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Leptin directly activates macrophages and lymphocytes, but the role of leptin in neutrophil 
activation and migration is still controversial. Here, we investigate the in vivo mechanisms 
of neutrophil migration induced by leptin. The intraperitoneal injection of leptin (1 mg/kg)  
induces a time- and concentration-dependent neutrophil influx. We did not observe
the enhancement of lipid bodies/droplets in neutrophils, after leptin treatment, as we
had observed previously in peritoneal macrophages. The participation of leukotriene
B4 (LTB4) in neutrophil recruitment triggered by leptin was investigated using different
strategies. Leptin-induced neutrophil recruitment occurs both in the absence of 
5-lipoxygenase activity in 5-lipoxygenase (5-LO)−/− mice and after the administration
of either 5-LO inhibitor (Zileuton) or the LTB4 receptor antagonist (U-75302). Moreover,
no direct induction of LTB4 by leptin could be observed. Neutrophil influx could not be
prevented by the mammalian target of rapamycin (mTOR) inhibitor, rapamycin, con-
trasting with the leptin-induced signaling for lipid body formation in macrophage that
is mTOR-dependent. Leptin administration led to tumor necrosis factor-alpha (TNFα) 
production by the peritoneal cells both in vivo and in vitro. In addition, neutrophil recruit-
ment was inhibited in tumor necrosis factor receptor 1 (TNFR1−/−) mice, indicating a role 
for TNF in leptin-induced neutrophil recruitment to the peritoneal cavity. Leptin-induced 
neutrophil influx was PI3Kγ-dependent, as it was absent in PI3Kγ−/− mice. Accordingly, 
leptin induced the peritoneal cells to produce CXCL1, both in  vivo and in  vitro, and
the neutrophil influx was ablated after using an antibody against CXCL1. Our results
establish TNFα/TNFR1- and CXCL1-dependent signaling as important pathways for
leptin-induced neutrophil migration in vivo.
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inTrODUcTiOn

A growing body of evidence indicates that leptin is a key modula-
tor of the homeostasis of the immune system (1, 2). Although 
effective leptin therapy for treating obesity and diabetes is not 
established, mainly due to leptin resistance in obese patients, 
there are several clinical trials for combined therapies to improve 
the treatment of obesity-related conditions and lipodystrophy 
(3–6). In fact, the leptin analog Metreleptin was approved by the 
U.S. Food and Drug Administration for the long-term treatment 
of lipodystrophy (3, 7). Leptin is known as an adipokine and 
modulator of the immune system (8). However, the mechanism of 
leptin-induced leukocyte activation and recruitment in vivo needs 
further investigation. Leptin has been shown to act as a direct 
activator of macrophages, lymphocytes, and other leukocytes (9). 
Neutrophils, however, do not present the full-length leptin recep-
tor, LepRb. This isoform is responsible for the described intra-
cellular effects of leptin in different cell types. Leptin indirectly 
induces the in vitro neutrophil expression of CD11b in response 
to the direct stimulation of macrophages (10). When investigat-
ing the in vivo effects of leptin on peritoneal macrophages and 
lipid droplet formation, we detected the presence of neutrophils 
in the peritoneal lavage (11). Leptin is known to be important for 
a proper response to infections and immunological homeostasis, 
but little is known about the in  vivo modulation of neutrophil 
migration by leptin (12). Leptin is acutely enhanced in infections 
and chronically enhanced during obesity, and neutrophils play 
an important role on the innate immune response (13, 14). We 
decided therefore to investigate how leptin can activate and induce 
inflammatory mediators indirectly causing neutrophil migration 
in vivo, with potential implications for a number of inflammatory 
conditions in different diseases. TNFα was described to act on 
the priming step of neutrophil activation, while chemokines as 
well as leukotriene B4 (LTB4) can induce neutrophil adhesion and 
migration (15). TNFα was also found contributing to neutrophil 
recruitment stimulated by the chemokine CXCL1/KC, a direct 
chemoattractant for neutrophils (16). Here, we show that exog-
enous leptin induces in vivo migration and persistent neutrophil 
accumulation in the peritoneal cavity, through a mechanism 
largely dependent on TNFα and CXCL1 but independent of LTB4 
production and signaling.

