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ABSTRACT

Groundnut (Arachis hypogaea L.) is a multi-purpose legume crop widely cultivated in sub-Saharan
Africa (SSA). However, yield levels of the crop has remained relatively low in SSA owing to a range of
biotic, abiotic and socio-economic constraints. A dedicated groundnut improvement programme
integrating new tools and methodologies to breed varieties suitable for current and emerging
agro-ecologies and market needs is essential for enhanced and sustainable groundnut
production in SSA. The objective of this review is to highlight breeding progress, opportunities
and challenges on groundnut improvement with regard to cultivar development and
deployment in SSA in order to guide future improvement of the crop. The review analysed the
role of new tools in breeding such as, high-throughput and automated phenotyping techniques,
rapid generation advancement, single seed descent approach, marker-assisted selection,
genomic selection, next-generation sequencing, genetic engineering and genome editing for
accelerated breeding and cultivar development of groundnut.
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Introduction

Groundnut (Arachis hypogaea L., 2n = 4x =40, AABB) is
self-pollinating allotetraploid legume crop belonging to
the Fabaceae family (Janila et al. 2013). Groundnut
seeds are a rich source of oil (35-56%), protein (25-
30%), carbohydrates (9.5-19.0%), minerals (P, Ca, Mg
and K) and vitamins (E, K and B) (Gulluoglu et al. 2016).
The crop has various industrial uses including products
such as food, feed, paints, lubricants and insecticides
(Variath and Janila 2017). Further, groundnut is an ideal
crop in rotational systems to improve soil fertility due
to its natural ability to fix atmospheric nitrogen (Jaiswal
et al. 2017).

Groundnut yields in sub-Saharan Africa (SSA) are gen-
erally low (964 kg/ha) which is far less than potential
yields of up to 3500 kg/ha reported elsewhere (African
Institute of Corporate Citizenship 2016). The low yield
levels of groundnut in SSA is attributed to various stres-
ses such as abiotic (drought and low soil fertility) and
biotic [pests such as aphids (Aphis craccivora Koch), leaf-
miner (Aproarema modicella Deventer), thrips (Thrips
palmi Karny, Frankiniella schultzie Trybom, Scirtothrips
dorsalis Hood and Caliothrips indicus) and termites (Iso-
ptera)], and diseases (i.e. groundnut rosette disease,
leaf spot, rust). Further, farmers in the region are
cultivating unimproved varieties using poor agronomic

practices and with limited access to extension and advi-
sory services (Alemayehu et al. 2014; Debele and Amare
2015; Coulibaly et al. 2017; Desmae and Sones 2017; Mas-
tewal et al. 2017). For example, in Senegal, water stress
occurring during flowering and seed filling period
reduced groundnut shelled yield by 33 and 50%, respect-
ively (Faye et al. 2016). Groundnut rosette disease causes
more severe yield losses than any of the groundnut viral
diseases in the region (Okello et al. 2010). Early and late
leaf spots caused 100% yield loss in Ghana (Gaikpa et al.
2015).

In SSA, efforts are being made to improve groundnut
yield levels which aided in the release of few genetically
superior and improved groundnut varieties (Desmae
et al. 2017). Reports showed that introduced groundnut
varieties had considerable resistance to both biotic and
abiotic stresses (Monyo and Varshney 2016; Coulibaly
et al. 2017). In addition, groundnut varieties with some
desirable quality attributes such as high oil content and
larger seed size for confectionery purposes have also
been recently popularised (Okello et al. 2016, 2018;
Amare et al. 2017). Despite past successful efforts,
there has been limited breeding progress in developing
groundnut varieties combining desirable agronomic and
quality attributes such as high fatty acid content in com-
bination with high yield, short maturity, drought
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tolerance or resistance to foliar diseases which are the
needs and preferences of farmers and groundnut value
chains (Okello et al. 2010, 2018; Desmae et al. 2017).
Therefore, it is an overriding consideration to develop
varieties with various quality attributes to boost pro-
ductivity and quality of the crop in order to satisfy
farmer's demands and value chains for food security
and regional and local markets. An integrated groundnut
improvement incorporating conventional and molecular
breeding tools may aid in accelerated groundnut culti-
vars development and deployment in SSA. Therefore,
the objective of this review is to highlight breeding pro-
gress, opportunities and challenges on groundnut
improvement with regards to cultivar development and
deployment in SSA in order to guide future improvement
of the crop.

Status of groundnut production

Area under groundnut cultivation and total production
have shown marked increases during the period 1997-
2016 in SSA (FAOSTAT 2016). For instance, Angola and
Cameroon recorded rapid increase in both cultivated
area and production between 1997 and 2016. Conver-
sely, in Botswana and South Africa both cultivated area
and production level declined between 1997 and 2016.
Variable yield levels have also been observed for most
SSA countries during the period 1997-2016. Angola
recorded groundnut yield levels varying from 500
(during 1997) to 712 kg/ha (2016) which was a yield
improvement of 30%. Cameroon recorded the lowest
groundnut yield of 281 kg/ha in 1997 to the highest
yield level of 1648 kg/ha in 2016, which was an increase
of 83%. Contrastingly, South Africa and Mozambique
showed a decline in groundnut yields between 1997

and 2016. Mozambique, Angola and Botswana recorded
the lowest mean groundnut yields of 349, 442 and
491 kg/ha averaged across period 1997-2016, respect-
ively. Ghana, Cameroon, Nigeria and South Africa have
recorded the top yield levels > 1000 kg/ha across the
same years. In general, increased groundnut production
in SSA emanated from the expansion of agricultural
lands. Some reports (Monyo and Varshney 2016;
Kebede et al. 2017) indicated that groundnut yields of
1,700-2,500 kg per/ha can be realised using elite/
improved varieties in SSA despite that farmers yet con-
tinue cultivating unimproved local varieties. Famer parti-
cipatory variety selection is considered to be a useful tool
to enhance access to improved seed and increased
adoption rate of improved varieties in SSA (Ndjeunga
2010; Okello et al. 2010; Monyo and Varshney 2016;
Motagi et al. 2016; Desmae et al. 2017).

Progress on groundnut variety development
in SSA

In the last two decades, more than 100 improved and
high yielding groundnut genotypes have been intro-
duced, developed and released for cultivation in SSA
(Desmae et al. 2017). Some of the released varieties are
cultivated in several SSA countries (Table 1). For
example, cultivar JL 24 is widely grown in Malawi,
Mozambique and South Africa due to its considerable
level of drought tolerance and early maturity (Desmae
et al. 2017). The reported yield levels of this variety in
Malawi, Mali and Niger is 1500, 2000 and 2000 kg/ha,
in that order (Minde et al. 2008; Ndjeunga 2010).
Variety ICIAR 19 BT is cultivated in Nigeria and Niger
due to its early maturity, high yield levels, high oil
content and resistance to groundnut rosette disease.

Table 1. Some of the major groundnut varieties cultivated in sub-Saharan Africa.

