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Abstract
Microbes are an integral part of living soil not only in transforming nutrients in
the soil but also with multiple functions in influencing soil health. There are
specific microbes which help the plant to grow well in their presence by various
mechanisms. The direct mechanism may include fixation of atmospheric nitro-
gen, synthesis of various phytohormones and enzymes, and solubilization of
minerals in the soil, while the indirect mechanism includes inhibiting
phytopathogens. Hence, such plant growth-promoting rhizobacteria (PGPR)
need to be harnessed and exploited for sustainable agriculture. Some of the
representative PGPR group includes Azotobacter, Azospirillum, Acinetobacter,
Agrobacterium, Arthrobacter, Bacillus, Burkholderia, Pseudomonas, Serratia,
Streptomyces, Rhizobium, Bradyrhizobium, Mesorhizobium, Frankia, and
Thiobacillus. Demonstrations of these PGPR and their beneficial traits under
glasshouse and field conditions are documented for a range of crops including
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cereals, legumes, fruits, vegetables, herbs, and ornamentals. Several industries are
commercializing the potential PGPR strains as biofertilizers and as biocontrol
agents. However, successful commercialization of PGPR in many developing
countries is a distant dream largely due to the lack of well-developed technology,
quality carrier material, quality control legislation, training programs, and
on-farm demonstrations. The development of quality PGPR inoculum and its
application will definitely lead to an ideal sustainable agricultural system. Further,
PGPR is known for not only reducing the emission of greenhouse gases (GHGs)
and carbon footprint but also increasing nutrient-use efficiency.

Keywords
Plant growth-promoting microbes · Secondary metabolites · Biological control ·
Commercialization · Sustainable agriculture

2.1 Introduction

Food security, agricultural sustainability, energy renewability, and rural livelihoods
depend largely on soil fertility. Land degradation and desertification due to anthro-
pogenic activities causes an estimated loss of 24 billion tons of fertile soil around the
world’s croplands (FAO 2011). It is estimated that, by 2030, the ever-increasing
human population and changing food habits would increase the demand for water by
30%, energy by 45%, and food by 50% (IFPRI 2012). These demands cannot be met
unless the soil fertility is restored. In addition, environmental pollution, today’s
biggest public concern, is largely caused by the use of synthetic pesticides,
fertilizers, and herbicides. This has led to seek an alternative strategy for synthetic
pesticides and fertilizers (Glick et al. 2007). Therefore, a greener and cleaner
approach toward crop protection and production is essential. The use of microbes
for crop protection and production and soil health had been practiced for centuries.
These beneficial microbes are called as “plant growth-promoting rhizobacteria
(PGPR)” (Kloepper and Schroth 1978). These heterogeneous bacteria are usually
found in the rhizosphere and root surfaces and provide benefits to the crops. In recent
years this terminology PGPR has gained a simple expressive term as “plant
probiotics” (Maheshwari 2012).

The rhizosphere soil is rich in nutrients due to the accumulation of sugars,
vitamins, amino acids, organic acids, fatty acids, phenols, and plant growth promoters
released from the roots by secretion, exudation, and deposition. This leads to the
enrichment of microbes (10- to100-fold) which include bacteria, actinobacteria,
fungi, and algae (Uren 2007). The role of rhizospheric microorganisms in plant
growth promotion is widely reported (Vessey 2003; Tilak et al. 2005; Podile and
Kishore 2006). Some of the representative rhizospheric microbes/PGPR include the
genera Acinetobacter, Agrobacterium, Allorhizobium, Arthrobacter, Azorhizobium,
Bacillus, Bradyrhizobium, Brevibacterium, Chromobacterium, Burkholderia,
Hyphomicrobium, Caulobacter, Flavobacterium, Erwinia, Gluconobacter,
Mesorhizobium, Micrococcus, Pseudomonas, Rhizobium, Serratia, Sinorhizobium,
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Sphingomonas, and Streptomyces (Vessey 2003; Vijayabharathi et al. 2016). In
recent years, the plant growth-promoting traits of actinobacteria are getting much
attention (Jog et al. 2012; Gopalakrishnan et al. 2016b).

2.2 Mechanisms of PGPR

PGPR employs a direct and indirect mechanism to enhance plant growth promotion
and protection. The direct mechanisms include the production of growth hormones,
solubilization of phosphorous, fixation of atmospheric nitrogen, and acquisition of
iron. The indirect mechanisms include minimizing the deleterious effects of biotic
stresses through production of low molecular weight compounds such as alcohols,
ammonia, aldehydes, cyanogens, ketones, sulfides, cell wall-degrading enzymes,
and secondary metabolites with antagonistic traits and competition for nutrients
(Glick 2012; Dey et al. 2014).

