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ABSTRACT

Additive manufacturing of bulk metallic glasses (BMGs) allows for effective bypassing of critical casting thickness constraints for glassy
alloys, opening up this exciting material class to new applications. An open question is how the laser processing of such materials affects the
short-range structural order, a critical mediating parameter for glass deformation. Synchrotron X-ray microdiffraction was used to under-
stand structural heterogeneity across the build-planes of a selective laser melted Zr-based BMG. While negligible macroscopic heterogeneity
in the structure was observed over a 10mm build height for the X-ray amorphous material, small periodic variations were observed on the
order of 40–80lm. This dimensional scale was rationalized as a consequence of melt-pool solidification from laser processing, which imparts
a calculated local strain variation of 60.1%. It is anticipated that this structural insight will help to rationalize microscale deformation effects
from the periodic structural variation of selective laser melting produced BMGs.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5100050

Bulk metallic glasses (BMGs) have received considerable atten-
tion over the last few decades, largely due to their advantageous
mechanical properties.1,2 A significant issue which has hampered their
uptake as advanced engineering materials is the fast thermal transition
required to maintain an amorphous state when cooling from liquid.3

If the required cooling rate is not achieved, crystallization initiates,
often leading to undesirable properties. Therefore, a critical casting
thickness exists for metallic glass compositions, highlighting a practical
dimensional constraint relative to traditionally processed alloys.2,4

Additive manufacturing, and in particular, selective laser melting
(SLM), has recently been found to be an effective method for overcom-
ing such thickness constraints and to enable manufacturing of large-
scale BMG components.3,5–7 Zr-based BMGs have been well studied
in their cast form and are favorable for laser processing based on their
large supercooled liquid region and thermal stability.8 The alloy com-
position Zr59.3Cu28.8Nb1.5Al10.4 (AMZ4) in particular has been shown
to be effectively processed using SLM to form high quality BMGmate-
rials which, however, display inferior mechanical properties to its as-

cast counterpart.5 Such property differences can be related to unique
structural characteristics imparted by the laser melting process,9 which
strongly affects shear band dynamics in glasses.10 It is therefore crucial
to understand the glassy structures of SLM-processed BMGs and how
they are related to properties.

The mechanical properties of BMGs are tightly linked to local
structural order11 and structural heterogeneities,12,13 for both homoge-
neous and inhomogeneous deformation modes.14 Variations in the
local clustering of atoms lead to changes in shear band dynamics and
density15 and ultimately plastic deformation.11,16 While many open
questions exist for SLM-processing BMGs, the influence of melt-pool
solidification on the structural properties is perhaps the most signifi-
cant. A recent study sought to investigate this for SLM-processed
Zr55Cu30Al10Ni5 BMG and found that melt-pools and heat affected
zones showed distinct features together with some chemical composi-
tional variation.9

Here, AMZ4 powder (Heraeus GmbH, diameter 10–60lm) was
processed using an Electro Optical Systems (EOS) M290 printer with
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a 400W Yb-fiber laser and a standard EOS rotating stripe pattern with
a 20lm layer thickness. A specimen with dimensions of
10� 10� 18mm3 was fabricated, with the longest dimension corre-
sponding to the build direction [Fig. 1(a), inset]. A piece of the sample
with the surface oriented parallel to the build direction was first pol-
ished down to 0.04lm surface quality (OP-S, Struers) and chemically
etched using a solution of 1.5ml hydrofluoric acid, 15ml nitric acid,
and 15ml water (reagent grade acids) for 50 s, with post-etch neutrali-
zation in a calcium carbonate solution. The etched piece was then
imaged using scanning electron microscopy (SEM, Hitachi S3400,
20 keV) with a backscattered electron detector [Fig. 1(a)] to investigate
variation in relative density. Etching occurred preferentially at melt-
pool boundaries, allowing for observation of the thermally induced
patterns in the AMZ4 structure.9 The thickness of the complex melt-
pool pattern was approximately 60lm [white dashed lines, Fig. 1(a)].
To investigate the effect of the structure on the mechanical properties,
the same piece was again ground and polished and investigated using
nanoindentation with a diamond Berkovich probe (Hysitron TI 950,
Bruker). A 2D map with dimensions of 200� 30lm2 (21� 4 indents,
10lm indent spacing) is shown in Fig. 1(b), indicating a higher
reduced elastic modulus (ER) in regions which could be rationalized as
melt-pool boundaries, when considering the spatial correlation
between nanoindentation mapping and the thermal patterns observed
in Fig. 1(a). Indeed, recent investigations have drawn links between
the local atomic structure and the elastic properties in BMGs, also
determined using nanoindentation.17