Name or code Local names in different countries

Attributes References

1CG 12991 Baka (Malawi) Serenut 4 T (Uganda), Nametil (Mozambique) and
Zambia
JL24 Sameké (Mali), Kakoma (Malawi), ICG 7827 (Mozambique), Luena
(Zambia), JL24 (Congo), JL 24 (Sierra Leone), JL24 (South Africa)
ICIAR 19 BT Samnut24 (Nigeria), ICIART9BT (Niger)
ICGV-98412 Oboshie (Ghana), Babile-1 (Ethiopia)
Mwenje and -
Nyanda
ICGV-SM Serenut 2 (Uganda), Mamane (Mozambique)
90704
Harts -
ARC-Oleic2 -
ARC-Opal1 -
ARC Sellie -
Plus
Tufa -

Deom et al. (2006), Muitia
(2011), Kanyika et al. (2015)
Desmae et al. (2015)

Early maturity, drought tolerance

Early maturity, drought tolerance, high
oil content, high yield

Early maturity, high yield, high oil
content, rosette disease resistance

High yield, large seeded for
confectionery

Resistant to aphids, Hilda and grain
moth

High yield, medium maturity, rosette
disease resistance

Desmae et al. (2017)
Amare et al. (2016)
www.seedcogroup.com

Kanyika et al. (2015)

Tolerant to early and late leaf spot, www.opot.co.za
high yielding

High oleic acid content www.opot.co.za

Resistant to Botrytis stemrot www.opot.co.za

Low-oleic acid content, resistance to www.opot.co.za
podworm

Drought tolerant, intermediate oleic- ~ www.opot.co.za

acid content
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Aflatoxin contamination caused by the fungus Aspergillus
flavus and A. parasiticus is an important biotic factor
affecting groundnut product quality and sustainable
groundnut production in SSA (Waliyar et al. 1994;
Monyo et al. 2012; Guchi 2015; Njoroge et al. 2017). It
is also a potential threat to human and animal health
globally (Waliyar et al. 2017). Further, aflatoxin contami-
nation affects groundnut trade resulting in financial
losses estimated at about US$750 million per annum in
SSA (Kamika and Takoy, 2011). Breeding for aflatoxin
resistant groundnut genotypes is vital for human
health and to enhance world trade (Waliyar et al. 2017).
Some genetic resources developed by the International
Crops Research Institute for Semi-Arid Tropics (ICRISAT)
such as ICGV 87084, ICGV 87094, and ICGV 87110 are
reportedly resistant to A. flavus. Furthermore, 12 ground-
nut accessions with resistance to aflatoxin are developed
by the Agricultural Research Council in South Africa (Cil-
liers and Swanevelder 2003). Improved Spanish ground-
nut cultivars such as ICGV 91278, ICGV 91283, and ICGV
91284 were selected by ICRISAT showing considerable
resistance for aflatoxin-producing fungus (Upadhyaya
et al., 2001b). Groundnut accessions ICGs 13,603, 1415,
14,630, 3584, 5195, 6703 and 6888 were recommended
for production for their low levels of aflatoxin content
(<4 ug kg™') which is far below the regulatory limits for
EU (4 pg/kg), most developing countries (10 pg/kg),
and the US.A. (20 ug/kg) (Magamba et al. 2017).
Despite breeding progress, aflatoxin levels remain high
in commercial groundnut products due to poor regulat-
ory systems and other resource constraints. Effective
post- and pre-harvest groundnut handling and proces-
sing are imperative to minimise aflatoxin contamination
along the value chains of the crop (Magamba et al. 2017).

Genetic resources for groundnut breeding
Gene banks

Groundnut genetic resources are currently maintained at
various gene banks and research institutions and pro-
grammes globally (Pandey et al. 2012; Desmae et al.
2017). The largest collection of groundnut accessions
(~15,445) is held at ICRISAT gene bank in India (Pandey
et al. 2012). Approximately 43% of groundnut collections
at ICRISAT consists of landrace varieties, cultivars (7%),
breeding lines (31%), and other genetic stocks (19%)
(e.g. mutants and experimental germplasm) (Upadhyaya
et al. 2002).

In SSA, most of the groundnut germplasm have been
obtained from ICRISAT's regional gene banks such as
Niamey located in Niger and from the U.S.A. (Okello
et al. 2010; Monyo and Varshney 2016). Further, some

SSA countries such as Malawi, Mali, Zimbabwe, Uganda
and South Africa maintain groundnut genetic resources
(Upadhyaya et al. 2001a; Okello et al. 2010) sourced
from ICRISAT and US.A. In most cases, groundnut
genetic resource held in various genebanks are available
for research and breeding purposes subject to the
signing of material transfer agreement. For example, in
South Africa, almost all groundnut genetic resource
held by the Agricultural Research Council are available
on request (Cilliers and Swanevelder 2003). Groundnut
genetic resource held by ICRISAT are also available by
interested scientists for scientific studies or breeding pur-
poses (Upadhyaya et al. 2001b). However, it is worth
noting that material transfer can sometimes become
more stringent especially if the germplasm has patent
rights (Okello et al. 2010). Groundnut genetic resources
currently held at various gene banks are sources of
useful genes for the development of improved varieties
with improved quality attributes and resistance to
biotic and abiotic stress factors (Upadhyaya et al. 2005,
2014; Sharma et al. 2017a, 2017b).

Synthetics and wild species to tap new alleles for
groundnut breeding

The primary gene pool of the cultivated groundnut is
very narrow for some important characteristics such as
resistance to foliar diseases (e.g. late leaf spot and rust)
and insect pests (e.g. thrips) (Kumari et al. 2014; Favero
et al. 2015; Michelotto 2017b). Wild species may offer
wide variability, particularly for biotic and abiotic stress
breeding (Sharma et al. 2017b). Utilisation of wild
groundnut germplasm in breeding programmes has
been restricted by reproductive barriers between wild
and cultivated species. This presented technical difficul-
ties in making large numbers of crosses due to ploidy
differences between the two species (Kumari et al.
2014). Successful crosses between wild and cultivated
species can be achieved through the development of
synthetic groundnut (i.e. doubling of chromosome
number of the hybrid which is developed from two
diploid wild species) (Sharma et al. 2017b). Several
amphidiploid and autotetraploid groundnuts have
been developed using A- and B-genome accessions
with high levels of resistance to multiple stresses (e.g.
late leaf spot, stem rot and collar rot diseases) (Sharma
et al. 2017b). Wild species such as A. batizocoi,
A. gregoryi, and A. magna can be used as female
parents and many A-genome species can be used as
male parents to introgress desirable genes into the culti-
vated groundnut (Favero et al. 2015). Amphidiploid and
autotetraploid groundnut have been developed by
ICRISAT (Table 2) which serve as useful genetic resource
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Table 2. List of synthetic tetraploid groundnuts developed at ICRISAT.

