
ORIGINAL RESEARCH
published: 28 January 2016

doi: 10.3389/fonc.2016.00010

Edited by:
Francis A. Cucinotta,

University of Nevada Las Vegas, USA

Reviewed by:
Joshua Silverman,

New York University Medical Center,
USA

Yu Kuang,
University of Nevada Las Vegas, USA

*Correspondence:
Etienne Testa

e.testa@ipnl.in2p3.fr
†Present address:

Marco Pinto,
Ludwig Maximilians University,

Munich, Germany

Specialty section:
This article was submitted to

Radiation Oncology, a section of the
journal Frontiers in Oncology

Received: 30 September 2015
Accepted: 11 January 2016
Published: 28 January 2016

Citation:
Pinto M, Dauvergne D, Freud N,

Krimmer J, Létang JM and Testa E
(2016) Assessment of Geant4

Prompt-Gamma Emission Yields in
the Context of Proton Therapy

Monitoring.
Front. Oncol. 6:10.

doi: 10.3389/fonc.2016.00010

Assessment of Geant4
Prompt-Gamma Emission Yields in
the Context of Proton Therapy
Monitoring
Marco Pinto1†, Denis Dauvergne1, Nicolas Freud2, Jochen Krimmer 1, Jean M. Létang2 and
Etienne Testa1*

1 CNRS/IN2P3 UMR 5822, IPNL, Université de Lyon, Université Lyon 1, Villeurbanne, France, 2 CREATIS, CNRS UMR 5220,
INSERM U1044, INSA-Lyon, Centre Léon Bérard, Université de Lyon, Université Lyon 1, Lyon, France

Monte Carlo tools have been long used to assist the research and development of
solutions for proton therapy monitoring. The present work focuses on the prompt-gamma
emission yields by comparing experimental data with the outcomes of the current version
of Geant4 using all applicable proton inelastic models. For the case in study and using
the binary cascade model, it was found that Geant4 overestimates the prompt-gamma
emission yields by 40.2±0.3%, even though it predicts the prompt-gamma profile length
of the experimental profile accurately. In addition, the default implementations of all proton
inelastic models show an overestimation in the number of prompt gammas emitted.
Finally, a set of built-in options and physically sound Geant4 source code changes have
been tested in order to try to improve the discrepancy observed. A satisfactory agreement
was found when using the QMD model with a wave packet width equal to 1.3 fm2.

Keywords: proton therapy, hadrontherapy, prompt gammas, Geant4, online monitoring, in-beam monitoring,
collimated camera, nuclear fragmentation models

1. INTRODUCTION

Particle therapy, namely proton and carbon-ion therapy, has been the subject of growing interest,
primarily due to the favorable ballistic properties of ion–matter interactions, which allow for a high
degree of dose conformality in the tumor while minimizing the dose in the healthy tissue. However,
such properties pose some challenges in terms of quality assurance of the treatment when compared,
for example, to photon radiation therapy since ions are more sensitive to both planning and
treatment uncertainties (1, 2). Several verification protocols and monitoring approaches have been
proposed to address this issue, among which the detection of prompt gammas (PG) for ion range
monitoring. Prompt gammas are the result of nuclear interactions between the incident ion and the
tissue nuclei. Their emission can be considered as instantaneous after the interaction, thus providing
a strong correlation with the ion range (3, 4). Moreover, when compared with the positron emission
tomography monitoring, already in clinical use for the same purpose, prompt-gamma monitoring
does not suffer from signal washout and time dependency. In addition, the energy threshold for
the nuclear reactions producing positron emitters is higher than the one for the emission of PG,
hence a better correlation with the ion range is observed for the latter (5). However, the need for
dedicated devices with high acquisition rate capabilities, the broad energy range of the emitted
prompt gammas, and the extensive background render it a particularly demanding technique.
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The inherent complexity of the nuclear processes leading to
the emission of prompt gammas makes Monte Carlo tools one of
the main resources employed in the study of this form of particle
therapymonitoring, namely in terms of camera optimization [e.g.,
Ref. (6–10)]. In this regard,Geant4 (11) has been one of the chosen
tools due to ease of use and open-source distribution. However,
as already described in the literature (8, 12–15), the hadronic
inelastic models implemented in Geant4 tend to overestimate
prompt-gamma emission. There is no evidence so far that the
spatial prediction is also affected; hence, it is still possible to use
the spatial prompt-gamma distributions to find correlations with
ion range. Nevertheless, relying on an overestimated signal raises a
concern for the optimization of devices to exploit the information
provided by the prompt-gamma emission since the precision to
detect ion range shifts is inversely proportional to the collected
signal (16).

