

i to an ordinal policy scale, denoted by Ri. Let Yi be the unobserved random variable

that gives the placement on the ordinal policy scale. Ui is the unobserved uncertainty

component which models the type of response style. All these variables take the ordered

values {1, . . . , k}. The mixture model BetaBin has the form

P (Ri = r|xi,wi) = πiPM(Yi = r|xi) + (1− πi)PU(Ui = r|wi), (2)

where xi and wi are vectors of explanatory variables. Both the placement and the un-

certainty part can be modeled by the same, overlapping or entirely distinct covariates. πi

is the mixture probability that indicates the weight of the structural component in the

mixture. Consequently, 1− πi represents the strength of the uncertainty component. As

a result, the observed response Ri stems from a discrete mixture of the uncertainty and

the placement part.

Any ordinal model can be used for the placement part PM(Yi = r|xi) of the model. We

rely on the cumulative logit model (aka ordered/ordinal logit model, proportional odds

model) (see Tutz 2012):

log

(
P (Yi ≤ r|xi)
P (Yi > r|xi)

)
= γ0r + xTi γ, or

P (Yi ≤ r) =
exp(γ0r + xTi γ)

1 + exp(γ0r + xTi γ)
, r = 1, . . . , k − 1.

γ0r denote the thresholds or intercepts and γ the estimated effects that do not depend

on r. In our notation, positive values increase the ratio log
(
P (Yi≤r|xi)
P (Yi>r|xi)

)
and connote

that lower categories are more likely than higher ones. Regarding the uncertainty part

PU(Ui = r|wi), the model assumes that the random variable U follows a Beta-Binomial

distribution: U ∼ Beta-Binomial(k|α, β)

f(u) =





(
k−1
u−1

)B(α+u−1,β+k−u+1)
B(α,β)

u ∈ {1, . . . , k}

0 otherwise.
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α, β > 0 are the parameters of the distribution, and B(α, β) gives the beta function:

B(α, β) = Γ(α)Γ(β)/Γ(α + β) =

∫ 1

0

tα−1(1− t)β−1dt.

By assuming that µ = α/(α + β) and δ = 1/(α + β + 1)1, the expected value E(U) and

the variance var(U) are

E(U) = (k − 1)µ+ 1, var(U) = (k − 1)µ(1− µ)[1 + (k − 2)δ].

The beta-binomial distribution converges to the (shifted) binomial distribution B(k, µ)

with mean µ and categories {1, . . . , k} when δ approaches 0. We aim to model two

response styles: a tendency to middle or extreme categories. This is achieved by setting

α = β so that µ = 0.5 and δ = 1/(2α+ 1). As a result, µ, which gives the location of the

distribution, is set at the middle of the policy scale. α and δ are not fixed: smaller α values

result in larger δ values, and therefore greater variance. Figure 1 depicts the restricted

beta-binomial distribution for different α values. For α = 1, one obtains the discrete

1 2 3 4 5 6 7

0.
0
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2
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ba
bi

lit
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α = 0.1
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α =  4

α = 10
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Figure 1: Probability mass on 7-point liberal-conservative scale for different α values.

uniform distribution. α > 1 indicates a tendency to the middle categories and α < 1 a

1Note that this reformulation is required because α and β do not correspond with the location and
scale of the distribution.
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tendency to extreme categories. Given different α values, the distribution encompasses a

(shifted) binomial distribution with the mode in the middle of the scale, which reflects

a strong tendency to middle categories, and one with almost equal point mass at the

endpoints of the scale, which corresponds with a strong tendency to extreme categories

(i.e., minimum and maximum of k). Between these two extremes, any gradations are

feasible.

The coefficient α, the parameter of the restricted beta-binomial distribution, ascer-

tains the shape of the distribution in the uncertainty component and is connected to the

explanatory variables wi by

α = exp(wT
i α) = exp(α0) exp(α1)wi1 ..... exp(αm)wim .

The parameter αj contains the effect of the explanatory variable wij. Since the exponen-

tial function links the explanatory variables to α, the coefficient α changes by the factor

exp(αj) for every one-unit change in wij, holding all other variables constant. The para-

meters indicate how a variable impacts on the tendency to middle or extreme placements:

αj > 0 results in α > 1 and imply a tendency to middle categories; αj < 0 results in

α < 1 and imply a tendency to extreme placements.

