
July 2017 | Volume 7 | Article 1431

Review
published: 10 July 2017

doi: 10.3389/fonc.2017.00143

Frontiers in Oncology | www.frontiersin.org

Edited by: 
Shwetal Mehta,  

Barrow Neurological Institute,  
United States

Reviewed by: 
Monica Venere,  

The Ohio State University  
Columbus, United States  

Bozena Kaminska,  
Nencki Institute of Experimental 

Biology, Poland

*Correspondence:
Rainer Glass 

rainer.glass@med.uni-muenchen.de; 
Krishna P. L. Bhat 

kbhat@mdanderson.org

†These authors have contributed 
equally to this work.

Specialty section: 
This article was submitted  

to Neuro-Oncology and 
Neurosurgical Oncology,  

a section of the journal  
Frontiers in Oncology

Received: 27 March 2017
Accepted: 20 June 2017
Published: 10 July 2017

Citation: 
Audia A, Conroy S, Glass R and 

Bhat KPL (2017) The Impact of the 
Tumor Microenvironment on the 

Properties of Glioma Stem-Like Cells. 
Front. Oncol. 7:143. 

doi: 10.3389/fonc.2017.00143

The impact of the Tumor 
Microenvironment on the Properties 
of Glioma Stem-Like Cells
Alessandra Audia1†, Siobhan Conroy1,2†, Rainer Glass3,4* and Krishna P. L. Bhat1,5*

1 Department of Translational Molecular Pathology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, United 
States, 2 Department of Pathology and Medical Biology, University Medical Center, Groningen, Netherlands, 3Neurosurgical 
Research, Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany, 4German Cancer Consortium 
(DKTK) partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany, 5 Department of 
Neurosurgery, University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States

Glioblastoma is the most common and highly malignant primary brain tumor, and 
patients affected with this disease exhibit a uniformly dismal prognosis. Glioma stem-
like cells (GSCs) are a subset of cells within the bulk tumor that possess self-renewal 
and multi-lineage differentiation properties similar to somatic stem cells. These cells also 
are at the apex of the cellular hierarchy and cause tumor initiation and expansion after  
chemo-radiation. These traits make them an attractive target for therapeutic develop-
ment. Because GSCs are dependent on the brain microenvironment for their growth, and 
because non-tumorigenic cell types in the microenvironment can influence GSC pheno-
types and treatment response, a better understanding of these cell types is needed. In this 
review, we provide a focused overview of the contributions from the microenvironment 
to GSC homing, maintenance, phenotypic plasticity, and tumor initiation. The interaction 
of GSCs with the vascular compartment, mesenchymal stem cells, immune system, and 
normal brain cell types are discussed. Studies that provide mechanistic insight into each 
of these GSC–microenvironment interactions are warranted in the future.
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iNTRODUCTiON

Our view of cancer has changed ever since the discovery of cancer stem cells (CSCs) (1). CSCs are 
a proportion of cells within the bulk tumor and are similar to normal stem cells in their ability to 
self-renew and differentiate into downstream lineages. These cells exhibit tumor-initiating potential 
compare to the non-CSCs counterpart or differentiated progeny (2). CSCs have revolutionized our 
understanding of tumor biology and have had a strong impact on strategies for tumor treatment. 
However, the criteria to clearly define CSCs are well established in some tumors (for, e.g., leukemias), 
but are less clear for primary brain tumors such as glioblastomas (GBMs) (3–5). Glioma stem-like 
cells (GSCs) in GBM were first described about decade and a half ago (6–8). Since then, many 
studies have not only confirmed their existence but also identified additional attributes to these 
cell types including contribution to therapy resistance (9, 10). Numerous alternative terminologies 
have been used for GSCs including glioma-initiating cells, glioma stem cells, and glioma tumor 
propagating cells. The inherent difficulties to up-front identify stem-like cells in GBM has stirred 
a long (and ongoing) debate about the nature, pathological impact, and therapeutic value of GSCs  
(11, 12). Furthermore, the population dynamics of these cells with cell fate conversion and reten-
tion of stem-like properties perhaps by de-differentiation further complicates matters. In order 
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to treat this highly malignant disease, a better understanding 
of these cells is necessary. Furthermore, due to the therapeutic 
resistance of GSCs, understanding not only the inherent resist-
ance mechanisms but also the contribution of the surrounding 
microenvironment could be considered as an interesting alter-
nate approach. Interactions of GSCs with the microenvironment 
not only contributes to maintenance of the stem-like state of the 
cells that eventually leads to clonal expansion but also acquires 
aggressive traits including migration, invasion, and therapy 
resistance. In this review, we will discuss the cell types present in 
the tumor microenvironment and the type of interactions with 
the microenvironment that influence expansion of GSCs. We will 
focus primarily on studies that have examined GSCs in the con-
text of the microenvironment, but studies that by definition have 
not examined the stem cell component in tumor cells have also 
been included in some cases where there is insufficient literature 
on GSC interaction with a specific cell type.