The present study addresses the issue of discrepancies in
prompt-gamma emission yields after proton irradiation using
Geant4 by comparing all applicable proton inelastic models with
experimental data. In addition, we propose and test several
approaches within the existing models to try to improve the
accuracy of Geant4 for prompt-gamma emission yields.

2. MATERIALS AND METHODS

2.1. Experimental Data
The experimental data were collected during an experimental
campaign at the Westdeutsches Protonentherapiezentrum Essen
(WPE, Essen, Germany) (17). The setups comprised a single-slit
collimator, a detector, and a target aligned with the beam axis. The
single-slit collimator was positioned orthogonally with respect to
the beam axis and the alignment and positioning of the different
setup elements were accomplished by means of lasers and rulers,
respectively. The cylindrical polymethyl methacrylate (PMMA)
target with a 75-mm radius and 200-mm length was positioned
on top of a moving table, thus allowing to performmeasurements
along the target. The step size of the different longitudinal posi-
tions was not fixed, and it was dependent on factors like ion range
and need for a better description of some prompt-gamma profile
features (e.g., at the target entrance or close to the end of the ion
path). The collimator was made of a tungsten alloy with a 4-mm
slit opening and, when applicable, the shielding consisted of lead
blocks. Two setups were considered. The data of the first setup
(setup 1) were collected by means of a LYSO detector, while in the
second one (setup 2), the LYSO and LaBr3 detectors were used.

A schema of setups 1 and 2 can be observed in Figures 1 and 2,
respectively.

In order to select the prompt gammas from the extensive back-
ground, the time-of-flight (TOF) technique was used in conjunc-
tionwith aVME-based acquisition systemwithNIMmodules and
discrete logic and analogic electronics. The TOF windows applied
during the analysis were always sufficiently large to include all the
visible prompt-gamma events. The TOF stop signal was given by
the high-frequency (HF) signal of the cyclotron running in pulsed
mode. The stop signal was actually provided by a discriminator
converting the HF signal into a digital logic one whose frequency
was divided by a factor of ~5 with respect to the HF frequency to

FIGURE 1 | Schematic illustration of setup 1 (not to scale).

FIGURE 2 | Schematic illustration of setup 2 (not to scale).

cope with the time-to-amplitude (TAC) module limitations. The
TOF spectra measured in these conditions correspond therefore
to ~5 periods of the HF signal. The circular beam spot was
around 5mm sigma at isocenter, considering a Gaussian spatial
beam distribution (18). Energy thresholds were also applied to the
data in order to reduce the background component. The energies
considered were obtained after calibration with gamma sources.
Therefore, it is an absorbed gamma-equivalent energy but, for
the sake of simplicity, it will be simply referred to as energy. The
lower-energy threshold for the detectors in the post-processing
steps was 1MeV, while the upper one was 7 and 12MeV for the
LYSO and LaBr3 detectors, respectively. The difference between
the two upper-energy thresholds is due to the distinct usable
energy range of each detector. In addition, scalers were also used
to account for the dead time of the acquisition system.

This experiment was conducted using a single proton energy
(160MeV) and with a suitable beam intensity to avoid pile-up and
excessive dead time. The number of incoming protons was given
by the ionization chamber (IC) placed inside the beamnozzle, thus
allowing for the normalization of the data. The IC was calibrated
against a Bragg peak chamber positioned at the target entrance.

In order to make a better comparison between experimental
and simulated data, both data sets are subjected to a background
subtraction procedure. It was decided to follow the procedure
followed by Pinto et al. (17), where the TSpectrum routine of
ROOT (19) is used.
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Additional details about these experimental data can be found
elsewhere (17), namely, in terms of TOF analysis and absolute
yields.

2.2. Geant4 Data
The Geant4 version 10.01.p02 was used as it was the last stable
release at the time of the present study. In this version, there
are five proton hadronic inelastic models for the energy range
considered herein: binary cascade (BIC), Bertini cascade (BERT),
precompound (PRECO), Liège intranuclear cascade (INCL), and
quantummolecular dynamics (QMD). It should be noted that the
QMD model is usually never considered for proton interactions,
but its implementation in Geant4 is fully prepared for using it in
such a case. QMD is the most comprehensive hadronic inelastic
model in Geant4 and its complexity is often regarded as needless
to describe proton interactions since there are othermodels able to
perform the same task with similar accuracy but requiring much
less computing time (usually around one order ofmagnitude less).

The description of these models is outside the scope of the
present paper, but additional information can be found in the
Geant4 web page (https://cern.ch/geant4) and the references
therein.

