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Abstract—The high computational demand and the modularity
of future space applications make the effort of developing
multithreading reusable middlewares worthwhile. In this paper,
we present a multihreading execution platform and a software
development framework that consists of abstract classes with
virtual methods. The presented work is written in C++ following
the event-driven programming paradigm and based on the in-
verse of control programming principle. The platform is portable
over different operating systems, e.g., Linux and RTEMS. This
platform is supported with a modeling language to automatically
generate the code from the given requirements. Our platform has
been used in already flying satellites, e.g., Eu:CROPIS.

We present in this paper an example that illustrates how to
use the proposed platform in designing and implementing an
on-board software system.

Index Terms—RTOS, Multithreading, Event-driven

I. INTRODUCTION

Modern space applications demand high performance com-
puting resources to carry out the increasing computational
requirements of on-board data processing and sophisticated
control algorithms. On the one hand, multicore platforms are
promising to fulfill the computational requirements properly
[1] as they provide high performance with low power con-
sumption compared with high frequency uniprocessors. How-
ever, it is quite often not easy to write applications that execute
in parallel. On the other hand, sensors are slow and cannot
be on a par with the computing resources. Self-suspending
processes are usually used to read from sensors, which makes
timing more complicated and presents high pessimism and,
thus, high over-provisioning.

In this paper, we present an event-driven multithreading
execution platform, which is written in C++ following the in-
verse of control programming principle to improve reusability.
We call our execution platform Tasking Framework. Tasking
Framework provides abstract classes, which facilitates the
implementation of space applications as event-driven task
graphs. It also provides a multithreading execution based on
POSIX, C++11 threading, and OUTPOST [2], which makes
Tasking Framework compatible with Linux, RTEMS and many
other real-time operating systems (RTOS).

Tasking Framework is motivated with lessons learned from
the Bispectral Infra-Red Detection (BIRD) [3] attitude control
system. The BIRD satellite launched in 2001. BIRD used a
distributed Kalman filter [4] to estimate the attitude state vector

of the satellite. This filter comprises several estimation and
prediction modules executed by the controller thread. Each
estimation module computes one value in the attitude state
vector, for example, the sun vector from the sun sensor input
values, the predicted sun vector and expected control effect
from the last control cycle, a rate from the new sun vector
or magnetic field vector, or the best rate by cross checking
magnetic field vector rate, sun vector rate and measured rate
from gyroscopes. The computation order is given by the data
flow between the estimation modules. The order was given
by a call sequence of the estimation modules in the controller
thread.

During the development of the BIRD attitude control system
some timing issues arose from the limited computing power of
the on-board computer, and the timing requirements imposed
by the sensors. BIRD used for all threads a predefined time slot
in 500 ms cycle. The star tracker reported the attitude quater-
nion after 375 ms. The output buffers of the five actuators
have to arm at 450 ms in the control cycle. By this, only 75
ms remain for all the computations inside the attitude control
system. With the means of the event-driven paradigm, an as
soon as possible scheduling of the computations is possible,
which realizes timing constraints in the end of the control
cycle. Only the computations that depend on the star tracker
data have to be computed after 375 ms in the control cycle.

Tasking Framework has been used in the following projects:
Autonomous Terrain-based Optical Navigation (ATON) [5],
Euglena Combined Regenerative Organic food Production
In Space (Eu:CROPIS) [6], Matter-Wave Interferometry in
Weightlessness (MAIUS) [7], and Scalable On-Board Com-
puting for Space Avionics (ScOSA) [8].

The rest of the paper is organized as follows: We present
the basic concepts of Tasking Framework in Section II. In
Section III, we elaborate the execution model. Our modeling
language is presented in Section IV. Section V presents a case
study of using Tasking Framework with the proposed Tasking
Modeling Language (TML). After presenting our execution
platform, we address the related work in Section VI, and we
conclude in Section VII.

II. TASKING FRAMEWORK

Embedded system applications are often described as a
graph, which illustrates the software components and the de-
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Fig. 1. Optical navigation system

pendencies among them. Figure 1 shows an optical navigation
system for spacecraft, which is a part of the ATON project
[5]. Real-time capabilities are necessary to analyze optical
sensor data and to react on the system’s estimated position.
The Tasking Framework is used to periodically trigger the
cameras and to execute the image analyzer modules as soon
as all required input data is available.