2.3 Direct Plant Growth Mechanisms

2.3.1 Biological Nitrogen Fixation (BNF)

Nitrogen (N), an essential element for crop growth, is available easily in the air, as
78% of atmosphere is composed of N. However, plants cannot utilize gaseous form
of this N. Currently, a variety of synthetic fertilizers are being used for enhancing
agricultural productivity. Hence, biological alternatives are preferred as these are
addressing economic, environmental, and renewable energy concerns. BNF is a
process of converting atmospheric N into plant assailable N (such as ammonia)
through a reaction between rhizobia and leguminous plants (such as chickpea,
pigeon pea, and groundnut) (Wilson and Burris 1947). Legumes, the major
symbionts of BNF, can meet their own N needs. A major portion of N fixed by
legumes is harvested in grains. The succeeding crop(s) also get benefitted by N in the
form of the root and shoot residues (Bhattacharyya and Jha 2012). Crops such as
sugarcane, wheat, and rice have also the capacity to fix atmospheric N using free-
living bacteria/diazotrophs such as Azoarcus, Cyanobacteria, and Azospirillum.
However, the N fixed by legume-rhizobia symbiosis (13–360 kg N ha�1) is far
greater than the N fixed by free-living bacteria or diazotrophic nonsymbiotic systems
(10–160 kg N ha�1) (Bohlool et al. 1992). Rhizobia are treated on seeds of legumes
for enhanced N fixation (Lindström et al. 1990). They can persist in soil for many
years in the absence of their host (Sanginga et al. 1994). Actinobacteria such as
Streptomyces, Micromonospora, Corynebacterium, Agromyces, Arthrobacter,
Propionibacterium, and Mycobacterium also have been shown to exhibit BNF
(Sellstedt and Richau 2013). Actinobacteria have also been demonstrated for their
BNF capability by acetylene reduction assay (ARA),15N isotope dilution analysis,
ability to grow on nitrogen-free medium, and identification of Nif genes via PCR
amplification (Ghodhbane-Gtari et al. 2010).
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2.3.2 Phosphate Solubilization

Phosphorus (P) plays an important role in cell metabolism and signaling in plants
(Vance et al. 2003). P is present in bound form (with inorganic or organic
molecules), but plants can take only H2PO4� and/or HPO4

2�form of P (Smyth
2011). Hence, P is extensively used as a synthetic fertilizer, but their excessive
and unmanaged application leads to negative impact on the environment (Correll
1998). The P-solubilizing bacteria mineralize the organic P by several enzymes of
microbial origin, such as acid phosphatases, C-P lyase, D-α-glycerophosphate,
phosphor hydrolases, phosphonoacetate hydrolase, and phytase which solubilizes
the bound form, so that they are available to plants (Gügi et al. 1991; Abd-Alla 1994;
Ohtake et al. 1996; McGrath et al. 1998; Skrary and Cameron 1998; Glick 2012).
Plant growth-promoting (PGP) microbes such as Bacillus, Pseudomonas, and Strep-
tomyces are widely known for P solubilization. Actinomycetes having high
P-solubilizing traits have been reported, for instance, Streptomyces sp. mhcr0816
(TCP 1916 mg l�1, RP 990 mg l�1), Streptomyces sp. (RP 250 mg l�1), and
Arthrobacter sp. (RP 519 mg l�1) are comparable to Pseudomonas sp. (TCP
1500 mg l�1) or Bacillus (TCP 957 mg l�1) strains (Hamdali et al. 2012; Jog et al.
2014). The role of P solubilization by Mesorhizobium mediterraneum in enhancing
plant growth has been reported in barley and chickpea (Peix et al. 2001).

2.3.3 Phytohormone Production

Plant-associated bacteria are known to produce phytohormones (such as auxins) that
regulate plant growth. Phytohormones affect morphological and physiological pro-
cesses of plants even at lower concentrations (Arshad and Frankenberger 1998).
They change growth pattern of the plants and result in branched and lengthier roots
with greater surface area enabling the plants to access water and nutrients from
deeper depths of soils. Several actinobacteria capable of producing auxins,
gibberellins, cytokinins, and abscisic acid are shown in Table 2.1.

2.3.4 Iron Acquisition

In nature, iron exists as insoluble form of hydroxides and oxyhydroxides which are
not accessible to plants. Siderophores (high-affinity iron-chelating compounds) can
be of both the plant and the microbial origin and trap iron present in the soil
(Rajkumar et al. 2010). The mechanism of microbial-origin siderophores in plant
growth is not completely understood, but under low iron available conditions, PGP
is assumed to involve one of the following mechanisms:
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1. Microbial-origin siderophores with high redox potential transfer their ferrous
form of iron to a plant’s transport system through apoplastic pathway in roots.

2. Iron chelation by microbial-origin siderophores from soil depends on its concen-
tration, pH, and redox potential and does a ligand exchange with plant-origin
siderophores. During this process, the iron-free plant-origin siderophores are
initially bound to the receptor protein. This complex binds to a receptor, where
the ion exchange between the two siderophores occurs (Crowley 2006).