3.2 Stage 2: Voter Choice Model

Following the classical proximity model (Downs 1957; Davis, Hinich and Ordeshook 1970;

Enelow and Hinich 1984), the voter choice model is decision theoretical and focuses on

the impact of spatial considerations on voting. To identify each candidate’s amount of

utility, voters are assumed to compare candidates’ policy proposals on several issues and

choose the one that offers issue positions that are closest to the voters’ most preferred issue

positions. The model also accounts for nonpolicy factors (e.g., Adams, Merrill III and

Grofman 2005; Adams and Merrill III 1999; Thurner 2000), such as voters’ socioeconomic

characteristics.

For voter i ∈ {1, . . . , n} and candidate or party j ∈ {1, . . . , J}, define Vij as a li-

near predictor for each candidate j that accumulates the systematic determinants of

the vote choice in a scalar quantity. Vij consists of voter-party proximity measures
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zijk, k ∈ {1, . . . , K}, that represent the proximity between voter i and party j on each

issue k. The model is based on respondent-specific perceptions of party positions and

applies linear utility losses in the calculation of issue distances. Let sil, l ∈ {1, , . . . , p}

refer to voter characteristics. The deterministic part of utility takes the form:

Vij = βj0 +
K∑

k=1

zijkαk +

p∑

l=1

silβjl = βj0 + zTijα+ sTi βj. (3)

The parameters β10, . . . , βJ0 represent alternative-specific constants (ASCs). These coef-

ficients contain the unmeasured utility components. α1, . . . ,αK is a k-dimensional vector

related to the voter-party proximity measures zij. β1, . . . ,βJ is a p-dimensional coefficient

vector related to voter attributes contained in the covariate vector si. The corresponding

coefficients indicate segment-specific evaluations of parties. The utility expression Vij is

linked to voter choice by a logit link function:

P (Y = j|zij, si) =
exp(βj0 + zTijα+ sTi βj)
J∑
r=1

exp(βr0 + zTijα+ sTi βr)

, (4)

where Y ∈ {1, ..., J} denotes the j-categorical, probabilistic response variable.

4 Empirical Application

We apply our approach to the 2016 US presidential election and focus on the two major

party candidates, the Democratic nominee Hillary Clinton and the Republican opponent

Donald Trump. The empirical application examines how self-placements and political

perceptions are structured on both the traditional liberal-conservative scale and three

specific policy issues (Spending and Services, Defense Spending, Health Insurance).2 The

respondents were asked to state where they place themselves and perceive each of the

candidates on seven-point scales. The liberal-conservative scale runs from (1) “extremely

liberal” to (7) “extremely conservative”. The first specific issue measures attitudes and

political perceptions on public spending and services, with (1) representing “Government

should provide many fewer services” and (7) “Government should provide many more

2Note that the 2016 American National Election Study (ANES) includes additional position issues
that we do not consider. Our analysis is based on the cross-sectional pre-election survey.
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services”. The second scale captures attitudes on the amount of the budget spent on

defense, running from (1) “Government should decrease defense spending” to (7) “Go-

vernment should increase defense spending”. The third taps positions on public versus

private medical support (1 “Government insurance plan”, 7 “Private insurance plan”).

We restrict our analysis to those respondents that provided self-placements and party

placements for both the Democrat and the Republican, and reported voting for one of

the two major candidates.

4.1 Survey Responses to Placements

The stated positions give the observed response Ri in Equation 2. Figure 2 depicts the

distribution of issue placements on the liberal-conservative scale and the three specific

issue scales. All bar plots show the percentages for each category on the ordinal scales.

