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Pemphigus is a severe autoimmune-blistering disease of the skin and mucous mem-
branes caused by autoantibodies reducing desmosomal adhesion between epithelial 
cells. Autoantibodies against the desmosomal cadherins desmogleins (Dsgs) 1 and 3 
as well as desmocollin 3 were shown to be pathogenic, whereas the role of other anti-
bodies is unclear. Dsg3 interactions can be directly reduced by specific autoantibodies. 
Autoantibodies also alter the activity of signaling pathways, some of which regulate cell 
cohesion under baseline conditions and alter the turnover of desmosomal components. 
These pathways include Ca2+, p38MAPK, PKC, Src, EGFR/Erk, and several others. In 
this review, we delineate the mechanisms relevant for pemphigus pathogenesis based 
on the histology and the ultrastructure of patients’ lesions. We then dissect the mech-
anisms which can explain the ultrastructural hallmarks detectable in pemphigus patient 
skin. Finally, we reevaluate the concept that the spectrum of mechanisms, which induce 
desmosome dysfunction upon binding of pemphigus autoantibodies, finally defines the 
clinical phenotype.
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iNtrODUctiON

Pemphigus is a severe autoimmune-blistering skin disease caused by autoantibodies primarily 
targeting the desmosomal adhesion molecules desmogleins (Dsgs) 1 and 3 (1), which are required 
for the firm intercellular adhesion of keratinocytes. Autoantibodies targeting Dsg3 are found dur-
ing the mucosal-dominant phase in pemphigus vulgaris (mPV) which is frequently followed by a 
mucocutaneous phase (mcPV) with additional epidermal blistering and characterized by the pres-
ence of both anti-Dsg3 and anti-Dsg1 antibodies. By contrast, in pemphigus foliaceus (PF), flaccid 
blisters are found in the skin only, and their formation is associated with the occurrence of anti-Dsg1 
autoantibodies. Autoantibodies against other desmosomal cadherins such as desmocollin (Dsc) 3 
are rarely detectable in PV or PF but can be pathogenic (2–5). The pathogenicity of autoantibodies 
against a range of non-desmosomal autoantibodies that are often present in patients’ sera in addition 
to anti-Dsg antibodies is unclear (6). We here focus on the mechanisms causing skin blistering in 
response to autoantibodies against Dsg1 and Dsg3. In addition to suppressing autoimmunity, which 
is the current basis for disease management (1), we believe that novel targeted therapeutic strategies 
are necessary to stabilize desmosomes in situations when autoantibodies are present. It is essential 
to better understand the regulation of desmosomal adhesion, and we aim to provide perspectives 
for future research by reevaluating the mechanisms leading to desmosome dysfunction, loss of 
keratinocyte cohesion, and blistering.
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HistOLOGY AND ULtrAstrUctUre OF 
PAtieNt’s LesiONs HiGHLiGHt 
reLevANt MecHANisMs

Cultured keratinocytes or mouse models can only partially 
reproduce the situation in patients. We believe that for the iden-
tification of relevant mechanisms in pemphigus pathogenesis, the 
careful evaluation of patients’ lesions is the gold standard. On the 
histological level, skin blistering in PV occurs by suprabasal split-
ting (Figure 1), whereas PF is characterized by superficial lesions 
restricted to granular or upper spinous layers of the epidermis (1). 
Although exceptions occur, PF splitting is usually found in the 
upper half of the epidermis, whereas PV affects the lower half. At 
least in some parts of typical PV but not PF lesions, the histologi-
cal hallmark of a “tomb-stone appearance” of keratinocytes in the 
blister bottom can be detected (7, 8).

By immunostaining, the clustering of Dsg3 together with 
autoantibodies has been detected in the mucosal and skin lesions 
in mcPV but also in unaffected epidermis in the mucosal-dom-
inant type (mPV) in the absence of ultrastructural alterations of 
desmosomes (9, 10). By contrast, Dsg1 clustering was found in 
mcPV skin and PF epidermis only, i.e., when antibodies against 
Dsg1 were present (9, 10) (Figure 1). Since Dsg3 clustering was 
shown to be the structural correlate of Dsg3 depletion (11), these 
data indicate that the depletion of Dsg3 alone may be a primary 
mechanism in mucosal eroding but alone is not sufficient to cause 
epidermal blistering. Nevertheless, Dsg3 depletion may drasti-
cally worsen desmosome destabilization in the epidermis which 
is suggested by the fact that glucocorticoids rapidly improve the 
clinical phenotype (1) at least in part via Stat3-induced Dsg3 
transcription increase (12).

