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Abstract 

 

As freshwater resources become more limited, Australian coastal cities have begun 

building seawater desalination plants, and inland communities have begun 

investigating the option of treating brackish groundwater to supplement their water 

supply. Membrane reverse osmosis (RO) is the leading technology applied in 

municipal desalination.  Despite the advances in technology, membrane scaling is a 

common problem causing membrane failure, decline in membrane flux and 

deterioration of product water quality. Since inland plants cannot dispose of RO 

concentrate into the ocean, they operate at high water recovery in order to minimize 

the volume of RO concentrate. Antiscalants (AS) are often added during RO 

pretreatment to prevent membrane scaling. Water recovery percentages (Rw) are then 

limited by AS efficacy and yet large volumes of RO concentrate are frequently 

disposed of in evaporation ponds. Therefore, it is important to find novel technologies 

to combat scaling issues. The integration of a ‘High-pH pretreatment’ in inland 

desalination plants is a promising choice for facilitating the removal of scale-forming 

precursors and other contaminants negatively affecting the desalination process. 

 

In a comprehensive project, this study investigated the efficacy of ‘High-pH 

pretreatment’ for membrane scale control and the removal of specific pollutants such 

as boron. The first phase of the project highlighted the differences between inland and 

seawater desalination and critically reviewed the existing strategies for RO concentrate 

minimization towards zero liquid discharge (ZLD) in inland desalination. In contrast 

to previous studies, the groundwater and RO concentrate collected for these 

experiments had a magnesium concentration higher than the calcium concentration. 

Furthermore, no previous studies evaluated the ‘High-pH pretreatment’ on 

magnesium-dominated water as this study does. The investigation continued further to 

assess the efficacy and utilization of two scale control technologies: acid/AS addition 

and ‘High-pH pretreatment’. Therefore, the second phase of this study evaluated 

‘High-pH pretreatment’ of a RO concentrate followed by secondary RO to increase 

overall water Rw in an existing inland desalination system. The results showed that the 

lime and soda ash softening treatment followed by pH readjustment and AS addition, 

allowed the overall water Rw to increase from 80 to 97%. Experimental trials also 

confirmed CaCO3 and CaO recovery from the precipitated sludge through CO2 gas 

injection to selectively dissolve magnesium. This success provided a further 
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opportunity to explore ‘High-pH pretreatment’ of RO concentrate followed by other 

advanced desalination technologies such as air-gap membrane distillation (AGMD).  

 

In the third phase of the study, two scale control strategies, ‘High-pH pretreatment’ 

and AS addition, for RO concentrate minimization were further investigated in a lab-

scale AGMD system. The results indicated that the first option was more efficient in 

terms of preventing scale build up in the AGMD system. Following ‘High-pH 

pretreatment’, pH readjustment and AS addition, the use of AGMD minimized the 

existing RO concentrate with a TDS level of 10.8 g/L by a concentration factor of 3.2. 

In addition, the ‘High pH-pretreatment’, using lime and soda ash, facilitated the 

operation of the AGMD system at a higher temperature, thus permeate flux also 

increased.  

 

Boron can also be present in groundwater due to natural or anthropogenic sources. It 

can produce harmful effects on human health depending on both the frequency and 

extent of exposure. Boron removal is considered to be very complex. In fact, it is 

largely unclear whether softening pretreatments can enhance boron removal in 

groundwater desalination systems. Therefore, the final phase of this study investigated 

the feasibility of ‘High-pH pretreatment’ for boron removal from magnesium-

dominated groundwater samples obtained from an existing inland desalination facility.  

Before commencing the experiments, the brackish groundwater was spiked with 5 

mg/L of boron. The results revealed that the lime and soda ash softening treatment 

achieved 33% boron removal by sorption of hydroxyborate ions onto precipitated 

magnesium silicate. An additional 9% boron removal was achieved with magnesium 

chloride addition before the softening treatment, or by a secondary polishing treatment 

by means of adsorption with MgO. This solution can safely facilitate compliance with 

strict boron standards in inland desalination plants using RO or electrodialysis 

technology.  

 

This study evaluated the efficacy of integrating a ‘High-pH pretreatment’ in inland 

desalination plants treating magnesium-dominated groundwater. The novel approach 

overcame AS limitations and increased freshwater Rw in the inland desalination plant. 

It also enabled partial removal of other contaminants such as boron. Since groundwater 

quality is site-specific, selection and optimization of the most suitable treatment for 

every single process must be based on raw water characteristics. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Rationale of study 

 

1.1.1 Background 

 

Australia is the world's driest continent and has always battled drought. One of the 

worst droughts in recent times was the Millennium Drought from late 1996 to mid-

2010, affecting the areas around Perth, Adelaide, Melbourne, Hobart, Canberra, 

Sydney and Brisbane (BOM, 2015). As a result of drought, climate change and 

population growth in urban centres, Australia began building desalination plants that 

purify seawater using reverse osmosis (RO) technology to drought-proof cities located 

in coastal areas (El Saliby et al., 2009). For inland communities which do not have 

access to seawater, the desalination of brackish groundwater resources has become 

more common. Groundwater desalination for domestic supply currently makes up 

1.2% of Australia's total desalination capacity, although the number of inland 

desalination plants is expected to increase in the future (NSW Public Works, 2011). 

However, cost and concentrate management remain major challenges limiting the 

construction of new inland desalination facilities (Mickley, 2011).  

 

Groundwater is available for use throughout large parts of Australia. Western 

Australia, New South Wales, and Northern Territory are the states and territories with 

more reliance on groundwater resources. The highest concentration of groundwater 

use is in the Murray-Darling Basin which extends through most of inland south-eastern 

Australia, including much of the country's best farmland. The Great Artesian Basin 

also includes aquifers where groundwater is highly developed. However, much of the 

groundwater is too saline for drinking or agriculture use, requiring prior desalination 

(Harrington and Cook, 2014). Brackish groundwater has a higher salt concentration 

than freshwater, but lower concentration than seawater (NSW Public Works, 2011). 

This research project defines brackish groundwater as having a level of total dissolved 

solids (TDS) between 1,000 mg/L (the upper limit set by drinking water quality 

standards) and 10,000 mg/L (the lower limit of saline water). Figure 1.1 shows the 

https://en.wikipedia.org/wiki/Desalination_plants
https://en.wikipedia.org/wiki/Reverse_osmosis
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proportion of each groundwater region in Australia with salinity (measured as TDS) 

above 1,500 mg/L. 

 

Figure 1.1 Percentage of areas with groundwater salinity > 1,500 mg/L TDS (Harrington and Cook, 

2014) 

 

Overall, Australian surface water resources have become limited and tightly regulated. 

As a consequence, Australia’s groundwater is considered to be a major and alternative 

source of water for many communities, industries, farms and environments. In fact, its 

use has increased over the past years. Although there is a lack of accurate statistics on 

groundwater extraction, it has been estimated that total water consumption in Australia 

is about 15,000 GL/year, with 5,000 GL/year sourced from groundwater, and the 

remainder (10,000 GL/year) sourced from surface-water (Harrington and Cook, 2014). 
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1.1.2 Reverse osmosis (RO) technology 

 

RO is the dominant technology in seawater desalination and, in Australia, is almost 

exclusively employed in inland desalination. RO is a pressure driven treatment process 

in which a semipermeable membrane rejects salts and other species present in the feed 

water (NSW Public Works, 2011). Current commercial RO membranes used in 

seawater and brackish water desalination are operated in crossflow mode. Such RO 

membranes are almost exclusively made of composite aromatic polyamide in a spiral 

wound configuration. Polyamide membranes are used in all areas of applications, and 

are stable in the pH range of 2 to 10, but have very limited tolerance to free chlorine. 