Sr. No. Code Origin Species Genome References

1 ISATGR 1212 Synthetic amphidiploid A. duranenesis x A. ipaensis AB Shilpa et al. (2013), Mallikarjuna et al. (2011)
2 ISATGR 11A Synthetic autotetraploid A. magna x A. valida BB Shilpa et al. (2013), Mallikarjuna et al. (2011)
3 ISATGR 5B Synthetic autotetraploid A. magna x A. batizocoi BB Shilpa et al. (2013), Mallikarjuna et al. (2011)
4 ISATGR 9A Synthetic amphidiploid A. batizocoi x A. cardenasii BA Shilpa et al. (2013), Mallikarjuna et al. (2011)
5 ISATGR 11A Synthetic autotetraploid A. magna x A. valida BB Shilpa et al. (2013), Mallikarjuna et al. (2011)
6 ISATGR 40A Synthetic amphidiploid A. ipaensis x A. duranensis BA Shilpa et al. (2013), Mallikarjuna et al. (2011)
7 ISATGR 90B Synthetic autotetraploid A. kempff-mercadoi x A. stenosperma AA Shilpa et al. (2013), Mallikarjuna et al. (2011)
8 ISATGR 155 Autotetraploid A. diogoi x A. cardenasii AA Shilpa et al. (2013), Mallikarjuna et al. (2011)
9 ISATGR 168B Synthetic amphidiploid A. valida x A. duranensis BA Shilpa et al. (2013), Mallikarjuna et al. (2011)
10 ISATGR 278-18 Synthetic amphidiploid A. duranensis x A. batizocoi AB Shilpa et al. (2013), Mallikarjuna et al. (2011)
1" ISATGR 265-5 Synthetic amphidiploid A. kempff-mercadoi x A. hoehnei BA Shilpa et al. (2013), Mallikarjuna et al. (2011)
12 ISATGR 268-5 Synthetic amphidiploid A. batizocoi x A. cardenasii BA Shilpa et al. (2013), Mallikarjuna et al. (2011)
13 ISATGR 10B Synthetic autotetraploid A. magna x A. valida BB Shilpa et al. (2013), Mallikarjuna et al. (2011)
14 ISATGR 35A Synthetic amphidiploid A. batizocoi x A. duranensis BA Shilpa et al. (2013), Mallikarjuna et al. (2011)
15 ISATGR 206B Synthetic amphidiploid A. duranensis x A. valida AB Shilpa et al. (2013), Mallikarjuna et al. (2011)
16 ISATGR 91A Synthetic autotetraploid A. duranensis x A. cardenasii AA Shilpa et al. (2013), Mallikarjuna et al. (2011)
17 ISATGR 154 Synthetic amphidiploid A. valida x A. duranensis BA Shilpa et al. (2013), Mallikarjuna et al. (2011)
18 ISATGR 48B Synthetic amphidiploid A. valida x A. duranensis BA Shilpa et al. (2013), Mallikarjuna et al. (2011)

to transfer useful genes into the cultivated groundnut
(Mallikarjuna et al. 2011; Michelotto et al. 2016). Leaf
rust and late leaf spot resistance were successfully intro-
gressed into the cultivated groundnut varieties (e.g. ICGV
91114, ICGS 76, ICGV 91278, JL 24, and DH 86) using two
synthetic resistance sources namely: ISATGR 278-18 and
ISATGR 5B (Kumari et al. 2014). Resistance to thrips was
introgressed into cultivated groundnut cultivars using
amphidiploid species such as A. batizocoi x A. kempff-
mercadoi, A. gregoryi x A. stenosperma, and A. magna x
A. cardenasii (Michelotto et al. 2017). Introgression of
root-rot nematode resistance gene (Rma) into tetraploid
groundnut from synthetic allotetraploid donor (TxAG6)
has been widely practiced in modern cultivars (Nagy
et al. 2010). Chromosome pairing, pollen and pod fertility
analysis in hybrids between A. hypogaea and
A. amphidiploids revealed that amphidiploids can be
used as a genetic bridge for the transfer of genes from
wild species to the cultivated groundnut (Singh 1986).
Tetraploid (2n=4x=40) peanut (Arachis hypogaea
L. subsp. hypogaea var. hypogaea) lines GP-NC WS 16
and GP-NC WS 17 (SPT 06-07) with resistance to multiple
diseases including early leaf spot (ELS), Cylindrocladium
black rot, Sclerotinia blight, and tomato spotted wilt
were derived from interspecific hybridisation from the
diploid (2n = 2x=20) wild species, A. cardenasii (Tallury
et al. 2014). In general, the limited level of resistance
for economically important traits such as resistance to
leaf spot and rust in cultivated groundnut cultivars can
be enhanced through the development of synthetic
groundnuts. Recombination of cultivated and wild
groundnut germplasm will likely improve agronomic,
physiological and quality attributes resulting in the
development of superior genotypes with resistance
to biotic and abiotic stress factors to boost production
in SSA.

Landraces and modern groundnut varieties

Landraces are a valuable source of genetic diversity and
possess useful traits for breeding (Lopes et al. 2015;
Corrado and Rao 2017). Landraces can be introduced in
groundnut breeding programmes to incorporate
unique genes such as resistance to biotic and abiotic
stresses; and quality attributes. Significant genetic vari-
ation for quality attributes such as oil, zinc and iron con-
tents exist among groundnut landrace varieties (Asibuo
et al. 2008). Bolivian landraces of groundnut revealed
larger diversity with respect to seed colour, seed size,
seed weight, oleic and linoleic acid contents; and
showing moderate to high level of resistance to late
leaf spot (Husain and Mallikarjuna 2012). Mexican
hirsuta groundnut landraces such as PI576633,
PI1576634, PI576635, PI576636, PI576637 and PI576638
were also identified to be superior in flavour and
quality (Sanchez-Dominguez and Williams 1993). Many
other sources of resistance to foliar diseases such as
rust and late leaf spot were identified from South Amer-
ican landrace varieties (Singh and Nigam 2016). Several
pure lines such as 48-7, 48-14, 48-15A, 48-21, 48-34, 48-
35,48-36, 48-37, 48-44, 48-45 and 48-70A with resistance
to groundnut rosette disease were selections from land-
races (Singh and Nigam 2016). In pigeon pea and chick-
pea, landraces or their selections were released directly
as cultivated varieties (Asthana et al. 1996; Remanadan
1996). Some cowpea landrace varieties were released
for commercial production in India (Sharma 1996). Land-
race varieties are rarely used in breeding programmes
despite possessing useful attributes. Collection and stra-
tegic conservation of groundnut landrace varieties and
their exploitation in breeding programmes will aid
identification of useful genes/traits for breeding for
improved grain yield, quality attributes, biotic and
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abiotic stress tolerance. Groundnut landrace varieties
may also be useful for genetic mapping studies to
unravel genetic control underlying of important traits
(Varshney et al. 2013).

Breeding methods of groundnut

Groundnut improvement and cultivar development in
SSA mainly depended on conventional breeding includ-
ing pure line selection, mass selection, pedigree breed-
ing and backcross breeding methods (Okello et al.
2010; Janila et al. 2013). For example, Serenut 5R a
high yielding, early maturing, resistant to groundnut
rosette disease and late leaf spot was released in
Uganda using bulk selection (Table 3). Babile-1 with
the accession number ICGV-98412, released in Ghana
and Ethiopia, is high yielding, medium maturing and
moderately resistant to late leaf spot. It was bred at the
International Crop Research Institute for Semi-Arid
Tropics, Patancheru, India (Table 3).

Genetic variability available in cultivated and wild
Arachis have been extensively exploited through con-
ventional breeding to develop improved varieties
(Singh and Nigam 2016; Sharma et al. 2017b). Genetic
variation for important traits such as plant height,
number of primary branches per plant, number of
mature and immature pods per plant, kernel yield per
plant, hundred seed weight, haulm yield per plant and
dry pod yield per plant have been reported in ground-
nut. This is useful for phenotypic analysis and breeding
in this crop (Kushwah et al. 2017; Hampannavar et al.
2018). Further, traits like plant height, pods per plant,
100-pods weight, shelling percentage, harvest index
and pod yield per plant have high heritability and con-
siderably higher genetic advance (Nath and Alam 2002;
HajHussein et al. 2018). High heritability estimate and
genetic advance is an indication that variation is attribu-
table to a high degree of genetic effect and selection can
be effective (Johnson et al. 1955).

