View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Institute of Transport Research:Publications

Automated Planning versus Manual Operations in the context of the Link
Management System for EDRS - SpaceDataHighway

Sven Priifer, Tobias Gottfert and Maria T. Worle
Mission Planning System Engineers
German Space Operations Center (GSOC)
Deutsches Zentrum fiir Luft- und Raumfahrt e. V.
Miinchener Strafe 20, 82234 Wefling, Germany

Abstract

The Link Management System (LMS) is the automated plan-
ning system for the EDRS (European Data Relay System)—
SpaceDataHighway payloads at the German Space Opera-
tions Center (GSOC) and has been in continuous use since
2016. Recently, it has been extended to include the EDRS-C
mission, scheduled to launch in 2019, besides EDRS-A. In
this paper we discuss lessons learned and take-aways for
multi-mission development of planning software as well as
operations of automated planning systems. The interplay be-
tween automation and manual intervention in the LMS case is
explained in multiple examples giving rise to suggestions for
future development of automated planning systems. Further-
more, the LMS is described in the context of CCSDS. This
paper builds on and extends (Gottfert et al. 2018)).

1 Introduction
1.1 The EDRS mission

The EDRS (European Data Relay System)-SpaceData-
Highway is a joint ESA—Airbus mission consisting of two
geostationary relay systems for transferring data to and from
low-earth-orbit (LEO) satellites via laser-optical and Ka-
band inter-satellite links (O-ISL and Ka-ISL, respectively).
Since 2016 the EDRS-A hosted payload has been in oper-
ation on a Eutelsat platform and has supported more than
20000 links since then. In contrast, EDRS-C, which sup-
ports O-ISLs only, is a dedicated satellite scheduled to be
launched in summer 2019. The overall system is operated
by Airbus.

The EDRS ground segment set up by Airbus and DLR
GSOC comprises a Mission Operations Center (MOC), four
ground stations and two control centers, see Fig. [l The
EDRS-A Devolved Payload Control Center (DPCC) and the
EDRS-C Spacecraft Control Center (SCC) are located at
GSOC whereas the MOC serving both missions is located
at Airbus. EDRS customers have an interface to the MOC
which forwards requests to DPCC or SCC to command the
respective spacecraft (S/C) to support the link. For a general
introduction to the EDRS—SpaceDataHighway mission, see
(Hauschildt et al. 2014).

(c) DLR e.V. 2019. All rights reserved.

1.2 The Link Management System

The Link Management System (LMS) is the mission plan-
ning system (MPS) developed by GSOC as a part of DPCC
and SCC for the EDRS mission, see (Gottfert et al. 2016)
and (Gottfert et al. 2018)). It automatically processes re-
quests by MOC for Ka-ISL and O-ISL links and send cor-
responding flight operations procedure requests (FOP re-
quests) to the command tools within the control center, such
as the Generic Procedure Generator (GPG) or the Automa-
tion Engine (ATM), see (Scharringhausen and Beck 2017).
In addition, the LMS

e schedules various laser-communication terminal (LCT)
related tasks,

e checks for multiple consistency requirements between the
various activities,

e reports the status of planned events,

e tries to maximize the fill-level of the Time-Tagged
Telecommand (TTC) onboard buffer, i. e. it tries to sched-
ule as many links as possible and

e schedules the uplink of forward data (FWD, see Sec-
tion 2:2) to an on-board buffer for later transmission to
a customer satellite.

For EDRS-A, in addition, the LMS initiates pointing calcu-
lations for the Ka antenna and keeps track of the onboard
pointing record table. The LMS therefore supports a lot of
interfaces to the MOC and several services within DPCC
and SCC, respectively, which is illustrated in Fig.[2} Notice
that although the LMS is not responsible for the schedul-
ing of the links themselves, it has several scheduling duties
regarding e. g. LCT-related tasks and FWD.