In past years, the incorporation of variable speed drives and power recovery devices 

have significantly reduced power consumption and operating costs in RO desalination 

plants (Wilf, 2007).  

 

1.1.3 Differences between seawater and inland desalination plants 

 

While RO technology can be employed to desalinate both seawater and brackish inland 

water, there are substantial process differences as listed below: 

 

• Inland plants cannot dispose of RO concentrate  into the ocean, which amounts 

to 15-35% of feed water in plants having a single concentrate stage (Mickley, 

2011). The objective of inland desalination plants is, therefore, high water 

recovery (Rw) that also minimizes the volume of RO concentrate. The 

consequence of high water Rw in brackish desalination is the increased scaling 

propensity which also leads to permeate flux decline and shortening of the 

membrane’s useful life (Rahardianto et al., 2007). In addition, operating 

pressures are higher in scaled membranes while salt rejection is lower (Amjad, 

2010).  These problems are currently largely unresolved,  

• Inland desalination plants provide higher water Rw (75-90%), and require 

lower operating pressures due to the lower osmotic pressure of brackish water 

(Greenlee et al., 2009)  

• Seawater desalination plants operate at higher pressures to compensate for the 

higher osmotic pressure of seawater and provide higher salt rejection. Typical 
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water Rw ranges from 35 to 45% (Greenlee et al., 2009) and is limited by 

maximum feed pressure, energy consumption, and allowable salinity/boron 

concentration in the RO permeate (DOW, 2007)  

• Production capacity and the required investment per unit of production 

capacity are higher in seawater than in brackish groundwater desalination 

plants (Greenlee et al., 2009)  

• RO treatment to produce drinking water from seawater is considered to be a 

mature technology with substantial plants operating in Australia and 

worldwide (Fell, 2014). By contrast, high cost and RO concentrate 

management remain major challenges limiting the construction of new inland 

desalination plants (Mickley, 2011). 

 

1.1.4 Fouling, biofouling and scaling in inland desalination 

 

RO filtration is not a panacea in water desalination. Despite its advances,  fouling, 

mineral salt scaling and degradation are common problems in water treatment; causing 

membrane failure, decline in membrane flux and a deterioration in product water 

quality due to salt passage (Amjad, 2010). Surface fouling occurs when microbial 

material, soluble organics, dissolved solids or suspended solids are deposited on the 

surface of the membrane or on the feed-channel spacers (Greenlee et al., 2009). 

Biofouling involves the formation of a biofilm from the growth of microorganism on 

the RO membrane surface (Weinrich et al., 2016). Finally, membrane scaling involves 

salt precipitation on the surface of the membrane and on the feed channel spacer 

(Amjad, 2010). 

 

Seawater desalination membranes can be fouled primarily by organic and particulate 

material (Greenlee et al., 2009; Rodriguez, 2011). Seawater desalination facilities 

working with open intakes are also prone to biofouling (DOW, 2007). Precipitation is 

less likely to occur in seawater desalination due to the lower Rw, seawater 

composition, and the higher ionic strength of the solution (Greenlee et al., 2009).   

 

Brackish water desalination membranes are mainly fouled by precipitation and 

dissolved inorganic salts. Concentration factor (CF) is defined as the ratio between 
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concentrate TDS concentration and feed TDS concentration. When the water Rw is 

increased, CF increases more dramatically in brackish water than in seawater 

desalination plants, enhancing salt precipitation (Greenlee et al., 2009). Sparingly 

soluble salts that can scale the RO membrane are CaCO3, CaSO4, BaSO4, SrSO4 and 

CaF2. SiO2 can also scale the RO membrane (Sutzkover-Gutman and Hasson, 2010). 

Figure 1.2 shows the effect of increasing Rw on CF considering the typical range of 

water Rw for seawater and brackish water operation. 

 

 

Figure 1.2 The effect of increasing Rw on CF 

 

1.1.5 Pretreatment options in inland desalination 

 

Pretreatment is essential to offset fouling and scaling in inland RO systems. 

Conventional pretreatment technologies that can be applied to avoid fouling/scaling 

issues in brackish water desalination plants are described below:  

 

• Ultraviolet (UV) disinfection  (NSW Public Works, 2011) or oxidant addition 

including ozone, chloramine, potassium permanganate or chlorine to deactivate 

any bio-organisms that could foul the membrane (Greenlee et al., 2009). 

Polyamide membranes are incompatible with traditional biocides like chlorine, 

so disinfectants can only be applied in specific circumstances and in 
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combination with activated carbon or sodium bisulphite to remove residual 

chlorine (DOW, 2007) 

• pH adjustment to increase the solubility of calcium carbonate (MWH, 2005) 

• Coagulant addition prior to filtration to facilitate the removal of smaller 

particles (Amjad, 2010)  

• Granular media filtration with sand, anthracite, pumice, gravel or garnet 

(Greenlee et al., 2009) 

• Antiscalant (AS) addition to prevent scaling by species such as calcium 

carbonate and sulphate, barium sulphate, and silica (Ruiz-García et al., 2015; 

Amjad, 2010) 

• An ion-exchange process (sodium softeners) could be an option to remove 

hardness and trace cations (Amjad, 2010). However, total hardness reduction 

by ion-exchange technology can be limited by water chemistry and high 

chemical regeneration costs (Milne et al., 2014). Currently, there are no 

municipal desalination plants in Australia incorporating ion-exchange 

technology (NSW Public Works, 2011). Therefore, this technology was 

disregarded in this study 

• Cartridge filters to remove particles greater than 5-10 µm, which  will foul 

membrane channels used to remove the RO concentrate (Greenlee et al., 2009)  

• A more recent trend in RO pretreatment involves the use of larger pore size 

membranes like microfiltration, nanofiltration and ultrafiltration (UF) to pre-

treat RO feed water (Greenlee et al., 2009; Qiu and Davies, 2012). The main 

disadvantage of this approach is that the prefiltration membranes can also be 

fouled (Greenlee et al., 2009). 

 

Overall, conventional pre-treatment mainly relies on AS addition to prevent salt 

precipitation during brackish water desalination (Greenlee et al., 2009). Water Rw is 

then limited by AS efficacy (Rahardianto et al., 2007), and large volumes of RO 

concentrate are often disposed of in evaporation ponds (NSW Public Works, 2011). In 

summary, the exploration of more effective technologies to combat scaling related 

issues during inland desalination is essential.  
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1.1.6 Proposed technology: ‘High-pH pretreatment’ 

 

Some researchers have studied different state of the art technologies for RO 

concentrate minimization (Pérez-González et al., 2012; Morillo et al., 2014). The 

present study will evaluate the integration of a ‘High-pH pretreatment’ between 

consecutive RO stages for scale control, RO concentrate minimization and recovery 

of by-products in inland desalination systems. The process combines softening with 

coagulation/flocculation at elevated pH. The ‘High-pH pretreatment’ involves the 

addition of a suitable base to increase the process pH to a suitable range. The chemical 

reactions result in precipitation and flocculation, which allow the removal of 

undesirable species by simple physical separation processes like settling and/or 

filtration. Following pH readjustment and final AS addition, the use of secondary RO 

will allow an increase of water Rw. Remarkably, CaCO3 and CaO recovery from 

precipitated sludge could be possible. To date, the evaluation of an intermediate 

‘chemical precipitation treatment’ for RO concentrate minimization has only been 

reported in relation to waters with a calcium concentration higher than the magnesium 

concentration (Williams et al., 2002; Ning et al., 2006; Bond and Veerapaneni, 2007; 

Rahardianto et al., 2007; Mohammadesmaeili et al., 2010; Gabelich et al., 2011). It is 

important to emphasise that the concentrate used in most of these previous experiments 

was derived from desalination plants treating reclaimed water (Mohammadesmaeili et 

al., 2010) or brackish surface waters (Williams et al., 2002; Rahardianto et al., 2007; 

Gabelich et al., 2011). In contrast, the present project will enhance and extend the 

process to develop an integrated technology for RO concentrate minimization during 

the desalination of magnesium-dominated groundwater, with a focus on viable by-

products recovery. 