Knowledge on the degree of association between
yield contributing characters and yield is very essential
for the development of high yielding genotypes in
groundnut. Correlation studies provide an opportunity
to study the magnitude and direction of association of
yield with its components traits and also among
various yield-related components (Faye et al. 2015;
Mhlaba et al. 2018). Groundnut pod yield per plant exhib-
ited significant positive correlation with grain yield per
plant, number of kernel per plant, hundred kernel
weight, number of pods per plant, harvest index and
shelling percentage (Kushwah et al. 2017; Zongo et al.
2017a; Hampannavar et al. 2018). This information
could help in formulating effective selection criteria in

groundnut improvement programme for
improvement for grain yield.

In general, groundnut breeding in SSA is mostly
dependent on limited selection in segregating gener-
ations resulting in low selection efficiencies. Conse-
quently, a limited number of improved groundnut
genotypes were developed and deployed. In addition,
the conventional breeding requires extended time to
develop varieties. It also depends on the screening of a
large number of breeding populations under multi-
location trials due to the high genotype and environ-
ment interaction effect (Ngirazi et al. 2015; Kebede and
Getahun 2017). Therefore, the integration of new breed-
ing tools such as molecular markers and marker-assisted
selection in groundnut breeding programmes could
enhance the precision and speedy development of
improved groundnut cultivars.

genetic

New and emerging tools for groundnut
breeding

High-throughput automated phenotyping
techniques

Plant phenotypic data collection with sufficient resol-
ution and accuracy remains a major limiting factor for
the effective use of genomic data for crop improvement
(Bai et al. 2016). In developing countries where ground-
nut yield is low, the breeding focus is to improve yield
and tolerance to biotic and abiotic stress factors. Selec-
tion of groundnut genotypes using pod yield has been
slow and vyielded highly variable results as yield is
affected by genotype by environment interactions (Luis
et al. 2016), which causes difficulties in selecting geno-
types with wide adaptation resulting in delayed cultivar
release.

Crop breeding strategies for higher yield and disease
tolerance can be accelerated through the use of high-
throughput phenotyping (Shakoor et al. 2017). Instead
of using high-throughput phenotyping tools directly in
breeding programmes, they may be more useful to
enhance the efficiency of genomic tools during the
establishment of marker-trait associations, genome-
wide associations and training genomic selection
models (Janila et al. 2016). Patrick et al. (2017) reported
a rapid screening of tomato spot wilt disease resistance
among twenty genotypes of groundnuts through the
application of high-throughput phenotyping tool. High
throughput phenotyping for total oil content in ground-
nut kernel through the application of near infrared spec-
trometry (NIRS) system was determined as reproducible,
robust, rapid, cost-effective, and non-destructive, and
can be used in conjunction with high oleic fatty acid
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Table 3. List of improved groundnut varieties with resistance to biotic and abiotic stress tolerance and desirable agronomic attributes
reported globally.

Year of
Name Pedigree Traits Country Organisation release References
NuMex 01 NM Valencia A x High oleic content US.A. New Mexico Agricultural State 2013 Puppala and
Brantley University Tallury (2014)
NemaTAM A.cardenasii Krapov. Resistant to root-knot nematode  U.S.A. Texas Agricultural Experiment 2002 Simpson et al.
and W.C. Gregory x Station (2003)
A. diogoi Hoehne
C724-19-15 C-99R X COAN Resistant to root-knot nematode  U.S.A. USDA-ARS and Georgia 2008 Holbrook et al.
and tomato spotted wilt Agricultural Experiment Station (2008)
tospovirus
Tifguard C-99R X COAN Resistant to root-knot nematode  U.S.A. University of Georgia Coastal Plain 2007 Holbrook et al.
and tomato spotted wilt Experiment Station (2008)
tospovirus
TifGP-2 Resistant to root-knot nematode ~ U.S.A. USDA-ARS and Georgia 2010 Holbrook et al.
and tomato spotted wilt Agricultural Experiment Station (2012)
tospovirus
ICGV-91114 ICGV 86055 x ICGV Tolerant to rust and drought India ICRISAT 2006 ICRSAT (2012)
86533
“Webb" peanut Pl 667551 High-yielding, high-oleic fatty US.A. Texas AgriLife Research 2001 Simpson et al.
acid, nematode resistant (2013)
TG-37A TG-25 X variety TG-26 Mutant with semi-dwarfness, India Central Sub-Committee on Crop 2004 Kale et al.
compact pod setting, high yield Standards, Release and (2004)
and smooth pod surface Notification of Varieties, Ministry
of Agriculture
Golden Mutant Mutant with high yielding and India Barani Agricultural Research 2002 Naeem-UD-Din
Cercospora leaf spot resistant Institute (BARI) et al. (2009)
Binachinabadam-  M6/250/54-20 Mutant with salinity tolerance Bangladesh Institute of Nuclear 2011 Azad et al.
5 Agriculture (2014)
Huayu 22 Mutant with high yield, good China Shandong Peanut Research 2003 Wu et al. (2006)
quality, several diseases Institute
resistance, drought tolerant
and wide adaptable
Serenut 5R ICGM 522 X RG 1 High yielding, early maturing, Uganda  National Semi-Arid Resources 2010 Okello et al.
Research Institute (2016)
resistant to groundnut rosette
disease
resistant to late leaf spot
CG-8 ICGV-SM 08501, - Malawi ICRISAT 2014 Setimela et al.
(2017)
CG9 ICGV-SM 08503 - Malawi ICRISAT 2014 Setimela et al.
(2017)
CG-10 ICGV-SM 01724 - Malawi ICRISAT 2014 Setimela et al.
(2017)
cG-N ICGV-SM 01731 - Malawi ICRISAT 2014 Setimela et al.
(2017)
CG-13 ICGV-SM 99551 Short duration Malawi ICRISAT 2014 Setimela et al.
(2017)
CG-14 ICGV-SM 99556 - Malawi ICRISAT 2014 Setimela et al.
(2017)
CG-12 ICGV-SM 01514 - Malawi ICRISAT 2014 Setimela et al.
(2017)
NARINUT 2015 ICGV-SM 01731 Rosette disease tolerant Tanzania  ICRISAT 2015 Setimela et al.
(2017)
KUCHELE 2015 ICG 8326 Tanzania ICRISAT 2015 Setimela et al.
(2017)
NACHI 2015 ICGV-SM 90704 - Tanzania  ICRISAT 2015 Setimela et al.
(2017)
Serenut 6T ICGV 93437 X ICGV-SM  High-yielding, early maturing Uganda  National Semi-Arid Resources 2010 Okello et al.
93561 and resistant to groundnut Research Institute (2018)
rosette disease
ICGV 91278 JL 24'/UF 71513-1 Aflatoxin resistant India ICRISAT 1999 Upadhyaya
et al. (2001b)
ICGV 9128 U 4-7-5/JL 24 Aflatoxin resistant India ICRISAT 1999 Upadhyaya
et al. (2001b)
ICGV 91284 J11/ICGV 86184 Aflatoxin resistant India ICRISAT 1999 Upadhyaya

et al. (2001b)

screening to provide for simultaneous phenotyping of
total oil and high oleic acid contents (Sundaram et al.
2010; Awada et al. 2018). Adoption of high-throughput

automated technologies is hypothesised to result in
faster development of well-adapted and high-perform-

ing cultivars

(Awada et al.