From a software point of view the LMS runs continuously
as a Windows service and uses a connected transaction loop
mechanism which cycles through various phases, in partic-
ular file ingestion, scheduling and task export, see Fig. [3]
The LMS GUI is separate from the service and connects
via a Windows Communication Foundation (WCF) inter-
face. This makes the automatic system run independently of
the GUI. There are multiple instances of the LMS installed
for EDRS-A and EDRS-C as well as for prime, backup and
simulation purposes.


https://core.ac.uk/display/224779237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HDGS RDGS FLGS BFLGS

T_l_T
S

LEO: Sentinel 1A/B, 2A/B
(+ other client satellites)
e.g. Tandem-L)

L |

Columbus

COL-IGS

3

Harwell UK Weilheim Weilheim Redu Belgium

—irg

=
P

EDRS-ASCC EDRS-A EDRS-C
EUTELSAT DPCC scc
Paris 4
e SS0C
<«— Link Planning Data
<+«—> TT&C

~—p User Data (optical)
——Pp User Data (Ka-Band)

EDRS Segment

> USOCs
| I_—;
y

S [aag

Payload Data
Ground Segment
e.g, Sentinel,
DFD, Kopernikus

' ool col-cC
Airbus ] 0O
Ottobrunn ECHIED
oS H csoc

LEO SCC
e.g. ESOC
Darmstadt

User Segment

Figure 1: Overview over the EDRS—-SpaceDataHighway ground system

2 Combining two Missions in one Planning
System

As EDRS-A and EDRS-C are very similar missions regard-
ing the link workflow and interfaces, the EDRS-A LMS code
base was reused for EDRS-C instead of completely rewrit-
ing a new software component. In particular, both missions
serve the same link request interface with the MOC and use
a similar workflow for FOP requests with the GPG and the
ATM, respectively, at least from the LMS point of view.
Since the overall link scheduling is done by MOC, there
is no need for synchronization between the two LMS in-
stances for the two missions, as e. g. customer link requests
are distributed among the two satellites by MOC already.
The following aspects are treated differently by EDRS-A
and EDRS-C:

e There is no Ka-ISL antenna in EDRS-C and thus the cor-
responding Link Management System functionality is not
used.

e LCT maintenance for EDRS-A includes updates for the
on-orbit propagation products, LCT time and LCT align-
ment, whereas for EDRS-C both on-orbit propagation and
time updates are handled by the LMS as parts of the satel-
lite bus maintenance.

e Station-Keeping Maneuvers are known to the EDRS-C
Link Management System in advance and thus additional
consistency checks are possible.

e A bigger on-board time-tag schedule buffer which is used
solely by the Link Management System allows for easier
usage of TTC upload capacity.

See (Gottfert et al. 2018) for a more detailed explana-
tion of the similarities and differences. In the next sections

we will discuss various operational requirements and expe-
riences that led to the design decisions for the LMS. In par-
ticular we will describe the new remote monitoring feature
of the LMS.

2.1 Operational Requirements

Even though GSOC’s responsibilities for EDRS-A and
EDRS-C differ as they include the platform operations for
EDRS-C, the payload operations are still so similar that
both missions will be operated from the same control room.
There is a large overlap in the team members for both mis-
sions. The experience gained from EDRS-A payload op-
erations influenced multiple aspects of payload operations
for EDRS-C such as the redundancy concept or the auto-
mated flight procedure instantiation. Reusing the LMS for
EDRS-C means that operators are already used to the GUI
and its operations.

Having the same people operating two different missions
using the same software in the same control room also poses
a risk as operators might easily confuse which mission they
are dealing with in a particular situation. This risk was no-
ticed very early in the design phase and various countermea-
sures have been implemented, some of which we will de-
scribe in the next sections.