In this system, two cameras are triggered by a periodic
timer and the images are then transferred to different analyzer
components. The first one is a feature tracking component
that estimates a relative movement, the second is a crater
navigation component that tries to match craters on the Moon
in the input images with a catalog of craters. The output of
these components is then transmitted to the navigation filter.
The navigation filter uses a Kalman filter to fuse the inputs
with data from an additional inertial measurement unit (IMU)
to get an estimated output position, which is then logged and
sent to the flight controller. Tasking Framework is used in this
example to integrate all these components.

Tasking Framework is implemented as a namespace
Tasking, which comprises abstract classes with few vir-
tual methods. It consists of the execution platform and the
application programming interface (API). Using the Tasking
Framework, applications are implemented as a graph of tasks
that are connected via channels, and each task has one or more
inputs. Periodic tasks are connected to a source of events to
trigger the task periodically, see Figure 7. In practice:

• Each computation block of a software component is
realized by the class Tasking::Task. The virtual
method Task::execute() will be overridden by the
code of the software component;

• Each input of a task is realized by the class
Tasking::Input;

• Each input object is associated with an object of the class
Tasking::Channel;

• Each task may have multiple inputs and multiple outputs;
• A set of tasks, inputs and channels are framed in

a scheduler entity, which is realized by the class
Tasking::Scheduler;

• Each scheduler entity is provided with a scheduling
policy;

• Each scheduler entity has threads to execute the assigned
tasks according to the specified scheduling policy. The
number of threads is specified by the software developer.

• Tasks can be activated also periodically by the means of
the class Tasking::Event.

time

τrc τr

timeout
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Fig. 2. An example of using the relative time. τrc sends a request command
to the sensor. After the timeout occurrence, the following task τr reads the
response sent by the sensor.

Although space software standards discourages virtual
methods, the execute() method of tasks should be virtual
to let the developer implement different tasks. A few other
methods are intentionally virtual to add application code, e.g.
synchronization of channel data.

To simplify setting up an object w.r.t. static memory man-
agement, we designed templates for the main classes.

A. Activation model

A task τi is activated and an instance of it will be queued
when all inputs are activated (and semantic). Or semantic is
also supported by providing the final flag. When the final flag
is set for an input, the task will be activated regardless of other
inputs.

The j-th input inij of task τi is activated when a pre-
decessor task or other sources, e.g. the main thread, calls
Channel::push() on the associated channel with inij .
In the context of Channel::push(), the input inij will
be set to active and if the final flag is set then τi will be
activated, otherwise, the other inputs will be checked and τi
will be activated only when all inputs associated to it are set
to active.

Although we design our platform to be event-driven, time-
triggered activation is supported by presenting the class
Tasking::Event. Two time-triggered activation methods
are supported: periodic and relative time. In the periodic
method, the given time duration represents the distance be-
tween two successive events. Relative time method is used,
for instance, when sensor data is needed. A task τrc sends
a request command to the sensor then it sets the timer to
a predefined time duration (relative time) and terminates.
After the timeout occurrence, the following task τr reads the
response sent by the sensor. Note that, this solution is similar to
using self-suspending tasks [9]. Using relative time (in general
using self-suspending tasks) requires to tightly bound the time-
out. However, using channels connected to Interrupt Service
Routines (ISR) of IO drivers (event-driven programming), in
which τr is activated only when the sensor data is available,
can improve the utilization. Figure 2 illustrates the relative
time.

B. More features

1) Task group: The default call semantics among tasks that
is supported in Tasking Framework is asynchronous, in which
a task τi activates the successor tasks, then it can be executed
again regardless of the status of the successor tasks. However,



in some applications, the graph of tasks or a subset of it
has a synchronous call semantics such that τi activates the
successor tasks and it will not be executed again till all tasks
in the synchronous subset finish their execution. To support the
synchronous call semantics, the class Tasking::Group is
provided.

2) Task barrier: The number of activations at an input is
declared at compile time. In situations, where the number
of data elements is only known at run time, the activation
cannot be adapted. This can be the case when, for example,
a data source have states where no data is sent. The class
Tasking::Barrier is a mean to control the activation of
tasks with an unknown number of data packets.