MaTerials anD MeThODs

Materials
Murine-recombinant leptin, rabbit anti-mouse CXCL1 antibody 
(catalog # 250-11), and control rabbit IgG (catalog # 500-P00) 
were purchased from Peprotech, Inc. (Rocky Hill, NJ, USA). 
Rapamycin was obtained from Sigma-Aldrich, Inc. (Saint Louis, 
MO, USA). Zileuton was obtained from Santa Cruz Biotechnology, 
Inc. (Dallas, TX, USA). U-75302 was purchased from Cayman 
Chemical (Ann Arbor, MI, USA). Osmium tetroxide was pro-
vided from Ted Pella, Inc. (Redding, CA, USA).

animals
We used male mice of different strains: C57Bl/6, C3H/HeJ, C3H/
He, 5-lipoxygenase (5-LO)-deficient (5-LO−/−), CCL3-deficient 

(CCL3−/−), tumor necrosis factor receptor 1 (TNFR1-deficient) 
(TNFR1−/−), and PI3Kγ-deficient (PI3Kγ−/−) mice and respective 
wild types (WTs) (5-LO+/+, CCL3+/+, TNFR1+/+, and PI3Kγ+/+), 
obtained as previously described (17–21). Mice were obtained 
from the FIOCRUZ breeding unit, as well as raised and main-
tained under the same housing conditions. All animal care and 
experimental protocols were conducted following the guidelines 
of the Brazilian Council for Care and Use of Experimentation 
Animals (CONCEA). The Oswaldo Cruz Institute Animal 
Welfare Committee (CEUA-IOC license number L-011/2015) 
approved all protocols used in this study.

In Vivo leptin Treatments
The in vivo treatments were performed as previously described 
(11). Briefly, following the intraperitoneal (i.p.) administration of 
leptin (0.25, 0.5, 1, and 2 mg/kg, depending on the experiment) or 
vehicle (sterile, apirogenic saline), animals were euthanized at dif-
ferent time points (1, 6, or 24 h, as specified in each experiment). 
Alternatively, animals received three i.p. injections of rapamycin 
(12.5 μg/kg), or vehicle, 12 h before, 15 min before, and 12 h after 
the injection of leptin or saline, and the peritoneal lavage was 
harvested after 24  h. This treatment was established by us and 
was proved to be effective for the inhibition of leptin-induced 
lipid droplets in peritoneal macrophages (11). We also evaluated 
the effect of i.p. pretreatments, 15 min prior to leptin treatment, 
with the phospholipase A2 inhibitor, Zileuton (60 μg/cavity), or 
the LTB4 receptor BLT1-specific inhibitor, U-75302 (5  mg/kg). 
These drugs were administered according to data from previous 
works from our group and others (22–28). To block CXCL1, the 
antibody against CXCL1 (3  μg/animal) or the isotype control 
(diluted in sterile saline) was injected into the peritoneal cavity, 
10 min before the leptin injection. After the time specified in each 
experiment, the peritoneal cells were harvested as follows. The 
peritoneal cavity was rinsed with HBSS (Hank’s balanced salted 
solution, 3 mL/cavity), and a volume of approximately 2.5 mL was 
recovered. Samples were diluted in Turk fluid (2% acetic acid) 
for total leukocyte counts using Neubauer chambers. Differential 
leukocyte counting was performed in cytospin smears stained by 
May–Grünwald–Giemsa, a classical staining for the differential 
identification of leukocytes (mononuclear cells, neutrophils, and 
eosinophils) (29). As a control of vascular integrity, we assured 
that leptin injection does not modify peritoneal lavage protein 
concentrations There is no difference in the total protein con-
centration between the samples at 6  h after injection of saline 
(0.754 ± 0.032 mg/mL) or leptin (0.729 ± 0.048 mg/mL), or at 
24  h after injection of saline (0.776  ±  0.014  mg/mL) or leptin 
(0.749 ± 0.037 mg/mL).