CSCs iN GBM

For a better understanding of the microenvironment, it is impera-
tive to first briefly comprehend the history and the controversies 
underlying the fundamental definition of CSCs in GBM. Several 
detailed reviews exclusively focused on GSCs have already been 
published (11, 13). Here, we present a general opinion on the 
current state of the GSCs. A robust definition for a GSC may fol-
low established biological criteria that are generally applied to all 
stem cells (including non-tumorigenic stem cells), which is, the 
ability to clonally expand and to give rise to more differentiated 
progeny (14). For GBMs, these criteria were first applied by Peter 
Dirks (15), thus identifying GSCs, which were also endowed with 
tumor-initiating capacity. This seminal study identified a marker 
(prominin, CD133) to purify GSCs and to test stemness proper-
ties. Using the tumor-initiating capacity as a benchmark for CSC 
has been tricky since this feature is assayed by tumor implantation 
experiments using decreasing numbers of GSCs to monitor tumor 
take in cells positive or negative for cell surface markers (15). 
However, not all studies strictly adhere to these benchmarks. Ever 
since this first publication, the field of GSCs has exploded with its 
share of great advances and controversies. First, using CD133 as 
a standalone marker has not been a successful and reproducible 
strategy. This, in part, could be attributed to the rapid alteration 
of stem cell (CD133+) populations in extended in vitro cultures. 
However, CD133 negative populations from freshly dissociated 
tumors have been also shown to form tumors at similar rates 
as CD133+ cells and additional markers for defining GSCs have 
been proposed (11). Also, it is noteworthy that CD133 undergoes 
N-glycosylation upon cellular differentiation, whereas and many 
studies have been examining changes in mRNA expression which 
bears no relevance to stemness (16). More importantly, GSCs from 
a single GBM can express multiple markers and tumor-initiating 
potential of each of these populations can vary (17). Second, the 
proportion of GSCs in a GBM may vary substantially between 
GBM of different individuals (18) prohibiting a generalized 
method to quantify, compare, and thereby standardize the aggres-
siveness of GSCs from different donors in xenograft transplanta-
tion assays. Diversity in GSC subtypes is likely associated with 

the established intratumoral heterogeneity of GBM (19), which 
is propelled by clonal evolution generating different tumor areas 
(within the same tumor) that are predominated by progeny from 
different tumor cell clones (20, 21). The coexistence of evolution-
ary evolved and genetically distinct tumor subfields in one GBM 
is a relatively recent observation and was previously not routinely 
taken into account in studies using GSCs. Third, the interest in 
research in GSC biology is high, since, apart from a potential role 
in tumor initiation and relapse (22), GSCs have been attributed 
with other clinical problems such as resistance to radiation (9, 10) 
or chemotherapy (23, 24). These are all important points adding 
to the pathological potential of GSCs and can support the notion 
that GSCs are a major cell entity that forms recurrent tumors after 
multi-modal treatment. However, therapeutic resistance cannot 
serve as a defining criterion of GSC as there is ample heterogene-
ity also in therapy response of GSCs (10, 25) and high therapeutic 
resistance can as well be detected in more differentiated GBM cells 
[non-GSCs (26)]. Despite these controversies and differences, 
GSCs are central in our understanding of GBM biology.