While the distributions of the self-placements are in most cases rather unstructured, with

a small tendency to middle categories (except for the issue of health insurance), the den-

sities of the perceived candidate positions are mostly skewed. The modal value of the

candidate positions is in all cases at the opposite sides, except for the issue of defense

spending. Inspecting, for instance, the liberal-conservative scale reveals that the majority

of the probability mass for the Republican candidate is located at high categories (5,6,7),

while the majority of the probability mass for Democratic candidate is located at the

opposite side (1,2,3). The tendency to the left or right side of the scales depends on the

policy and the scale coding. Thus, voters perceive the Republican candidate as offering

more conservative positions, favoring the increase of defense spending and private health

insurance. By contrast, voters ascribe the Democratic candidate more liberal positions

and perceive the candidate as favoring government health insurance. The only exception

to this pattern is observed for the issue of defense spending, where the voters perceive the

Democratic candidate as taking a more moderate position. The same opposite tendency

is noticeable for the issue of spending and services, but in reversed corners of the scale be-

cause of the different coding. Here, the distribution of Democratic candidate placements

is left-skewed corresponding with more services and higher categories, whereas the distri-

bution of perceived stances for the Republican candidate is right-skewed corresponding
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with fewer services at smaller categories.

4.2 Stage 1: Predictors for Uncertainty and Placements

The model of survey responses can link both the placement and uncertainty structure of

self-placements and candidate placements to explanatory variables. Note that we model

the shape of the uncertainty structure by covariates but not the uncertainty weights. We

examine two sets of covariates which enter both components. The first three variables

relate to cognitive processes or information costs. Voters vary in political sophistication

or awareness (e.g., Luskin 1987, 1990; Delli Carpini and Keeter 1993; Rapeli 2013). It

is frequently reasoned in the literature that voters with lower information costs are more

informed about the stances parties or candidates take on public policies. We hypothesize,

therefore that voters who are equipped with higher levels of political information are more

certain about their own placements and party platforms. We rely on three measures to

explore whether different levels of political sophistication yield special response patterns

due to uncertainty or placements in a particular direction. The first is the level of educa-

tion, measured in 8 categories from 1 (high school degree or less) to 8 (doctorate). The

second variable captures the strength of political interest and employs self-reports on how

much attention the respondent pays to politics and elections. The original five-point scale

was reversed so that 1 represents the response “never” and 5 “always”. To distinguish

segments with different political knowledge, we use factual knowledge questions with cor-

rect and incorrect responses. The respondents were asked to recognize the job or political

office the following persons hold: Vice-President Joe Biden, Speaker of the House Paul

Ryan, Chancellor of Germany Angela Merkel, President of Russia Vladimir Putin, US Su-

preme Ct Chief Justice John Roberts. We computed an additive knowledge score where

each incorrect reply gives a value of 0 and correct answers a value of 1. We counted the

number of times each respondent reported right answers yielding a six-categorical variable

(0 none correct, 5 all answers correct).

The second set of predictors are partisan variables and assessments of personal or

character qualities of the candidates. We hypothesize that voters are more certain where

to locate the candidates on the policy scales when they have a long-standing leaning
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Figure 2: Distribution of Issue Placements

(a) Liberal-Conservative

1 2 3 4 5 6 7

Self−Placement
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

Liberal Conservative
1 2 3 4 5 6 7

Democratic Candidate

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Liberal Conservative
1 2 3 4 5 6 7

Republican Candidate

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Liberal Conservative

(b) Spending and Services

1 2 3 4 5 6 7

Self−Placement

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Fewer More
1 2 3 4 5 6 7

Democratic Candidate

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Fewer More
1 2 3 4 5 6 7

Republican Candidate

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Fewer More

(c) Defense Spending

1 2 3 4 5 6 7

Self−Placement

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Decrease Increase
1 2 3 4 5 6 7

Democratic Candidate

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Decrease Increase
1 2 3 4 5 6 7

Republican Candidate

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Decrease Increase

(d) Health Insurance

1 2 3 4 5 6 7

Self−Placement

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Government Private
1 2 3 4 5 6 7

Democratic Candidate

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Government Private
1 2 3 4 5 6 7

Republican Candidate

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Government Private

Source: 2016 ANES, N=1539.
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toward the party whose candidate they place. By contrast, specific response styles due to

uncertainty might be likely to observe when the voter does not identify with the respective

party. The same expectation could also be formulated for candidate images. To capture

the relationship between the voter and the candidate to be located, we consider party

identification, which enters the models by two dummy-coded variables. For each of the

two major parties, we generated a variable that takes the value of 1 when the respondent

identifies as Democrat or Republican, respectively, and 0 otherwise (i.e., no preference, any

other party identification or Independents). We also explore candidate images measured

by character traits. The respondents were asked to assess the candidates on six traits

(strong leadership, really cares, knowledgeable, honest, speaks mind, and even-tempered),

each measured on a five-point scale running from “not well at all” to “extremely well”.

