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A phase-stable dual-comb interferometer
Zaijun Chen1,2, Ming Yan1,2, Theodor W. Hänsch1,2 & Nathalie Picqué1,2

Laser frequency combs emit a spectrum with hundreds of thousands of evenly spaced phase-

coherent narrow lines. A comb-enabled instrument, the dual-comb interferometer, exploits

interference between two frequency combs and attracts considerable interest in precision

spectroscopy and sensing, distance metrology, tomography, telecommunications, etc. Mutual

coherence between the two combs over the measurement time is a pre-requisite to inter-

ferometry, although it is instrumentally challenging. At best, the mutual coherence reaches

about 1 s. Computer-based phase-correction techniques, which often lead to artifacts and

worsened precision, must be implemented for longer averaging times. Here with feed-

forward relative stabilization of the carrier-envelope offset frequencies, we experimentally

realize a mutual coherence over times approaching 2000 s, more than three orders of

magnitude longer than that of state-of-the-art dual-comb systems. An illustration is given

with near-infrared Fourier transform molecular spectroscopy with two combs of slightly

different repetition frequencies. Our technique without phase correction can be implemented

with any frequency comb generator including microresonators or semiconductor lasers.
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The performance of laser frequency combs1 has been con-
stantly perfected to meet scientific challenges such as
optical-clock comparisons2 or low-noise microwave gen-

eration3. For about a decade, novel applications involving time-
domain interference between the two frequency combs have
emerged and hold promise for enhancing the precision of inter-
ferometric measurements, as encountered in spectroscopy and
sensing4–7, distance metrology8, tomography9, telecommunica-
tions10, etc. With a dual-comb system, a type of two-beam
interferometer, the phase difference is in most of the imple-
mentations automatically and periodically scanned by means of
two asynchronous trains of pulses. Although such systems have a
potential for precisions directly set by atomic clocks, they still fail
in many aspects to compete with mechanical interferometers.
Unfortunately, it is still challenging to control the relative timing
and phase fluctuations between the two combs and therefore to
keep them coherent over extended measurement times. Con-
versely, the precise control of the phase difference in a two-beam
interferometer involving a moveable mirror has indeed been
perfected over decades and the mutual coherence between the two
arms of the interferometer can be maintained over tens of hours11

in standard laboratory environments.
The most powerful approach for establishing mutual coherence

between two frequency combs has been to lock, with fast intra-
cavity actuators, each comb to the same pair of cavity-stabilized
continuous-wave lasers with hertz-level linewidth. In this way,
mutual coherence times of the order of 1 s, determined by the
linewidth of the continuous-wave lasers, have been achieved and
linear-phase correction enhances the effective averaging times to
tens of minutes7. Alternatively, schemes correcting the relative
fluctuations with analog electronics6, digital processing12, or
computer algorithms13 permit measurements, even with free-
running lasers. Another current trend is to design systems with
built-in passive mutual coherence5,14. None of these solutions
reaches the overall performance of the cavity-locked systems.
Although already technically involved, mutual coherence times of
about 1 s represent a strong limitation: numerical phase correc-
tion is required to reach the averaging times of several tens or
hundreds of minutes. Phase-correction techniques have been
widely documented in the context of Michelson-based Fourier
transform spectroscopy15 and are straightforwardly transposable
to dual-comb spectroscopy. Unfortunately, such techniques are
complex and may generate computational errors and artifacts in
the spectra16,17. Moreover, implementing them is not always
feasible: emission spectra composed of scarce lines, as encoun-
tered in coherent Raman18 or two-photon excitation19 dual-comb
spectroscopy, are known to be particularly challenging to phase
correct20. In Michelson-based Fourier transform spectroscopy, a
proper interferometer design, such as that of the Connes-type
interferometers21,22, makes phase correction superfluous.
Connes-type interferometers have been widely recognized by the
molecular-spectroscopy community as instruments of superior
performance for high-resolution Doppler-limited spectroscopy.