Besides contributing to plant health, microbial-origin siderophores also involved
in biocontrol of plant pathogens. It functions by acquiring iron, thereby competing
with other pathogenic microbes in the vicinity and supplying it to the plant (Glick
2012). The production of high-affinity siderophores by PGP microbes is perceived as
a means of biocontrol, as phytopathogens produce low-affinity siderophores. PGP
microbes which produce siderophores with high-affinity colonize efficiently in the
rhizosphere (Kloepper et al. 1980). The role of microbial-origin (including
actinobacteria) siderophores in phytopathogens suppression are reported widely
(Yamanaka et al. 2005; Barona-Gomez et al. 2006; Sontag et al. 2006; Macagnan
et al. 2008; D’Onofrio et al. 2010; Johnson et al. 2013).

Table 2.1 List of PGP microbes producing growth hormones

Phytohormone/
ACC
deaminase PGP bacteria References

Auxin /IAA Actinomyces sp., Bradyrhizobium,
Bacillus megaterium, Frankia sp.,
Micrococcus, Methylobacterium
oryzae, Nocardia sp., Rhizobium,
Streptomyces spp., S. atrovirens,
S. griseoviridis K61, S. lydicus
WYEC108, S. olivaceoviridis,
S. rimosus, S. rochei, S. viridis

Kaunat (1969), Brown (1972),
Wheeler et al. (1984), Abd-Alla
(1994), Mahadevan and Crawford
(1997), Tokala et al. (2002),
Tsavkelova et al. (2006), El-Tarabily
(2008), Khamna et al. (2010), Verma
et al. (2011), Abd-alla (2013), Lin
and Xu (2013) and Subramanian
et al. (2014)

Gibberellin Actinomyces sp., Bacillus,
Arthrobacter, Micrococcus,
Nocardia sp., Streptomyces sp.

Katznelson and Cole (1965), Kaunat
(1969), Brown (1972), Merckx et al.
(1987) and Tsavkelova et al. (2006)

Cytokinins Arthrobacter, Frankia sp., Leifsonia
soli, Rhodococcus fascians,
Pseudomonas, Streptomyces
turgidiscabies

Sang-Mo et al. (2014), Cacciari et al.
(1980), Stevens and Berry (1988),
Joshi and Loria (2007) and Pertry
et al. (2009)

ACC
deaminase

Arthrobacter, Microbacterium
azadirachtae sp. nov., Leifsonia soli
sp. nov., Micrococcus spp.,
Rhodococcus sp. R04, Streptomyces
spp.

El-Tarabily (2008), Dastager et al.
(2010), Madhaiyan et al. (2010a, b)
and Nascimento et al. (2014)

Source: Swarnalakshmi et al. (2016)
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2.3.5 Role in Nutrient Cycles

Soil microbes, plant growth-promoting microbes in particular, are the key propellers
of biogeochemical cycles on nutrients including N, C, P, and S (Bloem et al. 1997)
and of which C and N cycle are most important.

2.3.5.1 Carbon Cycle
It is well known that microbes transfer the C primarily for their own survival. For
instance, under aerobic conditions, i.e., in rhizosphere soil and oxic layers of wetland
systems, aerobic methane-oxidizing bacteria (MOB) play the role in C cycle
(Chistoserdova et al. 2005), whereas, under waterlogged anaerobic soils,
hydrogenotrophic archaea and methanogenic bacteria play the role (Trumbore
2006). Microbial C is found maximum in forest soils compared to any other soils.
Typically, microbial C is found a minimum of 100–1000 μg g � 1 in well aerated
soils and a maximum of 500–10,000 μg g � 1 in undisturbed forest soils with the
intermittent values in ecosystems such as semiarid tropics (SAT) and grasslands
(Kandeler et al. 2005). Microbial biomass C is found about 1–6% of total organic C
in rhizosphere soil with an indirect relationship for increasing soil depth. Formation
of soil organic matter (OM), a major fraction containing soil organic carbon (OC), is
aided by the decomposition process through various hydrolytic enzymes such as
cellulase, protease, amylase, chitinase, glucosidase, and phenoloxidase. These
hydrolytic enzymes convert the macromolecules into low molecular weight
micromolecules for the ready assimilation of microbes (Burns and Dick 2002).