THe eFFeCT OF THe vASCULATURe  
ON GSC PROPeRTieS

endothelial Cells
The major neural stem cell pools in the adult mammalian brain 
are confined to the subventricular and subgranular zones, each 
with a defined set of surrounding cells that protect their stem-
like state (27). The brain tumor stem-like cells were first reported 
to preferentially reside in the perivascular niche (28). Increased 
numbers of endothelial cells expanded the fraction of stem-like 
cells, and conversely in  vivo blood vessel depletion through 
anti-angiogenic agents considerably slowed tumor growth and 
decreased the count of self-renewing and multipotent cells (28). 
The site where stem-like cells generally reside is considered 
relatively hypoxic, an environmental cue that is transcriptionally 
converted by cells into stabilization of hypoxia-inducible factor 
(HIF-1α). In glioma cells, both HIF-1α and HIF-2α enhance 
glioma sphere formation and cell proliferation, induce stemness, 
and increase tumor initiation ability (29, 30). Besides affecting 
the GSCs themselves, the stabilization of HIF-1α profoundly 
affects the vascular compartment through the induced secretion 
of VEGFA (9), which creates a gradient for the developed vessels, 
coordinating tip cell selection and stalk elongation in endothelial 
cells, and promoting endothelial sprouting or angiogenesis (31).

In addition to VEGFA, other angiogenic signaling molecules 
such as endothelial cell-bound ligands DLL4 and Jagged-1 can 
bind the Notch receptors expressed on GSCs. Blockade of Notch 
signaling in xenograft GBMs through γ-secretase inhibitors 
inhibits tumor growth establishing a role for Notch signaling 
for GSC maintenance and tumor growth (32, 33). Adjacent 
localization of Nestin+ and Notch+ tumor cells and Notch ligand 
expressing endothelial cells was observed in primary GBMs 
(34). Co-culturing of endothelial cells with GBM neurospheres 
enhanced cell growth, which could be inhibited through knock-
down of these endothelial ligands. Nitric oxide (NO) is another 
signaling molecule that is produced by endothelial cells.  
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NO is produced from the substrate l-arginine through a family  
of NO synthases, of which the endothelial isoform is denomi-
nated eNOS. In GBMs, eNOS expression is elevated and cor-
related with increased tumor growth (35, 36). PDGF-driven 
eNOS−/− glioma bearing mice prolonged survival in  vivo and 
decreased Notch signaling, hence establishing the GSC benefi-
cial effects of Notch signaling described above through another 
route. Conservation of this pathway in PDGFR-amplified 
human glioma specimens was also shown.

In addition to the bi-directional interaction between GSCs 
and endothelial cells, GSCs directly impact vasculature through 
transdifferentiation mechanisms. GSCs have been shown to gen-
erate functional vasculature, acquire endothelial-like properties 
both in vitro and in vivo, and ablation of the transdifferentiation 
process slowed tumor growth (37, 38). The acquisition of the 
CD105 endothelial marker expression was shown to be controlled 
by Notch signaling and endothelial cells were shown to harbor 
genomic aberrations similar to those observed in the tumor 
cells. A recent study showed glioma cells transdifferentiating into 
endothelial cells in a p53-inactivated/AKT-driven glioma model 
under epigenetic control of the WNT signaling pathway (39). 
This study reported that the endothelial transdifferentiation was 
specifically observed at the invasive site of the tumor in contrast to 
earlier studies that showed the presence of endothelial cells from 
human origin in the core of the tumors. However, follow-up clinical 
studies could not confirm the widespread EGFR amplified CD34+ 
endothelial cells in gliomas (40), and hence transdifferentiation, 
while important, may be a rare event in the evolution of gliomas.