LMS GUI The LMS GUI needs to show clearly which
mission is being served by the respective instance. This is
done by a unified color scheme such that both missions are
easily distinguishable for all software components at a first
glance. Of course, distinguishing a GUI via colors has its
drawbacks as this might be difficult for color-blind people
or more than two satellites. Due to the existence of multi-
ple processing chains per mission for redundancy as well as
testing purposes, the LMS GUI needs to show clearly which
of these chains it is connected to as well. In case of EDRS-C



Flight Dynamics

Station
Acquisition

Link Operations
Support System

Commanding

\

¢ GPG

MoC P LMS
ATM
y 3 & ~A
NEMO Reporting OpsWeb
Interface
Reporting

Figure 2: A schematic overview of the top-level LMS interfaces. The arrows indicate the direction of the flow of information.

there must also be a notification which database the LMS is
connected to, as a redundancy switch to a different process-
ing chain requires a database switch on the corresponding
process server. This switch can be set in the LMS configura-
tion and requires a restart, however, afterwards the operator
needs to know that this switch was indeed executed. For
EDRS-A this is not necessary as the LMS always connects
to a local database. Regarding the different functionality the
LMS GUI uses various mission-specific views and controls
for the respective missions. A comparison between the two
new GUI versions’ layouts can be seen in Fig. 4]

Configuration Management Besides the GUI and its us-
age, also the question of configuration management had to
be tackled. For the LMS, the default configurations are
deployed together with the installer, i.e. any operational
change during the mission needs to be tracked by the de-
velopers and included in the next release. For EDRS-A this
has been used quite successfully, for EDRS-C however this
needs some change to the installation procedure as an in-
staller needs to deploy slightly different configurations de-
pending on the usage of that particular LMS instance. Con-
sider e. g. two LMS’s, one of which shall be operational and
thus connects to a database with the operational data and an-
other one which connects to a simulation database. As this
configuration is deployed with the installer one needs a safe
default in order to avoid any unintententional setup.

In general, there are a lot of different ways to deal with
this issue depending on the deployment system: If the soft-
ware is installed as an application on a server one might
e. g. deploy the configuration together with the installer or
have a local configuration on the server which does not get
modified when updating the application. The latter approach
for local files has the advantage that one can track changes in
the configuration very easily via some version control sys-
tem. A configuration roll-out by the installer makes adding
new configuration settings safer but necessitates additional
manual steps during installation in order to keep machine-
specific settings. As the LMS configuration still changes

quite often due to newly added features, it was decided to
continue rolling out the configuration together with the in-
stallation.

2.2 Development and Deployment Strategy

As outlined in (Gottfert et al. 2016) the code base for the
Link Management System is the same for both EDRS-A and
EDRS-C in order to reduce work overhead from e. g. com-
mon bug-fixes and interface changes. A compile-time flag
switches between EDRS-A and EDRS-C. There are exten-
sive unit tests covering both common aspects and mission-
specific ones. Any change to the code base is automatically
tested for both missions by a continuous integration server
whenever it is pushed to a central repository. This allows for
a short feedback loop and fast discovery of regressions. An
even more extensive continuous integration pipeline includ-
ing black-box integration tests of the whole running system
would allow for catching more complicated problems earlier
in the development process, however, this has not been setup
yet for the LMS. In particular, time-sensitive issues, such
as timing problems in asynchronous operations, often elude
unit tests and are generally more difficult to test. A sound
integration-test framework can help resolve these problems
from the beginning. Let us illustrate this in an example:
One feature of the EDRS—SpaceDataHighway mission is
the provision of so-called forward data (FWD) which refers
to the uplink of data fo the customer S/C. In case of O-ISLs
this data is uplinked asynchronously to the EDRS satellite in
advance to the connection. In order to avoid sending wrong
or incomplete data to the S/C, there is a safety Delete-FWD-
Buffer TTC scheduled shortly before the beginning of the
link if the FWD upload has not finished at the time of the
O-ISL uplink. This TTC gets deleted once the FWD up-
load is finished. However, since the FWD upload can be
deleted and resubmitted by the MOC (e. g. if the customer
notices a late error in their originally submitted FWD) the
safety Delete-FWD-Buffer TTC might need to be recom-
manded when a new FWD uplink for the same O-ISL begins.
This opens a vast amount of possible scenarios depending on



LMS GUI

EDRS-A ||  EDRS-C J

3 Configuration | 3 Configuration |

display/control

LMS Windows Service

\ 4
LMS WCF Service

77777777777777777777777777777 EDRS-A EDRS-C [

[ | Configuration | | Configuration | T‘

I Core LMS : : |

I

i :

I < .-

I < }

} FileIngestion Timer |
I

I
I

I
|

l = !