2.3.5.2 Nitrogen Cycle
The first step in the N cycle is assimilation, i.e., biological N2 fixation (BNF). It is
aided by a group of diazotrophic bacteria such as rhizobia, Frankia, Azotobacter,
cyanobacteria, and green sulfur bacteria and of which the first two (rhizobia and
Frankia) occur through the symbiotic process while the last three through the
nonsymbiotic process (Thamdrup 2012). The N fixed, in the form of ammonium,
during the BNF process, is further dissimilated by two-step microbial process, nitrifi-
cation (the aerobic oxidation of ammonium to nitrite and nitrate) and denitrification
(the anaerobic reduction of nitrate to N2 through nitrite, nitric oxide, and nitrous oxide)
(Simon 2002). Nitrification is done by two different sets of microbial groups:
(1) ammonia-oxidizing bacteria (AOB) such as Nitrosomonas, Nitrosospira, and
Nitrosococcus, which transform ammonia to nitrite using ammonia monooxygenase,
and (2) nitrite-oxidizing bacteria (NOB) such as Nitrobacter and Nitrococcus, which
transform nitrite to nitrate using nitrite oxidoreductase (Vaccari et al. 2006).

2.4 Indirect Plant Growth-Promoting Mechanisms

It refers to the use of PGP agents for managing the deleterious effects of biotic
stresses (such as insect pests and pathogens) to improve the overall health of the
plant. Such PGP microbes are also referred as biocontrol agents (BCAs) which
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employ several mechanisms to alleviate the insect pest and pathogen effects. Some
of the important mechanisms are as follows.

2.4.1 Competition

Root exudates of plants play an important role in determining the specific group of
microorganisms living in its vicinity. For instance, flavonoids and phenolic
compounds in the rhizosphere were reported to influence plant symbiosis with
beneficial rhizobacteria (Palaniyandi et al. 2013). Amino acids, organic acids,
vitamins, and sugars were reported to serve as important nutrients for microbes
(Dakora and Phillips 2002). Antagonism through competition for available nutrients
is one form of the biocontrol mechanism used by the beneficial microbes to outlive
pathogens and suppression of disease (Palaniyandi et al. 2013). The production of
hydrolytic enzymes, siderophores, antibiotics, and volatile compounds are some of
the other mechanisms exerted by PGP microbes (Agbessi et al. 2003; Macagnan
et al. 2008; Wan et al. 2008).

2.4.2 Cell Wall-Degrading Enzymes

The cell wall of insect pests and fungal pathogens of plants contain polymers such as
lipids, glucan, chitin, cellulose, and proteins. PGP microbes are known for their
ability to produce cell wall-degrading enzymes. These enzymes disrupt the cell wall
components of insect pests and pathogens which results in cell lysis. PGP microbes
use this as one of the mechanism to manage plant pathogens and insect pests. PGP
microbes are widely reported to produce these hydrolytic enzymes such as peroxi-
dase, chitinase, glucanase, and protease (Gupta et al. 1995; Chater et al. 2010).

2.4.3 Antibiosis

It is one the major biocontrol mechanisms of PGP microbes in nature. The diffusible
compounds produced by BCA and/or PGP bacteria are known to inhibit the
rhizospheric plant pathogens. A broad spectrum of antibiotics such as polyenes,
macrolides, aminoglycosides, nucleosides, and benzoquinones were reported to be
produced by PGP microbes. Actinobacteria are the leading producer of antibiotics.
For instance, the total number of microbial bioactive molecules (as of year 2012) was
about 33,500 and of which 13,700 (41%) were produced by actinobacteria (Berdy
2012). Of these, 1800 metabolites showed antibiosis against pathogenic fungi
(Berdy 2005). Antibiotics produced by actinobacteria are listed in Table 2.2.

2.4.3.1 Induction of Systemic Resistance
Host plant resistance is the best strategy to manage plant pathogens and insect pests
of crops. Induced resistance in plants is elicited by interaction with an external factor
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such as PGP microbes or even with a metabolite. In plants, two types of nonspecific
defense systems are widely reported. These are PGP microbe-induced systemic
resistance (ISR) and pathogen-induced systemic acquired resistance (SAR)
(Schuhegger et al. 2006). Hoffland et al. (1995) demonstrated ISR for the first
time in radish. In ISR, plants are treated with PGP microbes providing protection
from pest and pathogen attack (Alstrom 1991; Walters et al. 2013). ISR is regulated
by salicylic acid, ethylene, and jasmonic acid (De Meyer et al. 1999; Verhagen et al.

Table 2.2 List of actinobacteria capable of producing antibiotics

Actinobacterial
species Antibiotic References

Streptomyces sp.,
S. alboniger,
S. padanus

Alnumycin, coronamycins,
fungichromin, goadsporin,
kakadumycins, pamamycin-
607, rhodomycin

Shockman and Waksman (1951),
Kondo et al. (1987), Bieber et al.
(1998), Onaka et al. (2001),
Castillo et al. (2003), Shih et al.
(2003) and Ezra et al. (2004)

Actinoplanes
teichomyceticus

Teichomycins, teicoplanin Parenti et al. (1978) and Somma
et al. (1984)

Actinoplanes
friuliensis sp. nov. II.

Friulimicins Vertesy et al. (2000)

Actinoplanes
ianthinogenes N. sp.