In Vitro leptin incubation
The peritoneal cells including the macrophages were obtained 
from naïve C57Bl/6 mice, by peritoneal lavage with HBSS (5 mL). 
Cells were transferred to polypropylene tubes (1 × 106 cells/mL) 
and then incubated with leptin (20  nM) for 4  h, under 37°C, 
5% CO2 atmosphere in RPMI 1604 medium. After incubation, 
tubes were centrifuged for supernatant collection. Cell viability 
was always >85% as determined by Trypan blue exclusion. For 
the in  vitro incubation of neutrophils, murine bone marrow 
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FigUre 1 | Leptin-induced neutrophil migration. Leptin was injected into the 
peritoneal cavity of C57Bl/6 mice, and the cells were collected and stained 
by May–Grünwald–Giemsa for neutrophil recruitment analysis. (a) Neutrophils 
were counted in the peritoneal cavity at 1, 6, and 24 h after leptin (1 mg/kg) 
injection. (B) Different concentrations of leptin (0.5, 1, and 2 mg/kg) led to 
neutrophils presence in the peritoneal cavity in 24 h. (c) Neutrophils 
accumulated in the peritoneal cavity of C3H-HeJ mice 6 h after leptin 
injection (1 mg/kg), but not after LPS (80 ng/cavity) or saline injection. Each 
bar represents the mean ± SEM, n = 5–7 (a,B) and n = 3–6 (c). All 
experiments were performed at least three times. All data were analyzed by 
Newman–Keuls–Student test. *Statistically significant (p < 0.05) difference 
between control and stimulated groups. #Statistically significant (p < 0.05) 
difference between C3H-Hej and C3H-He LPS-stimulated groups.
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neutrophils were obtained as previously described (30). Briefly, 
the bone marrow from femurs and tibias was washed, and 
neutrophils were purified in a discontinuous Percoll gradient. 
Neutrophil viability was greater than 95% as assessed by the 
Trypan blue exclusion test, and purity was greater than 98% 
as analyzed by microscopy using Hemacolor staining (Merck, 
Darmstadt, Germany).

Kc, TnF, leptin, and lTB4 Quantification
Peritoneal lavage or in  vitro supernatants were analyzed for 
TNFα, CXCL1/KC, and LTB4. TNFα and CXCL1 ELISA were 
performed with Duo Set kit, according to manufacturer’s pro-
tocol (R&D Systems, Minneapolis, MN, USA) and LTB4 with 
enzyme immuno assay (EIA) kit (Cayman Chemical, Ann Arbor, 
MI, USA). For the investigation of the presence of intracellular 
LTB4, we used the previously described Eicosacell protocol 
(31). Briefly, leukocytes were recovered from peritoneal cavities 
and immediately submitted to fixation and permeabilization 
with 0.5% 1-ethyl-3-(3-dimethylamino-propyl) carbodiimide 
(Sigma) in HBSS. After that, a common immunodetection 
protocol was performed using the following antibodies: the 
primary antibody anti-LTB4 (Cayman Chemical) or irrelevant 
IgG and the secondary antibody Alexa 488-labeled anti-rabbit 
IgG. Images were obtained using an Olympus BX51 fluores-
cence microscope and equipped with a Plan Apo ×100 objective 
and a DP72 camera (Olympus Optical, Japan) in conjunction 
with CellF Imaging Software (Olympus Life Science Europe, 
Germany).

statistical analysis
Data were reported as the mean ±  standard error of the mean 
(SEM). Data were statistically analyzed by the analysis of variance 
with Newman–Keuls–Student test, or Student’s t-test. Differences 
were considered to be significant when p  ≤  0.05 (see figure 
legends).

resUlTs

leptin-induced selective neutrophil 
recruitment In Vivo
Leptin deficiency is associated with impaired cell-mediated 
immunity and increased susceptibility to infection (1), and neu-
trophil chemotaxis is a key component of inflammation and host 
response to infection. There are very few studies though address-
ing leptin-inflammatory effects in vivo, and the effects of leptin 
are confounded with the effects of other immunometabolism-
modulating factors that are altered in diseases such as infection 
or obesity (32). To investigate the specific effect of leptin on 
neutrophil recruitment, here, neutrophil influx was evaluated at 
different time points after i.p. leptin (1 mg/kg) administration. 
Leptin-induced neutrophil accumulation in the peritoneal cavity 
of C57BL/6 mice was significant within 1 h, maximal within 6 h, 
and sustained for at least until 24 h (Figure 1A). This effect was 
observed at different leptin concentrations (0.5, 1, and 2 mg/kg)  
for 24  h (Figure  1B). It is known that after bacterial or LPS 
stimulation, activated neutrophils present enhanced lipid body 