For each of the two candidates, an index of the overall evaluation was generated by adding

all trait evaluations and dividing it by the number of traits.

4.3 Stage 2: Predictors for Vote Choice

The voter choice model is based on the placement and uncertainty estimates of the under-

lying survey response models. In addition to these spatial considerations, we also account

for standard voter characteristics such as age (centered around the sample mean, measu-

red in decades), gender (1 female, 0 male), regional differences (North Central, Southern

and Western part of the US, with Northeast as reference), economic considerations (eva-

luation of the country-level economy in the past year, ranging from 1 “much worse” to 5

“much better”), two race variables (self-identifications as being Black or Latino), and the

level of education. Also here we exclude all missing values.

5 Results

The result presentation proceeds as follows: First, we discuss the findings of the survey

response models. Here, we begin by assessing how uncertainty impacts on voters’ self-

placements and the perceived party platforms. Then, we present the estimates for the

placement and the uncertainty part of the models, followed by a comparison of the BetaBin

models with the ordinal models without uncertainty component based on performance
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measures. In the second part of the analysis, we use the estimated placements to predict

voter choice between the two major candidates.

5.1 Issue Placements and Issue Uncertainty

We specify for each of the placements separate BetaBin models.3 Figure 3 illustrates the

role of uncertainty in the placements. The mixture probability π̂ indicates the importance

of the structural component in the mixture models. Therefore, 1− π̂ measures the weight

of the uncertainty component and can be understood as an indicator of how certain voters

are about their own placements and how clear or unambiguous they perceive the candidate

platforms. The closer the weight π̂ is to 1, the weaker the uncertainty so that 1− π̂ = 0

yields the pure cumulative model without any response styles. The closer the weight π̂

is to 0, the stronger the uncertainty and the weaker the placement structure. The shape

of the uncertainty structure is modeled by covariates, which may lead to a tendency to

the middle categories, extreme categories or any graduation between these two extremes.

The dotted lines in Figure 3 represent the 2.5% and 97.5% bootstrap quantiles.4

0.0 0.1 0.2 0.3 0.4

1 − π̂

●

●

●

●

●

●

●

●

●

●

●

●

Liberal−Conservative
Self−Placement

Democratic Candidate
Republican Candidate

Spending and Services
Self−Placement

Democratic Candidate
Republican Candidate

Defense Spending
Self−Placement

Democratic Candidate
Republican Candidate

Health Insurance
Self−Placement

Democratic Candidate
Republican Candidate

Note: Dotted lines correspond to the 2.5% and 97.5% bootstrap quantiles.

Figure 3: Importance of the uncertainty component (1− π̂)

3Details on the EM-Algorithm to estimate the models can be found in Tutz and Schneider (2019). We
also used the R packages MRSP (Pößnecker 2019) and VGAM (Yee 2016).

4Note that it is not unusual when the intervals are non-symmetric around the estimate because no
distribution assumption is made.
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We obtain the weakest uncertainty weights for the self-placements, ranging from 0.07

to 0.11. This result indicates that respondents exhibit clear positions on the ideological

and policy scales. Much higher uncertainty levels are detected for the placements of the

two presidential candidates. Voters are the most certain where to place both candidates

on the liberal-conservative scale. We also observe comparatively moderate uncertainty

weights for the Republican candidate on the issue of health insurance. A little higher

uncertainty weights are estimated for the issue of spending and services. Regarding the

issue of defense spending, the quite large weight for the Democratic candidate (0.32)

suggests that voters exhibit much more difficulties in placing Hillary Clinton as compared

to Donald Trump (0.24).