  

In addition, there is a clear opportunity to investigate the combination of a ‘High-pH 

pretreatment’ with more advanced desalination systems such as membrane distillation 

(MD) for high salinity RO concentrate minimization. Therefore, this research will 

compare two different scale control strategies: ‘High-pH pretreatment’, and AS 

addition for RO concentrate minimization in a lab-scale ‘air gap membrane 

distillation’ (AGMD) system. The literature survey found that only one paper 

evaluated chemical demineralization pretreatment of a RO concentrate followed by 

MD technology, but it used direct contact membrane distillation instead of AGMD. 
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Furthermore, the study was performed with low salinity RO concentrate (Qu et al., 

2009). 

 

Finally, this study will also investigate the feasibility of ‘High-pH pretreatment’ for 

boron removal from magnesium-dominated groundwater samples obtained from an 

existing inland desalination facility. A High-pH softening treatment for boron removal 

has been reported in only a few studies and for different kinds of waters (Parks and 

Edwards, 2005, 2006, 2007; Ayoub et al., 2014; Rodarte and Smith, 2014). The 

efficacy of using this solution in magnesium-dominated groundwater is the least 

explored. The mechanism for boron removal could be related to magnesium 

precipitation during the softening treatment. If successful, this solution could safely 

facilitate compliance with strict boron standards in inland desalination plants using RO 

or electrodialysis technology.  

 

The overall aim of this research is to provide an insight into technical alternatives for 

the integration of a ‘High-pH pretreatment’ in inland desalination plants for RO 

concentrate minimization, by-products’ recovery and removal of specific pollutants 

(such as boron). 

 

1.2 Research gaps 

 

1. No studies have focussed on the integration of a ‘High-pH pretreatment’ 

between consecutive RO stages for scale control, concentrate minimization and 

by-products’ recovery in a municipal desalination system dealing with 

magnesium-dominated groundwater  

2. No previous research has been conducted on the integration of a ‘High-pH 

pretreatment’ and AGMD for RO concentrate minimization in a municipal 

desalination facility treating magnesium-dominated groundwater 

3. It is unclear whether ‘High-pH pretreatment’ can enhance boron removal in 

inland desalination systems treating magnesium-dominated groundwater. 
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1.3 Research questions 

 

The main research question in this study is: Can ‘High-pH pretreatment’ be integrated 

in existing or future inland desalination systems to overcome AS limitations, increase 

freshwater Rw, provide salt recovery options and remove specific pollutants such as 

boron? This research question leads to a subset of further questions:  

 

1. How effective is ‘High-pH pretreatment’ of RO concentrate in preventing scale 

build up in secondary RO and improving the overall water Rw of the 

desalination system? 

2. Can ‘High-pH pretreatment’ facilitate potential recovery of by-products from 

precipitated sludge? 

3. Can ‘High-pH pretreatment’ be combined with AGMD for RO concentrate 

minimization in an existing inland desalination system? 

4. How effective is ‘High-pH pretreatment’ in removing boron from magnesium-

dominated groundwater? 

 

1.4 Research aim and objectives 

 

The overall aim of the project is to investigate the integration of a ‘High-pH 

pretreatment’ in existing or future inland desalination systems for scale control, RO 

concentrate minimization, removal of specific pollutants (such as boron) and by-

products’ recovery from precipitated sludge. The main objectives are as follows:  

 

1. To elucidate the differences between inland and seawater desalination, review 

the existing strategies for RO concentrate minimization towards zero liquid 

discharge (ZLD) in inland desalination, and compare two different scale 

control technologies: acid/AS addition and ‘High-pH pretreatment’ 

2. To evaluate the removal of scale-forming precursors from primary RO 

concentrate including magnesium, calcium, barium, strontium and silica to 

increase water Rw in a secondary RO and to assess the recovery of by-products 

such as CaCO3 and quicklime from precipitated sludge 



Chapter 1 Introduction 

10 

 

3. To compare the efficacy of two different scale control technologies, AS 

addition and ‘High-pH pretreatment’ (followed by pH adjustment and final AS 

addition) in terms of RO concentrate minimization in a lab-scale AGMD unit  

4. To investigate the efficacy of a ‘High-pH pretreatment’ for boron removal in 

inland desalination systems treating magnesium-dominated groundwater. 

 

1.5 Organization of the thesis  

 

This thesis has been structured in seven chapters, and this is represented schematically 

in Figure 1.3.  

 

Chapter 1 identifies the rationale of the study, research gaps, research questions, 

research aim and objectives.  

 

Chapter 2 presents a review of literature associated with the major aspects of this 

study. 

 

Chapter 3 provides  Paper I (A review of strategies for RO brine minimization in 

inland desalination plants) that presents the main differences between inland and 

seawater desalination, reviews feasible strategies for RO concentrate minimization 

towards ZLD in inland desalination facilities, and compares two different scale 

prevention methods in RO desalination: acid/AS addition and ‘High-pH pretreatment’.  

 

Chapter 4 presents  Paper II (Research on ‘High-pH precipitation treatment’ for RO 

concentrate minimization and salt recovery in a municipal groundwater desalination 

facility) that explores the integration of an intermediate ‘High-pH pretreatment’ 

between consecutive RO stages for scale control, concentrate minimization and by-

products’ recovery in a municipal desalination facility treating magnesium-dominated 

groundwater.  

 

Chapter 5 presents Paper III (The effect of ‘High-pH pretreatment’ on RO concentrate 

minimization in a groundwater desalination facility using batch air gap membrane 

distillation) that compares the efficacy of two scale prevention technologies: ‘High-
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pH pretreatment’ and AS addition for RO concentrate minimization in a lab-scale 

AGMD system.  

 

Chapter 6 presents Paper IV (‘High-pH softening pretreatment’ for boron removal in 

inland desalination systems) that investigates the capabilities of a ‘High-pH 

pretreatment’ for boron removal from magnesium-dominated groundwater samples 

collected from an existing municipal desalination plant. 

 

Chapter 7 summarizes the main conclusions of this research and gives 

recommendations for practice and future research. 
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Figure 1.3 Organization of the thesis

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1: Introduction 
1. Provides background, rationale and justification of the research 

2. Formulates research gaps, research questions, research aim and objectives 

 

Chapter 2: Literature review 

1.  Provides an overview of the related literature for the PhD thesis 

2.  Identifies research gaps for this research 

 

Chapter 3: Paper I 

1. Highlights differences between 

seawater and groundwater 

desalination 

2. Reviews strategies for RO 

concentrate minimization towards 

ZLD in inland desalination 

3.  Compares two scale prevention 

technologies: acid/AS addition and 

'High-pH pretreatment' 

 

Chapter 4: Paper II 

1. Investigates the application of a 

'High-pH pretreatment’ between 

consecutive RO stages for RO 

concentrate minimization 

2. Evaluates the recovery of by-

products from precipitated sludge 

 

Chapter 5: Paper III 

1. Compares two scale prevention 

technologies: AS addition and 

'High-pH pretreatment' for RO 

concentrate minimization in a lab-

scale AGMD system 

 

Chapter 6: Paper IV 

1. Investigates the 

feasibility of a 'High-pH 

pretreatment' for boron 

removal from groundwater 
 

RO concentrate minimization Boron removal from 

groundwater 

Chapter 7: Conclusions and recommendations 

1.  Provides a summary of key outcomes from all papers of  

the thesis 

2.  Identifies feasible recommendations for further research 
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter is organized into four sections. The first section provides an overview of 

Australia’s groundwater resources, RO technology and brackish groundwater quality. 