numbers, which is considered characteristic of their activa-
tion (33–35). In our previous work, the enhancement of lipid 
droplets in leptin-stimulated macrophages was described (11). 
However, we did not observe the enhancement of lipid droplets 
above the basal levels in peritoneal neutrophils after leptin 
treatment (Figure S1 in Supplementary Material). The i.p. injec-
tion of leptin in C3H/HeJ LPS-resistant mice led to significant 
neutrophil accumulation in the peritoneal cavity within 24  h 
(Figure  1C). Leptin samples were confirmed negative for LPS 
contamination by LAL testing (<0.01 UI); therefore, our data 
indicate that LPS is not involved in the observed leptin response. 
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FigUre 3 | Leptin-induced neutrophil migration is dependent on PI3Kγ but 
independent of mammalian target of rapamycin (mTOR) signaling.  
(a) PI3Kγ+/+ or PI3Kγ−/− mice were injected intraperitoneally with leptin  
(1 mg/kg) or saline. Neutrophils were counted in the peritoneal wash at 24 h 
after leptin injection. (B) C57Bl/6 mice received rapamycin treatment  
(12.5 µg/kg per injection) 12 h before, 15 min before, and 12 h after leptin 
injection. Each bar represents the mean ± SEM, n = 3–6 (a) and 6–8  
(B). The experiments were performed at least three times. Data were analyzed 
by Newman–Keuls–Student test. *Statistically significant difference (p < 0.05) 
between leptin-stimulated and saline groups. #Statistically significant difference 
(p < 0.05) between PI3Kγ−/− and PI3Kγ+/+ leptin-stimulated groups.

FigUre 2 | Tumor necrosis factor-alpha (TNFα) participates in leptin-induced 
neutrophil migration. (a) Peritoneal macrophages were stimulated with 20 nM 
leptin for 4 h in vitro, before TNFα measurement in the culture supernatant. 
(B) C57Bl/6 mice were injected intraperitoneally with leptin (1 mg/kg) in vivo 
and, 6 h afterward, TNFα was measured in the peritoneal washing 
supernatant. (c) Tumor necrosis factor receptor 1 (TNFR1−/−) or TNFR1+/+ 
mice received leptin (1 mg/kg) or saline i.p. injection. The analysis of 
neutrophil recruitment was performed at 24 h after leptin administration.  
Each bar represents the mean ± SEM, n = 4–5. Experiments A and B  
were performed at least three times. Data were analyzed by analysis by 
Student’s t-test (a,B) and by Newman–Keuls–Student test. *Statistically 
significant difference (p < 0.05) between leptin-stimulated and saline groups. 
#Statistically significant difference (p < 0.05) between TNFR1−/− and TNFR1+/+ 
leptin-stimulated groups.
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Moreover, we confirmed the absence of a direct effect of leptin 
on neutrophils by in  vitro neutrophil adhesion experiments 
(Figure S2 in Supplementary Material). Even with very high 
leptin concentrations (up to 200 nM), no adhesion was observed. 
In our preparation, we ensured >98% purity of neutrophils as 
previously described (30).

leptin-induced neutrophil Migration is 
requisitely Dependent on TnFα
It had been previously demonstrated that leptin indirectly acti-
vates human neutrophils (10). This work showed that neutrophil 
CD11b expression can be enhanced in response to TNFα pro-
duced by leptin-stimulated monocytes in vitro. We confirmed that 
leptin induced TNFα production by the peritoneal cells in vitro 
(Figure 2A). Moreover, leptin injection into the peritoneal cavity 
induced in vivo TNFα production (Figure 2B). In order to inves-
tigate the role of TNFα receptor on leptin-induced neutrophil 
recruitment in vivo, TNFR1 knockout mice (TNFR1−/−) or WT 
(TNFR1+/+) animals (C57Bl/6) were used. As demonstrated in 
Figure 2C, leptin was unable to induce neutrophil accumulation 

in TNFR1−/− mice, but interestingly, TNFR1 is not necessary for 
the effect of leptin in inducing lipid droplets in macrophages 
(Figure S3 in Supplementary Material). Leptin induced lipid body 
formation in peritoneal macrophages from TNFR1−/− mice, simi-
lar to what was observed in WT (TNFR1+/+ mice). Thus, leptin-
induced neutrophil migration is dependent on TNFR1 signaling, 
but macrophage lipid body formation occurs independently of 
this TNFα receptor.