Tables 1 - 3 display the results of the mixture models. In each of the tables, the upper

part gives the estimates for the placement component (γ), the lower part the estimates

for uncertainty response style effects (α). We also report the 2.5% and 97.5% quantiles

of 300 non-parametric bootstrap samples for each effect. We consider an estimate as

significant at the 5%-level when the bootstrap confidence intervals cover the estimate but

not zero. The interpretation is as follows: Positive coefficients in the preference part

suggest that lower categories are more likely, negative coefficients that higher categories

are more likely. Regarding the uncertainty part, which contains the estimates for the

shape of the uncertainty distribution, positive values suggest a tendency to locations at

middle categories, that is, moderate positions. Negative values indicate a tendency to the

extremes of the scales.

Let us first focus on the results for the self-placements, displayed in Table 1. Regarding

the placement effects, we observe positive effects for education on self-placements on the

liberal-conservative scale and the defense spending scale. The higher the level of education,

the more the voters position themselves toward liberal stances or favor the decrease of

defense spending. Political interest exhibits an effect on the liberal-conservative scale and

political knowledge on spending and services. The negative coefficient for political interest

suggests that the more attention the voters pay to politics and elections, the more they

tend to have conservative views. The positive effect for political knowledge indicates that

the higher the level of political knowledge, the more they favor fewer services.
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Regarding the partisan variables, we obtain very plausible results. Here, one should

keep in mind that the placements perceived as ‘democratic’ correspond with lower catego-

ries on the liberal-conservative scale and health insurance, and with higher categories on

the issue of spending and services (see Figure 2). The perceived Republican positions are

associated with higher categories on the liberal-conservative scale, defense spending and

health insurance, and with lower categories on spending and services. Thus, the effects

of party identification and candidate traits correspond with these tendencies. In particu-

lar, we observe in three out of the four cases a negative effect for Republican identifiers,

with a particularly large one on the liberal-conservative scale, which is consistent with

the perceived candidate position that is located at higher categories. Nevertheless, the

positive effect on spending and services is also in line with this interpretation since it is

the only scale where the perceived Republican position corresponds with lower categories.

Accordingly, Democrats have more liberal stances and favor more services.

Concerning the Democratic candidate traits, we obtain significant effects on all sca-

les: the higher the assessment of the Democratic candidate, the more liberal is the self-

placement, the more they favor the increase of services, the decrease of defense spending

and government health insurance. The Republican candidate traits also significantly im-

pact on all self-placements, with reversed effects: the higher voters assess the qualities of

the Republican candidate, the more conservative the attitudes, the more they favor fewer

services, the increase in defense spending and private insurance.

As can be seen at the bottom of Table 1, we obtain only four significant response style

effects for uncertainty and small uncertainty weights. When the voters’ political interest

increases, they tend to favor extreme positions, which is only statistically significant

on the liberal-conservative and the spending and services scales. The positive effects

for political knowledge indicate a tendency to favor a moderate position, which is only

statistically significant for spending and services. Since the uncertainty weights are small,

the estimated effects of the uncertainty part should be interpreted with caution.

Table 2 contains the placement and uncertainty estimates for the perceived Democra-

tic candidate platforms. Voters with a higher level of political interest tend to ascribe the

Democratic candidate more liberal positions and in favor of increasing spending and ser-

18



vices. Those with higher political knowledge scores locate the candidate towards offering

a stance in favor of government health insurance. The more liberal the voters, the more

liberal positions they ascribe to the candidate. The positive coefficient for the candidate

traits suggest that the higher the voters assess the qualities of the candidate, the more

they perceive the Democratic candidate as taking a fewer-services stance.

The estimates for the uncertainty response styles suggest that the own positions have a

strong impact on the shape of the uncertainty component. The strongest impact is found

on the liberal-conservative scale. The more conservative the voters, the more they tend to

locate the Democratic candidate towards extreme stances on the liberal-conservative, de-

fense spending and health insurance scales. One may interpret this behavior as ‘contrast’.

However, extreme stances include both sides of the scale. The positive effect indicates

that voters with more conservative views tend to ascribe the candidate a moderate po-

sition on spending and services. The same tendency is estimated for Democratic party

identifiers and the assessment of candidate traits for the issue of services and spending

and the issue of health insurance.