Purpuromycin Coronelli et al. (1974)

Actinoplanes Lipiarmycin Coronelli et al. (1975)

A. utahensis Echinocandin Boeck et al. (1989)

Actinomadura sp. Cationomycin,
chandrananimycins,
oxanthromicin

Nakamura et al. (1981), Patel et al.
(1984) and Maskey et al. (2003)

Actinomadura
spiralis

Pyralomicins Kawamura et al. (1995)

Microbispora sp. Cochinmicins,
glucosylquestiomycin

Igarashi et al. (1998) and Lam et al.
(1992)

Microbispora aerata Microbiaeratin Ivanova et al. (2007)

Micromonospora
lomaivitiensis

Lomaiviticins A and B He et al. (2001)

Micromonospora
inyoensis

Sisomicin Reimann et al. (1974)

Micromonospora
carbonacea

Everninomicin Weinstein et al. (1964)

Micromonospora
echinospora subsp.
armeniaca subsp.
nov.

Clostomicins Omura et al. (1986)

Nocardiopsis New thiopeptide antibiotic Engelhardt et al. (2010)

Nocardia sp. I. Nocathiacins Li et al. (2003)

Nocardia
mediterranei subsp.
kanglensis

Chemomicin A Sun et al. (2007)

Source: Swarnalakshmi et al. (2016)
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2004). Representative reports on microbes inhibiting plant pathogens and insect
pests are listed in Tables 2.3 and 2.4.

2.5 PGP Research at ICRISAT

PGPmicrobial research was at a peak in ICRISAT in the 1980s and 1990s but mostly
on BNF. BNF plays an important role in sustaining productivity of soils in the
semiarid tropics (Wani et al. 1995). It was reported to benefit succeeding cereal
crops, such as wheat, rice, sorghum, and maize with a relative yield increase of up to
350% in different cropping systems. Besides calculating the amount of fixed N by
legumes during the determination on legume fixed N in different cropping systems,
it was important to consider the overall N balance of the cropping system. ICRISAT
had gathered such information using chickpea (CP), pigeon pea (PP), cowpea (C),
sorghum (S), safflower (SF), fallow (F), and mung bean (M) on several cropping
system involving S/PP-S þ SF, S þ CP-S þ SF, C/PP-S þ SF, S þ SF-S þ SF,
F þ S-F þ S, F þ CP-F þ S, and M þ S-M þ S (/ intercrop; þ sequential crop; -
rotation) (Wani et al. 1994). It was also suggested that significant contributions
observed in those cropping systems were not only due to legume fixed N but also due
to its N sparing effect, the break-crop effect, and soil microbial activity. It is

Table 2.3 List of antagonistic actinomycetes suppressing plant pathogens

Diseases Pathogen Antagonistic strain References

Root rot of lupine P. cinnamomi M. carbonacea El-Tarabily (2003)

Root rot of
turfgrass

P. infestans S. violaceusniger strain
YCED-9

Trejo-Estrada et al.
(1998)

Root rot of wheat P. infestans S. olivaceoviridis Aldesuquy et al.
(1998)

Lupin root rot P. tabacinum A. missouriensis El-Tarabily (2003)

Lupin root rot F. oxysporum S. halstediiAJ-7 Joo (2005)

Wood rot P. chrysosporium S. violaceusniger XL-2 Shekhar et al. (2006)

Wood rot P. placenta S. violaceusniger XL-2 Shekhar et al. (2006)

Wood rot C. versicolor S. violaceusniger XL-2 Shekhar et al. (2006)

Wood rot G. trabeum S. violaceusniger XL-2 Shekhar et al. (2006)

Damping-off P. aphanidermatum A. campanulatus El-Tarabily et al.
(2009)

Crown rot P. aphanidermatum M. chalcea El-Tarabily et al.
(2009)

Damping off
chickpea

P. aphanidermatum S. rubrolavendulae S4 Loliam et al. (2013)

Damping off
chickpea

F. oxysporum Streptomyces sp. Ashokvardhan et al.
(2014)

Lupin root rot R. solani S. vinaceusdrappus Yandigeri et al.
(2015)

Source: Arasu et al. (2016)
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Table 2.4 Lists of microbial compounds with insecticidal and larvicidal properties

Source Compound Activity References

Streptomyces nanchangensisNS3226 Nanchangmycin Insecticidal Sun et al.
(2002)

Streptomyces sp. CP1130 Tartrolone C Insecticidal Lewer et al.
(2003)

Streptomyces galbus Ethyl acetate extract Pesticidal Jo et al.
(2003)

Streptomyces sp.173 Fermented broth Insecticidal Xiong et al.
(2004)

Metarrhizium sp. FKI-1079 Hydroxyfungerins A
& B

Insecticidal Uchida et al.
(2005)

Streptomyces qinlingensis sp. nov. Fermented broth Insecticidal Zhi-Qin et al.
(2007)