On the ultrastructural level, smaller desmosomes were found 
only in conditions when patients presented with antibodies 
against Dsg1 such as in mcPV and PF but not in mPV (9, 10, 13, 
14), suggesting that Dsg1 targeting is critical and may interfere 
with desmosome assembly or cause dismantling of existing 
desmosomes (Figure  1). Besides a reduced size, a general loss 
of desmosomes is present under all conditions where blistering 
occurred. Electron microscopy revealed the formation of double-
membrane structures in PV and PF containing desmosomes with 
reduced size and altered morphology which may be the correlate 
for the depletion of extradesmosomal Dsg molecules and the 
uptake of entire desmosomes (13). Similarly, interdesmosomal 
widening, which is the first ultrastructural sign to be detected in 
pemphigus lesions, may be caused by the endocytosis of extrades-
mosomal Dsg1 rather than of Dsg3 (13, 15). This alone appears 
not to be sufficient for blister formation since it was detected also 
in the unaffected deep epidermis and the mucosa of PF patients 
but not in mPV with intact Dsg1 distribution.

Split desmosomes both with and without attached keratin 
filaments were detected by electron microscopy and SIM on the 
keratinocyte surface facing blisters in PF and mcPV (13, 14). 
Desmosome splitting can be induced by mechanical stress (14) 
and may be the ultrastructural correlate for the direct inhibition 
of Dsg binding. Since split desmosomes in this study were of 
reduced size, altered desmosome structure appears to be required, 
suggesting an additional role of impaired desmosome assembly or 

the depletion of desmosomal Dsg. The final hallmark described 
early for both PV and PF by electron microscopy is keratin retrac-
tion (16, 17) (Figure 1). Recently, keratin filament retraction was 
observed only when desmosomes were completely absent (13). 
This can be interpreted in the way that keratin filaments are not 
the cause but rather the consequence of desmosomal loss or the 
changes are temporally tightly correlated.

Apoptosis is not a major mechanism because cells displaying 
signs of apoptotic cell death are absent or sparse in PV and PF skin 
lesions and therefore cannot explain acantholysis of a significant 
epidermal area (13, 18, 19).

AUtOANtiBODY-triGGereD 
MecHANisMs iMPAiriNG DesMOsOMe 
tUrNOver

As outlined earlier, split desmosomes, reduced desmosome num-
bers and size, and keratin retraction are ultrastructural hallmarks 
in pemphigus skin. Reduced desmosome size or numbers cannot 
be explained by the direct interference of pemphigus autoan-
tibodies with Dsg binding but rather are a consequence of the 
altered turnover of desmosomal proteins. These changes are likely 
steered by intracellular-signaling pathways, which are modulated 
in response to autoantibody binding and represent potential 
pharmacologic targets. In principal, reduced desmosome size 
and numbers can result either from interference with desmosome 
assembly or from the enhanced disassembly of desmosomes. 
Available data suggest that in pemphigus, both mechanisms 
contribute to impaired desmosome turnover, shifting the balance 
toward an overall reduction of desmosomal components (20).

Desmosome assembly is tightly interwoven with adherens 
junction formation and appears to proceed in distinct steps 
(21) (Figure  2, left panel). Desmosomal cadherins are initially 
transported to the cell membrane in a microtubule- and kinesin-
dependent process (22), which, in case of Dsg2, is enhanced by its 
palmitoylation (23). The precise mechanisms are unclear but once 
membrane-localized, desmosomal cadherins appear to cluster in 
an intermediate junction with E-cadherin, β-catenin, and plako-
globin and probably segregate to form desmosomes clusters later 
on (24, 25). Plakophilins (Pkps) are essential as they are required 
to assemble keratin-anchored DP pools in the cortical regions of 
the cell (26, 27). Pkp3 was shown to participate in transferring DP 
clusters to the membrane and to stabilize desmosomal cadherins 
in a Rap1-dependent manner (28). In addition, cortical actin and 
actin-binding proteins such as adducins and RhoA signaling are 
necessary for full desmosome assembly (29–31). Desmosomal 
molecules localize to lipid rafts and the raft-associated proteins 
Flotillin-1 and -2 (32, 33). In line with this, interference with lipid 
raft composition prevents both desmosomal assembly and disas-
sembly, suggesting these lipid-enriched membrane domains to be 
hot spots for desmosome turnover. Compared to the assembly, 
the disassembly of desmosomes under physiologic conditions is 
poorly understood, which may be related to the relative chemical 
inaccessibility and the stability of maturated desmosomes (34).