The second section discusses the differences and similarities between brackish water 

and seawater desalination. The third section describes the major fouling and scaling 

categories in brackish water desalination and the available pretreatment technologies. 

It also provides the justification for the selection (in this research) of an intermediate 

‘High pH-pretreatment’ between consecutive RO stages or between RO and AGMD 

for RO concentrate minimization and by-products recovery. Finally, the fourth section 

describes the choice of other contaminants, such as boron, that were also used to 

explore the efficiency of ‘High-pH pretreatment’ prior to RO desalination.  

 

Chapter 3 includes the manuscript entitled ‘A review of strategies for RO brine 

minimization in inland desalination plants’ which extends and complements the 

information provided in this chapter. 

 

2.1 Groundwater essentials and management  

 

2.1.1 Australia’s groundwater resources  

 

Groundwater is a vital source of water throughout Australia and makes up about 17% 

of Australia’s accessible water resources. Many mining operations, some indigenous 

communities and remote pastoral properties depend exclusively on it for their water 

supply (National Water Commission, 2012). Groundwater consumption in Australia is 

estimated to be around 5,000 GL per annum and about 70% of this resource is used for 

agricultural or pastoral purposes. Western Australia, Queensland and New South 

Wales are the highest users of groundwater. In Western Australia about 38% of the 

extracted groundwater is used in mining activities (Harrington and Cook, 2014). 

Figure 2.1 shows a map of Australia’s groundwater resources.  
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Figure 2.1 Australia’s groundwater resources (Harrington and Cook, 2014) 

 

2.1.2 RO technology in groundwater desalination 

 

In many cases, the concentration of salts is so high that the groundwater is unsuitable 

for drinking or agricultural purposes without prior treatment to remove dissolved salts 

(NSW Public Works, 2011; Harrington and Cook, 2014). Membrane desalination 

using RO or nanofiltration membranes has been the dominant technology applied in 

municipal inland desalination (NSW Public Works, 2011). Table 2.1 shows a list of 

Australia’s inland desalination facilities using RO technology. In the USA about 96% 

of the more than 300 desalination municipal desalination facilities are located inland 

and 77% of them use RO technology (Mickley, 2011).  A design including a single 

RO stage system with an additional module connected to minimize the RO concentrate 

has been considered as the best option both economically and environmentally 
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(Alghoul et al., 2009). Water Rw can be increased up to 80% using this configuration 

(DOW, 2007).   

Table 2.1  

Brackish water desalination plants in Australia (NSW Public Works, 2011). 

Brackish water desalination plants  Operation and Maintenance Capacity (KL/day) 

Yalata, SA Council - Osmoflo 160 

North Star, NSW Council  265 

Dalby, QLD  Council 4,000 

Coober Pedy, SA  Council 1,500 

 

However, RO concentrate management and disposal remains a major challenge 

especially for inland areas that have very limited management and disposal options 

(Brady et al., 2005; Bond and Veerapaneni, 2007; NSW Public Works, 2011; Fell, 

2014). Evaporation ponds, surface water discharge, discharge to wastewater treatment, 

subsurface injection and land application are common RO concentrate disposal 

methods used in brackish water desalination (Mickley, 2008).  

 

2.1.3 Brackish groundwater quality 

 

Groundwater varies in quality, quantity and depth depending on factors like the host-

rock type, nature of overlying soils, and rainfall. Salts from surrounding strata can 

dissolve ions in the groundwater, increasing the salt concentration (NSW Public 

Works, 2011). Brackish groundwater has a TDS level ranging from 1,000 to 10,000 

mg/L (National Groundwater Association, 2010). The most abundant ions in brackish 

groundwater are calcium and magnesium carbonates, chlorides and sulphates. Sodium 

chloride is also present, although in a lower proportion than in seawater (NSW Public 

Works, 2011). The ratios of calcium/TDS, carbonate/TDS or sulphate/TDS are higher 

in brackish water than in seawater (Greenlee et al., 2009). Other elements that can be 

present in brackish groundwater are barium, iron, manganese, and silica, causing 

scaling/fouling issues in membranes (NSW Public Works, 2011). Precipitation of 

CaCO3, CaSO4, BaSO4, SrSO4, CaF2, Mg(OH)2 or SiO2 can become the limiting factor 

during the RO desalination process if the concentration product of the salt forming 

constituents exceeds the solubility product (Ksp) (Sutzkover-Gutman and Hasson, 

2010). Boron can also be present in groundwater from natural or anthropogenic 
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sources (Cengeloglu et al., 2008; Xu and Jiang, 2008). In addition, other pollutants 

found in brackish waters include arsenic, fluoride, nitrates and pesticides. In general, 

brackish water has a low organic carbon content and low particulate or colloidal 

pollutant levels (Greenlee et al., 2009). Table 2.2 compares the chemical composition 

of Dalby (Australia) well water with examples of brackish inland waters worldwide. 

The mass ratio Ca/Mg in Dalby groundwater was only 0.64, while the same ratio in 

other brackish waters ranged from 1.35 to 14. In contrast to previous studies, this 

research was performed with magnesium-dominant groundwater and RO concentrate 

collected in a municipal desalination plant located in Dalby. It was hypothesized that 

freshwater Rw and by-products recovery could be enhanced in inland desalination 

facilities treating magnesium-dominated waters as magnesium-bearing minerals 

precipitating at high-pH could concurrently remove other scale-forming precursors 

and pollutants through precipitation and adsorption/enmeshment. 

Table 2.2  

Chemical composition of brackish groundwaters (Brady et al., 2005; DOW, 2007; Greenlee et al., 

2009). 

Parameter Groundwater 

Las Vegas 

(USA) 

Tularosa 

Basin 

(USA)  

Martin 

County 

(USA)  

Well  

water 

(Germany)  

Dalby  

well water 

(Australia)* 

TDS (mg/L) 5,270 2,630 3,664 478 1,928 

HCO3 (mg/L) 210 270 146 265 434 

Na (mg/L) 755 114 905 36 551 

K (mg/L) 72 2 -- 3.3 3.1 

Ca (mg/L) 576 420 179 84 50 

Mg (mg/L) 296 163 132 6 78 

SiO2 (mg/L) 77 22 -- 9 33 

Cl- (mg/L) 954 170 1,867 45 863 

NO3
- 31 10 -- 4.3 2 

SO4
2- (mg/L) 2,290 1,370 384 24 143 

PO4
3- (mg/L) -- 0 -- <0.05 0.3 

(*) Note: Dalby groundwater average concentrations were extracted from data supplied by the Western 

Downs Regional Council related to the period November 2010 to October 2014. Sampling point: Bore 

12. 
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2.2 Differences between seawater and brackish water desalination  

 

The main differences between seawater and brackish groundwater desalination are 

described below. 

 

• Seawater salinity ranges from 35,000 to 45,000 mg/L TDS, while brackish 

water salinity ranges from 1,000 to 10,000 mg/L TDS (Greenlee et al., 2009). 

The Australian Drinking Water Guidelines recommend that for good 

palatability, TDS in drinking water should not exceed 600 mg/L (NHMRC and 

NRMMC, 2011). Overall, most RO desalination facilities are designed to 

produce drinking water with TDS concentration below 500 mg/L (Greenlee et 

al., 2009) 

• Seawater desalination plants are located in big cities and are designed to 

produce large volumes of drinking water, while inland desalination plants are 

often located in small towns and villages like Dalby (Queensland) and Coober 

Pedy (South Australia) with low treatment volumes (NSW Public Works, 

2011). Consequently, inland desalination plants have cost disadvantages 

related to economies of scale (Brady et al., 2005) 

• Mass transfer in RO desalination involves a diffusive process, where separation 

depends on solute concentration, water flux rate and pressure (MWH, 2005). 