As seen in Fig. 1, thermal processing from SLM leads to a varia-
tion in the structure and mechanical properties along the build height.
Such a variation could be a result of elemental segregation, partial crys-
tallization, or oxidation at the melt-pool boundaries. Energy-dispersive
X-ray spectroscopy was performed over the sample cross section; how-
ever, no elemental segregation correlating with melt-pool spacing was
observed, suggesting that significant compositional variability does not
exist between melt-pools and heat affected zones. To understand these
melt-pool solidification effects in more detail, the glass was

investigated using high energy synchrotron X-ray microdiffraction.
Relative to other techniques, such as transmission electron micros-
copy, synchrotron X-ray microdiffraction enables the investigation of
short- and medium-range ordering (SRO and MRO) of amorphous
structures over large areas to include the entire build height while also
resolving the microscale of the structural variations observed in Fig. 1.
This technique is well established for investigating structural evolu-
tion18–20 and strains in BMGs.21–25

For the synchrotron measurements, thin strips (�1.5
� 18� 0.15mm3) were cut from both the “center” and “edge” of the
AMZ4 block with a low speed diamond saw (Buehler IsoMet) and the
surface was ground with 4000 grit SiC paper to remove surface asperities.
Samples were cleaned with acetone and ethanol and then adhered to an
Al window (vacuum-grade Al, wire electrical discharge machined) for
the X-ray measurements. Measurements were performed in the 2nd
experimental hutch of the PETRA III P07 beamline at the Deutsches
Elektronen-Synchrotron (DESY) in Hamburg, Germany. Spatially
resolved X-ray diffraction line-scans were performed from the bottom of
the sample using a microfocussed monochromatic photon beam with an
energy of 98.15keV and a size of 30� 2 lm2 (w� h) attained using an
Al compound refractive lens system. The resultant X-ray scattering pat-
terns were collected on a PILATUS3 X CdTe 2M detector with an expo-
sure time of 2 s used for all tests and showed a fully amorphous structure
absent of any intermetallic crystallites or oxides. A 2lm step-size along
the z-axis was used along the sample build-length (z¼ 9.8mm) correlat-
ing with approximately 4900 diffraction images per sample. The col-
lected 2D diffraction patterns were integrated over the full azimuthal
range using the Python pyFAI package.26 Measured data Im(Q) were
then processed using PDFgetX3,27 to allow for the determination of the
structure function S(Q) [Fig. 2(a)],

S Qð Þ ¼
Ic Qð Þ � f Qð Þ2

� �
þ f Qð Þ
� �2

f Qð Þ
� �2 with

Im Qð Þ ¼ a Qð ÞIc Qð Þ þ b Qð Þ; (1)

FIG. 1. Backscattered electron micrograph of the chemically etched cross section shows melt-pool layers with an approximate height of 60 lm (a). The “inset” contains a pho-
tograph of the SLM-processed AMZ4 block from which all samples were cut (z-direction equivalent to the build direction). Nanoindentation mapping and line-scan average of
the cross section highlight reduced modulus variation dER along the cross section [(b), the same scale as the micrograph). NB: Smaller particles in the micrograph are likely
precipitates from chemical etching; the spherical particle (marked ˆ) is an unmelted AMZ4 particle defect; one poor quality indent (marked �) in the nanoindentation map was
replaced with the mean ER value.
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where Ic(Q) is the coherent scattering intensity, determined from the
measured intensity Im from the total scattering experiment and multi-
plicative a(Q) and additive b(Q) corrections. Examples for effects cor-
rected by a(Q) are the sample absorption and X-ray polarization,
while b(Q) corrects for Compton scattering and any background scat-
tering from the sample container or environment. Additionally, f(Q) is
the atomic scattering factor, and angle brackets indicate an average
over all atom types in the sample (Zr, Cu, Al, and Nb). The S(Q) was
then Fourier transformed to obtain the reduced pair distribution func-
tion (PDF), G(r) [Fig. 2(b)],

G rð Þ ¼ 2
p

ðQmax

Qmin

Q S Qð Þ � 1½ � sinQr dQ; (2)

integrated betweenQmin 0.7 andQmax 14 Å
�1. For the quaternary glass

studied, the peak position is the most robust structural feature, espe-
cially when considering likely thickness variation along the sample
height. Peaks in the S(Q) data were fit with a pseudo-Voigt function
between 2.45�Q� 2.9 Å�1. For G(r), the peak center-of-mass rcm
was determined using

rcm ¼
Ð rmax

rmin
rG rð ÞÐ rmax

rmin
G rð Þ

; (3)

where rmax and rmin are the intersection coordinates of G(r) with the
lineG(r)¼ 0.