I v

| EDRS-A I

| Scheduling Algorithms }

N

| I Scheduler |
I

| EDRS-C |

| Scheduling Algorithms [ Pl ) |

[ : ‘ | anning I

\ 4 \ Model |
\

I
I
I
I
I
|
|
|
I
I
I
I
I

v
Confirmation
Message Event
Generator Loop™=""" }
|
|

Figure 3: The architecture of the LMS. The main part is the connected transaction loop, which executes perpetually the follow-
ing tasks: importing new files, scheduling of requests contained in these files, exporting FOP requests and sending feedback to

MOC.

the timing of the various requests and confirmations, all of
which need to be tested. Since it is easy to accidentally break
this functionality during later development, one can benefit
tremendously by automating suitable scenario or black-box
tests.

To make the LMS even more resilient against an acci-
dental mixup of the two missions, it was decided to in-
clude mission-specific files in the respective mission’s in-
staller only. This includes configuration files of the Plato
scheduling algorithms and planning constraint generation,
see (Lenzen et al. 2012)),e. g. for Ka-ISL handling which
are obviously not needed for EDRS-C. Together with the
mission-specific configurations, this approach asks for an
automation of the release pipeline in order to reduce the
manual overhead as well as error-proneness for new re-
leases. The automation of the LMS release process is not
completed yet.

As the LMS is a standalone application and not used as a
library, it is not necessary to use semantic versioning or sim-
ilar techniques. Instead, versions of the LMS correspond
to major features or phases in the EDRS timeline when an
upgrade of the running system is feasible. However, due
to the mission compile-time flag, there are effectively twice
as many versions, making the mission configuration man-

agement more difficult. One may avoid this problem only,
if the individual missions were similar enough to allow for
common configurations or by unifying the individual MPS’s
which couples both relay satellite operations needlessly. The
LMS installer uses a different application name for both mis-
sions in order to facilitate the distinction.

2.3 Remote Monitoring

To support test runs of the EDRS software including the
LMS alongside the operational system, several independent
and parallel processing chains were established. Thus, we
run for each EDRS mission multiple LMS instances at the
same time. Furthermore, the control room terminal envi-
ronment is completely virtualized such that an operator can
access any machine from any console. Although the current
spacecraft controller shall be the only person in control of
the LMS in nominal situations, there might be the need to
access information from the LMS for e. g. debugging pur-
poses during normal operations by other operators, too. In
that case one needs access to the LMS via a GUI in a pure
monitoring mode which is connected remotely to the opera-
tional system. The original design of the LMS allowed for
an easy implementation of this requirement imposed later on
during the operational mission phase: In fact, the WCF ser-



@ wiscu T

Worezsers |[ it | eson || iosutone | @3mmmn ot | 3emenscn |

(a) GUI for EDRS-A

(b) GUI for EDRS-C

Figure 4: The new LMS GUIs with different colors to facilitate distinction in a shared control room environment.

vice running the LMS can be configured to allow for con-
nections via a network interface. This way, a second GUI
can connect to the system to monitor the state of the LMS.
Special care had to be taken to restrict the commanding ca-
pability to at most one such remote GUI connection at a time
in order to have a clear command structure. It should be em-
phasized that this is not the same as authentication of users
which can also restrict command capabilities to a small set
of users, but even e. g. among flight directors there may be
only one in command at any time. The LMS GUTI itself then
also needs to show whether it is in a commanding state or
only monitoring besides providing a way to request or relin-
quish command. This setup is illustrated in Fig.[3

Currently, for the remote monitoring functionality of the
LMS a working prototype exists, however, the details de-
scribed above which are necessary for safe operations still
have to be implemented and tested.