With the increasing number of foreseen applications for highly
precise dual-comb systems, for instance to spectroscopic mea-
surements of very weak lines, to Doppler-free broadband spec-
troscopy19, to precise measurements of refractive indices23, or to
distance monitoring24 between formations of spacecrafts, break-
ing the barrier of 1 s for the interferometer coherence times and
enabling dual-comb spectroscopy without phase correction is
crucial. Excellent performance has already been reported with all
types of spectrometers for direct frequency comb spectroscopy,
including Michelson-based Fourier transform spectrometers25–27

and dispersive spectrometers28. Dual-comb spectroscopy has the
distinguishing advantage, though, that the resolution only derives
from the measurement time, rather than from geometry (e.g., the

path difference excursion in a Michelson interferometer or the
grating length in a dispersive spectrograph). Therefore—in
principle—the resolution in a single non-interleaved dual-comb
spectrum is fundamentally limited by the comb line spacing only,
rather than by the instrumental resolution of a spectrometer. This
implies that the coherence time of the dual-comb interferometer
is sufficiently long to resolve the individual comb lines. Extended
mutual coherence times will for instance enable the measurement
of broadband spectra with combs of narrow line spacing (<1
MHz) in a single continuous measurement. Such an accom-
plishment will accelerate the development of Doppler-free mul-
tiplex spectroscopy19 and will open up exciting prospects for
precision spectroscopy and metrology over broad spectral spans.

In this article, we introduce a new concept for maintaining the
coherence in a dual-comb system. Using feed-forward control of
the relative carrier-envelope offset frequency of the lasers, we
experimentally demonstrate a mutual coherence time of 1860 s,
more than three orders of magnitude longer than the current state
of the art. Furthermore, we do not observe any indications that
we have reached a limit, suggesting that phase control in a dual-
comb interferometer can be of arbitrarily long duration.

Results
Principle of feed-forward dual-comb interferometry. We pro-
pose and implement a technique of dual-comb interferometry,
which demonstrates mutual coherence times of 1860 s, without
any indications that a limit is reached. We use feed-forward
adjustment of the relative carrier-envelope offset frequencies of
the two combs with an external actuator, which permits very fast
response time without locking electronics and may be used on
any types of frequency comb generators. Feed-forward control of
a laser is a technique known for fast response time and low noise,
as successfully demonstrated for the frequency stabilization of a
continuous-wave laser29, for the stabilization of a mode-locked
laser to a Fabry-Perot cavity30 or for carrier-envelope offset lock
of a frequency comb31. In our scheme (Fig. 1), one frequency
comb (master), of repetition frequency frep and carrier-envelope
offset fceo, is stabilized against a radio-frequency clock using the
traditional self-referenced technique, which provides frequency
accuracy over long timescales. This stabilization does not con-
tribute to the establishment of the mutual coherence between the
two combs, which would work as well if the master comb was
free-running. However, for a serious assessment of any instru-
mental artifacts and systematic effects induced by our feed-
forward technique, a high precision is required. The second comb
generator (slave), of slightly different repetition frequency frep+
δfrep, with δfrep small compared to frep, and of carrier-envelope
offset fceo+ δfceo, follows the rapidly varying instabilities of the
first master comb. Two beat notes, each between one line of the
master comb and one line of the slave comb, serve as indicators of
the relative fluctuations between the combs and are maintained at
fixed frequency offsets. One beat note generates the error signal
for feeding an acousto-optic frequency shifter at the output of the
slave comb: all the spectral lines in the first-order diffracted beam
of the slave comb are shifted in frequency by the same amount.
Relative carrier-envelope offset control is therefore achieved with
a bandwidth of several hundreds of kilohertz. The second beat
note locks the repetition frequency of the slave comb through a
slow feedback loop, which translates one of the cavity mirror of
the slave comb by means of a piezo-electric transducer. More
details may be found in Methods. The choice of the actuators and
of the way to generate the error signals may be adapted to the
type of employed frequency comb generators: for instance,
combining an electro-optic phase modulator and an acousto-
optic frequency shifter may lead to even faster response times.
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Near-infrared feed-forward dual-comb spectroscopy. We illus-
trate the performance of our interferometer with a setup dedi-
cated to near-infrared dual-comb spectroscopy (Supplementary
Fig. 1). Two commercial femtosecond erbium-doped amplified
fiber lasers emitting around 190 THz are used. Their repetition
frequencies are such that frep= 100MHz and δfrep= 100 Hz. The
outputs of the combs are spectrally broadened in highly nonlinear
fibers to span the region from 166 to 245 THz. The master comb
interrogates a single-pass cell filled with a gas at low pressure,
while the first-order diffracted beam of the slave comb serves as
local oscillator. The two combs are combined on a beam-mixer.
For improved signal-to-noise ratio in a selected spectral region,
the optical signal may be spectrally filtered with home-made
grating filters of tunable central wavelength and spectral width. A
differential detector detects the two outputs of the interferometer.
The time-domain interference signal is digitized with a data
acquisition board.