Osmotic pressure can be defined as the minimum pressure which needs to be 

applied to a solution to prevent the inward flow of water across a 

semipermeable membrane. RO desalination requires a hydrostatic pressure 

higher than the osmotic pressure to create permeate flow through the 

membrane against the natural direction of osmosis. The osmotic pressure 

depends on the solution concentration and the temperature (Greenlee et al., 

2009). The following equation relates osmotic pressure (), temperature (T) 

and concentration (C) (Degrémont and Lyonnaise des eaux-dumez, 1991):  

* *C R T =                                                                                              (1) 

 with C difference in concentration (mol/m3) and R ideal gas constant. The 

osmotic pressure of seawater is in the range of 2,300 and 2,600 kPa while the 

osmotic pressure of brackish water is in the range of 100 and 300 kPa. To 

produce drinking water, the osmotic pressure has to be exceeded therefore, feed 
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pressures in RO systems vary from 6,000 to 8,000 kPa in seawater desalination, 

and from 600 to 3,000 kPa in brackish water desalination. Consequently, 

brackish water treatment demands less power than seawater desalination due 

to the lower feed salinity (Greenlee et al., 2009). In seawater desalination 

plants, power recovery devices are common and average overall efficiencies 

up to 65% have been reported (Farooque et al., 2008) 

• Rw is defined as the relation between permeate volumetric flow (Qp) and feed 

volumetric flow rate (Qf) (Rahardianto et al., 2007). An increase in Rw requires 

higher feed pressure and higher permeate flux (Greenlee et al., 2009). Water 

Rw in brackish water desalination plants can be up to 90% while in seawater 

desalination facilities, typical water Rw ranges from 35 to 45% (Greenlee et 

al., 2009). Overall, the water Rw limit in brackish desalination plants is 

determined by the osmotic pressure of the concentrated solution at the 

membrane surface and the tendency of other constituents to precipitate sooner 

than sodium chloride (Fell, 2014): 

Qp
Rw

Qf
=                                                                                                       (2) 

• In brackish water desalination salt passage through the membrane is an 

important phenomenon that increases with the salt concentration and the 

temperature. In seawater desalination, in the common feed salinity range, the 

effect of salinity on the salt passage is less significant and it is usually neglected 

in permeate salinity calculations (Wilf, 2007) 

• Membrane salt rejection (Rej) is a measure of RO membrane performance and 

it can be given for crossflow operation systems as: 

Re 1
Cp

j
Cf

= −                                                                                               (3) 

where Cp = concentration in permeate, mole/L and Cf = concentration in feed 

water, mole/L (MWH, 2005). Brackish water membranes provide lower salt 

rejection than seawater membranes. Both water and salt permeability increase 

with temperature (Greenlee et al., 2009) 
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• Seawater desalination facilities are often designed with one or more passes 

depending on different factors, such as boron initial concentration, water Rw, 

energy costs, and product water standards (Greenlee et al., 2009). On the other 

hand, a design including a single stage with an additional module connected to 

treat  the RO concentrate is recommended in brackish water desalination 

systems (Alghoul et al., 2009)  

• Membrane replacement in seawater desalination plants may be required  after 

5 to 7 years of operation (Wilf, 2007), whereas brackish RO systems require 

membrane replacement after 3 to 5 years of operation (NSW Public Works, 

2011) 

• Concentrated brine in seawater desalination plants is discharged back into the 

ocean, whereas RO concentrate in brackish desalination plants is often 

discharged to the sewerage network, surface waters, land application or 

evaporation ponds (Brady et al., 2005).  

 

2.3 Fouling, biofouling and scaling in brackish water desalination 

 

2.3.1 Guidelines for RO feed water quality 

 

Brackish waters show a wide variation in feed water composition. This has a big 

influence on process design and the level and cost of water Rw (Brady et al., 2005; 

Greenlee et al., 2009). Table 2.3 shows general feed water quality guidelines adopted 

in RO desalination to guarantee successful operation of the RO membranes. 
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Table 2.3  

Feed water quality guidelines. 

 Parameter Measure Guideline 1 

(Amjad, 2010) 

Guideline 2 

(DOW, 2007) 

Species causing 

fouling 

Turbidity NTU <1  --- 

Colloids SDI <5 <5 

Microbes dip slides <1,000 --- 

Organics (TOC) mg/L < 3  < 3  

COD mg/L --- < 10 

Oil and grease mg/L --- < 0.1 

Colour APHA <3  --- 

Free chlorine mg/L --- < 0.1 

Metals (Fe, Mn, Al) mg/L <0.05 --- 

Ferrous iron mg/L --- < 4 

Ferric iron mg/L --- < 0.05 

Manganese mg/L --- < 0.05 

Aluminium mg/L --- < 0.05 

Hydrogen sulphide mg/L < 0.10 --- 

Species causing 

scaling 

Calcium carbonate LSI <0a --- 

Sulphate-based 

compounds  

mg/L <0.05b --- 

Silica  mg/L <200c --- 

Notes: a) Can be up to 1.5 with AS, b) for barium and strontium, and c) measured in the RO concentrate 

stream, varies with temperature and pH. 

 

2.3.2 Pretreatment technologies in inland desalination plants in Australia 

 

Generally speaking, brackish water desalination plants are mainly fouled by dissolved 

inorganic salts and precipitation,  although fouling can be aggravated by particulate 

and organic material (Greenlee et al., 2009). In addition, disinfection may be required 

in some circumstances (Qiu and Davies, 2012). Overall, pretreatment and AS addition 

are essential to avoid fouling/scaling problems on RO membranes. Table 2.4 shows 

common pretreatment technologies applied in groundwater desalination facilities in 

Australia (NSW Public Works, 2011). As AS is added at all existing facilities during 

RO pretreatment, membrane scaling is considered to be a common problem limiting 

freshwater Rw in all cases. 
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Table 2.4  

Pretreatment technologies in brackish desalination plants in Australia (NSW Public Works, 2011). 

Pretreatment  Yalata, SA North Star, NSW Dalby, QLD Coober Pedy, SA 

UV radiation   ***  

Aeration tank  ***   

Birm filters1  ***   

Chlorine disinfection    *** 

Sodium metabisulphite    *** 

Green sand filters    *** 

Media filters ***  ***  

Cartridge filters *** *** *** *** 

AS addition *** *** *** *** 

(1) Birm filters are used to remove oxidized iron particles. 

 

The operating costs of a 250 m3/day desalination plant in Australia dosing AS during 

RO pretreatment have been estimated to be US$102,254. As shown in Figure 2.2, AS 

and other chemical additions during RO pretreatment represent 3.4% of the total 

operating costs. However, this cost has to be assessed individually for any desalination 

project. RO concentrate management and disposal also represent 3.4% of the total 

operating costs. On the other hand, the cost of power use rises to 8.5 %, though this 

depends on groundwater quality. Finally, membrane replacement cost becomes 

significant, accounting for 30 % of the total operating costs. Membrane replacement 

is typically performed every 3 to 5 years although the level of pretreatment and 

groundwater quality has a great impact on the operating life of RO membranes (NSW 

Public Works, 2011).   
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Figure 2.2 % of the total operating cost in a typical 250 m3/day RO desalination plant in inland Australia 

 

2.3.3 Major fouling and scaling categories in brackish water desalination 

 

2.3.3.1 Biofouling  

 

Biofouling is due to biofilm attachment and growth on the surface of the RO membrane 

or in the membrane’s feed channels (MWH, 2005). In drinking water distribution 

networks, biofouling depends on the presence of nutrients (Vrouwenvelder et al., 

2010). It also depends on other factors such as pH, dissolved oxygen content and 

temperature (Abd El Aleem et al., 1998). As a consequence of the biofilm, RO 

membrane resistance is increased and a gel is formed between the water and membrane 

surface (Flemming, 1997). Biofouling may originate loss of flux, reduced solute 

rejection, and increased head loss through membrane modules, membrane 

degradation, poor permeate quality and reduced membrane life (MWH, 2005).  