Pericytes
Pericytes are vascular smooth muscle cells that provide support, 
maintain vascular integrity, stabilize the vessels, and prevent 
vascular leakiness (41). While the exact contribution of pericytes 
to GSC self-renewal and tumor initiation is still unknown, GSCs 
were recently shown to transdifferentiate into pericytes (42). 
Using lineage specific reporters, it was demonstrated that peri-
cytes were GSC derived. GSCs were recruited by SDF-1 signals 
from endothelial cells and were subsequently transdifferentiated 
into pericytes on-site under the influence of TGF-β. The contribu-
tion of GSCs to the pericyte pool was estimated to be substantial, 
with an average of 78% of pericytes carrying the tumor marker. 
Once again, this notion has been challenged in other pericyte 
reporter mouse strains that were used as glioma models. In one 
study, researchers used transgenic animals expressing GFP under 
control of the pericyte-associated signaling molecule G protein 
signaling 5 (RGS5-GFP) (43) and did not detect any contribution 
of syngeneic glioma cells (GL261 cells) to perivascular structures. 
Likewise, when implanting a mouse glioma cell line into a dual 
fluorescence pericyte reporter animal model (44), the pericytes 
appeared to be derived from the host tissue. The mouse glioma 
cell lines/models used in these two studies may not truly represent 
GSCs, which can explain why there is no strong transdifferentia-
tion of tumor cells into pericytes. However, these reports suggest 
that transdifferentiation of GSCs is at least no prerequisite for 
the formation of new pericytes in GBM. Further studies using 
models that mimic the actual physiological tumor more closely 
are warranted in the case of transdifferentiation studies.

Normal Brain–GSC interactions
The adult brain is mainly composed of astrocytes, neurons, and 
oligodendrocytes. The role of these cells in tumor initiation and 
maintenance are relatively understudied, but the few studies that 
are available indicate that they do have an important role in GBM 
biology (45, 46). Around 50% of the brain cells are astrocytes, 
which serve a multitude of functions in homeostatic maintenance 
(47). In response to injury or surgery, astrocytes can become 
activated and are often termed reactive astrocytes (48). GSCs 
were able to decrease p53 expression in the surrounding reactive 
astrocytes, thereby making them acquire a tumor-permissive or 
even promoting phenotype (49). Astrocytes surrounding a xeno-
graft express higher levels of Connexin43 that facilitates glioma 
invasion (50). Astrocyte injury also caused transcriptome and 
secretome alterations in vitro, and enhanced GBM cell prolifera-
tion and invasion (51). The role of neurons and oligodendrocytes 
on GSC biology are less known, but a recent report showed that 
neuronal activity-induced secretion of neuroligin-3 promotes 
gliomagenesis (52). Although these effects were not studied using 
GSCs, further studies are required to confirm and elaborate on 
the findings of the few available reports that indicate that normal 
brain cell types play an important role in GSC functions.

The immune Microenvironment 
Surrounding GSCs
With the advent of immunotherapy, the past few years has seen an 
explosion of studies describing the immune system and its criti-
cal role in cancer pathogenesis (53, 54). However, the immune 
regulation of brain tumors, in the context of GSCs, is not fully 
established. It should be noted that one major caveat in studies 
involving GSCs is that tumor initiation and evolution is studied 
in xenograft bearing mice that have greatly reduced number of 
T cells, and therefore, studies involving GSCs and the immune 
system can never be physiologically complete.