leptin-induced neutrophil recruitment is 
Dependent on the Pi3Kγ Pathway
Several studies have demonstrated the importance of PI3K, 
specifically PI3Kγ, in leukocyte migration and activation in vivo 
(19, 36–39). To determine the role of PI3Kγ in the acute response 
induced by leptin, we examined neutrophil in WT mice or mice 
genetically deficient in PI3Kγ (PI3Kγ−/−), 24  h after leptin i.p. 
administration. Leptin-induced accumulation of neutrophils in 
the peritoneal cavity was completely inhibited in PI3Kγ−/− mice 
in comparison to that in WT control animals (Figure 3A). Thus, 
the PI3Kγ-signaling pathway is required for leptin-induced 
neutrophil recruitment.
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FigUre 4 | Leptin-induced neutrophil migration is independent of LTB4 
signaling. (a) C57Bl/6 mice were injected intraperitoneally with leptin  
(1 mg/kg), and after 24 h LTB4 EIA was performed in the peritoneal washing 
supernatant. (B) 5-LO+/+ or 5-LO−/− mice were injected intraperitoneally with 
leptin (1 mg/kg) or saline. Neutrophils were counted in the peritoneal wash at 
24 h after leptin injection. (c) C57Bl/6 mice were pre-treated with U-75302 
(5 mg/kg) or Zileuton (60 µg/animal), 10 min before receiving leptin injection 
(1.5 mg/kg). Neutrophils were counted in peritoneal wash, 3 h after leptin 
injection. Each bar represents the mean ± SEM, n = 5–8. The experiments 
were performed at least three times. Data were analyzed by Newman–Keuls–
Student test. *Statistically significant difference (p < 0.05) between leptin and 
saline. There are no statistically significant differences (p > 0.05) between 
5-LO−/− and 5-LO+/+ leptin-stimulated groups.
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leptin-induced neutrophil recruitment is 
independent on mTOr Pathway
We showed previously that mTOR was required for the effects of 
leptin on lipid droplets formation in macrophages both in vitro 
and in vivo (11). Others reported that the mTOR pathway was 
important for GM-CSF-dependent neutrophil activation in vitro 
(40). We investigated here the functional role of the mTOR 
pathway for the in vivo leptin-induced neutrophil activation and 
recruitment. We used the previously described treatment with 
rapamycin, a specific inhibitor and probe for mTOR activity 
(11, 41). The treatment of mice with rapamycin failed to modify 
leptin-induced neutrophil accumulation after 24 h (Figure 3B).

leptin-induced neutrophil Migration is 
independent of lTB4
It had been shown that the lipid mediator LTB4 directly exerts 
a chemoattractive effect on neutrophils in inflammatory condi-
tions (42, 43). We performed several in vivo experiments in order 
to evaluate the role of LTB4 in neutrophil migration stimulated by 
leptin. First, an EIA assay was performed to detect LTB4 presence 
on peritoneal supernatants obtained after leptin i.p. injection. 
There was no difference in the concentration of LTB4 between 
saline and 1-, 6-, or 24-h leptin-stimulated groups (Figure 4A). It 
could be that LTB4 was produced but not released from the cell; 
therefore, we performed the Eicosacell assay. We did not observe 
intracellularly retained LTB4 in the peritoneal cells submitted to 
the Eicosacell assay as performed before by our group (data not 
shown) (31). We also investigated the importance of the LTB4 
synthesis enzyme, 5-LO for neutrophil migration. Therefore, 
5-LO+/+ or 5-LO−/− mice were injected with leptin in the peritoneal 
cavity (1 mg/kg), and neutrophil migration was investigated. As 
shown in Figure 4B, leptin induced neutrophil migration (24 h) 
in 5-LO knockout mice. The pharmacological inhibition of LTB4 
synthesis by Zileuton (60  µg/animal i.p.) and signaling on the 
receptor BTL1 by U-75302 (5 mg/kg i.p.) were tested. Figure 4C 
shows that peritoneal neutrophils migrate in response to leptin 
injection, despite pharmacological pretreatments. These results 
demonstrate that LTB4 does not participate in leptin-induced 
neutrophil recruitment.