 

Biofouling is often prevented in inland desalination facilities in Australia by UV 

radiation or chlorine disinfection (NSW Public Works, 2011). Ultrafiltration 

technology (UF) can also be incorporated for water disinfection (DOW, 2011). If 

disinfection is performed by chlorine addition, de-chlorination is essential because 

polyamide membranes cannot be exposed to free chlorine. Sodium bisulphite is 



Chapter 2 Literature review 

  

26 

 

frequently used to eliminate free chlorine in RO desalination systems (Wilf, 2007). 

Rather than using biocides, it might be more efficient to limit the nutrient content of 

the water to minimize potential biomass (Flemming, 1997).  

 

2.3.3.2 Fouling due to particulate matter  

 

Particulate fouling is a major concern in RO systems as RO technology does not 

include a back-washing step to remove foulants. Both inorganic and organic foulants 

may cause plugging and cake formation. Plugging refers to the accumulation of 

particles in the feed channels and piping. Cake formation occurs on the membrane 

surface, adding resistance to the flow and reducing system performance (MWH, 2005). 

 

Plugging can be avoided with the use of cartridge filters. Cake formation can be 

avoided by coagulation and filtration pretreatment using sand, carbon or other media 

filters (MWH, 2005). Ferric chloride is considered a common coagulant in RO 

desalination. The use of aluminium salts is risky as precipitation of aluminium silicates 

can damage the membranes (Greenlee et al., 2009). Most inland desalination plants in 

Australia currently use a combination of media filters followed by cartridge filters 

(NSW Public Works, 2011). Fouled membranes exhibit higher operation pressure and 

increased pressure drop. In addition, the foulants layer and the presence of foulants on 

the feed channel spacer increase resistance to the cross flow of feed water across the 

membrane (Amjad, 2010).  

 

The Silt Density Index (SDI) and turbidity are used to measure the potential for fouling 

with colloids and suspended solids (Amjad, 2010). The SDI test involves measuring 

the rate of plugging of a 0.45-micron filter by feed water at standard conditions 

(ASTM, 2014). The lower the SDI, the lower the potential for fouling (GE Power & 

Water. Water & Process Technologies, 2010; Amjad, 2010). 

 

2.3.3.3 Fouling due to organic matter 

 

Total organic carbon (TOC) levels under 3 mg/L have little effect on membrane 

permeability. However, high concentrations can result in flux decline due to adsorption 
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of organic matter on the membrane surface (Wilf, 2007). Organic matter can also 

provide nutrients that sustain microbial colonies (Amjad, 2010). The removal of oil 

and grease before they reach the RO membrane is essential, and air flotation or media 

filtration with flocculation can be used for this purpose (Wilf, 2007).   

 

2.3.3.4 Scaling 

 

Some constituents present in brackish groundwater can precipitate if the concentration 

product of salt forming exceeds its solubility product (Wilf, 2007). Mineral salt scaling 

can be defined as the precipitation and deposition of sparingly soluble salts such as 

calcium carbonate, barium sulphate, calcium sulphate, strontium sulphate and calcium 

fluoride (DOW, 2007). Silica is also a common scale in groundwater desalination.  

Scaling on RO membranes is due to a concentration phenomenon, and chiefly occurs 

at the last stage of multistage RO systems where salt concentration is at its highest 

(Amjad, 2010). 

 

Concentration polarization is a key issue in RO desalination, since precipitation occurs 

in the more concentrated area near the membrane surface (MWH, 2005). It could be 

defined as the ratio of salt concentration at the RO membrane surface and salt 

concentration in the bulk solution (Greenlee et al., 2009). Without pretreatment, 

scaling can be minimized by reducing concentration polarization, limiting salt 

rejection (undesirable when producing drinking water), or limiting water Rw (MWH, 

2005). Scaled membranes require higher than normal operating pressure and the 

system presents lower salt rejection as a consequence of concentration polarization 

(Amjad, 2010).  

 

Calcium carbonate is the most common scale in brackish desalination systems (Amjad, 

2010). Calcium carbonate scale can be minimized by adjusting the process pH to 5.5-

6.0 to convert carbonate to bicarbonate and CO2. The formed carbon dioxide gas 

passes through the membrane (MWH, 2005). However, it is important to note that 

sulphuric acid addition to decrease pH can enhance the formation of scales of calcium, 

barium and strontium (Amjad, 2010).  
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The LSI is a measure of a solution’s ability to dissolve or deposit calcium carbonate. 

LSI is defined as the difference between actual pH (measured) and calculated pH at 

which water is saturated with calcium carbonate (pHs) (DOW, 2007).  

 

s(pH pH )LSI = −                                                                                                           (4) 

 

RO concentrate with LSI > 0 means that there is a potential for CaCO3 scaling on the 

RO membrane (ASTM, 2010a). For high salinity brackish waters, with TDS levels in 

the RO concentrate above 10,000 mg/L, the Stiff & Davis Stability Index (S&DSI) is 

applied instead of the LSI (ASTM, 2010b).  

 

Gypsum (calcium sulphate) scale produces progressive axial development of surface 

gypsum crystals along the membrane surface. A sufficiently high antiscalant addition 

can result in the complete reduction of surface crystals. Process pH has no influence 

on the precipitation of calcium or barium sulphate (Shih et al., 2005).  

 

Conversely, different studies have autopsied membranes, concluding that silica is one 

of the most notorious foulants in RO membranes (Higgin et al., 2010). Silica scale is 

very difficult to remove with commercially available cleaners (Koo et al., 2001). Silica 

is frequently found in well water and its concentration usually ranges from 20 to 60 

mg/L as SiO2 (Al-Mutaz and Al-Anezi, 2004). Silica solubility is about 120 mg/L 

when present in the amorphous form (Hsu et al., 2008). The amorphous form can be 

present as dissolved, colloidal and particulate silica. Both the colloidal and the 

dissolved form may cause scaling issues in RO membranes (Latour et al., 2014b). The 

presence of silica in water is due to the dissolution of silica to become silicic acid or 

silicate. According to the chemistry of amorphous silica, when pH is less than 9.5, 

silicic acid is dominant, while when pH is above 9.5, H3SiO4
- is predominant (Cheng 

et al., 2009). Then, in the presence of metals such as calcium, magnesium, iron, 

manganese or aluminium and coupled with the high pH, silica can form insoluble 

silicates (DOW, 2007). Silica solubility depends on factors such as process pH, 

temperature or the presence of inorganic or organic matter (Latour et al., 2013). 

Overall, silica and/or magnesium silicate are poorly studied scalants often present in 
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waters with high magnesium levels and limit freshwater recoveries in water treatment 

systems (Amjad, 2010). 

 

The use of AS, typically polyphosphates, phosphates and polymers enable the 

supersaturation of salts without precipitation. Its required dosage is determined by the 

limiting salt solubility product (Letterman and American Water Works Association, 

1999). AS work by surface modification of crystals or by crystal inhibition (Amjad, 

2010). AS are often not effective in preventing silica precipitation since silica is often 

present as an amorphous solid rather than a crystalline solid (Higgin et al., 2010). One 

disadvantage of AS utilization is that coagulants and AS (negatively charged) can form 

complexes and foul the membrane (Greenlee et al., 2009). Moreover, an excessive 

dose of AS can increase the potential of biofouling (Rahardianto et al., 2007).  