3 Automation and Manual Operations in the
context of EDRS

In this section we want to discuss some experiences regard-
ing the interplay of automated planning systems and manual
operations in the context of the Link Management System.
Even though the LMS is well tested and is capable to deal
with most nominal and off-nominal situations, there is still
a need for some manual interaction from time to time. Such
situations might occur due to some error in the LMS or some
outside anomaly. In any case, operators need to deal with
this situation, reliably and quickly.

3.1 Coexistence of Automatic and Manual
Operations

The main requirement for an automatic planning system is
of course that it is continuously running and reacts correctly
to the various kinds of input it receives. In this section, we

want to collect issues related to operations one should keep
in mind when designing such a system.

First, if there is a problem with the planning system itself
or some invalid situation is detected, it shall alert an oper-
ator via a well-designed interface. In case of the LMS this
is NEMO, see (Hauke et al. 2012), which has been in use
for other missions at GSOC as well and operators are thus
already used to working with it.

Furthermore, in case of a contingency it needs to be possi-
ble to stop the automatic operations in order not to interfere
with any manual efforts. Note that stopping might have to
mean very different things depending on the type of mission
and contingency. In case of the LMS, for example, it still
accepts link requests even in “paused” mode. However, it
does no longer schedule activities or export FOP requests
and does therefore not interfere with manual commanding.
This has the advantage that all reporting functionality to the
MOC is still working and the system stays responsive.

Finally, even a perfect automatic planning system will
have to deal with external problems during real operations,
and operator interactions eventually have to take place for
repairing these. The LMS therefore needs to be able to
work alongside limited manual operations. For example,
suppose a command execution fails after the LMS has ex-
ported a FOP request, so the LMS gets notified and sends
corresponding status messages. If operators are able to re-
cover from this error, e.g. by repeating the command ex-
ecution manually, they need a way to let the LMS know
what happened. This might be because updated status mes-
sages have to be sent via the nominal workflow (so that the
MOC knows that the command was finally successfully ex-
ecuted), or because the execution of this command needs
to be known to the LMS in order to continue with nominal
operations (e. g. in case of Ka-ISL FOP requests the LMS
keeps track of the state of the Ka-antenna which therefore
must be modelled correctly). The automated system thus
needs a predefined and well-tested way of overwriting its in-




Various External and Internal Interface Partners

Process Server A

Process Server B

Process Server C

LMS Service + GUI

LMS Service + GUI

LMS Service + GUI

{

+ ;

GUI Connection via WCF *
!

DB Connection Database

L_,$

Display PC

E.g. MOC Requests Context 1 | Context 2

Context 3

LMS GUI

Figure 5: For EDRS-C, the LMS will get a separate standalone GUI allowing operators to access the LMS state remotely.
This figure shows the various LMS instances together with their database and GUI connections. Here, Database stands for a
high-availability cluster containing several databases for operational as well as simulation purposes, referred to as context. Note
that this figure concentrates on the LMS and does not show multiple further SCC features such as redundancy for the TM/TC
chains and the database or the other software components running on the Process Servers.

ternal state in case there are unforeseen external changes as
well as a possibility to allow for manually triggering certain
processes such as e. g. a repeated export of a status report.
For the LMS these interfaces are added in an ad hoc way
whenever the need arises. Some LMS tasks, such as sending
a revised status report, are easy to execute manually due to
file-based transfers.

3.2 Operational Experience

In this section we will add further operational experiences to
those described in (Gottfert et al. 2018]) already.