Streptomyces sp.4138 Staurosporine Insecticidal Xiao-Ming
et al. (2008)

Streptomyces sp. KN-0647 Quinomycin A Insecticidal Liu et al.
(2008)

Streptomyces sp. ERI-04 Curde extract Antifeedant Valanarasu
et al. (2010)

Streptomyces microflavus Crude extract Larvicidal El-Bendary
et al. (2010)

Saccharomonospora sp. (LK-1),
Streptomyces roseiscleroticus
(LK-2), &Streptomyces gedanensis
(LK-3)

Crude extract Larvicidal Karthik et al.
(2011)

Streptomyces sp. CMU-MH021 Fervenulin Nematocidal Ruanpanun
et al. (2011)

Streptomyces microflavus neau3 Macrocyclic lactone Insecticidal Wang et al.
(2011a)

Serratia marcescens NMCC46 Prodiogisin Larvicidal Patil et al.
(2011)

Streptomyces avermitilis NEAU1069 Doramectin
congeners, 1–4

Acaricidal
&
insecticidal

Wang et al.
(2011b)

Streptomyces sp. 2-Hydroxy-3,5,6-
trimethyloctan-4-one

Larvicidal Deepika
et al. (2011)

Chromobacterium violaceum ESBV
4400

Violacein Larvicidal &
pupicidal

Baskar and
Ignacimuthu
(2012)

Streptomyces sp.,VITSVK5 5-
(2,4-Dimethylbenzyl)
pyrrolidin-2-one
(DMBPO)

Larvicidal Saurav et al.
(2011)

Saccharopolyspora pogona Butenylspinosyn Insecticides Lewer et al.
(2009)

Source: Vijayabharathi et al. (2014b)
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important to identify high nodulating genotypes for developing an efficient variety.
ICRISAT had done series of research in identifying high nodulating genotypes in all
of its mandate legumes including chickpea, pigeon pea, and groundnut (Nigam et al.
1985; Rupela et al. 1995; Rupela and Johansen 1995). On the other hand, identifying
non-nodulating legumes as a reference for quantifying BNF is a key feature in BNF
research, and ICRISAT had also identified non-nodulating variants in all of its
mandate crops including chickpea (Rupela 1992), pigeon pea (Rupela and Johansen
1995), and groundnut (Nambiar et al. 1986). Such selection, when developed, should
be used not only in crossing programs as sources of high BNF genes but should also
be developed as cultivars after evaluation.

ICRISAT had also contributed significantly to identifying effective rhizobial
strains from chickpea, pigeon pea, and groundnut (Rupela et al. 1991). It also
observed the effect of soil depth, cropping pattern, and season in influencing the
soil rhizobial counts and identified that chickpea rhizobial counts have maintained
even after cropping with pigeon pea, groundnut, and maize but not on rice where the
100-fold decrease was noticed (Rupela et al. 1987). ICRISAT always shared its
rhizobial germplasm to researchers around the world. One set of the rhizobial
collection at ICRISAT was transferred to Indian Agricultural Research Institute
(IARI), New Delhi, India, and another set to University of Queensland, Australia,
and CSIRO, Australia. The collection comprises 800 rhizobia strains nodulating
chickpea, groundnut, and pigeon pea (Rupela 1997).

In addition to the legume-rhizobia symbiosis, nonsymbiotic N fixation has also
been studied mainly on pearl millet and sorghum. Wani (1986) reported genotypic
variation in germplasm lines of sorghum and pearl millet for rhizospheric nitroge-
nase activity. In these studies, of the 184 pearl millet germplasm tested, 18 lines
enhanced nitrogenase activity (> 460 nmol C2H4 h�1 15 cm diam core�1) in the
0–15 cm rhizosphere soils, while 2 lines, J1407 and Gam 73, were reported be to
consistently active over several seasons. Similarly, of the 334 sorghum germplasm,
28 lines enhanced nitrogenase activity (>460 nmol C2H4 h

�1 15 cm diam core�1)
(Wani 1986). Dart and Wani (1982) observed the effects of inoculation of Azoto-
bacter and Azospirillum on the grain weight (increased up to 22%) and dry matter
(increased up to 29%) of sorghum. Besides all these significant contributions on
BNF research, ICRISAT had to freeze BNF research in the mid-1990s due to lack of
policy support and funding opportunities. In later years, ICRISAT research focus has
been diverted toward the use of low-cost biological inputs in influencing crop
sustainability. Long-term experiments were conducted for a period of 9 years in
ICRISAT with a new approach in calculating sustainability index with the consider-
ation of nutrient, biological, microbial, and crop indices and demonstrated that the
low-cost biological inputs obtained the highest sustainability index than the conven-
tional systems (Hameeda et al. 2006).