2018).

However,

the
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application of high-throughput phenotyping techniques
in genetic improvement of groundnut and other crops
are still very limited. This is probably because automated
phenotyping is an emerging breeding approach and has
not yet been adopted by plant breeders and crop
improvement programmes (Awada et al. 2018).

Genomic tools
Marker-assisted selection

Molecular breeding refers to the technique of using
DNA markers that are tightly linked to phenotypic
traits to assist in a selection scheme for a particular
breeding objective (Jaradat 2016). Molecular markers
and genetic linkage maps are pre-requisites for mol-
ecular breeding (Varshney et al. 2009). Marker-assisted
selection (MAS) refers to the selection of superior
genotypes using molecular markers (Kumpatla 2012).
Compared with conventional phenotypic selection,
MAS is not influenced by environmental conditions
because it detects the structural polymorphisms at
the molecular level. Further MAS is cheaper and less
labour intensive, allows selection in off-season nur-
series and has a potential to accelerate the breeding
process (Kumpatla 2012).

Due to low levels of molecular polymorphism among
cultivated groundnut varieties, MAS in groundnut has
not been used extensively compared with other major
crops (Burow et al. 2013). Similarly, a low level of variabil-
ity in cultivated groundnut have been reported using
molecular markers (Bhagwat et al. 1997). The cultivated
groundnut has been analysed by several marker
systems such as Restriction Fragment Length Poly-
morphism (RFLP), Random Amplified Polymorphic DNA
(RAPD), Amplified Fragment Length Polymorphism
(AFLP), Single Nucleotide Polymorphism (SNPs) and
Simple Sequence Repeat markers (SSR) (Stalker and
Mozingo 2001; Zhao et al. 2016). Currently, SSR markers
are commonly used in groundnut genetic analysis and
breeding due to their co-dominance, simplicity, high
polymorphism, repeatability, multi-allelic nature and
transferability within the genus Arachis (He et al. 2003;
Pandey et al. 2012; Wang et al. 2018). Mondal et al.
(2012) identified three and four SSR alleles which were
found associated with rust and late leaf spot resistance
in groundnut, respectively. About 376 highly informative
SSR markers linked to resistance to early leaf spot,
groundnut rosette disease, and rust and aflatoxin con-
tamination across African cultivated groundnut varieties
were identified useful to identify suitable parents for
mapping populations or breeding (Kanyika et al. 2015).
There is approximately 14 392 publicly available SSR

markers in the A. hypogeae database (Wang et al.
2018). Recently, about 210 new SSRs were developed
for A. hypogaea useful for genetic diversity analysis and
cultivar development (Wang et al. 2018). In addition,
SSR markers have been developed specifically for
different Arachis species such as A. duranensis
A. paensis and A. stenosperma (Zhao et al. 2012).

Table 4 lists some molecular markers developed for
groundnut breeding. Four SSR markers (e.g. IPAHM103,
GM2079, GM1536 and GM2301) associated with ground-
nut leaf rust resistance were identified by Varshney et al.
(2014). SSR markers pPGPseq-17F6, pPGPseq-2F05,
pPGPseq-8E12, pPGPseq-13A10 and pPGPseq-16C6 are
reportedly well-associated with rust resistance (Shoba
et al. 2012). Zongo et al. (2017b) identified marker
GM1911 associated to early leaf spot resistance in
groundnut. Further, SSR markers such as pPGPseg-
2B10, pPGPseqg-2F05, Ppgp13A7, PM 375162,
pPPGPseq5D5,,9 and PM384,4, are also linked to late
leaf resistance (Mace et al. 2006; Shoba et al. 2012). SSR
markers such as SSR_F149451, Cer14, pPGP-seq2H08,
SSR_DX508223 and SSR_FI500754 linked to plant
growth habit and SSR markers PM50, SSR GW391728,
SSR G0340377 and pPGP_seq2HO08 linked seed size
have been identified in groundnut. Two transposable
element markers namely: TE 360 and TE 498, were
found to be linked to rust resistance gene (Mondal
et al. 2014). SSR marker GM 1991 is reportedly linked to
a drought tolerant QTL in groundnut (Guo et al. 2012).
Chu et al. (2007) identified marker S197 as a reliable pre-
dictor for nematode resistance.

Other molecular tools such as diversity arrays technol-
ogy (DArT) are useful in groundnut improvement pro-
grammes. Shasidhar et al. (2017) developed two
genetic maps based on the DArT and diversity arrays
technology sequencing (DArTseq) markers and identified
genomic regions linked to groundnut oil content and
fatty acids. However, genetic studies revealed low poly-
morphism and the moderate level of genetic diversity
among diploid and tetraploid groundnut genetic pool
(Varshney et al. 2010) indicating utilisation of DArT
marker system may limit efficient genetic analysis of
groundnut genetic resources for cultivar development
(Pandey et al. 2012). Development of highly discrimina-
tive and informative DArT markers is useful for genetic
analysis and breeding in groundnut.

MAS helps to develop ideal groundnut cultivar with
inbuilt resistance and improved pod and kernel features
(Mothilal 2012). Introgression of nematode resistance
through an amphidiploid pathway into cultivated
groundnut was successfully implemented using MAS
and subsequently nematode resistant groundnut culti-
var, NemaTAM was developed (Holbrook et al. 2011).
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Table 4. Some molecular marker systems developed for genetic analysis and breeding in groundnut.

Marker sequence

Marker name Marker type Forward primer Reverse primer References
IPAHM103 SSR GCATTCACCACCATAGTCCA TCCTCTGACTTTCCTCCATCA Varshney et al. (2014)
GM1536 SSR AAAGCCCTGAAAAGAAAGCAG ATGCATTTGCAGGTTCTGGT Varshney et al. (2014)
GM2301 SSR GTAACCACAGCTGGCATGAAC CTTCAAGAACCCACCAACAC Varshney et al. (2014)
GM2079 SSR GGCCAAGGAGAAGAAGAAAGA GAAGGAGTAGTGGTGCTGCTG Varshney et al. (2014)
GM1991 SSR GAAAATGATGCCGAGAAATGT GGGGAGAGATGCAGAAAGAGA Guo et al. (2012)

GM 1911 SSR CAGCTTTCTTTCAATTCATCCA CACTTCGTGTTCTTCCTGCTC Guo et al. (2012)