Of course, having an automated planning system reduces
the manual work operators need to perform but this comes
with several new difficulties that need to be addressed. The
LMS has been running for months without any interruption
and minimal manual operations needed to the extent that the
LMS GUI is usually turned off and only consulted when
specifically needed. About once per week on average the
LMS has been paused for a few minutes, usually due to some
outside interruption in the processing chain, in which case
the automated LMS operations would have been distracting.
Note that the LMS kept running during these pauses, see
Section

One difficulty is the reduced experience of the operators
with the LMS as they barely ever need to interact with it.
This forces developers to take care about different user inter-
face aspects, such as the way LMS problems are presented
to the operators. Messages should be as concise as possible
and should avoid any ambiguous expressions. For example,
from time to time the LMS is not capable of deleting an on-
board TTC immediately because it is still waiting for some
data necessary for deletion. In this case the LMS buffers the
deletion and retries later on. Since this deletion is critical

for operations the operator was made aware of the buffering
via NEMO and told to check at some later time if the dele-
tion was successful. Operators misinterpreted this message
to say that there was a serious problem and became alarmed,
requiring explanation of this issue by the developers. This
notification had to be adapted to be more informative and an
operations procedure had to be deliverd for the operator to
know when and how to check that the situation was back to
completely nominal.

The LMS pause mode turned out to be surprisingly useful
for reducing difficulties that the operators had with the LMS,
as it allows to decouple the automatic MPS from manual op-
erations e. g. during contingencies. As this mode keeps the
LMS running, operators are still able to examine the plan-
ning state when needed and the interface to MOC is still
served normally. Since pausing the LMS is very easy, op-
erators have adopted the strategy to turn on the pause mode
whenever nominal operations are interrupted, thereby reduc-
ing the need to deal with unwanted interference from the au-
tomated MPS which in some situations might require more
detailed knowledge about the LMS.

After three years of operations, the LMS receives very
few bug reports but of those received, a large part is due to
misleading reports or feedback of the LMS. Another poten-
tial source of confusion in reporting messages is a different
usage of the same terms. One needs to keep in mind that
an operator sees the whole processing chain and not just the
LMS causing e. g. words like ingestion or export to have dif-
ferent meanings. It is thus heavily recommended to design
reporting frameworks and their content in a concise way to
minimize any possible operator confusion later on. In addi-
tion, a regular training refreshment from time to time with
the possibility to highlight seldomly used aspects might also



be helpful, not only for the operators but also for the devel-
opers to stay in touch with the users and their needs.

When designing an automated MPS, it is very difficult
to foresee any possible way external problems might in-
terfere with automatic planning. Therefore, at some point
there is a need to synchronize the state of the MPS in an ir-
regular manner with some external source. A regular state
synchronization is e. g. an operator commanding a TTC di-
rectly in which case the LMS receives this information via
the standard ATM-LMS interface, by the respective up-
link and execution confirmations and the TTC buffer con-
tent notification. However, in case e. g. the onboard Ka-ISL
pointing table is deleted, the LMS needs to know this in
order to assume an empty table and reexport the correct
Ka-ISL pointing records. In nominal automated operations
this type of interface is not needed and was therefore not
implemented initially. Instead, this was added later on in
an ad hoc way which caused a lot of additional work. Of
course, it would have been better to put this generic state-
synchronizing workflow into the design from the beginning.

3.3 Evaluation of CCSDS for the LMS

The CCSDS Report Concerning Mission Planning and
Scheduling (CCSDS 2018) defines four principal mission
planning services that are expected to be implemented: plan-
ning request service (PRS), plan distribution and retrieval
service (PLS), planning process management service (PMS)
and plan execution management service (PES). Further-
more, the information model of CCSDS defines planning
requests (PRQ) and plans (PLN) as the main exchange ob-
jects between planning systems which may contain and/or
reference further planning data objects such as events and
activities. Below this communication level there exists the
Message Abstraction Layer (MAL) specified by CCSDS,
which allows a finite set of interaction patterns between mis-
sion operation services, see (CCSDS 2018) and (CCSDS
2010). For more ideas how to implement non-planning
related CCSDS features in a mission, see e.g. (Coelho,
Koudelka, and Merri 2016) and (Evans 2016)).