When plotting the rcm of the first significant peak in G(r), rcm,1,
against the build-height for the center sample, a periodic variation in
the interatomic distance was seen with no observable change in the
moving average over 10mm of build height [Fig. 2(c)]. Some variation
was observed toward the ends of the scan height (z! 0, 10mm), but
this was likely caused by X-ray interference with the sample holder.
From 0.5 to 9.5mm of build-height, a moving point average shows
negligible deviation from 3.0536 0.002 Å, although a significant peri-
odic rcm,1 variation exists between 3.050 and 3.057 Å. While the mag-
nitude of these changes is small, they correspond well to the work of
Wei et al. for the AMZ4 structural variation during thermal relaxa-
tion.18 Using a custom Python code, average distances between max-
ima for Savitzky-Golay filtered (window length 19, polynomial

order 3) rcm,1 data as a function of build-height were determined as
586 23lm, correlating well with the melt-layer thickness of �60lm
observed in Fig. 1(a). The measurement was additionally performed
with x-axis offsets of 100 lm and 200lm, and when considering the
same z range, peak maxima occur at comparable positions [for
100lm offset data, see Fig. 2(c)]. An average maxima spacing of
586 22lm was determined for both 100lm and 200lm offsets, cor-
relating well with the initial scan, and infers a physical link to the
melt-pool solidification results highlighted in Fig. 1. Measurements
performed on a sample taken from the edge of the printed block have
an identical rcm magnitude (3.0536 0.001 Å); however, they show an
average maxima spacing of 646 25lm which do not align with the
maxima positions of Fig. 2(c). Negligible differences in rcm,1 exist
between the edge and center of the printed BMG block, which suggests
a broadly homogeneous average glass structure throughout the whole
block. While commensurate shifts were also observed in G(r) for peaks
>r1, peak broadening in higher Q-ranges leads to poorer resolved
PDF data, and as such, only r1 is studied in more detail.

While the rcm,1 variation in G(r) can be connected spatially to
metallography and nanoindentation results (Fig. 1), it is noted that
data analysis artifacts or residual stresses in the material may also be
responsible for shifts in rcm,1. To confirm that the rcm,1 shifts were due
to structure variation, data points corresponding to minima (A), neu-
tral (B), and maxima (C) for a period of large G(r) fluctuations were
investigated in more detail (Fig. 3). From the individual diffraction
patterns, shifts are seen in the S(Q) first sharp diffraction peak (FSDP)
fit with a pseudo-Voigt function, further lending to the view that G(r)
variations have physical origins and indicating that the Fourier trans-
formation of S(Q) does not impart some artificial variability into the
G(r) result.

When taking an azimuthal integration range of 30� for I(Q), only
a very slight variation is seen as a function of azimuthal angle (u), i.e.,
small elliptical distortions of the diffraction pattern [Figs. 3(c) and
3(d)]. Elliptical distortions of the diffraction rings in amorphous mate-
rials have been reasoned to be due to the presence of local strain
fields,28 as for shot-peened surface layers.29 The small distortions sug-
gest that residual stresses from laser processing are near-negligible in
the samples studied and indicates that variations in the S(Q) FSDP

FIG. 2. Representative S(Q) and G(r)
data from the X-ray measurement [(a) and
(b), respectively]. Insets provide an
enhancement of the FSDP and r1. The
first significant peak mass-center for G(r)
rcm,1 shows a negligible change in the
average peak-center along the build
height (highlighted by 150 pt. moving aver-
age, yellow line) but a distinct periodic var-
iation (c), while scanning with a 100 lm
offset in the x-direction provides rcm,1 dis-
tributions which overlay closely with the
original data.
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and rcm,1 are dominated by structural variations in the metallic glass
along the build-height.