Pemphigus autoantibodies interfere with desmosome turno-
ver by enhancing the internalization of desmosomal components 
(Figure 2, right panel). However, a clear separation of mechanisms 
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FiGUre 1 | Clinical phenotypes correlate with autoantibody profiles and mechanisms causing desmosome dysfunction. It is well established that clinical phenotypes 
of pemphigus largely correlate with autoantibody profiles but the underlying mechanisms are not clear. In pemphigus vulgaris (PV) (left), mucosal erosions often 
precede epidermal blistering. During the mucosal-dominant phase, autoantibodies (PV-IgG) primarily against desmoglein (aDsg3) are pathogenic, which is the most 
abundant Dsg isoform in the mucosal epithelium. The occurrence of antibodies targeting Dsg1 (aDsg1), which is strongly expressed in the superficial epidermis 
compared to Dsg3, usually correlates with skin blistering, affecting the deep epidermis right above the basal layer. By contrast, in pemphigus foliaceus (PF), 
autoantibodies (PF-IgG) primarily against Dsg1 (aDsg1) cause superficial epidermal blistering. The different phenotypes are characterized by structural hallmarks in 
patients’ lesions, and the mechanisms causing desmosome dysfunction in response to autoantibody binding appear to be different for aDsg1 and aDsg3. Please 
note that the distribution of Dsg1 and Dsg3 in the epidermis is indicated for all layers except the for corneal layer.
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specifically affecting either the assembly or the disassembly path-
way in most cases is not possible. It is conceivable that autoanti-
bodies reach Dsgs located in extradesmosomal membrane pools 
more easily than those densely packed in a mature desmosome. 
In line with this scenario, the non-desmosomal pool of Dsg3 

is the first to be depleted (35, 36). Consequently, the reduced 
availability of supply molecules leads to the destabilization of 
desmosomes and in the longer run may favor the depletion of 
desmosome-localized, now more easily accessible molecules. 
Thus, the reduced desmosome assembly route in pemphigus is at 
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FiGUre 2 | Pemphigus autoantibodies interfere with desmosome turnover. Left panel: a simplified view of the assembly pathway of desmosomes. Desmosomal 
cadherins and the plaque components desmoplakin (DP), plakophilins (Pkps), as well as the keratins are transported to the plasma membrane by distinct routes and 
may involve an intermediate complex containing adherens junction proteins. Right panel: Pemphigus autoantibodies interfere with the assembly of nascent 
desmosomes and promote the disassembly of existing desmosomes. The modulation of desmosome turnover is tied to changes of intracellular-signaling cascades 
which, for instance, lead to the phosphorylation or cleavage of desmosomal components. Linear arrays represent zones of desmosome disassembly. Split 
desmosomes may occur if the already-weakened desmosomes are exposed to shear stress.
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least in part a result of internalized extradesmosomal molecules, 
summarized as “desmoglein nonassembly depletion hypothesis” 
(9, 37). However, the situation apparently is more complex than a 
simple disbalance in supply and demand. Importantly, especially 
the extradesmosomal molecules are considered to serve as signal-
ing scaffolds (38, 39). As an example, it was shown that a complex 
of Dsg3 and Pg binds p38MAPK and suppresses its activity (40, 
41). Upon the loss of Dsg3 interaction, e.g., by steric hindrance 
through pemphigus autoantibodies, this suppressive function is 
abolished and p38MAPK is activated. Indeed, p38MAPK signal-
ing was shown to promote Dsg3 internalization (42) as well as 
keratin retraction (41, 43), suggesting that p38MAPK is a central 
signaling molecule in desmosome turnover. Vice versa, keratin 
filaments were shown to influence both desmosome stability 
and Dsg3-binding characteristics in a signaling-dependent 
manner. Under physiologic conditions, the keratin-dependent 
suppression of p38MAPK signaling increases Dsg3-binding 
strength, whereas the suppression of PKC signaling through the 
adapter protein Rack-1 prevents DP phosphorylation, stabilizes 
Dsg3 in the desmosome (44, 45), and, together with Pkp1 (46), 
promotes a hyperadhesive state. These functions appear to be 
disturbed by autoantibody-induced keratin retraction (Vielmuth 
et  al., Frontiers Immunol, this issue). Furthermore, Pkp3 is 