Table 3 reports the results for the Republican candidate placements. Here, most of the

estimated coefficients are not in line with the tendencies detected for the candidate posi-

tions in Figure 2. For instance, voters who identify with the Republican party and assign

the Republican candidate higher quality traits, tend to place the candidate toward positi-

ons that correspond with more spending and services. Thus, the estimates differ from the

perceived candidate tendency. Regarding the uncertainty estimates, only one significant

effect is obtained: The higher the voters assess the candidate traits, the more they tend

to perceive the candidate as taking moderate positions on the liberal-conservative scale.
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Table 4 contrasts performance measures of the BetaBin models with the cumulative

models without uncertainty component. Model performance is measured by the Log-

Likelihood (LogL) and the AIC.5 The values indicate that the mixture models outperform

the traditional ordinal models. The model fit described by the Log-Likelihood is better for

the mixture model than the pure cumulative model in all settings. Furthermore, almost

all AIC values for the pure cumulative models are larger than for the mixture models,

except for the self-placement on the issue of health insurance. The performance measures

suggest that the mixture models give a better model fit, although the mixture model is

much more complex. The pure cumulative models are based on 13 parameters for the self-

placements (6 intercepts and 7 covariates) and 12 parameters for the candidate placements

(6 intercepts and 6 covariates). The corresponding mixture models are based on a total

of 22 and 20, respectively: the identical number of parameters enters the placement part

(13 and 12, respectively), parameters to model the shape of the uncertainty distribution

(1 intercept, 7 and 6 covariates, respectively), and the parameter for the mixture weight

estimate π̂.

5.2 Spatial Voting under Uncertainty

Next, we compare the voter choice models based on the original placements with the ones

we predict based on the mixture models. These survey response models adjust for special

response styles due to uncertainty, which leads to somehow biased observed placements.

Thus, we correct the observed positions by using the estimates of the structural component

to generate positions which are adjusted by the detected uncertainty. The difference of

two cumulative probabilities gives the probability πir for a particular response category r

πir = P (Yi ≤ r)− P (Yi ≤ r − 1),

so that we obtain for each observation i the probability for choosing category {1, . . . , k}

based on the estimates of the structural component of the model and the considered

predictors. The category with the highest probability is chosen as the most likely position

5The AIC is defined by AIC = −2l(θ̂)+2m, where l(θ̂) is the log-likelihood function computed at the
maximum of the estimated parameter vector θ and m is the number of model parameters, comprising all
model parameters.
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Table 4: Model comparisons based on performance measures

LogL AIC

Cumulative Mixture Cumulative Mixture

Liberal-Conservative Scale

Self-Placements -2114.413 -2102.812 4254.827 4249.624

Democratic Candidate Placements -2042.724 -2010.927 4109.449 4061.854

Republican Candidate Placements -2437.803 -2408.940 4899.607 4857.880

Spending and Services

Self-Placements -2477.834 -2461.440 4981.668 4966.880

Democratic Candidate Placements -2150.124 -2047.078 4324.248 4134.157

Republican Candidate Placements -2466.211 -2439.574 4956.421 4919.149

Defense Spending

Self-Placements -2527.637 -2512.997 5081.274 5069.993

Democratic Candidate Placements -2412.246 -2325.138 4848.491 4690.276

Republican Candidate Placements -2341.586 -2305.823 4707.172 4651.647

Health Insurance

Self-Placements -2567.289 -2559.251 5160.578 5162.501

Democratic Candidate Placements -2196.097 -2153.841 4416.193 4347.683

Republican Candidate Placements -2194.387 -2171.660 4412.774 4383.320

for each observation i. These adjusted values are used as explanatory variables in the

vote choice model. At least 50% of the adjusted values are different from the original

observed values. With almost 70%, most values are adjusted for self-placement on the

issue of spending and services.