Based on the method developed by Poulsen28 and further out-
lined by Shakur Shahabi et al.,23,24 it is possible to estimate the local
strain from the variations in the G(r) peak position observed in
Fig. 2(c), using

e zð Þ ¼ rcm zð Þ � r0cm zð Þ
r0cm zð Þ ; (4)

where the reference position r0cm(z) is hereby determined as the sample
position in which filtered rcm(z) data (Savitzky-Golay, window length
31 and polynomial order 3) have a derivative of zero or

r0cm zð Þ ¼ r0cm zð Þ
����
drcm =dz¼0

: (5)

The value r0cm(z) oscillates between local maxima and minima. If the
displacements with respect to the reference points next to r0cm(z)

þ, and
previous to r0cm(z)

�, are assumed to contribute equally to the total
strain at z, then the total strain can be written as

etot zð Þ ¼
e zð Þþ þ e zð Þ�
� �

2

¼ 1
2

rcm zð Þ � r0cm zð Þþ

r0cm zð Þþ
þ rcm zð Þ � r0cm zð Þ�

r0cm zð Þ�

" #
: (6)

Similarly, the total strain can be calculated using the data in reciprocal
space [i.e., from S(Q)]. From both real- and reciprocal-space analyses, a
variation in local strain of 60.1% (or local stresses of 685MPa based on
the reported elastic modulus30) was determined along the build-height

[Fig. 3(g)], comparable to a report on the strain measured over single
shear bands in cold-rolled Vit105 BMG.24 In contrast, in situmechanical
compression measurements show strains on the order of 1.0%–2.0%.23

These local strains are inherently linked to structural density within, and
between, shear transformation zones. However, it is also important to
note that the diffraction pattern is recorded over the entire interaction
volume (2� 30� 150 lm3), and actual local variations may indeed be
more pronounced than the magnitudes reported here.

Shifts in the S(Q) FSDP can be related to variations in the local
fictive temperature, free volume, and structural relaxation state in the
glass. Similar conclusions have been drawn for glassy Pd40Cu30Ni10P20
ribbons studied using high energy photons31 and for thermally cycled
La-based BMGs.32 While for multicomponent glasses, the S(Q) FSDP
is related to a number of complex factors,33 Ma et al. have also related
shifting of this peak to variability in the MRO.34 This supports broad
observations of shifts occurring in G(r) for peaks >r1 corresponding
to MRO. Such observed structural periodicity over the short- and
medium-range length scales correlates well with the results of Fig. 1,
which highlights a spatial variation in local density as a result of the
thermal history. As such, maxima in the rcm,1 variation link to a shift
in the S(Q) FSDP to lower Q values which may be caused by higher
cooling rates at the melt-pool boundaries leading to thermal gradients.
Moreover, the small changes in rcm,1 are a result of variations in the
partial PDFs for selected atomic pairs. For Zr60Cu30Al10, Tong et al.
determined the partial PDFs from molecular dynamics simulations,35

where in Fig. 3(f), the left shoulder in G(r) corresponds to Zr-Cu pairs
and the main peak to Zr-Zr pairs. Such an observation may indicate a
small chemical SRO variation together with the variation of the inter-
atomic distances during structural relaxation, consistent with recently
reported results regarding the variation of Zr/Cu between heat affected
zones and melt-pools.9

FIG. 3. Comparing the extremes of the rcm,1 variation (a) derived from the collected diffraction patterns (b) show subtle variance in the G(r) r1 and S(Q) FSDP [(e) and (f)].
Azimuthal integration of the diffraction rings over 30� increments shows slight elliptical distortion of the diffraction pattern (c), as noted for the change in fitted pseudo-Voigt
(PV) mass-center for the intensity FSDP (I(Q)PV,cm) as a function of azimuthal angle (d). The small peak intensity changes in I(Q) of �1.5% are within the pixel gain homoge-
neity limits. Also shown is the local strain etot(z) calculated using both G(r) rcm,1 and S(Q) FSDP data (g).
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The origin of this reported structural variation is likely a result of
melt-pool solidification dynamics during SLM-processing, which
imbues structural changes dependent on the local cooling rate.3 These
solidification processes have recently been shown to have a significant
effect on the local BMG structure, between molten pools and heat
affected zones,9 and it is clear here that this manifests as a structural var-
iation over short- and medium-range length scales with consequent
effects on the local mechanical properties. It is promising, however, that
the SLM-processed AMZ4 retains a bulk X-ray amorphous structure
throughout the build despite the apparent periodic variations in the
cooling rate. The influence of this microscale periodic variation on the
bulk mechanical properties will be the focus of further work in this area.
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