Although for decades the brain has been considered as 
immune privileged, owing to an intact blood–brain barrier and 
the “absence” of lymphatic drainage system, recent discoveries 
prove the existence of a direct communication between the CNS 
and the immune system. A variety of immune cell types includ-
ing microglia and macrophages, T  lymphocytes, and dendritic 
cells (DCs) are found in the brain and play a role in immune 
surveillance (55). The activation of the immune system or its sup-
pression in the GBM microenvironment depends on cell type/
function and on the presence/absence of immune signals in the 
local environment.

T Lymphocytes
Some earlier studies describing the role of immune cells in GSCs 
have been generally shown to silence the immune response, escape 
immune surveillance, for instance, with an ineffective tumor anti-
gen presentation, or release and recruitment of on-site immune 
suppressive factors (such as TGF-β) and immune suppressive 
cells (such as immunosuppressive B-cells and myeloid cells) (55). 
Studies have shown that GSCs can mimic antigen-presenting cells 
in their expression of major histocompatibility complex I (MHC I).  
GSCs can either regulate the level of expression of the MHC I 
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complex (56) or express the inhibitory co-stimulating molecule 
B7 homolog 1 (also known as programmed death ligand 1) and 
lack the expression of the activating co-stimulating molecules 
CD40, CD80, and CD86. Without MHC I expression or co-
stimulating factors, cancer cells fail as antigen presenting cells or 
induce T cells to anergy following antigen presentation, rendering 
them incapable of being activated. PD-L1 has been shown being 
upregulated in the GBM microenvironment and it seems to be 
more associated with the mesenchymal subtype (57, 58).

In addition to expression of co-inhibitory molecules, alterna-
tive mechanisms of T  cell inhibition exist. Regulatory T  cells 
(Tregs) are a form of T cells that are immunosuppressive and gen-
erally inhibit the expansion of effector T cells. This is attributed 
to constitutive activation of cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4), which contributes to their ability to suppress 
the immune system (59). The ligand CD95 (Fas/apoptosis antigen 
1) is expressed on GSCs and induce apoptosis of Tregs and reduce 
the number of infiltrating T cells in the tumor microenvironment 
(60, 61). Similarly, CTLA-4 present on activated Tregs can bind 
CD28 and induce T  cell anergy (62). An interesting crosstalk 
mechanism between GSCs and T cells is the secretion of galectin-3 
triggered apoptosis in both naïve and activated T cells promoting 
the expansion of the CSCs and therefore their immune suppressive 
role (63, 64). Alternatively, GSCs cause immunosuppression in the 
glioma microenvironment by activating the STAT3 pathway and 
by increasing the number of Tregs (65). On these lines, it has been 
shown that GSCs secrete more TGF-β than their differentiated 
counterparts (66). TGF-β is involved in the down-modulation 
of MHC II expression and subsequent antigen processing and in 
the expansion of immune suppressive Treg cell population and 
perhaps is one additional mechanism by which GSCs modulates 
Tregs (67). Once again, it is noteworthy that owing to the het-
erogeneity, not all GBMs show a significant infiltration of Tregs 
in the microenvironment, suggesting heterogeneity also in the 
immune suppressive mechanisms. This emphasizes the necessity 
to study GSC interaction with T cells at the single cell level as well 
as distinguishing them according to their subtype and mutation 
profiles. In order to do so, novel mouse models are required that 
could better represent the heterogeneity of this tumor in vivo.

Microglia and Macrophages
In addition to secreting immune suppressive cytokines, GSCs 
are capable of recruiting or modulating immune cells with 
tumor supportive phenotype. GBMs are characterized by a very 
high infiltration of macrophages, phagocytic cells that engulf 
cellular debris and foreign substances. Microglia, are resident 
macrophages that present the first line of defense in the CNS. 
Both microglia and infiltrating macrophages (myeloid cells) can 
represent between 13 and 43% of the tumor mass in different ani-
mal models for GBM (68) and in freshly isolated GBM biopsies 
a myeloid cell content of approximately 8% (69) was detected in 
FACS analyses, while in immunohistochemical studies, often a 
myeloid cell content ranging from 20 to 50% of the total cell mass 
is reported (70), which we (according to our experience) consider 
as representative.