An interferogram of acetylene in the region of emission of the
oscillators (182–202 THz) is shown in Fig. 2 over the entire range
of optical delays of 1/frep= 10 ns. The interferogram results from
186 000 averages over a total measurement time of 1860 s. We can
choose to average the individual interferograms in the time
domain or the spectra in the frequency domain, the first approach
has the advantage of a significantly reduced data file size with
easier storage and shorter computation time. When we
continuously average the interferograms in the time domain, we
do not perform any operations on the raw data other than
summing them. We then compute the complex spectrum by
Fourier transformation and derive the phase and amplitude of the
resulting spectrum (Supplementary Fig. 2). For any averaging

–5000 –2500 0 2500 5000

–50000

0

50000

In
te

ns
ity

 (
a.

u.
)

In
te

ns
ity

 (
a.

u.
)

–1666 –1665 –1664 –1663 –1662

–1

0

1

a

b

Effective time (ps)

–1666 –1665 –1664 –1663 –1662

–5000 –2500 0 2500 5000

Laboratory time (µs)

Laboratory time (µs)

Effective time (ps)

Fig. 2 Time-domain interferogram. In the laboratory time frame, the interferograms repeat with a period of 1/δfrep= 10 ms, which corresponds to optical
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Fig. 1 Sketch of the principle of feed-forward dual-comb spectroscopy. A
self-referenced master comb provides long-term stability and the slave
frequency comb follows the drifts of the master comb, providing high-
bandwidth mutual coherence. The difference in carrier-envelope offset
frequencies is kept constant by a feed-forward stabilization scheme that
acts, through an acousto-optic frequency shifter (aofs), on the carrier-
envelope offset frequency fceo+ δfceo of the slave beam. The beam of the
master comb interogates the sample and beats with the beam emerging
from the acousto-optic frequency shifter in the first-order of diffraction
beam. The optical signal is detected with a balanced differential detector
and is digitized
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times, the signal-to-noise ratio in such time-domain-averaged
spectrum is systematically 2% smaller than when we average the
individual amplitude spectra.

A spectrum with resolved comb lines, resulting from a
measurement time of 1860 s, is shown in Fig. 3. Six thousand
interferograms, of 0.31 s duration each, have been averaged. In
the spectrum, more than 200 000 individual comb lines are
resolved across 20 THz. The observed full width at half maximum
of the comb lines is set by the measurement time of an individual
interferogram to 3.5 Hz in the radio-frequency domain. Each
comb line (Fig. 3c) appears as a cardinal sine, the expected
instrumental line shape in a non-apodized spectrum. In our
previous report6, this instrumental line shape was washed out by
residual phase fluctuations. For a measurement time of 1860 s
(Supplementary Fig. 2), the signal-to-noise ratio in the spectrum
culminates at 8550 around 188.2 THz and the average signal-to-
noise ratio across the entire span of 20 THz is 3850. The resulting
figure of merit, calculated for the average signal-to-noise ratio, is
therefore 1.8 × 107 Hz1/2. Our value of the figure of merit is
slightly higher but of the same order of magnitude than that
reported in ref. 7. As in any experiments of dual-comb
spectroscopy, a limitation to the sensitivity is the need to restrict
the power falling onto the detectors to avoid artifacts induced by
the nonlinearities. In our experiment, the total average power on
one photo-detector is limited to 50 µW, an amount that is
experimentally determined as the threshold for measurable

systematic effects. Detector nonlinearities in Fourier transform
spectroscopy32,33, and their manifestations34 in dual-comb
spectroscopy, are widely documented in the scientific literature.
Small residual nonlinearities generate subtle line shifts, on the
megahertz scale, and line profile distortions, which for instance
affect the line intensities on the percent scale.

Figure 4 displays the evolution of the average signal-to-noise
ratio with time (or number of averages). It increases with the
square root of the measurement time, showing that the mutual
coherence between the two combs is preserved throughout. The
same behavior is observed near 180 and 230 THz. The maximum
averaging time that we report, 1860 s, is a technical limitation due
to our data acquisition system. No saturation in the trend of the
increasing signal-to-noise ratio is observed though. This suggests
that with a dedicated data acquisition system, coherence over
longer averaging times will be achieved.