 

Sometimes AS are ineffective, thus a ‘High-pH pretreatment’, with lime and soda ash, 

could be required for total hardness and silica reduction. Two main mechanisms for 

silica removal could be involved during a ‘High-pH pretreatment’: a) precipitation as 

calcium and/or magnesium silicate; and/or b) adsorption/enmeshment in precipitated 

Mg(OH)2 and/or CaCO3 (Latour et al., 2014a, 2016). Alternatively, ion-exchange 

technology can be applied for total hardness reduction (DOW, 2007). However, ion 

exchange technology is rarely used because it is expensive due to high regeneration 

frequencies (MWH, 2005). Most inland desalination plants in Australia are currently 

dosing AS to the feed water to prevent salt precipitation (NSW Public Works, 2011). 

 

The integration of a ‘High-pH pretreatment’ between consecutive RO stages for scale 

suppression and RO concentrate minimization for different kinds of brackish water has 

been broadly reported in the literature. In all cases, the RO concentrate used for these 

experiments had a calcium concentration higher than the magnesium concentration. 

Precipitation was induced by addition of alkaline chemicals such as NaOH, NaHCO3, 

Ca(OH)2 and Na2CO3 (Williams et al., 2002; Ning et al., 2006; Bond and Veerapaneni, 

2007; Mohammadesmaeili et al., 2010; Gabelich et al., 2011). A newer version of this 

technology, named accelerated precipitation softening (APS), involves alkaline pH 

adjustment and calcite crystal seeding of the first stage RO concentrate, followed by 

microfiltration and pH reduction to avoid calcite scaling in the second stage of the RO 

plant. This technology is more effective than AS utilization alone, and reduced 
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calcium, barium, strontium, magnesium and silica concentrations. However, APS 

softening technology at pH 10.5 has achieved a moderate reduction (10-20%) of SiO2 

and magnesium (Rahardianto et al., 2007). 

 

Overall, there are no publications assessing the integration of a ‘High-pH pretreatment’ 

between consecutive RO stages for scale control, concentrate minimization and by-

products recovery in municipal desalination systems dealing with magnesium-

dominated groundwater. This study targets maximum magnesium removal through a 

‘High-pH pretreatment’ of the primary RO concentrate. It has been hypothesized that 

Rw could be enhanced in inland facilities dealing with magnesium-dominated waters 

since magnesium-bearing minerals that precipitate at high-pH could simultaneously 

remove scale forming precursors, such as silica, through precipitation and 

adsorption/enmeshment mechanisms. Then, following pH readjustment and final AS 

addition, the softened concentrate could be further concentrated in secondary RO. In 

addition, CaCO3 recovery from precipitated sludge could be possible though CO2 

injection to selectively dissolve magnesium. Recovered CaCO3 could then be re-

calcined as a quicklime. This technology for by-products recovery has already been 

tested in conventional water treatment plants in the USA during the 1970s (Black and 

Thomson, 1971, 1975; Sanks, 1978). 

 

Research gap 1: No studies have focussed on the integration of a ‘High-pH 

pretreatment’ between consecutive RO stages for scale control, concentrate 

minimization and by-products recovery in municipal desalination systems dealing with 

magnesium-dominated groundwater. 

 

Electrodialysis (ED) or electrodialysis reversal (EDR), forward osmosis (FO) and MD 

are also membrane desalination processes. Such technologies can also be affected by 

salt scaling. Among them, MD technology has been proposed in some studies for 

minimization of RO concentrates (Drioli et al., 1999; Ji et al., 2010; Duong et al., 

2015). MD is a thermally driven technology which involves the transport of vapour 

molecules through a microporous hydrophobic membrane (Boubakri et al., 2014). MD 

technology is available in different configurations: (a) direct contact membrane 

distillation (DCMD); (b) AGMD; (c) sweeping gas membrane distillation; and (d) 

vacuum membrane distillation (Alkhudhiri et al., 2012). In AGMD configuration, the 
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vapour crosses a stagnant air gap and condenses over a cold surface (Alkhudhiri et al., 

2012). In this case, the driving force is the temperature difference over the membrane 

and the gap (Eykens et al., 2017) .  

 

Mineral salt scaling can occur on MD membranes, as reported in the literature (Tijing 

et al., 2015; Warsinger et al., 2015). Temperature is considered to be a key factor 

related to scaling (Warsinger et al., 2015). AS can be added to minimize the scaling 

problem (Duong et al., 2016). However, AS addition presents several drawbacks and 

limitations (Tijing et al., 2015).  To date, the integration of a chemical demineralization 

treatment (using APS technology) between RO and MD for scale control and RO 

concentrate minimization has only been reported in one paper. That study was 

performed with low conductivity RO concentrate and utilized a DCMD set up (Qu et 

al., 2009). Salt precipitation and scaling might have a different effect on other 

configurations such as AGMD  (Tijing et al., 2015). Therefore, the implementation of 

‘High-pH treatment’ of RO concentrate followed by AGMD for RO concentrate 

minimization requires investigation. In addition, it would be beneficial to compare the 

efficacy of AS addition and ‘High pH pretreatment’ (followed by pH readjustment and 

final AS addition) for scale prevention and RO concentrate minimization in a batch 

AGMD unit. 

 

Research gap 2: No previous research has evaluated the combined effect of ‘High-pH 

pretreatment’ and AGMD technology for RO concentrate minimization in a municipal 

desalination facility treating magnesium-dominated groundwater. 

 

2.4 Efficiency of a ‘High-pH pretreatment’ for boron removal from groundwater 

 

Boron can be present in water from either natural or anthropogenic sources 

(Cengeloglu et al., 2008; Xu and Jiang, 2008). The average boron concentration in 

groundwater varies from 0.3 to 100 mg/L (Hilal et al., 2011; Wang et al., 2014; Guan 

et al., 2016). Mostly, boron levels in groundwater are very low (<0.1 mg/L) 

(Bundschuh et al., 1993a). However, there are exceptions reported in the literature. In 

groundwater samples collected in the USA, Turkey, Italy, Cyprus and Greece, boron 

concentration ranged between 5 and 24.8 mg/L (Hudak, 2004; Bouguerra et al., 2008; 

Cengeloglu et al., 2008).  
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Different industrial manufacturing processes use boric acid or boron salts (Bouguerra 

et al., 2008), thus water contamination is possible (Wang et al., 2014; Bodzek, 2016). 

At present, more than 50% of the production of boron compounds worldwide is used 

in the glass industry (Wang et al., 2014; Guan et al., 2016). Boron levels up to 2 mg/L 

can also be found in domestic wastewater (Bouguerra et al., 2008). Finally, boron 

concentration can be high in geothermal waters (Bundschuh and Tomaszewska, 2017). 

 

Depending on both the frequency and extent of exposure, boron can be toxic to human 

health (Hossain and Maraqa, 2014). In 1998, the revised European Union (EU) 

Drinking Water Directive included a new standard for boron concentration in drinking 

water of < 1 mg/L (Parks and Edwards, 2005; Weinthal et al., 2005).  

 

For concentrations below 250 mg/L, boron is present in water as boric acid or 

hydroxyborate ion (Bundschuh et al., 1993b). At low pH levels, boron is present in 

water as un-dissociated boric acid (Bundschuh and Tomaszewska, 2017). On the other 

hand, hydroxyborate ion becomes the predominant species at high pH levels (Rodarte 

and Smith, 2014; Bundschuh and Tomaszewska, 2017). In addition, both species can 

co-exist as an equilibrium mixture at pH levels between 7.0 and 11.5.  