In classical immunological experiments, investigating, e.g., 
the response of myeloid cells to toll-like receptor agonist (like 

lipopolysaccharides) or to chronic inflammatory stimuli, myeloid 
cells are often grouped into two different immune phenotypes 
named M2 (which is representative for the chronic inflammatory 
state) and M1 (which includes all classical pattern of inflamma-
tion) (71). In many different peripheral cancers, the attribute of an 
M2-shifted immune response of tumor-associated macrophages 
(TAMs) indicates a more tumor-supportive function that is 
associated with a myeloid cell signaling pattern that is highly 
reminiscent of the chronically activated state myeloid cells (71). 
The phagocytic role of TAMs (or glioma-associated macrophages/
microglia) has been controversial. While one study showed a lack 
of phagocytic activity of these cell types (72), and their secreted 
cytokines, such us IL-6 and IL-10, can promote cancer cell 
proliferation (73), other studies have shown that factors secreted 
by glioma cells can promote phagocytosis, and proliferation of 
microglial cells (74). Unlike their more differentiated progeny, 
GSCs show an increased capacity of active chemo-attraction and 
recruitment of macrophages in  vitro through the secretion of 
cytokines. These include colony-stimulating factor-1 (CSF-1), C-C 
motif ligand-2 (CCL-2), and macrophage inhibitory cytokine 1, 
factors enriched in GSC-conditioned media. Moreover, the secre-
tion of CSF-1 and CCL-2 by the GSCs resulted in a polarization of 
the macrophages toward the M2 immune suppressive phenotype. 
Other CSC-secreted factors include IL-10 and TGF-β, which 
also suppress tumor-associated microglia/macrophage function 
and generate a more immunosuppressive (M2) phenotype (75). 
TAMs in GBM have been shown to be recruited by periostin,  
a protein preferentially expressed by GSCs (76). Periostin functions 
as a potent chemo-attractant of monocyte-derived macrophages 
from the blood to the tumor microenvironment and maintain the 
M2 immune suppressive phenotype to promote tumor growth. In 
fact, the disruption of periostin in vivo shows a reduction in the 
recruitment of tumor-supportive TAMs (M2 subtype), inhibition 
of tumor growth, apoptosis of GSCs, and increase of survival in 
a xenograft mouse model. Another molecule with crucial role in 
this transition is SPP1 (osteopontin). SPP1 is a secreted protein 
that shares similarities in features and mechanism of action with 
Periostin and contributes to the maintenance of an immune sup-
pressive environment. It has been shown, in fact, to be highly 
expressed in M2 polarized macrophages and GBM-infiltrating 
CD14+ cells compared to matched blood monocytes and brain 
microglia (77).

It is important to note that gene expression studies of TAMs 
from GBM have shown that such a simplified classification is not 
feasible in brain tumors, which likely harbor a spectrum of differ-
ently polarized myeloid cells that (as a net effect) culminates in a 
GBM-promoting role of TAMs (78).

Myeloid-Derived Suppressor Cells 
(MDSCs), Neutrophils, Natural Killer  
(NK) Cells, and DCs
Myeloid-derived suppressor cells are immature cells of myeloid 
origin that possess T  cell suppressive properties. Patients with 
GBM have increased counts of MDSCs compared to healthy 
subjects (79). A recent detailed analysis of the phenotype of 
MDSCs and transcriptome of the different population of myeloid 
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cells in GBM patient samples revealed the abundance of the 
MDSCs and microglia in the microenvironment highlighting the 
importance of the innate immune components (78). These data 
showed a higher infiltration of MDSCs in the microenvironment 
and detailed their role in the determination of the immune sup-
pressive phenotype. MDSCs were elevated in many GBM patients 
in association with neutrophils and the number of neutrophils 
correlates with glioma grade and a negative prognosticator for 
survival (78). This is again consistent with demonstration of neu-
trophil infiltration in high grade gliomas in previous studies (80). 
The role of MDSCs in GSC biology was never studied until two 
recent reports. One study showed that GSCs reside in proximity 
to and attract MDSCs by secreting macrophage migration inhibi-
tory factor (MIF) (81). MDSCs suppressed immune rejection and 
caused expansion of GSCs, which could be reversed by inhibition 
of MIF. In another study, the authors showed that GSCs secrete 
exosomes that regulate monocyte maturation and MDSC forma-
tion that in turn suppresses T-cell response (82).