Good signal-to-noise ratios are achieved all across the region
spectrally broadened by nonlinear fibers. As an example, the
amplitude and phase spectra of methane in the region of the 2ν3
band around 180 THz are shown (Fig. 5a, b) at 100-MHz
resolution. The filtered spectral span is 175–184 THz and the
recording time is 14.46 s. The signal-to-noise ratio is at best 770
around 183.2 THz and the average signal-to-noise ratio is 465,
which leads to a figure of merit of 1.1 × 107 Hz1/2. Another
representation with resolved comb lines is displayed in Supple-
mentary Fig. 3.
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We determine the line positions in our self-calibrated spectra
by fitting Doppler profiles of fixed width to the experimental
transitions. Because of the long averaging time, of the narrow
width of the optical comb lines and of the high mutual coherence
of the dual-comb system, the instrumental line shape that
convolves the profiles, can be neglected. The residuals of the fit do
not show any systematic signatures, as exemplified in Supple-
mentary Fig. 2c with the P(17), P(16), and P(15) lines of the ν1+
ν3 band of 12C2H2 and in Fig. 5c with the Q(1)F2 line of the 2ν3
band of 12CH4. For the ν1+ ν3 band of 12C2H2, we compare the
positions of 11 of our experimental lines, for which the self-
induced pressure shift has been measured in35, to accurate sub-
Doppler saturated absorption measurements36,37. The mean value
of the discrepancies between our measurements and those of
refs. 36,37, respectively, is 110 and 44 kHz, respectively, with a
standard deviation of 275 and 285 kHz, respectively. Our
accuracy is primarily determined by the statistical uncertainty.
Additional details may be found in Supplementary Table 1 (and
Supplementary Table 2 for two lines in 12CH4).

Discussion
With our demonstration of a dual-comb interferometer with long
mutual coherence times, new opportunities for broadband
metrology are opened up. Moreover, our technique is expected to
significantly improve the performance of dual-comb inter-
ferometers in spectral regions, like the mid-infrared domain or
the ultraviolet region, where their development still faces
numerous challenges. The hertz-line-width continuous-wave
lasers that would allow for mutual coherence times of the order
of 1 s are challenging to develop in these regions38. Fast intra-
cavity actuators for the two degrees of freedom of the combs are
not straightforwardly available with any type of frequency comb
generator either. Dual-comb systems involving light sources
based on nonlinear frequency conversion, such as synchronously
pumped optical parametric oscillators, may take advantage of the
simplifications brought by our technique. Furthermore,

microresonators39–42 and semiconductor lasers43,44 have recently
demonstrated an exciting prospect for compact dual-comb
spectrometers. Feed-forward control may provide the appro-
priate tool for the fast control of the mutual coherence of such
interferometers.

Methods
Detailed experimental setup. Two erbium-doped fiber laser oscillators, each with
three output ports, are used to generate two frequency combs, which we call master
comb and slave comb. The principle is sketched in Fig. 1, and Supplementary Fig. 1
gives additional details on the technical implementation. Their repetition frequency
is around 100MHz and it may be adjusted and controlled by translating an intra-
cavity mirror mounted on a piezo-electric transducer, changing the laser cavity
length. The pulse duration is about 90 fs and the center frequency 190 THz. Each
oscillator has an output emitting an average power of about 10 mW. The two
additional output ports feed two erbium-doped fiber amplifiers, each providing up
to 300 mW. One of the amplifiers of the master comb is used for the traditional
self-referencing scheme: the spectrum is broadened in a nonlinear fiber and the
carrier-envelope offset frequency is detected using a f-2f interferometer. Both the
carrier-envelope offset frequency and the repetition frequency of the master comb
are locked to the 10-MHz radio-frequency signal of an active hydrogen maser
delivering a fractional instability of 2 × 10−13 at 1 s. All the electronic instruments
(synthesizers, counters, digitizers, etc) in our experiment are synchronized to this
10-MHz clock signal. In our experiments, we lock the repetition frequency of the
master comb at precisely frep= 100MHz. The repetition frequency of the slave
comb frep+ δfrep is chosen such that δfrep= 100 Hz, leading to an interferometric
free spectral range of 50 THz. For interferometry, the output of the second
amplifier of the master comb and that of one of the amplifers of the slave comb are
spectrally broadened in nonlinear fibers of normal dispersion to a span covering
from 166 to 245 THz.

The coherence between the master and the slave combs is maintained by forcing
the slave comb to follow in real time the fast residual timing and phase fluctuations of
the self-referenced master comb. As in many other setups of dual-comb spectroscopy
with fiber lasers6,7,12, two radio-frequency beat notes, originating from two different
pairs of individual lines of the two combs are used as gauges for the relative
fluctuations between the two combs. The beat notes are produced with optical signals
after the spectral broadening in the nonlinear fibers in order to account for as many
noise sources as possible. A beam-splitter extracts a small percentage of the power of
the master comb beam, while most of the power remains available for the
interferometer described below. After spectral broadening, an acousto-optic frequency
shifter diffracts the beam of the slave comb. About 70% of the power is transferred to
the first-order diffracted beam, which is used for interferometry with stable phase
scans and for the slow feedback loop on the repetition frequency (both described
later), while the remaining non-diffracted zero-order beam is used to synthesize the
signal that monitors and corrects by feed-forward control the fast relative fluctuations
between the master and the slave combs.