The simulation of the experimental setups requires a high
amount of computing resources due to its small solid angle; hence,
a method to consider all possible models was selected. First, a
proton inelastic model was selected to be used for the simulation
of the experimental setups and subsequent comparison with the
experimental data. Since the developers of Geant4 recommend
the use of the BIC model for the present case, it was decided
to choose it to be the reference model. In a second stage, the
physical models were used to retrieve a longitudinal distribution
of prompt gammas escaping the target with an angular acceptance
of ±1.5°[similar to the procedure followed by Biegun et al. (20)].
Finally, the comparison between the experimental data and those
from the simulation of the full setups with the reference model
provides an estimate of the corresponding experimental yields for
the case where PG escapes from the target. This makes possible
and a meaningful comparison between all the physical models
while optimizing the use of computing resources. Nevertheless,
such an approach discards the potential influence of the neutron-
induced gammas created in the collimator and/or shielding. In any
case, those events should not overlap with the PG peak and after
background subtraction and TOF selection they are assumed not
to have an impact on the results (17).

The implementation of the experimental setups in Geant4
included target, collimator, shielding blocks, detectors, and nozzle
components. In order to account for the extensive background due
to the pile-up of events from previous proton bunches, an off-line
procedure was applied to the simulated data to mimic the beam

frequency (106MHz). Additionally, as mentioned previously, the
simulated data were analyzed with the same software as the exper-
imental ones, thus reducing possible discrepancies that could have
been introduced by the use of different analysis routines. It should
be noted that the same experimental absorbed energy thresholds
were used for the simulated data (i.e., 1–7MeV for the LYSO
detector and 1–12MeV for the LaBr3 one).

Table 1 shows themost relevant physical models other than the
proton hadronic inelastic ones used in the simulations.

2.3. Comparison between Experimental
and Simulated Data
The Geant4 benchmarking included two endpoints, arguably the
two most relevant ones: yields and information correlated with
the ion range. The former has an impact on, for example, camera
optimization, while the latter plays a major role in a monitoring
scenario. The yields were assessed using the reference model
and comparing its outcomes with the experimental data. The
discrepancy was then evaluated by computing the average rela-
tive difference between selected simulated and experimental data
points. The rationale for such a selection was the need to avoid
high-gradient signal regions since they could have a significant
andmisleading impact on the calculation of the relative difference
due to spatial uncertainties. Therefore, the points considered were
between 20mm (to avoid the entrance of the target positioned at
0mm – see, e.g., Figure 3) and 140mm (to avoid the PG profile
falloff). The projected proton range for the experimental data was
154.72mm (21) (not including nozzle elements).

Concerning the information provided by the prompt-gamma
profile correlated with the proton range, Pinto et al. (22) proposed
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FIGURE 3 | Experimental and simulated data for setup 1 using the
LYSO detector and considering an energy selection of
1≤energy≤ 7MeV. The fits using sigmoid functions in order to retrieve the
PGPL are also shown (the range plotted is the same of the fit procedure). The
simulated data were obtained with the BIC model for proton inelastic
interactions.

TABLE 1 | The most relevant physical models used for the simulations (not including the proton inelastic ones).

Hadronic inelastic neutrons Hadronic inelastic ions
(heavier than H+)

Others

<20MeV ≥20MeV

G4NeutronHPInelastic G4BinaryCascade G4IonBinaryCascadePhysics G4HadronElasticPhysicsHP
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the use of the quantity designated as prompt-gammaprofile length
(PGPL) to measure the distance between the rise in the prompt-
gamma profile at the entrance of a target or patient and the
falloff close to the end of the ion path. They showed that this
quantity is correlated with the ion range for the case of carbon-
ion irradiation. Herein, the same approach will be used, and it
comprises the fit of sigmoid functions to both the prompt-gamma
profile entrance and falloff. The PGPL is obtained through the
subtraction between the two inflection points retrieved after the
fit to both positions. This function has been initially proposed
by Henriquet et al. (23) to study the interaction vertex imaging
approach for carbon-ion monitoring. However, the application of
the PGPL concept was only possible for the data from the setup
1 because the data from setup 2 were too scarce for a meaningful
fitting procedure.