ICRISAT and a few private sector biopesticide manufacturing companies
initiated the ICRISAT-Private Sector Biopesticide Research Consortium (BRC) in
January 2005, which was later renamed as Bio-products Research Consortium to
include PGPR and biofertilizers (Rupela et al. 2005). Eleven biopesticide/
biofertilizer companies joined the consortium as its founding members. The overall
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goal of BRC was to make quality biopesticides and other bio-products to the farming
community at an affordable price. ICRISAT had a collection of >1500 microbial
germplasm (many with PGPR and biopesticidal properties), a few on-the-shelf
technologies [such as Helicoverpa nuclear polyhedrosis virus (HNPV) and a few
proven biopesticidal microbial strains], fermentation technologies, small-scale
fermenters, and expertise in policy issues related to biopesticide testing and registra-
tion. On the other hand, the biopesticide/biofertilizer companies had medium- to
large-scale capacity factories to manufacture bio-products and also the needed
market linkages with a network of agro-dealers. The BRC Phase I was implemented
with good success (2005–2007), and Phase II was started in 2008. Unfortunately,
only 3 out of 11 companies continued their membership.

In recent times, ICRISAT research is focused more toward the usage of PGP
microbes and their secondary metabolites for crop production and protection of our
mandate crops. ICRISAT has isolated and identified more than 1500 PGP
microorganisms including bacteria and actinobacteria, isolated from vermicompost
and rhizospheric soils of rice and chickpea. Of the 1500, 59 PGP bacteria (mostly
Bacillus spp. and Pseudomonas spp.) and actinobacteria (mostly Streptomyces spp.)
were documented for their PGP traits, evaluated under field conditions
(Gopalakrishnan et al. 2014a). Some of the promising PGP bacteria including
Pseudomonas monteilii, P. plecoglossicida, Brevibacterium altitudinis,
B. antiquum, Enterobacter ludwigii, and Acinetobacter tandoii, isolated from system
of rice intensification fields, were documented for their PGP traits under field
conditions on rice. These bacteria enhanced root weight, root length and volume,
tiller numbers, panicle numbers, stover yield, and grain yield (Gopalakrishnan et al.
2012). Actinobacteria such as Streptomyces sp., S. caviscabies, S. globisporus subsp.
caucasicus, and S. griseorubens were also demonstrated for their PGP performance
on rice (Gopalakrishnan et al. 2014b). A PGP diazotrophic bacterium P. geniculata
IC-76, isolated from chickpea nodules, enhanced plant growth and agronomic traits
including nodule weight, pod weight, and seed weight (Gopalakrishnan et al. 2015)
under field conditions on chickpea.

Besides increasing plant growth and yield traits, they also significantly enhanced
rhizospheric available phosphorus (13–44%), total nitrogen (8–82%), and organic
carbon (OC; 17–39%). Production of hydrolytic enzymes, including chitinase,
cellulase, protease, and lipase, by these bacteria and actinobacteria (Table 2.5), is
an additional evidence for the increased soil OC and total nitrogen contents
(Gopalakrishnan et al. 2014a, b). Soil health indicators such as microbial biomass
nitrogen (MBN; 7–321%), microbial biomass carbon (MBC; 23–48%), and dehy-
drogenase activity (14–278%) were also found to enhance on inoculated plots over
the uninoculated control plots on chickpea (Gopalakrishnan et al. 2015), rice
(Gopalakrishnan et al. 2012, 2013, 2014b), and sorghum (unpublished). Figures 2.1,
2.2, and 2.3 illustrate the results of field trials of PGP bacteria/actinobacteria on
enhancing soil health traits.

Apart from their plant growth and yield promotion and soil health traits, PGP
bacteria were also found to have antagonistic traits and act as biocontrol agents. PGP
bacteria including B. antiquum, P. plecoglossicida, E. ludwigii, B. altitudinis,
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A. tandoii, and P. monteilii and actinobacteria including S. setonii, Streptomyces sp.,
S. tsusimaensis, S. africanus, and S. caviscabies were found to have antagonistic
activity against soilborne plant pathogens including Macrophomina phaseolina
(causes charcoal rot in sorghum) and Fusarium oxysporum f. sp. ciceri (causes
wilt in chickpea) under both greenhouse and field conditions (Gopalakrishnan
et al. 2011a, b). These PGP bacteria/actinobacteria were also found to produce
hydrolytic enzymes (in the context of biocontrol) including chitinase and
β-1,3-glucanase (Gopalakrishnan et al. 2014a). In another study, 15 Streptomyces
spp. were found to have broad-spectrum insecticidal activities against lepidopteran
insect pests including Spodoptera litura, Helicoverpa armigera, and Chilo partellus
(Vijayabharathi et al. 2014a). Two insecticidal metabolites, N-(1-(2,2-dimethyl-5-
undecyl-1,3-dioxolan-4-yr)-2-hydroxyethyl)stearamide and cyclo(Trp-Phe), have
been isolated and purified from Streptomyces sp. (Sathya et al. 2016a;
Gopalakrishnan et al. 2016a).