By default the barrier can be instantiated with a minimum
number of expected push operations on the barrier. After the
minimum number of pushes happens, the barrier will activate
all associated inputs, as long as data sources did not increase
the number of expected push operations on the channel. If it
is increased, more push operations are expected.

3) Unit test: We provide a special scheduler
SchedulerUnitTest with step operation to support
unit testing. Using Googletest (gtest) [10], we provide twelve
classes to test the API.

Note that, the execution model has to be tested separately
by the developer using other means, e.g. stress test.

III. EXECUTION MODEL

Tasking Framework is a multithreading execution platform.
The software developer should specify the number of threads,
called executors. Therefore, there will be n + 1 threads: the
main thread plus n executors. The implementation of the
execution model is platform specific. We have three implemen-
tations of the execution model: the POSIX threading model
(targeting Linux), C++11 threading and OUTPOST-core [2]
(targeting RTEMS and FreeRTOS).

The execution model is represented by 4 classes:
• Tasking::SchedulerExecutionModel:

Creating, scheduling, managing the executor threads and
interfacing to the API.

• Tasking::ClockExecutionModel: Managing the
time for time events. In embedded Linux, the clock is
represented by a thread.

• Tasking::Mutex: An encapsulation of the mutex.
• Tasking::Signaler: An encapsulation of the con-

ditional variables.
Tasking Framework schedules the ready task instances to

the available executors according to the following scheduling
policies: First-In-First-Out (FIFO), Last-In-First-Out (LIFO),
and Static Priority Non-Preemptive (SPNP). The software
developer can assign a priority to each task to be used by
the SPNP queue.

An executor thread goes to sleep, i.e. waits on a conditional
variable, after being created till it gets a signal from the clock
thread (or a timer) in case of time-triggered tasks, or from
other sources, e.g. the main thread. Figure 3 shows the life
cycle of an executor thread.

DORMANT
create()

RUNNING

wait(&cond_var)

WAITING

signal()

join()

Fig. 3. Executor thread states
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Fig. 4. The sequence of method calls in Tasking Framework to execute a
task

The executor that executes the task τi activates the suc-
cessor tasks and queue them in the ready queue, and it
will signal a free executor, which is in WAITING state, if
there is any. That is to say, Tasking Framework balances
the load on the available executors. Even in case of one
executor, the executor returns first from the execute()
method of τi before checking the ready queue and executing
the successor tasks of τi. The sequence of method calls
that are performed by Tasking Framework to execute a task
by an executor thread is shown in Figure 4. Because we
have multiple threads that may try to access the data stored
in the channel, a protection mechanism is implemented to
synchronize the access to this shared data by different threads.
The protection mechanism is implemented by the means of
two virtual methods: Channel::synchronizeStart and
Channel::synchronizeEnd.

In the implementation for Linux, the clock is implemented
as a thread with the real-time clock provided by POSIX. The
clock thread goes to sleep for a timeout equal to, e.g., the
period of a periodic task. Then it signals a free executor if
there is any, and it computes the next timeout.

A. Scheduling and priority handling

As has been mentioned, each instance of the
Tasking::Scheduler is assigned a set of tasks,



inputs, channels, executors and a scheduling policy. With one
instance for the application, the scheduling approach follows
the global scheduling, i.e. all tasks can be assigned to any
executor. However, it is possible to have multiple instances in
one application. Considering the RTOS, we assign priorities
to the executors (threads). Hence, we can handle priorities in
groups (each group represents one Tasking::Scheduler
instance).

IV. TASKING MODELING LANGUAGE (TML)

We designed the API to be as usable as possible con-
sidering the high performance requirements of real-time on-
board software systems. However, as the Tasking Framework
is used in scientific missions with experts of different domains
working on the system, the framework users might not be
experts in implementing real-time software. To further improve
applicability, we developed a model-driven tool environment
that can be used to generate calls to the Tasking Framework
API and its communication code to transfer data between
different tasks. The tool is integrated into Virtual Satellite1, a
tool for model-based systems engineering. As Figure 6 shows,
the TML development environment uses different types of
description methods to model the software. Atomic data types
are defined in tables, whereas data type classes and software
components can be specified in textual languages. Because
our focus is on data and event-driven communication, the
connection of different components is modeled graphically.
Each of the languages is specifically designed to describe
software based on the Tasking Framework and, thus, further
simplifies creating Tasking code.