leptin-induced neutrophil Migration  
is Dependent on cXcl1
CXCL1 is known to mediate the neutrophil migration through 
the activation of CXCR2, a PI3Kγ-dependent receptor (44). 
Neutrophil migration can also be promoted by CCL3/MIP-1α 
signaling through CCR1, a PI3Kγ-dependent receptor (45). 
Because our result in Figure  3A showed that leptin-induced 
neutrophil recruitment is dependent on PI3Kγ, we investigated 
the chemokines CXCL1 and CCL3 as possible mediators for this 
effect. We observed that CXCL1 is secreted by the peritoneal cells 
stimulated by leptin both in  vitro and in  vivo (Figures  5A,B). 
Anti-CXCL1-neutralizing antibodies were used in  vivo as a 
pretreatment before leptin injection. A partial but significant 
inhibition of neutrophil migration to peritoneal cavity was 
observed (Figure 5C). We investigated the participation of the 
chemokine CCL3 using the CCL3 knockout mice (CCL3−/−). 
Mice were injected with leptin i.p. and, as seen in Figure  5D, 

neutrophil recruitment was not altered when compared to 
WT mice (CCL3+/+). Taken together, our data show that leptin 
activates the peritoneal cells to induce neutrophil migration in a 
specific CXCL1-dependent manner.

DiscUssiOn

We demonstrated here that the in vivo administration of leptin 
significantly induces neutrophil recruitment to the peritoneal 
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FigUre 5 | Leptin-induced neutrophil migration is dependent on CXCL1/KC 
signaling but independent of CCL3 signaling. (a) Peritoneal macrophages 
were stimulated with 20 nM leptin in vitro, for 4 h, and CXCL1 was measured 
in the culture supernatant. (B) C57Bl/6 mice were injected intraperitoneally 
with leptin (1 mg/kg), in vivo, and after 6 h, CXCL1 was measured in the 
peritoneal washing supernatants. (c) C57BL/6 mice were treated with either 
non-specific IgG or anti-CXCL1 antibodies (3 microgram/cavity i.p.), 10 min 
before leptin injection (1 mg/kg; i.p.). Neutrophils were counted in the 
peritoneal wash at 4 h after leptin injection. (D) CCL3+/+ or CCL3−/− mice were 
injected intraperitoneally with leptin (1 mg/kg) or saline. Neutrophils were 
counted in the peritoneal wash at 24 h after leptin injection. Each bar 
represents the mean ± SEM, n = 4–6 (a,B), n = 7–9 (c), and n = 5–8 (D). 
The experiments were performed at least three times. Data were analyzed by 
Student’s t-test (a,B) or by Newman–Keuls–Student test (c,D). *Statistically 
significant differences (p < 0.05) between leptin-stimulated and saline groups. 
#Statistically significant differences (p < 0.05) between anti-CXCL1 plus  
leptin group and leptin-stimulated group. There is no statistically significant 
difference (p > 0.05) between CCL3−/− and CCL3+/+ leptin-stimulated groups.