Feed-forward control. A beat note between one line of the master comb and one
line of the slave combs is produced. We use an erbium-doped continuous-wave
laser at 189 THz, with a reasonable passive stability, as an intermediate oscillator.
The continuous-wave laser beats with each comb. An individual line of each comb
is therefore isolated and the beat signal is interferometrically amplified by the larger
power of the continuous-wave laser. By mixing the two beat notes, of a line of the
master comb with the continuous-wave laser and of a line of the slave comb with
the same continuous-wave laser, the contribution of the continuous-wave laser
cancels out and an electric signal at the frequency difference between one line of
the master comb and one line of the slave comb is produced. This electrical signal
monitors the relative fluctuations of the two erbium-doped fiber combs at a given
optical frequency. It is mixed with the radio-frequency signal generator, amplified
and it directly drives an acousto-optic frequency shifter. In the first-order diffracted
beam of the acousto-optic frequency shifter, the frequency of all the comb lines is
shifted by the same amount. This quantity contains a constant arbitrary radio-
frequency shift and a smaller acoustic shift that follows in real time the relative
fluctuations of the slave and master comb. This is equivalent to an adjustment of
the carrier-envelope offset frequency of the slave comb relative to that of the master
comb. As no locking electronics is required, the bandwidth of the corrections is
only limited by that of the acousto-optic frequency shifter. Here the response time
of our frequency shifter and related electronics is 550 ns (which leads to a band-
width of about 300 kHz, considering that the bandwidth is one-sixth of the inverse
of the response time45) and its rise time is 70 ns. On the timescale of our mea-
surements (30 min), the fibered acousto-optic frequency shifter provides the
required compensations without adding intensity noise. For significantly longer
measurement times or for other laser systems, a free-space double-passed acousto-
optic frequency shifter, an electro-optic phase modulator46, or the combination of
the fast feed-forward control and a slow feedback loop that would prevent drifts of
δfceo may represent better alternatives of implementation. We choose δfceo as an
integer multiple of δfrep; the time-domain interferometric waveforms are then
precisely periodic, without burst-to-burst phase-shift, and they can be efficiently
averaged in the time domain.
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Stabilization of the relative repetition frequencies. For the relative stabilization
of the second degree of freedom of the slave comb, a radio-frequency beat note
between one line of the master comb and one line of the slave comb is produced at
195 THz using the same technique as that described above. It is compared to the
signal of a signal generator. The resulting error signal is fed-back to the piezo-
electric transducer controlling the cavity length of the slave laser with a low
bandwidth (<1 kHz). Depending on the type of laser frequency combs that are used
(available actuators and noise sources), other implementations of the entire con-
cept of relative stabilization may be devised.

Interferometer. Our dual-comb interferometer is dedicated to multiheterodyne
spectroscopy. The beam of the master comb interacts with a gas sample in a
single-pass cell. It is combined on a beam-mixer with the beam of the slave comb
diffracted in the first order by the acousto-optic modulator. The interferometric
signals at the outputs of the beam-mixer have the same amplitude and opposite
phases. They are both detected and subtracted by a differential detector. The
electric signal is then filtered, amplified, digitized and, if needed, averaged. The
digitization is performed synchronously to the master comb repetition frequency
for efficient time-domain averaging. A complex Fourier transform is computed.
The phase and the amplitude of the spectrum are retrieved and are displayed in
our figures (Fig. 5b, Supplementary Fig. 2b). The radio-frequency scale is con-
verted to an optical scale by using the values of the repetition frequency and

carrier-envelope offset frequency of the master laser, which are counted during
the measurement.

Experimental conditions for the spectra with gas samples. The single-pass cell
which is used in all experiments has a length of 70 cm. The temperature of the
laboratory is 295 K. The gas pressure is measured with capacitance manometers.
In the spectra shown in Fig. 3 and Supplementary Fig. 2, the pressure of acet-
ylene, in natural abundance, is 195.2 Pa. In the spectra shown in Fig. 5 and
Supplementary Fig. 3, the pressure of methane, in natural abundance, is 1067
Pa.

Code availability. The simple Matlab program used to compute the Fourier
transforms is available from the corresponding author upon reasonable request.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon reasonable
request.
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