A. Tasking-Specific Languages

Modeling languages specifically designed for a project or
tool provide the benefit of introducing only few project-
specific elements. The fewer elements in a language, the less
effort is necessary to learn it. An early prototype of the mod-
eling environment used the unified modeling language (UML)
and the systems modeling language (SysML) to describe the
Tasking-based software for the ATON project [11]. While the
project clearly profited from modeling and its code generation,
usage of the modeling tool required to understand UML,
SysML and the Tasking Framework.

To improve modeling of software based on the Tasking
Framework, we developed a tool suite including several
domain-specific languages (DSLs) that contain all tasking rel-
evant information. Figure 5 shows the editors of the different
languages. The basic work flow is to define atomic data types
first, then employ these to specify more complex data types,
which are later generated as classes. As shown in the figure,
atomic data types can be listed in a table. Additional attributes,
such as the size of these types, allows running analyses about
exchanged data and performance of components. After data
types have been specified, it is possible to model software

1Virtual Satellite: a model-based tool for space system development; web
page: https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-5135/8645 read-
8374/
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Fig. 5. Modeling tool environment for TML

components. Components can be modeled either as plain
classes or tasks and can have inputs, outputs and parameters.

After the description of data types and components, they
can be instantiated in the main part of TML, the task graph.
Instantiating components in this graphical description automat-
ically adds inputs and outputs of the components. Connecting
components validates data types and allows only compatible
elements to be connected. Tasking-specific event parameters
as well as timing and priorities of the components can be
configured in this diagram.

Besides modeling of these main components of the Tasking
Framework, it is possible to model custom communication
channels, storage types, scheduling policies and units within
the model.

B. Increased Development Productivity
The model-driven tool does not only simplifies the applica-

tion of the Tasking Framework, it also increases the efficiency
of developing software based on the framework. Projects with
model-driven software development benefit from higher short-
term productivity because users can generate new features
from the model; long-term productivity increases because
changing requirements can be handled by simply updating the
model [12]. Thus, in context of the Tasking Framework, adding
components to the diagram and connecting them generates
their execution containers and communication code. This code
does not have to be implemented manually. Furthermore,
if project requirements change and the components have to
be connected differently, reconnecting the elements in the
diagram automatically updates the software’s source code and
documentation.

As Figure 6 shows, generation from the model not only
generates source code but also build files and tests. SCons
scripts or CMake files allow to build the generated code after
generation immediately. This way, it is possible to start the
development of a project from a running system and iteratively
add new features.

C. Extensibility of the TML Model and Generated Code
To be applicable in as many projects as possible, the

modeling environment is highly extensible. Besides defining
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custom data types and components, it is also possible to
dynamically add new channel types with custom parameters.
For such new channel types, the generator creates base classes
with templates or constructor parameters depending on the
parameters definition as static or dynamic. Instances of these
custom types in the task graph are also generated as instances
of the generated class and configured with parameter values
from the model. Thus, even with a dynamic definition of new
types and parameters within the model, the generated code
remains executable.

In addition to the extensibility of the model language, the
generated code can be customized by keeping code updates
through regeneration possible. A combination of the decorator
and generation gap pattern allows customizing the generated
code by subclassing [13] [14]. The generated abstract class
is regenerated, the concrete class is generated only once and
then kept to not overwrite customizations.

V. CASE STUDY

To demonstrate the benefits of the Tasking Framework in a
simple real-time software, we recall our example in Figure 1.
Figure 7 shows the architecture of the software as TML task
graph diagram.

With the Tasking Framework, software components are
implemented as tasks, data is stored in Channels and Events
are used for periodic activation of the components. For the
execution on the prototype flight computer, we assigned four
threads to execute the software. As soon as the camera driver
task pushes an image into the subsequent channel, the feature
tracking task is notified and activated. The crater navigation
task is configured to be activated only for every second image
and, thus, runs with a reduced frequency. As the IMU driver
does not have an external trigger, it is implemented as a thread
that runs continuously and produces acceleration rate data with
a frequency of 100Hz. Because the navigation filter has to
update the output position with every IMU value, the final
flag of its input data from the IMU is set. Therefore, if the
input data from the crater navigation and feature tracking are
available they are used, otherwise they are ignored.