6

Souza-Almeida et al. Leptin Induces In Vivo Neutrophil Migration

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 111

cavity. We propose here that this is an indirect effect of leptin, 
which requires peritoneal resident cell activation with the pro-
duction of TNFα and CXCL1, mostly by resident monocytes/
macrophages. It was shown before that leptin induces TNFα 
production by macrophages, and under different inflammatory 
stimuli, peritoneal macrophages produce TNFα and CXCL1 
that are important for neutrophil migration (10, 16, 46). Leptin 
contribution to the modulation of neutrophil activation has been 
controversial because neutrophils present LepRa but lack LepRb 
(10, 47). It was suggested that leptin could stimulate chemotaxis 
and the release of hydrogen peroxide by human neutrophils (48). 
Others demonstrated that leptin could only indirectly trigger 
increased CD11b expression on human neutrophils by the induc-
tion of TNFα release from monocytes in vitro, and highly purified 
neutrophils (more than 98%) do not produce TNF under leptin 
stimulation (10). It was also suggested that leptin could inhibit 
neutrophil apoptosis in a LepRa-dependent manner (49). More 
recently, it was demonstrated that only extremely high concentra-
tions of leptin could drive direct changes on neutrophil activation 
or the inhibition of apoptosis (above 3–25 µg/mL; 200–1,600 nM) 
(50). Kamp et al. concluded that there is no convincing evidence 
that physiological leptin concentrations could directly activate 
neutrophils. Accordingly, we found no significant activation 
of adhesion, even with 200  nM (Figure S2 in Supplementary 
Material). These previous studies to evaluate the neutrophil capac-
ity to migrate were performed in vitro. We decided to study the 
in vivo mechanisms for neutrophil migration under exogenous 
leptin administration. Our data show in  vivo leptin-induced 
neutrophil recruitment and suggest an indirect activation of other 
resident cells. Lipid droplet formation is associated with leukocyte 
activation in different inflammatory models (33, 35, 51, 52). 
Interestingly, we found that there was no enhanced lipid droplet 
formation in leptin-dependent-migrating neutrophils (Figure S1 
in Supplementary Material). We suggest here that leptin effects 
are not sufficient for the complete activation of neutrophils  
in vivo.

The contribution of LTB4 to inflammation progression is well 
known. This lipid mediator is both an important neutrophil chemo-
taxis inducer, the activator of phagocytosis, and the main eicosanoid 
produced by neutrophils under diverse pro-inflammatory stimuli 
((24, 53–57)). We had previously shown that leptin-stimulated 
peritoneal macrophages have a higher capacity to produce LTB4 
following calcium ionophore activation (11). The absence of LTB4 
in the peritoneal cavity, shown in Figure 4A, provides evidence 
that the migrating neutrophils, after leptin stimulation, are not 
fully activated. Moreover, leptin induced neutrophil recruitment 
despite the genetic 5-LO null background, the pharmacological 
inhibition of 5-LO, or the pharmacological blockage of BLT1 
(Figure 4). These results rule out an involvement of LTB4 in leptin-
induced neutrophil activation and recruitment in vivo.

It was known that TNFα induces CD11b expression on neu-
trophils, an important integrin component that participates in 
intraluminal adhesion and crawling in the site of inflammation 
(10, 58). We show here that the leptin effect on neutrophil migra-
tion is mediated by TNFα signaling through TNFR1. Indeed, 
leptin failed to recruit neutrophils to the peritoneal cavity in 
mice genetically deficient in TNFR1. An indirect action of leptin 
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on neutrophils mediated by TNFα supports the involvement of 
this pathway in acute inflammatory responses. Chemokines, 
produced by resident cells under TNFα stimulation, such as the 
CXCL1/KC, the mouse analog to human IL-8, have been shown 
to induce the recruitment of neutrophils to inflammatory sites 
(16). Moreover, leptin induces CXCL1 in epithelial cells (59). 
Here, we show that resident peritoneal cells secrete CXCL1 after 
leptin stimulation, both in vivo and in vitro, and CXCL1 neu-
tralization partially inhibits neutrophil migration. We conclude 
that leptin-induced neutrophil recruitment is dependent on 
the CXCL1 chemokine produced by the peritoneal cells. It was 
recently described that adipose stromal cells can be recruited 
from white adipose tissue to tumor environments through 
CXCL1 signaling, suggesting that the increased aggressiveness 
of certain cancers is linked to white adipose tissue overgrowth 
in obesity (60). Our data offer a possible explanation for the role 
of leptin in tumor cell recruitment during obesity, when high 
levels of leptin production by white adipose tissue are observed. 
The PI3Kγ-signaling pathway was shown to be relevant for neu-
trophil recruitment induced by CXCL1 in vivo in specific sites 
of inflammatory stimuli. Neutrophil recruitment to bronchoal-
veolar space induced by CXCL1 was prevented in PI3Kγ−/− mice 
(44). However, these authors showed that the administration 
of CXCL1 in the cremaster muscle of PI3Kγ−/− or WT mice 
induced similar increases in neutrophil rolling, adhesion, and 
transmigration. Our data show that leptin-induced neutrophil 
migration to the peritoneal cavity is prevented in PI3Kγ−/− mice. 
We suggest that this may be caused by CXCL1 signaling through 
PI3Kγ, since PI3K-regulatory subunits differentially participate 
in neutrophil migration either in vivo and in vitro (61). It may 
also reflect the combination of PI3Kγ activation in endothelium 
and neutrophils, which is required for leukocyte trafficking to 
sites of inflammation (62). Based on our findings and previous 
published data, we conclude that PI3Kγ have both direct and 
indirect effects on neutrophil recruitment, since PI3Kγ is part 
of the signaling pathway activated by CXCL1 in neutrophils and 
is important for the leptin-induced activation of macrophages 
(11, 44, 63).