phosphorylated in response to autoantibody binding in an Src-
dependent manner (47), which may be connected to Src being 
present in the intermediate E-cadherin/Dsg3 complex (25). 
Together, these data suggest a feed-forward loop from extrades-
mosomal complexes to desmosomes that, at least in part through 
interference with keratin-dependent signaling, destabilizes des-
mosome composition and function. As the precise mechanisms 
are unclear, it is possible that keratins affect both the assembly and 
the disassembly pathways of desmosomes.

The occurrence of desmosome disassembly can be concluded 
from observations that Dsg3 together with PV-IgG is excluded 
from desmosomes and internalized (48). This is supported by 
observations that IgG autoantibodies can access Dsgs in native 
desmosomes (49). Clusters of desmosomal molecules localizing 
in arrays perpendicular to the cell–cell border may represent sites 
of internalization of single desmosomal components or the entire 
complexes (50). These may correspond to the “double-membrane 
structures” that are visible in patients’ skin and are thought to be 
regions of internalization for partially dismantled desmosomes 
(13). Although all desmosomal proteins eventually are inter-
nalized, the degradation pathways of specific components are 
not uniform. Dsg3 as well as Pg colocalize with markers for 
endosomes and lysosomes, whereas DP and presumably other 
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plaque proteins use different, yet unknown, routes (35, 42). Lipid 
rafts are thought to be important for desmosome disassembly, 
as the impairment of raft composition prevents the depletion 
at least of Dsg3 and reduces loss of cell cohesion (32) (Schlögl 
et al., this issue). In addition, the cleavage of Dsg3 by caspase-3 
independent from apoptosis was observed and may promote 
internalization (51–53), the latter of which was shown to require 
EGFR signaling (54).

Split desmosomes are rarely detectable in keratinocyte cultures 
incubated with pemphigus antibodies in the absence of mechani-
cal stress (55) but are enhanced when cultures are subjected to 
mechanical strain as well as in human skin models and in patients’ 
skin (14, 56). Furthermore, split desmosomes appear typically 
severely altered with reduced plaque sizes and aberrant keratin 
insertion. This may indicate that desmosome splitting occurs 
secondary to changes in desmosome composition. Collectively, 
interference with desmosome turnover can largely explain the 
ultrastructural hallmarks of pemphigus patients’ lesions.

DesMOsOMe DYsFUNctiON DeFiNes 
tHe cLiNicAL PHeNOtYPe OF 
PeMPHiGUs

All mechanisms described earlier finally lead to desmosome 
dysfunction, which impair keratinocyte cohesion. However, 
the functional interplay of the different mechanisms is not well 
understood at present. It is also unclear why epidermal splitting 
affects the deep epidermis in PV, whereas PF blisters are restricted 
to superficial epidermal layers (Figure  1). Besides homophilic 
adhesion, Dsgs were shown to undergo heterophilic interactions 
both with other Dsg isoforms and Dscs, respectively (5, 45, 57, 
58). Moreover, the genetic deletion of Dsc3 causes a PV pheno-
type with suprabasal blistering in mice (59). On the other hand, 
the forced overexpression of Dsg2, a Dsg isoform not present in 
the adult human epidermis except hair follicles, which is upregu-
lated in PV lesions, can compensate for the loss of Dsg1 in a PF 
mouse model (60, 61). Therefore, it is likely that all desmosomal 
cadherins (i.e., Dsg1–4, Dsc1–3) contribute to keratinocyte cohe-
sion and epidermal integrity in a layer-specific manner.

In the mucosa, Dsg3 is the predominant desmosomal cad-
herin, and in the superficial epidermis Dsg1 is strongly expressed, 
whereas other isoforms of desmosomal cadherins are largely 
absent except of Dsc1 (Figure 1) (8). The cadherin distribution 
pattern can well explain the clinical phenotype of mPV and PF 
because the loss of function of the target molecules cannot be 
outbalanced by relevant amounts of other desmosomal cadherins 
(1). However, the Dsg compensation theory falls short in mcPV, 
because if Dsg1 and Dsg3 would specifically compensate for each 
other, the whole epidermis or at least the lower epidermis should 
disintegrate completely when considering that autoantibodies 
entering the epidermis from the dermis may be concentrated 
most in the first few layers of cells. Rather, epidermal splitting 
typically occurs right at the suprabasal level, i.e., between the 
basal keratinocytes and the first layer of the spinous layer cells 
where in intact epidermis as well as in PV lesions, Dsg1 and 
Dsg3 are expressed (8). This favors the hypothesis that different 

mechanisms contribute to desmosome dysfunction in a layer-
specific manner.