In the context of formulations, ICRISAT is using peat-based formulation for
groundnut, pigeon pea, and chickpea rhizobial inoculants. Quality of microbial
inoculants can be improved only if good carrier is used for maintaining and
multiplying. In order to find whether peat can be used as suitable carrier material
for rhizobial inoculant, a total of 16 rhizobia (six rhizobia specific for chickpea and
five each rhizobia specific for pigeon pea and groundnut) were inoculated on
sterilized peat and allowed to multiply at 28 � 2 �C for 15 days. At the end

Table 2.5 Extracellular enzyme profile identified for PGP bacteria and actinomycetes

Isolates Cellulase Chitinase Lipase Protease

PGP bacteria

SRI-156 + + + +

SRI-158 + + + +

SRI-178 + + + +

SRI-211 + + + +

SRI-229 + + + +

SRI-305 + + + +

SRI-360 + + + +

SBI-23 + � � +

SBI-27 + � � +

PGP actinomycetes

KAI-26 + + + +

KAI-27 + + + +

KAI-32 + + + +

KAI-90 + + + +

KAI-180 + + + +

SAI-13 + + � +

SAI-25 + + + +

SAI-29 + + � +

Source: Gopalakrishnan et al. (2014a)
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incubation and at 1-month interval for 10 months, peat-based inoculants were tested
for survival and longevity of rhizobia. The rhizobia were enumerated as colony-
forming units (CFU). The results indicated that all 16 rhizobia survived and
maintained purity (at least 108 CFU/ml) up to 9 months in peat-based carrier
materials (Table 2.6).

2.6 Commercialization

Voluminous data and information on better understanding of commercialization are
available for various formulation technologies and longevity and efficacy of the PGP
bacteria and/or rhizobia. However, still the quality of PGP bacteria/rhizobia avail-
able in the market worldwide is of suboptimal or poor quality. Development of
rhizobia as inoculants for leguminous crops is the most valuable contributions ever
made by science to agriculture, as BNF has been demonstrated to reduce N fertilizer
use (Fred et al. 1932). Good quality PGP bacteria/rhizobia are available in the
European Union market for a range of crop species (Guthrie 1896; Perret et al.
2000). However, in Asian countries, still the PGP bacteria/rhizobia inoculant tech-
nology is underdeveloped/slowly developing, and the major reasons are
discussed here.

Gopalakrishnan et al. 2015 Control
IC-76

Control
KAI-180

Control
KAI-27
KAI-26

Control
SRI-360
SRI-305
SRI-229
SRI-211
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SRI-158
SRI-156
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Total N (ppm)
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Gopalakrishnan et al. 2014b
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Gopalakrishnan et al. 2013

Gopalakrishnan et al. 2012

Fig. 2.1 Effect of PGP bacteria and actinomycetes on soil total N under field conditions of
chickpea and rice cultivation. Control indicates the treatment groups without any PGP bacterial
inoculation. (Source: Sathya et al. 2016b)
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2.7 Inoculant Selection and Development

The effective PGP microbial strain selection is the core for developing an inoculant.
A set of must-have desirable and essential traits required for selection of inoculant
strains including competence with native microbial flora, host specificity, and
genetic stability are available (Brockwell et al. 1995). Asian countries including
China, India, Myanmar, and Nepal have been reported with a vast diversity of
nodulating rhizobia for many leguminous crops including chickpea, pigeon pea,
and groundnut (Adhikari et al. 2012; Ansari et al. 2014; Htwe et al. 2015; Jiao et al.
2015). Diversity analysis of rhizobia under hostile environments such as soils with
alkalinity, acidity, and micronutrient deficiency was also reported (Biate et al. 2014;
Mishra et al. 2014; Unno et al. 2015; Singh et al. 2016). Biogeographic and
phylogenetic diversity of rhizobia across the world are available through two
genome sequencing reports (Reeve et al. 2015). According to this report, among
the 107 rhizobial strains, only 7 were from Asian origin. This suggests that further
exploration and characterization of rhizobial biodiversity in Asian countries needs to
be done in order to get good quality inoculant.
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2.8 Conclusions

PGP microbe possesses a broad spectrum of benefits including plant growth and
yield, defense against diseases, and survival under stress conditions. This chapter
illustrates the potential of PGP bacteria and highlights its importance in plant growth
induction, defense pathways, and resistance spectrum available against various
stresses on many crops. However, the extent of success in realizing the benefits of
PGP tends to diminish as it moves from laboratory to greenhouse and to fields, which
reflects the scarcity of research on the beneficial effects of PGP microbes under field
conditions. Therefore, the generation of comprehensive knowledge on screening
strategies and intense selection of best strain for rhizosphere competence and
survival is the need of the hour to enhance the field-level successes.
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