Natural killer cells are cytotoxic lymphocytes and belong to 
the innate immune system. They cause host rejection and killing 
of tumors and microbial infections by cytokine release selectively 
against cells that lack the MHC class I, thereby protecting normal 
host cells from attack (since all normal cells express this antigen) 
(83). In recent years, NK cells have been shown to play a role in 
GBM-mediated immune suppression. IDH-mutant GSCs have 
been shown to have a significantly lower expression of NKG2D 
ligand compared to the IDH-wt cells, rendering the IDH-mutant 
GSCs resistant to NK  cell-mediated lysis. Decitabine-mediated 
hypomethylation upregulates the expression of NKG2D ligand 
restoring the NK-mediated lysis of IDH-mut GSCs (84). The 
novelty of this study resides not only in the description of a 
mechanism of immune suppression mediated by a single muta-
tion but also show an intrinsic altered mechanism of the innate 
immune system that might explain in part the failure of immu-
notherapy for IDH-mutant gliomas. Moreover, it has been shown 
that human GSCs express lower levels of the PD-1 ligand and 
therefore are more sensitive to the cytotoxicity of the IL-activated 
NK cells (85). Combining the negative immune regulation of the 
PD-1/B7H1 pathway (86) and the anti-GSCs effect of stimulated 
NK cells, the blockade of the PD-1/B7H1 pathway between NK 
and GSCs might interrupt immunosuppression and promote 
NK  cells killing GSCs. It has been demonstrated, in fact, that 
inhibiting the PD-1/B7H1 pathway promotes the toxicity of 
NK cells against GSCs in vitro (87). In an intracranial GSC model, 
mice that received PD-1-inhibited NK  cell treatment showed 
reduced tumor growth and survived longer without obvious body 

weight loss or distinct neurological deficits (87). These studies 
open a new avenue of investigation and possibility of combinato-
rial therapy against the innate and adaptive immune system in 
GBM (88).

Dendritic cells are antigen-presenting cells to T lymphocytes 
and play a major role in initiating and shaping the adaptive 
response. These cells represent the most potent and versatile 
way the immune system has evolved to present antigens and 
develop an immune response (89). DCs may play immune 
suppressive mechanisms through dysregulation of the antigen-
presenting pathway or inducing exhaustion of the T cells (90–92). 
Unfortunately, studies involving GSC–DC interactions are lim-
ited to developing vaccine strategies and inducing a satisfactory 
T-cell-mediated immune response (93).

CONCLUSiON

Studies involving GSCs have dramatically changed our view of 
this disease, and we have obtained a wealth of fascinating insight 
into the cell biology of GBM. The field of CSCs has helped us 
understand cancer biology from the perspective of develop-
mental biologist. Similarities have been drawn to the cell types 
and differentiation pathways of normal stem cells. The recent 
information of GBM heterogeneity retrospectively explains why 
conflicting data were initially obtained in the GSC research field. 
It is now well established that GSCs are a central (but not the 
exclusive) target for therapeutic approaches to treat GBM. This 
is not only due to the inherent plasticity of GSCs that leads to 
transdifferentiation but also to the overbearing influence of the 
microenvironment (as highlighted in this review) that alters their 
stem cell state, tumorigenic potential, and therapeutic resistance. 
It is our opinion that future studies must incorporate the micro-
environmental aspects while studying GSC biology.
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