The direct inhibition of Dsg3 binding by PV-IgG has been 
described under cell-free conditions as well as on the surface 
of living keratinocytes; however, it was ineffective to induce 
the complete loss of cell cohesion (62–64). By contrast, the 
interference of anti-Dsg1 autoantibodies with Dsg1 binding 
was detectable neither in cell-free AFM experiments (63, 65, 
66) nor in studies with intact keratinocytes (Vielmuth 2018, 
Frontiers Immun, this issue). This suggests that the mechanisms 
underlying the loss of keratinocyte cohesion in pemphigus are 
autoantibody-specific. In this respect, it was reported recently 
that autoantibody profiles in pemphigus correlate with signal-
ing patterns which makes it intriguing to speculate that specific 
signaling patterns may be defining the clinical phenotype (65). 
It has been reported that p38MAPK and Src can be activated 
by PV-IgG containing antibodies against Dsg3 as well as by 
AK23 which is Dsg3-specific (Figure  1). In addition, EGFR 
and caspase-3 activation in response to AK23 and PV-IgG was 
shown in mouse models (53, 54, 67). By contrast, the increase 
of intracellular Ca2+ as well as Erk activation was induced only 
by PV-IgG and PF-IgG containing Dsg1 autoantibodies, which 
was paralleled by p38MAPK activation (65). In this line of 
thoughts, the direct inhibition of Dsg3 binding together with 
the signaling of p38MAPK, Src, EGFR, and caspase-3 would 
be sufficient to cause mucosal erosions (Figure  1), whereas 
additional mechanisms such as Ca2+, which has been shown to 
be associated with PKC activation in keratinocytes treated with 
pemphigus antibodies (68, 69), as well as Erk would be required 
for epidermal blistering. If so, it could be postulated that one 
function of Dsg and Dsc isoforms expressed in the epidermis 
but not in the mucosa may be to further strengthen keratinocyte 
cohesion by regulating signaling pathway which control desmo-
some turnover and function.

For most of the pathways described earlier, it was shown that 
modulation is sufficient to largely reduce skin blistering in mice 
(6). However, mice differ from humans with respect to epider-
mal Dsg expression patterns. Moreover, the genetic deletion of 
Dsg3 or the inactivation of Dsg3 via incubation with AK23 is 
sufficient to cause skin blisters in mice (41, 70). This is different 
to the situation in mPV where the skin is usually not affected and 
indicates that Dsg3 is more critical for epidermal integrity in mice 
compared to humans. Therefore, to prevent misinterpretations, 
studies including ultrastructural analyses of human skin are 
required in addition to mouse models. Indeed, studies in human 
skin ex vivo indicate that the significance of p38MAPK for blister 
formation may be different in PV and PF. When using PV-IgG, 
the inhibition of p38MAPK was sufficient to abrogate blistering 
(11, 56) but not when PF-IgG was applied (71). On the other 
hand, it was shown that p38MAPK in response to PV-IgG and 
PF-IgG is involved in the reduction of desmosome length (56, 71). 
However, since the shortening of desmosomes and interdesmo-
somal widening were detectable also in the absence of blistering 
following treatment with AK23, this indicates that p38MAPK-
mediated reduction of desmosome length and interdesmosomal 
widening may not be sufficient to cause skin blistering. Rather, 
the complete loss of desmosomes appears to be required (56) for 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


6

Spindler and Waschke Pemphigus and Desmosome Dysfunction

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 136

which other mechanisms such as Ca2+, PKC, or Erk may be neces-
sary to induce superficial epidermal blistering in PF (Figure 1). 
However, when bolstered by the direct inhibition of Dsg3 binding 
and Src activation, the panel of mechanisms causing desmosome 
dysfunction may be sufficient to cause suprabasal splitting as seen 
in mcPV. Taken together, it is likely that the clinical phenotype 
in pemphigus is caused by a complex set of mechanisms causing 
desmosome dysfunction.
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