Considering the tasks of the LMS from Section [I.2] the
LMS is a mission planning system which incorporates PRS,
PLS and PMS. This is because it executes the planning itself,
delivers (partial) information about the plan, self-triggered
as well as upon request, and is able to control parts of the
planning via the GUI by e. g. scheduling some manual tasks
or stopping the system. However, the LMS GUI might also
be considered a planning user for observing and managing
the planning process because it is separated from the ac-
tual LMS service, see remote monitoring in Section
The PES, in contrast, is not part of the LMS functionality,
but the related command system components. Furthermore,
the overall link planning workflow for EDRS constitutes a
devolved planning system formed by two separate entities.
Since the actual inter-satellite link scheduling is done by
MOC and its result schedule (split into single or multiple
requests) is taken as input for the LMS we have in fact two
planning systems, each implementing aspects of these three
CCSDS services in the EDRS—SpaceDataHighway mission.
The interface between MOC and LMS is completely asyn-

chronous, for some requests there is a single response while
for others there are mutiple responses to be sent to MOC.
The MOC requests links to be scheduled by the LMS and ex-
pects reports on them which is the basic premise of a PRQ.
Although the LMS checks for consistency and may reject
links if there were any problems found, it is not allowed to
change the link parameters. An outline of the interfaces us-
ing the CCSDS nomenclature is illustrated in Fig. [6]

Improvements of the overall project set-up using the ser-
vices proposed by CCSDS might be described as follows:

The scheduling of links may still be done at MOC in-
cluding all feasibility checks. A common planning language
among MOC and LMS might be used or, at least, both need
to be compatible such as to allow for easy translations be-
tween them. The MOC may then send a plan containing
these links and all corresponding parameters including re-
sources and constraints to the LMS via the INVOKE pat-
tern from the MAL layer. The asynchronous response from
the LMS might include feedback about whether there was
a problem updating the local link schedule maintained by
it. Having received and accepted an updated link sched-
ule, the LMS may then export corresponding FOP requests
(including deletions of TTCs in case a link was removed
from the timeline) and plan other activities taking into ac-
count the MOC-provided link schedule. The reporting part
of the MOC-LMS interface might then be described as a
PLS service by the LMS where the MOC can request PLN
objects containing planning data via a REQUEST or IN-
VOKE, i.e. a single, either synchronous or asynchronous,
response, or even a PUBSUB pattern constantly awaiting
updates about the current plan content.

One advantage of this would be an improved separation
of concerns, thereby reflecting better the actual relationship
of the two planning services and avoiding additional com-
munications necessary to synchronize the state between the
two planning systems. Furthermore, the CCSDS approach
would simplify the interface in general and thus reduce the
necessary amount of testing as interfaces could be reused.
If both services were capable of making use of CCSDS-
specified export and import of plans, both directions of pass-
ing PLN objects, i. e. planning requests from MOC to LMS
and reports from LMS to MOC, might be unified in a single
interface.

4 Conclusion

For the development of future automatic MPS we would like
to summarize the following lessons learnt.

Although a completely autonomous system is very ap-
pealing, operational experience shows that there will be (per-
haps externally caused) problems that need to be resolved
manually. To deal with this problem one should include a
safe way to modify the planning state of the automatic MPS
into the design from the start. Adding such a functionality
later increases the risk of introducing bugs and might cause
additional work.

Secondly, one should not ignore the operational side of
an automatic planning system as it needs to be monitored
and sometimes manually intervened in a high-reliability en-
vironment. This includes taking care about distinguishabil-



Link Schedule FOP Requests
Link Plan
SEND
EDRS Cust Requests .
(Sub _t/ugbomer) MoC >ﬁ LMS Service —> ATM/GPG
uomi serve ¢ 1
S
| PMS PLS
. Planning Management Plan Manual Scheduling
Plan Execution Submit ' SEND REQUEST
Planning LMS GUI
Pl
an > (Submit/Manage/ DPCC/SCC
. Observe)
Planning User Planning Request

Figure 6: The LMS including its GUI and its most important interface partners using alternative CCSDS nomenclature for the

interfaces.

ity of similar-but-different systems, formulation of operator
warnings and provision of “human readable” insight into the
current planning state.