TE 360 TEM GGATATGATGCCCATAGCTGA TGCTGACTACTTGCAATGCC Mondal et al. (2014)
TE 498 TEM ATGACTTACATGTAGCAATTG TGAAAGGAGTCAAAGGTCATG Mondal et al. (2014)
S197 RAPD CTGTCGAACCATGGAAGAAGATCC CCAACTTGATGGTAGAAGTATGCTT Chu et al. (2007)
AHCWO0061 SSR TCATGTGAATTTGTGGACGGT CCAGGTTTTTGAGGTCCCTGA Wang et al. (2018)
AHCWO0310 SSR GTTCAAGGGCTGTGCATTGG GGGTTCGACTCCCGTCTTAT Wang et al. (2018)
AHCWO0545 SSR ACAGAAGAAGAAACAGCGCG TTCCGTCATGTGCTTCGGAA Wang et al. (2018)
AHCW0618 SSR AAATTTGAGCACGCATCCCC TGTCTTTTTCCTCGCCTTTGT Wang et al. (2018)
AHCW0700 SSR TGGAAGTTTCACGGGACAGG GTAGCAAGCTTCCCCACCAT Wang et al. (2018)
AHCW0768 SSR GGACCCATTTTTGCAAGAGAGA CGGATTGCAACATTGGCGAA Wang et al. (2018)
AHCW1250 SSR ACAGCTGCCTCTTCTCTGTG CCCACTCAAAATCGGATTTGGA Wang et al. (2018)
AHCW1510 SSR TCCTGCACCATGACCATGAA TGTTCGGCACCAATCTGTCA Wang et al. (2018)
AHCW1765 SSR CGCTGGTCTGGCATTTAACG AAGGGAGGAGGAGTTGGGTT Wang et al. (2018)
AHCW1862 SSR TGTTCAGGGATGTGTTTGGACT GGGCAAGCTCTTTAAACTGCA Wang et al. (2018)
Cerl4 SSR AGCTGCTTTGACCAGCCGGG CGCAAGCTTCCTTGTAGATGGTGGT Mondal et al. (2012)
SSR_DX508223 SSR GGATTAGGGTTATGAGTTAGGAAACAC GCTGATGATTGGTTCGGGTAT Bhad et al. (2016)
SSR_FI500754 SSR AAGTGGCAGAATCACAGATGG AGGGTAGAGGTTGGAGAGAAGG Bhad et al. (2016)
SSR_FI499451 SSR GTAAGCCACTCTATCACCCCAG ACAGCCTCACAAATCCAAGAAT Bhad et al. (2016)
pPGPseq_2H08 SSR TAAGTGGGGTGGGAGTGGAC AGCAGTTTGCGTAAGCATTTG Ferguson et al. (2004)
RGC 24 SSR TTTGACGGTATGTGCTTTCTTG TGCCACGACCAAACCAATC Bhad et al. (2016)

PM 50 SSR CAATTCATGATAGTATTTTATTGGACA CTTTCTCCTCCCCAATTTGA Bhad et al. (2016)
SSR_GW391728 SSR TCATCATCTGCTAGGGTTATGG GGTTCCACCTCTTGTCCAGTAT Mondal et al. (2012)

SSR, simple sequence repeat markers, TEM, Transposable element markers, RAPD, Random Amplified Polymorphic DNA

Marker-assisted backcrossing (MABC) has been com-
monly used in groundnut improvement, for instance,
high oleic acid content and nematode resistant variety,
‘Tifguard’ was developed through the application of
this technique (Tiwari et al. 2017). Introgression of rust
resistance from ‘GPBD 4’ groundnut cultivar into suscep-
tible varieties ICGV 91114, JL 24 and TAG 24 were
employed through MABC which resulted in the develop-
ment of improved rust resistance groundnut lines (Varsh-
ney et al. 2014).

In developing countries including SSA, application of
MAS in groundnut improvement is very limited. This is
mainly due to the lack of human capital and infrastruc-
ture (Janila et al. 2016). However, some successes have
been reported. For example, high oleic acid content gov-
erning genes, ahFAD2A and ahFAD2B, were transferred
from high-oleic parents (UF-85, Guat and Atete) to low-
oleic commercially produced South African cultivars
(e.g. Akwa, Kwarts and Harts) through the application
of MAS (Mienie and Pretorius 2013). AFPL markers
linked to resistance to groundnut rosette disease were
successfully identified and mapped in South Africa (Her-
selman et al. 2004). In Malawi, two groundnut genotypes,
RG1 and ICG 1291, were identified as resistant to ground-
nut rosette disease using SSR markers (Chintu 2013).
Selected advanced groundnut lines with different phe-
notypic attributes were characterised at the molecular
level using SSR markers in Ghana (Oteng-Frimpong
et al. 2015). Integration of MAS into groundnut breeding

programmes in SSA will have greater implication on
groundnut improvement in the future.

Marker-assisted backcrossing is routinely applied in
breeding programmes for gene introgression (Frisch
and Melchinger 2005). MABC aims to transfer one or a
few genes/QTLs of interest from agronomically inferior
(donor parent) into a superior cultivar or elite breeding
line (serving as the recurrent parent) to improve the tar-
geted trait (Jiang, 2013). MABC was used to develop foliar
fungal disease resistant lines (Varsheney et al. 2014;
Janila et al. 2016) and high oleic lines in Spanish and Vir-
ginia bunch types (Janila et al. 2016). However, MABC is
not the best approach to develop commercial varieties
as compared to MAS which allows improvement of
other desirable traits in addition to the target trait
selects using markers.

MAS and MABC are not well-suited for analysis of
quantitative traits (Sorrells 2015). In such cases,
genomic selection is a promising breeding strategy for
rapid improvement of quantitative traits. Genomic selec-
tion (GS) relies on the development of selection models
based on dense genetic markers distributed across the
whole genome and phenotyping of a training population
for selection of individuals with high genome-estimated
breeding values in the breeding population (Resende
et al. 2012). GS can therefore provide effective selection
using polygenic traits with low heritability (Sun 2014).

In general, MAS has been useful in groundnut breed-
ing. However, in order to develop sufficient genomic
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resources for groundnut, MAS has to be widely applied
to identify markers linked to other important traits
such as drought tolerance and aphid (Aphis craccivora)
resistance which are becoming a major bottleneck for
groundnut production in SSA. Thus, integration of MAS
into groundnut breeding programmes in the region
will have greater implication on groundnut improvement
in the future. In general, molecular markers developed
specifically for groundnut provide opportunities to
characterise groundnut genetic resources for biotic
stress and abiotic stress constraints, agronomic attributes
and grain quality traits. This will result in identification
and selection of genetically unrelated genotypes posses-
sing key attributes for strategic crossing to develop high-
yielding genotypes with key farmer preferred traits and
also for industrial purposes (Pandey et al. 2012).
Further, to accelerate cultivar development in SSA,
access to research funding and technology especially
genomic tools will aid mapping of the groundnut
genetic pool for accelerated selection and breeding.

Next generation sequencing (NGS)

NGS technologies are highly dependent on massive paral-
lel sequencing, high resolution imaging, and complex
algorithms to deconvolute signal data to generate
sequence data. NGS technologies offer a wide variety of
applications such as whole genome de novo and re-
sequencing, transcriptome sequencing (RNA-seq), micro-
RNA sequencing, amplicon sequencing, targeted sequen-
cing, chromatin immuno precipitated DNA sequencing
(ChIP-seq), and methylome sequencing (Kumpatla et al.
2012). Genotyping- by-sequencing and whole-genome
resequencing, can lead to the development of molecular
markers suited to studies of genetic relationships among
breeding materials, genetic mapping of target genes
and genome-wide association studies. This can facilitate
the selection of individuals with resistant to climatic
stress and to pathogens causing substantial losses in agri-
culture (David and Repkova 2017). NGS technology has
been applied for the identification of genes related to
resistance to biotic stress in wild groundnut relatives (Bra-
sileiro et al. 2014). For example, quantitative trait loci
(QTLs) linked to leaf spot resistance were identified in
groundnut through SNP-based next generation sequen-
cing (Liang et al. 2017). Three different viruses from
three families of forage groundnut (A. pintoi) were ident-
ifled through the application of NGS (Sanchez et al.
2016). Complete chloroplast genome sequences of
seven Arachis species were generated using NGS sequen-
cing (Yin et al. 2017). The genetic relationship among
groundnut genotypes can also be studied using NGS. In
general, inclusion of NGS in groundnut breeding

programmes in SSA which currently relies mostly on con-
ventional breeding methods will assist in rapid develop-
ment of genomic tools for groundnut improvement and
cultivar development.