Table 5 compares the voter choice models based on the original placements with the

ones we predicted based on the mixture models. The estimates for the spatial proximities

are displayed at the top, followed by the estimates for the voter attributes. The constant

and the parameters related to voter attributes are set to zero for the Republican candidate

to ensure model identification. Thus, the interpretation of these coefficients is always

relative to Donald Trump. When inspecting the proximities, we observe that the effects

are positive in both models so that the larger the proximity between the candidates

and the voter, the more likely it is vote for this candidate. However, the effect sizes differ

between both models. Based on the original placements, the liberal-conservative scale has

the largest impact, followed by attitudes toward defense spending. Spatial proximities on
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the issue of health insurance show the weakest effect. In the voter choice model based

on the adjusted placements, the liberal-conservative scale does not significantly impact

on voting anymore, and also the remaining issues differ in effect strength. The effects for

both the issues of spending and services and health insurance are more than twice the size

of the ones we obtained for the unadjusted placements. We also identify some interesting

individual-specific effects, indicating that some segments are more likely to vote for a

particular candidate. In the vote choice model based on original placements Blacks and

Latinos tend to favor the Democratic candidate Clinton. The same pattern is observed

for higher education segments and those that positively evaluate the economy. In the vote

choice model with adjusted placements, we observe the same direction of effects, but only

the effects for Latinos and economic considerations remain statistically significant. An

inspection of some goodness-of-fit measures, reported at the bottom of Table 5, reveals

that the vote choice model that accounts for uncertainty in the issue placements performs

better according to the Log-Likelihood and AIC than the model that relies on the original,

unadjusted placements. In particular, the AIC is reduced by around 27% with the same

number of parameters.

6 Discussion and Concluding Remarks

In this manuscript, we developed a vote choice model that accounts for the uncertainty

in issue placements, which arises from the difficulty to select a particular category on

ordinal policy scales. Our approach consists of two stages. First, the perceived party

platforms and policy preferences are adjusted for uncertainty. Then, these values are used

to estimate voter choices. Drawing on the 2016 US presidential election and examining

voting for one of the two major candidates, we showed that our approach outperforms

the traditional models at both stages: the cumulative model without uncertainty at the

first stage and the vote choice model without uncertainty correction at the second stage.

So far, we focus on goodness-of-fit measures based on the likelihood of the fitted models.

However, it might be useful to consider additionally predictive measures to compare the

models. One strategy would be to use k-cross-validation, where the data is split into k

sets. k−1 parts are used for estimation and the kth part to evaluate how good the model
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Table 5: Voter Choice Models

Original Placements Adjusted Placements

Predictors coef. se p-value coef. se p-value

Liberal-Conservative 0.757 0.093 0.000 0.047 0.149 0.751

Spending and Services 0.419 0.086 0.000 0.949 0.228 0.000

Defense Spending 0.604 0.086 0.000 0.635 0.167 0.000

Health Insurance 0.207 0.055 0.000 0.392 0.132 0.003

Age 0.002 0.087 0.980 -0.200 0.105 0.057

Gender 0.157 0.289 0.586 -0.335 0.350 0.338

Black 2.806 0.768 0.000 0.725 0.678 0.285

Latino 1.736 0.716 0.015 2.047 0.836 0.014

North Central -0.409 0.386 0.289 -0.727 0.484 0.134

South -0.648 0.426 0.128 -0.948 0.485 0.051

West -0.751 0.471 0.111 0.381 0.588 0.517

(Ref: Northeast)

Economy 0.772 0.167 0.000 0.539 0.206 0.009

Education 0.244 0.074 0.001 0.050 0.089 0.572

Constant -9.040 1.674 0.000 -4.465 1.877 0.017

LogL -172.881 -121.825

AIC 373.762 271.649

Pseudo R2 0.838 0.886

df 14 14

Source: 2016 ANES. Notes: The response variable is binary and gives the vote intention for

either the Democratic or Republican candidate. The interpretation of voter attributes refers

to Clinton as compared to Trump. N=1539.

performs. In our application, it may be appropriate to evaluate how many times the

predicted choice is identical to the observed choice behavior. There are measures, such

as the Brier score, which are appropriate to evaluate discrete responses. Although our

empirical application rests on a binary choice model, the approach can be easily extended

to a multi-party setting by replacing the binary choice model with a multinomial one.

Likewise, the number of issue dimensions can be extended as well.
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