To model this setup with TML for generation of the
necessary tasking code, the first step is to define data types
that can be used in the software. After a definition of the
atomic types, such double and uint8_t, we can model
the data types for CameraImage, EstimatedPosition,
AccelerationRate and NavigationState. As next
step, we have to model the actual components, which are

generated as tasks. To create a model element for the
CameraDriver task, we specify an input that does not have
any data type and an output of type CameraImage. As last
step of the element definition, we specify two different channel
types: one LIFO channel with a parameter for its size and a
channel with two buffers that switch every time data is added.
In the task graph diagram we can then instantiate and connect
all the previously defined elements. As we have two cameras,
the camera driver task is instantiated twice. In the diagram
we can then configure the timing and event parameters. As
the crater navigation should run only every second image, we
configure its input with a threshold of two. With the selected
scheduling policy of priority-based, we can configure priorities
for each task.

After we described the system in a TML model, we can
generate its source code. All task definitions are generated with
their in- and output interface; their instances in the diagram
are created as objects in the software. Both cameras can be
instances of the same camera driver task. For task definitions
and custom channels, the generator creates base classes, which
can be customized by subclassing.

VI. RELATED WORK

Many platforms have been proposed for developing and
testing embedded systems. Sadvandi, Corbier and Mevel pre-
sented in [15] a real-time interactive co-execution platform
designed at Dassault Systèmes. The objective is to provide in-
tegration, co-execution and validation of heterogeneous mod-
els using model-based testing process, which comprises In-the-
Loop testing, namely, Model-In-the-Loop (MIL), Software-In-
the-Loop (SIL) and Hardware-In-the-Loop.

The Embedded Multicore Building Blocks (EMB2) [16]
is an open source C/C++ framework for the development
of parallel applications. EMB2 is developed by Siemens AG
to efficiently exploit symmetric and asymmetric multicore
processors. EMB2 provides different scheduling strategies for
both hard and soft real-time systems. Although Tasking Frame-
work supports multithreading, it is not specifically dedicated
for multicore systems.

OUTPOST is an open source mission and platform indepen-
dent library developed in the German Aerospace Center (DLR)
to design and implement reusable embedded software as early
as possible and hence to be independent from the operating
system and the underlying hardware. OUTPOST is originally
called libCOBC, and it has been used in the Eu:CROPIS
project [17], and in the ScOSA project [8]. Tasking Framework
runs on the top of OUTPOST, and makes use of the services
provided by it. One implementation of the execution model
of the Tasking Framework is dedicated for OUTPOST as we
have mentioned in Section III.

RODOS (Real-time On-board Dependable Operating Sys-
tem) [18], [19] is a real-time operating system developed at
the German Aerospace Center (DLR) for network-centric core
avionics [20]. Currently, RODOS is developed at University of
Würzburg. The main goal of RODOS developers was to make
it simple and dependable. The publisher-subscriber messaging
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Fig. 7. TML system diagram of an application of the Tasking Framework in a real-time system for optical navigation in space.

pattern is considered in RODOS. In this pattern, publishers
label messages according to predefined topics; one or more
subscribers to a given topic receive all messages that are
published under this topic. Unlike RODOS, a task in Tasking
Framework pushes its output data into the associated channel
and notifies the input of the next task/s with no call of the
execute method of that task. However, Taking Frameworks is
not an operating system.

VII. CONCLUSION

In this paper we presented our event-driven multithreading
execution platform and software development library: Tasking
Framework. It is dedicated to develop space applications which
perform on-board data processing and sophisticated control
algorithms, and have high computational demand. Tasking
Framework has been used in already flying satellites, e.g.,
Eu:CROPIS.

Tasking Framework is neither a testing platform nor an oper-
ating system. It is a set of abstract classes with virtual methods
to develop and execute data-driven on-board software systems
on single-core as well as parallel architectures. It is compatible
with the POSIX-based real-time operating systems, mainly
RTEMS and FreeRTOS. Tasking Framework is supported with
a model-driven tool environment (TML) that can be used to
generate the API and its communication code.

Our plan is to make Tasking Framework open source. A
bare-metal implementation is also on our agenda.
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