Mutation breeding in groundnut

Groundnut has narrow genetic base because of its mono-
phyletic origin, limited gene flow due to ploidy barrier and
self-pollination (Yusuf et al. 2017). Mutation breeding
serves as an alternative approach to conventional plant
breeding to increase genetic variability and could confer
specific improvement without significantly altering phe-
notype expression (Kulthe and Kothekar 2011). Physical
mutagens such as X-ray, gamma rays, 3-rays, fast neutrons
and chemical mutagens like, ethyl methane sulphonate,
ethidium bromide, acryflavine, diethyl methane sulpho-
nate (DES), N- nitroso-N- methyl - urea, Nethyl-N-
nitroso-urea, ethylene imine and sodium azide have
been successfully used to create genetic variability in
groundnut (Kumari 2008; Bhagwan and Akkiraju 2015;
Gunasekaran and Pavadai 2015; Habtamu 2016).

About 72 groundnut varieties have been developed
through mutation breeding (Janila et al. 2013). Table 3
lists some improved groundnut varieties with resistance
to biotic (e.g. leaf spot and aflatoxin) and abiotic stress
(e.g. drought and salinity) tolerance and improved
quality attributes (e.g. increased seed size, high oleic to
linoleic ratio). Several of these varieties were developed
using mutation breeding. For example, TG-37A and
Golden groundnut mutants were developed and
released in India. TG-37A is a semi-dwarf, compact pod
setting, high yielding and with smooth pod surface,
while variety Golden is high yielding and Cercospora
leaf spot resistant. Mutants such as Huayu 22 and Fu
22, were released in China. Huayu 22 is high yielding,
high quality and resistant to several diseases and with
wide adaptation. Mutant variety Fu 22 is known for its
tolerance against A. flavus (Maluszynski 2001).

Groundnut varieties with high oleic to linoleic acid
ratio have become preferred by the groundnut industry
due to their increased shelf life and improved health
benefits (Chamberlin et al. 2011). Mondal and Badigan-
navar (2013) reported a groundnut mutant variety with
78% improvement in oleic acid content compared with
its parental genotype. Similarly, Nadaf et al. (2009)
reported high oleic to linoleic acid ratio in selected
groundnut mutants. The first high oleic groundnut
variety released in the world was SunOleic 95R, which
was derived from a cross between a high oleic breeding
line F435 and a component line ‘Sunrunner’ (Gorbet and
Knauft 1997). Further, NuMex 01 is a high oleic acid
Valencia groundnut variety developed by the New
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Mexico Agricultural State University (Puppala and Tallury
2014).

Significant genetic variability was created for morpho-
physiological traits such as pod yield and related traits,
and oil content of groundnut through gamma irradiation
(Rashid et al. 2012). Similarly, Ahmed and Mohamed
(2009) reported a higher number of pods and seed
yield per plant in groundnut mutants than their
parents. Sui et al. (2015) reported that the use of Pin-
gyangmycin-based in vitro mutagenesis in combination
with directed screening with Hydroxyproline is effective
for development of potential drought-tolerant mutants
of groundnut. Induced mutagenesis particularly
through combination of gamma rays and sodium azide
was successful in developing mutants in groundnut
with wide genetic variability (Mondal et al. 2007).

Increased pod yield, a greater number of pods per
plant, higher pod filling ability, increased pod size, resist-
ance to foliar diseases and drought tolerance are impor-
tant farmers’ preferred traits of groundnut in SSA (Ntare
et al. 2007; Ndjeunga et al. 2010). But due to the narrow
genetic base of the crop, foliar diseases (e.g. rust and late
leaf spot) cause significant yield losses (Kumari et al.
2014). In SSA, mutation breeding technology has been
adopted in groundnut improvement programmes. For
instance, groundnut yield has been improved with the
aid of mutation breeding in Uganda (Busolo-Bulafu
1991). In Egypt, groundnut mutants achieved higher
pod yield, a larger number of pods, higher seed set per
plant and improved shelling percentage than their
parents (Ahmed and Mohamed 2009). Genetic variations
induced by mutation represent a more efficient source of
genetic variability than gene pools conserved by nature
(Brock 1977). Thus, mutation breeding can be used as an
alternative technique to induce genetic variation for
desired characters. Further, mutation breeding offers an
alternative and novel approach for creating unique phe-
notypes which can be exploited for breeding. However,
some challenges including access to mutation induction
facilities limits the use of this technology for groundnut
improvement in SSA. The low cost of other mutation
breeding technologies such ethyl methane sulphonate
mutagenesis (EMS) offers opportunities for groundnut
improvement in the region. Approximately 3400 ground-
nut mutants have been developed using EMS delivering
useful genetic variation in groundnut breeding (Knoll
et al. 2011).

Rapid generation advancement

Rapid generation advancement (RGA) approach uses
single seed descent as the breeding method in a small
screen house or glass house space (Collard et al. 2017).

Using RGA, many breeding programmes in chickpea suc-
cessfully take two generations per year i.e. one in the
field during the crop season and the other in off-
season either in the greenhouse or in an off-season
nursery (Gaur et al. 2007). In tomato, it was reported
that RGA can produce a maximum of five generations
per year compared to a maximum of three generations
using conventional breeding methods (Bhattarai et al.
2009). In groundnut, RGA was used in breeding high
oleic groundnut varieties in Spanish and Virginia Bunch
varieties using controlled environment facilities that
facilitated three cycles per year instead of two (ICRISAT
2017). The aim of RGA is to accelerate breeding cycles
and breeding progress in many crops (Tanaka et al.
2016). Therefore, the method offers opportunities for
rapid generation advancement to develop breeding
populations for accelerated cultivar development (Bhat-
tarai et al. 2009). The urgent need to develop superior
and improved groundnut varieties for SSA requires accel-
erated methods such as RGA in cultivar development
and release to boost production. The breeding pro-
cedure is reportedly cost effective and time saving
(Collard et al. 2017) and should provide opportunities
to accelerate groundnut breeding in the region.

Shuttle breeding uses diverse ecological environ-
ments to develop improved varieties with higher adapta-
bility (Ortiz et al. 2007). Promising genotypes are grown
simultaneously across different sites to select high-yield-
ing genotypes (Ortiz et al. 2007). As a result, shuttle
breeding can be used to develop drought tolerant,
early-maturing groundnut varieties with high-yield,
good seed quality, diseases and insect pest resistance
and wide adaptability. In wheat (Triticum aestivum L.)
shuttle breeding has been employed by the International
Maize and Wheat Improvement Centre (CIMMYT) to
develop wheat genotypes possessing biotic and abiotic
stress tolerance, high-yield potential and good end-
user quality attributes for cultivation across diverse
environments (Crespo-Herrera et al. 2018; Hernandez-
Espinosa et al. 2018). This is achieved through the intro-
duction of new and novel sources of genetic variation
from wild species, landraces, and other sources of
useful alleles (i.e. mutants) to develop well-adapted gen-
otypes (Ortiz et al. 2007).