Automating the build, test and deployment aspects of de-
velopment as much as possible, is very beneficial, too. In
particular when developing the same tool for multiple mis-
sions there is a significant overhead associated with repeated
work and avoidance of errors when including adaptations,
e. g. needed during the mission life-time or required as fla-
vors only needed for one mission, so it should be tried to
minimize this.

Finally, when developing an interface between multiple
planning services, the overall system design should evaluate
setting it up in a CCSDS conform way. In particular, if both
systems use compatible planning languages, also including
planning items, resources and constraints into the interface
should be considered and is recommendable. Even if not,
the interface shall be implemented in a way that there exists
a well-defined separation of concerns and any unnecessary
duplication is avoided.

References

[CCSDS 2010] CCSDS. 2010. Mission operations services
concept. Report Concerning Space Data System Standards
(Green Book) 520.0-G-3, The Consultive Committee for
Space Data Systems.

[CCSDS 2018] CCSDS. 2018. Mission planning and
scheduling. Report Concerning Space Data System Stan-
dards (Green Book) 529.0-G-1, The Consultive Committee
for Space Data Systems.

[Coelho, Koudelka, and Merri 2016] Coelho, C.; Koudelka,
O.; and Merri, M. 2016. Nanosat mo framework: Achieving
on-board software portability. In SpaceOps 2016 Confer-
ence, SpaceOps Conferences. American Institute of Aero-
nautics and Astronautics.

[Evans 2016] Evans, D. J. 2016. Ops-sat: Operational con-
cept for esa’s first mission dedicated to operational technol-
ogy. In SpaceOps 2016 Conference, SpaceOps Conferences.
American Institute of Aeronautics and Astronautics.

[Gottfert et al. 2016] Gottfert, T.; Grishechkin, B.; Worle,
M. T.; and Lenzen, C. 2016. The link management system
for the european data relay satellite program. In SpaceOps
2016 Conference, SpaceOps Conferences. American Insti-
tute of Aeronautics and Astronautics.

[Gottfert et al. 2018] Gottfert, T.; Worle, M. T.; Lenzen, C.;
and Priifer, S. 2018. Operating and evolving the edrs
payload and link management system. In 2018 SpaceOps
Conference, SpaceOps Conferences. American Institute of
Aeronautics and Astronautics.

[Hauke et al. 2012] Hauke, A.; Ohmiiller, T.; Hiring, U.;
and Center, G. S. O. 2012. An innovative monitoring-
and control-system at gsoc and weilheim ground station. In
Ground System Architectures Workshop, GSAW.

[Hauschildt et al. 2014] Hauschildt, H.; Garat, F.; Greus, H.;
Kably, K.; Lejault, J.-P.; Moeller, H.; Murrell, A.; Perdigues,
J.; Witting, M.; Theelen, B.; et al. 2014. European data relay
system—one year to go! In Proceedings of the International
Conference on Space Optical Systems and Applications (IC-
SOS).

[Lenzen et al. 2012] Lenzen, C.; Worle, M. T.; Mrowka, F.;
Sporl, A.; and Klaehn, R. 2012. The algorithm assembly set
of plato. In SpaceOps 2012 Conference, SpaceOps Confer-
ences. American Institute of Aeronautics and Astronautics.

[Scharringhausen and Beck 2017] Scharringhausen, J.-C.,
and Beck, T. 2017. Automated procedure based operations
for the european data relay system. In 68th International
Astronautical Congress (IAC).



	Introduction
	The EDRS mission
	The Link Management System

	Combining two Missions in one Planning System
	Operational Requirements
	Development and Deployment Strategy
	Remote Monitoring

	Automation and Manual Operations in the context of EDRS
	Coexistence of Automatic and Manual Operations
	Operational Experience
	Evaluation of CCSDS for the LMS

	Conclusion