Other chemokines were shown to be important for neutrophil 
recruitment, such as CCL3, and both insulin and TNFα could 
prime the neutrophils for CCL3/MIP-1α-dependent migration 
(64, 65). Different from insulin, we observed that the leptin effect 
was not dependent on CCL3 since neutrophil migration was 
maintained on the CCL3-deficient mice (Figure 5C).

We previously demonstrated that leptin induced lipid droplet 
formation in peritoneal macrophages in a PI3K/mTOR-dependent 
manner (11). Interestingly, the lipid droplet induction by leptin 
on resident peritoneal macrophages is not dependent on TNFα 
signaling because this effect was maintained in the TNFR1−/− 
(Figure S3 in Supplementary Material). Therefore, leptin induces 
TNFα- and CXCL1-dependent neutrophil migration, by a distinct 
pathway from lipid droplet formation in the peritoneal cells.

In the immune system, mTOR is involved in signaling 
downstream from different inflammatory stimuli. Phosphatidic 
acid and LPS are examples of leukocyte activation inducers 
that depend on mTOR activation (66–68), and also GM-CSF-
induced neutrophil migration was shown to be inhibited by 

rapamycin (40). The mTOR pathway is important for the PAF-
induced activation of neutrophils, inducing the translation of the 
cytokine IL-6 receptor (69). Nevertheless, we showed here that 
the indirect effect of leptin-induced migration of neutrophils 
is independent of the TORC1 pathway (rapamycin-inhibited 
mTOR complex). Rapamycin is a proapoptotic drug for differ-
ent cells including neutrophils. Since rapamycin does not alter 
neutrophil accumulation after 24 h (Figure 3), we suggest that 
the mTOR-dependent inhibition of apoptosis is not the main 
effect of leptin on neutrophils in vivo.

It has been shown that LPS-induced systemic inflammation 
presents neutrophils transmigration into the brain in a leptin-
dependent manner (70, 71). Our data are in agreement to these 
in vivo results, but we show that leptin can promote in vivo neu-
trophil migration independently of LPS-inflammatory response. 
In a lung injury model, the intranasal administration of leptin 
counteracted some LPS effects in neutrophils (72). Such results 
are in apparent contrast with our hypothesis and data. We think 
that these results are due to tissue-specific effects. We evaluated 
the peritoneal cavity, while Landgraf et al. analyzed lung tissue, 
where leptin can directly activate the alveolar epithelium. We 
recently studied the direct effects of leptin intestinal epithelial 
cells and observed an enhancement of TGFβ that could be 
responsible for inhibitory effects on the tissue macrophages (59). 
It has also been suggested that there may be different subsets of 
neutrophils (73). These different neutrophil subsets may then 
have diverse responses toward direct or indirect leptin stimula-
tion. Therefore, it would be very interesting to further explore the 
differential effects of leptin on leukocytes migration in distinct 
tissues, administration sites, and different neutrophil subsets.

Our data reveal the importance of leptin for neutrophil migra-
tion to sites of inflammation. We argue that it is crucial to under-
stand these effects in great detail, in particular because of the 
prescription of recombinant leptin in different human conditions.
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