In SSA, groundnut breeding programmes can benefit
from shuttle breeding for advancing the generations that
can contribute to the enhanced rate of genetic gain
especially for yield. Further, the development of
efficient shuttle breeding method with RGA could help
significantly to reduce groundnut breeding cycles in
SSA. Despite these opportunities, limited collaborative
research among groundnut breeders in SSA hinder accel-
erated cultivar development and release. There is a need
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for financial support by key groundnut producing
countries in SSA for collaborative groundnut improve-
ment that may accelerate breeding of highly-adapted
and high-yielding genotypes in the region.

Single seed descent method in groundnut
breeding

Genetic gains for key traits can be delayed due to the
long breeding generation required in the traditional
breeding methods. Some 10-16 breeding generations
are required for genetic advancement and to select
desirable recombinants resulting from crosses (Saxena
et al. 2017). Single Seed Descent (SSD) is most suitable
for handling large segregating populations (Wells and
Weiser 1989) and for accelerated cultivar development.
SSD optimises resources allocation without compromis-
ing on genetic variability and genetic advancement. It
reduces time for cultivar development and saves cost
associated with the advancement of early generations
(Teerawat and Charassri 2010). SSD has been successfully
used in groundnut breeding programmes, where mul-
tiple generations per year have accelerated using the
inbreeding process to progress fixed lines to multi-site
evaluation trials (Holbrook and Culbreath 2008). In
safflower (Carthamus tinctorius L.), SSD resulted in devel-
opment of lines with higher yield and oil content produ-
cing compared with parental genotypes (Martinez et al.
1986). In pigeon pea [Cajanus cajan (L.) Millsp] develop-
ment of RGA technology that integrates germination of
immature seeds with single seed descent method
resulted in about 3-4 generations advanced in 1 year
(Saxena et al. 2017). In cowpea (Vigna unguiculata
L. Walp) SSD allowed a more rapid generation than pedi-
gree selection resulting in the development of superior
genotypes (Obisesan 1992). This method could be appro-
priate for groundnut breeding. There is a need for a stan-
dardised and efficient SSD protocol to accelerate cultivar
development in SSA.

Genetic engineering and genome editing

Genetic engineering (i.e. recombinant DNA technology,
gene modification, and gene therapy) refers to the
process of inserting new genetic information into exist-
ing cells in order to modify a specific organism for the
purpose of changing its characteristics (Nakashima
2018). Genetic engineering techniques such as the use
of Agrobacterium tumefaciens mediated transformation
and DNA-bombardment-mediated transformation are
used as powerful tools to accelerate groundnut improve-
ment (Shilpa et al. 2013). The success of genetic trans-
formation depends on a reliable tissue culture

regeneration system, gene construct(s), suitable vector
(s) for transformation and efficient procedures to intro-
duce desired genes into target plants (Banavath et al.
2018). Groundnut tissues such as leaf sections, cotyle-
donary nodes, longitudinal cotyledon halves, embryo
axes, embryo leaflets, and hypocotyls have been used
for genetic transformation (Holbrook et al. 2011).

Genetic engineering of groundnut is one of the
potential option for improving abiotic stress tolerance
and food safety (i.e. aflatoxin contamination) (Banavath
et al. 2018). Resistance to several fungal diseases (late
leaf spot and rust), virus diseases (bud necrosis and
tomato spotted wilt virus) and insect pests (white grub,
gram pod borer) have been achieved through the appli-
cation of genetic engineering in groundnut (Shilpa et al.
2013). Table 5 summarises some successful groundnut
genetic transformation studies.

Genome editing is used to obtain new allelic forms
which is targeted gene modification to obtain a gener-
ation of new allelic variants in the genomes of cultivated
individuals (David and Repkova 2017). Various novel
genome editing tools have been developed including
zinc finger nucleases (ZFNs), transcription activator-like
effector nucleases (TALENs), and clustered regularly
interspaced short palindromic repeats/Cas9 (CRISPR/
Cas9) (Kamburova et al. 2017). These tools make
double-strand breaks (DSB) in DNA followed by repairing
employing error-prone non-homologous end joining
(NHEJ) or homology directed repair (HDR) mechanism
which leads to mutation in specific location in the
genome (Mishra and Zhao 2018). In groundnut, a TIR-
NBS-LRR candidate gene for nematode resistance was
transferred using CRISPR/Cas9 vector (Guimaraes et al.
2015). Groundnut allergy is a life-threatening food
allergy. QTLs associated with aflatoxin resistance have
been identified in groundnut (Guo et al. 2008). For
hypoallergenic groundnuts to be safe for consumption,
all genes coding for allergens can be silenced or
removed resulting in aflatoxin free groundnuts, and
genome editing offers an effective tool (Van de Wiel
et al. 2017). Groundnut breeding programmes in SSA
could hugely benefit from genetic engineering and
genome editing technology to produce non-toxic
groundnuts for consumption and increased trade.

In conclusion, groundnut breeding in SSA is mainly
dependent on limited phenotypic selection in segregat-
ing generations resulting in low selection efficiencies.
Consequently, a limited number of improved groundnut
genotypes were developed and deployed. To develop
climate resilient, improved varieties with resistance to
biotic and abiotic stress tolerance and quality attributes
there is need to employ advanced techniques in the
breeding processes. These include high-throughput



12 (& S ABADYETAL.

Table 5. Summary of some successful groundnut genetic transformation studies.

Selectable
Genotype Explant Transformation method Promoter Transgene Marker References
TMV-2 Embryo part Agrobacterium mediated CaMV 35S Tobacco Chitinase  npt-Il Rohini et al. (2001)
JL-24 Cotyledon PROK II binary vector CaMV 355 IPCVcp npt-Il Sharma et al. (2000)
K6 IL Agrobacterium mediated CaMV 355 TSV-CP Mehta et al. (2013)
k-134 DEC Agrobacterium mediated CaMV 355 TSV-CP npt-ll Mehta et al. (2013)
New Mexico Valencia  Cotyledon Agrobacterium mediated CaMV 355 vpl Npt-Il Qin et al. (2013)
A
Georgia runner E AX Microprojectile ACT-2 Mer A GUS Yang et al. (2003)
bombardment
BARI-2000 Cotyledon Agrobacterium mediated CaMV 355 AtNHX1 0029 npt-Il Asif et al. (2011)
J-n Cotyledon Agrobacterium mediated CaMV 35S IPCVcp npt-Il Sharma et al. (2000)
Florunner E AX Agrobacterium mediated CaMV 35S tswv-np + gus + Brar et al. (1994)
bar
NC-7 Somatic Agrobacterium mediated CaMV 355 PStV CP4 hph Partridge-Telenko et al.
embryo (2011)

E AX, embryo axes, DEC, de-embryonated, IL, immature leaf, CaMV, Cauliflower Mosaic Virus, ACT-2, Arabidopsis thaliana.

and automated phenotyping techniques, rapid gener-
ation advancement, single seed descent approach,
marker assisted selection, genomic selection, genetic
engineering and genome editing. Integrating new
breeding tools in the groundnut breeding programmes
will assist in rapid identification and selection of promis-
ing groundnut genotypes possessing useful agronomic
attributes to facilitate the development of genetically
superior and improved cultivars to boost production in
the region. Limited collaborative research and a lack of
sustainable funding from groundnut producing
countries hindered the progress of groundnut variety
release in SSA. Moreover, breeding programmes in SSA
need to be well-equipped with both human capital
and infrastructure through research collaboration and
partnerships with potential institutes working on
groundnut improvement.
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