2.4. Geant4 Improvement
After the comparison between the outcome of the aforementioned
models and the experimental data, a systematic study of the pos-
sibilities for improvement using each model was carried out. Such
a study distinguishes between two cases, one in which built-in
options of eachmodel are changed, and the otherwhere changes to
the source code are made. It is emphasized that any change in the
models is always driven by some physical meaning. If the purpose
was otherwise, one could probably apply correction factors to
the simulated data. However, this approach may pose additional
problems since it may be very difficult to assess the factors for
all biologically relevant materials and proton energies. In fact,
tuning the free and physically bounded parameters of the Geant4
source code is logical since historically Geant4 was developed for
high-energy physics, for which both the projectile energies and
targets are significantly different from the ones ofmedical physics.
Therefore, it is expected that hadronic inelastic models and their
parameters are optimized mainly for high-energy physics scenar-
ios and that they may be adjusted to yield better accuracy for
the application in the study herein. As an example, Dedes et al.
(12) found that one of the hard-coded free parameters of the
QMD model was optimized for interactions similar to Au+Au.
When optimizing that parameter for targets relevant to medical
physics, the authors were able to obtain an agreement between
experimental and simulated data for prompt-gamma emission
yields when considering carbon-ion irradiation.

3. RESULTS

3.1. Experimental vs. Simulated Data
Figures 3–5 show the experimental and simulated data for both
setups and detectors. It can be observed that the simulated data
are consistently overestimated with respect to the experimental
results. The relative differences are presented in Table 2. Addi-
tionally, the fits to retrieve the PGPL are also depicted in Figure 3.
The estimated PGPL for the experimental data is 148.3± 0.9mm,
while for the simulated case is 148.2± 0.8mm.

It should be noted that the error bars were estimated with the
same procedure followed by Pinto et al. (17), in which the statisti-
cal uncertainties (1 SD) for each data point and the uncertainties
imparted by the background subtraction method are taken into
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FIGURE 4 | Experimental and simulated data for setup 2 using the
LYSO detector and considering an energy selection of
1≤energy≤ 7MeV. The simulated data were obtained with the BIC model
for proton inelastic interactions.
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FIGURE 5 | Experimental and simulated data for setup 2 using the
LaBr3 detector and considering an energy selection of
1≤energy≤ 12MeV. The simulated data were obtained with the BIC
model for proton inelastic interactions.

TABLE 2 | Average relative difference between experimental and simulated
data computed using the data points between 20 and 140mm.

Average relative
difference (%)

Setup 1 LYSO 39.9±0.7
Setup 2 LYSO 39.9±0.3
Setup 2 LaBr3 41.5±0.6
Average 40.2±0.3

The average considering the values of the three cases was calculated with the standard
weighted least-squares formula (24).

consideration.Due to the nature of the latter, it is not unreasonable
to consider that the error bars may be under-/overestimated since
it is not possible with the current set of data to estimate accurately
the background superimposed with the prompt-gamma signal.

3.2. Default Proton Hadronic Inelastic
Models
Figure 6 shows the longitudinal profiles obtained with the default
implementation of all applicable Geant4 proton inelastic mod-
els along with the reference model scaled down to account for
the estimated overestimation. Since the different upper-energy
thresholds did not have an impact on the overestimation, the
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simulated data depicted in Figures 6 and 7 consider events with
1≤ energy≤ 12MeV.

3.3. Improved Proton Hadronic Inelastic
Models
Figure 7 depicts the longitudinal profiles obtained after using
a given built-in option of Geant4 or making a given change in
the source code. The naming used and the different changes are
summarized in Table 3.
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FIGURE 6 | Longitudinal profiles of the photons escaping the PMMA
target having an angular acceptance of ±1.5°. These profiles were
obtained with the default models of Geant4 and the “BIC scaled,” which
corresponds to the BIC case scaled down to compensate the estimated
overestimation of 40.2% (see Table 2).

Depth (mm)

0 50 100 150 200

)
-1

 m
m

-6
1
0

×
P

G
 p

e
r 

p
ro

to
n
 (

0

5

10

15

20
BIC scaled

L1.2_QMD

L1.3_QMD

useSCO_PRECO

useGNASH_PRECO

FIGURE 7 | Longitudinal profiles of the photons escaping the PMMA
target having an angular acceptance of ±1.5° using a given built-in
option in Geant4 or a change in the source code. The “BIC scaled”
profile refers to the BIC case scaled down to compensate the estimated
overestimation of 40.2% (see Table 2). The naming conventions are
presented in Table 3.

4. DISCUSSION

The results herein show thatGeant4 consistently overestimates the
prompt-gamma emission yields for the present case, which is in
agreement with the conclusions of previous studies. However, the
main difference of this study is the use of all applicable proton
inelastic models for the energy regime in medical physics. As
already suggested elsewhere (8), Bertini cascade model is the
one yielding the worst agreement. This was partially corrected
when using the precompound model as the model for the pre-
equilibrium stage instead of its own implementation. This profile
was not shown because, even after this change, the yields are at
the same level as the default binary cascade model. The emission
predicted by the default precompoundmodel for shallow depths is
accurate but then it increasingly diverges from the expected yields
along the depth.

In addition, the PGPL is in excellent agreement between exper-
imental and simulated data for the single case investigated. How-
ever, the assessment of the accuracy of simulations in estimating it
in clinical conditions can only be performedwhen a shift of proton
range is considered and the subsequent correlation with proton
range is determined. Therefore, further studies with increasingly
complex phantoms are required to assert such an agreement [for
example, studies similar to Priegnitz et al. (25)]. Nonetheless, it
indicates that even if Geant4 overestimates the prompt-gamma
yields, it still can predict accurately the PGPL for the present case.

Concerning the improvement of Geant4, it is possible to
observe that the QMD model using the wave packet width equal
to 1.3 fm2 yielded the best agreement with the BIC scaled case.
This value contrasts with the one proposed by Dedes et al. (12)
for carbon-ion irradiation, which was 0.8 fm2, but that work dealt
with a different projectile and systems with substantial higher
energy. The default value for the wave packet width in the QMD
model is 2 fm2. This indicates that further studies are required to
fully assess the most adequate value for this parameter, namely,
with other clinically relevant targets and energies. The cases pre-
sented with the precompound model show a clear underestima-
tion of the PG yield for most of the proton path. However, it
increases distally to values that are similar to the ones obtained
without the use of the built-in options (compare the PG pro-
file using the default precompound model in Figure 6 and the
ones in Figure 7). Even though no testing was performed to
find the reason for this behavior, one can assume that it may
be related to the modeling stage after the precompound, i.e., the
deexcitation. The lower the proton energy the more likely it is
to send the fragments to the deexcitation earlier in the model-
ing process, as the fragments will have gradually less excitation

TABLE 3 | Built-in options (type 1) and source code changes (type 2) tested allowing for a reduction in the prompt-gamma emission yields compatible with
the expected experimental data.

Option Naming Model Type Geant4 class

Wave packet width equal to 1.2 fm2 L1.2_QMD QMD 2 G4QMDParameters
Wave packet width equal to 1.3 fm2 L1.3_QMD QMD 2 G4QMDParameters
Use of soft cutoff for deexcitation useSCO_PRECO PRECO 1 Not applicable
Use of GNASH transitions useGNASH_PRECO PRECO 1 Not applicable

The column “Geant4 class” refers to the class where some source code change was done if applicable.
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energy. Although only four changes have been shown, many oth-
ers were attempted but they yielded either a non-significant or an
excessive reduction in the PG emission yields. Usually, the discus-
sion about improving simulations is linked to the improvement of
cross sections [e.g., Ref. (15) for the discrete emission]. However,
even though the cross section data available should indeed be
improved, the type of approach followed herein provides Geant4
users with additional possibilities as they can also improve their
outcomes through scientifically sound changes to the default
implementation of Geant4, both in terms of the default options
chosen by the developers and the free and physically bounded
parameters.

It should be noted that accurate cross sections are, in general,
important for a better modeling of the prompt-gamma emission.
However, most of the applicable models in Geant4 are model-
driven and not data-driven; hence, the simulation outcomes are
based on sound physical models benchmarked with available
experimental data. In the prompt-gamma emission context, this
is not true for the discrete emission that relies on tabulated data
for the possible nuclear transitions. Therefore, formost cases, only
the total inelastic hadronic cross sections are used to then sample
an inelastic hadronic interaction. Since the present work addresses
the total prompt-gamma emission (continuous and discrete), and
it is known that the total inelastic hadronic cross sections in
Geant4 are relatively accurate for the present application [e.g., see
Ref. (15)], the authors did not consider an in-depth study of the
implemented cross section data in Geant4 and their influence in
the total prompt-gamma emission.

Regardless of the model and the parameter to optimize for
a practical application of Geant4 in the clinical routine of
proton therapy and prompt-gamma monitoring, the approach
toward the improvement of Geant4 will ultimately depend on the

experimental data gathered with different materials and proton
energies and the outcomes of Geant4 after those conditions. If a
single parameter value yields a good agreement with such data
while in accordance with the nuclear physics theory, then it would
be straightforward to have it implemented within the models
by simply replacing the default value. However, if it is not the
case (i.e., dependency with the target nuclei and/or energy), one
needs to find the corresponding values strengthened by theoretical
developments and, for example, implement a look-up table of
parameter values for several material-energy pairs to be used with
the models.
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