 

Some researchers have studied state of the art technologies for boron removal from 

different kinds of waters (Parks and Edwards, 2005; Xu and Jiang, 2008; Hilal et al., 

2011; Tagliabue et al., 2014; Wang et al., 2014; Güler et al., 2015; Bundschuh and 

Tomaszewska, 2017). The use of boron-selective ion-exchange resins seems to be the 

most effective technology (Bundschuh and Tomaszewska, 2017). In seawater 

desalination, boron concentration can be reduced by combining multi-pass RO with 

pH adjustment. The first RO pass is operated at a lower pH for salt removal while the 

second RO pass is operated at higher pH for effective boron removal (Greenlee et al., 

2009). Alternatively, RO technology can be combined with ion exchange technology 

(Jacob, 2007). In brackish water desalination, a second pass at higher pH is not 

considered a feasible solution due to the required higher water Rw,  the lower boron 

rejection of brackish RO membranes, and the presence of scale-forming ions (Greenlee 

et al., 2009). Moreover, it is not economically viable for groundwater with high boron 

concentrations (Glueckstern and Priel, 2007). Overall, it has been reported that  boron 
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rejection can be limited to 15-20% in real water desalination systems using brackish 

water membranes (Greenlee et al., 2009). Consequently, RO technology using 

brackish water membranes alone is not sufficient to fulfil current or future boron 

removal guidelines depending on initial boron concentration. That being the case, 

further boron removal from RO permeate could be achieved by implementing ion-

exchange technology. Alternatively, the process could be optimized in certain plants 

by the implementation of additional RO stages using seawater membranes capable of 

achieving higher boron rejection followed by additional boron removal by selective 

ion exchange resins where required (Glueckstern and Priel, 2007).   

 

The implementation of a high-pH softening treatment for boron removal has been 

reported in only a few studies and for different kinds of waters, such as seawater, 

groundwater, and flowback and produced waters (Parks and Edwards, 2005, 2006, 

2007; Ayoub et al., 2014; Rodarte and Smith, 2014). Furthermore, the effectiveness of 

a ‘High-pH pretreatment’ for boron removal in groundwater, and in particular when 

the magnesium concentration is higher than the calcium concentration, is yet to be 

explored thoroughly. Overall, the mechanism of boron removal may be related to 

magnesium precipitation during the softening treatment. At high pH levels, 

hydroxyborate ion could be removed by sorption onto precipitated magnesium 

compounds (Parks and Edwards, 2007). The common presence of dissolved 

magnesium in brackish groundwater could facilitate the boron removal process. A 

recent study involving the treatment of seawater achieved 61% boron removal by 

precipitation softening at a pH of 11.0 (Ayoub et al., 2014).  

 

In addition, boron removal by adsorption of hydroxyborate ions onto magnesium oxide 

may be another suitable option (Del Mar de la Fuente García-Soto and Camacho, 2006; 

Rodarte and Smith, 2014). Alternatively, a previous study reported that the addition of 

magnesium chloride before the softening treatment for boron removal required two-

thirds the dose and one-sixth the cost than final MgO utilization. That study was 

performed with flow back, and produced water (from the oil and gas industry in the 

USA) containing 60 mg/L of boron (Rodarte and Smith, 2014).  

 

Therefore, there is a clear research opportunity to investigate, on a laboratory-scale, 

the implementation of a ‘High-pH pretreatment’ in inland desalination plants dealing 
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with magnesium-dominated waters with relatively high boron concentrations (5 

mg/L), to meet stringent boron-specific standards (< 1 mg/L). It would also be 

beneficial to explore the optimization of the process by the preliminary addition of 

magnesium chloride before the ‘High-pH pretreatment’ or by means of a final 

polishing step for boron removal from softened water by adsorption of hydroxyborate 

ions onto magnesium oxide. Eventually, it would also be useful to assess the combined 

effect of these chemical treatments for boron removal with ED technology using a non-

selective membrane.  

 

Research gap 3: It is unclear whether ‘High-pH pretreatment’ can enhance boron 

removal in inland desalination systems treating magnesium-dominated groundwater. 

 

2.5 Chapter summary 

 

This chapter presents the literature review and identifies the research gaps addressed 

by this research project.  

 

In the first section of the chapter, the review provides a general overview of Australia’s 

groundwater resources, RO technology and brackish groundwater quality. The second 

section presents the differences between seawater and brackish water desalination. The 

third section describes the major fouling and scaling categories in brackish water 

desalination and the available pretreatment options. It also provides the justification 

for this research project’s selection of an intermediate ‘High pH-pretreatment’ between 

consecutive RO stages or between RO and AGMD for scale control, RO concentrate 

minimization and by-products recovery. Finally, the fourth section describes the 

choice of other contaminants such as boron also used for exploring the capabilities of 

a ‘High-pH pretreatment’ prior to RO desalination.  

 

The research gaps of this study have been identified step by step: 1) integration of a 

‘High-pH pretreatment’ between consecutive RO stages for scale control, concentrate 

minimization and by-products recovery in municipal desalination systems treating 

magnesium-dominated groundwater; 2) evaluation of a ‘High-pH pretreatment’ and 

AGMD technology for RO concentrate minimization in inland desalination systems 

treating magnesium-dominated groundwater; and 3) evaluation of a ‘High-pH 
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pretreatment’ to enhance boron removal in inland desalination systems treating 

magnesium-dominated groundwater. These gaps are discussed in detail in each of the 

manuscripts as shown in Chapters 4 to 6.  
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CHAPTER 3 

A review of strategies for RO brine minimization in inland 

desalination plants 

 

PAPER I 

 

Rioyo, J., Aravinthan, V., Bundschuh, J., & Lynch, M. 2017. A review of strategies 

for RO brine minimization in inland desalination plants. Desalination and 

Water Treatment, 90, 110-123. (Published). 

 

3.1 Introduction 

 

This review manuscript explores the differences between seawater, brackish 

groundwater and co-produced coal seam gas (CSG) water desalination. It also provides 

an in-depth review of the ‘state of the art technologies’ for RO concentrate 

minimization towards ZLD in inland desalination plants with special focus on the 

potential for scaling. Unlike previous review studies in the literature, this manuscript 

compares the efficacy of different two scale control technologies for RO concentrate 

minimization in inland desalination plants: a) acid/AS addition and b) ‘High-pH 

pretreatment’. The second technology looks at the integration of a chemical 

demineralization treatment between consecutive RO stages, or between RO and other 

advanced desalination systems such as MD for scale control. Finally, more complex 

ZLD and volume reduction systems, such as the high efficiency RO (HERO™) and 

the SAL-PROC™, are evaluated.  
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ab s t r ac t
Water scarcity in many inland areas is increasing the demand for new groundwater desalination plants. 
Co-produced coal seam gas (CSG) water (or coal bed methane as known in the USA), which is mostly 
brackish, is extracted in huge quantities during CSG production and requires advanced treatment. 
Reverse osmosis (RO) is the leading technology applied in municipal desalination and for treating CSG 
water in Australia and in some locations in the USA. Antiscalants are often dosed during RO pretreat-
ment to prevent membrane scaling. Recovery rates are limited by antiscalant efficacy and large volumes 
of brine are frequently disposed of in evaporation ponds. The search for environmentally friendly meth-
ods for RO brine minimization is considered as a key global issue. In this paper, differences between 
inland and seawater desalination are highlighted. The existing technologies for RO brine minimization 
and zero liquid discharge (ZLD) for inland desalination are reviewed. The efficacy and application of 
two scaling reduction technologies for RO brine minimization: (i) acid/antiscalant addition and (ii) ‘high 
pH precipitation treatment’ are compared. Finally, more complex ZLD and volume reduction systems, 
such as the high efficiency RO (HERO™) and the SAL-PROC™, are analyzed as well. 

Keywords: �Reverse osmosis in inland areas; Brackish groundwater; Coal seam gas water; Brine 
minimization; Zero liquid discharge

1. Introduction

As freshwater supplies diminish, desalination of brack-
ish groundwater resources is becoming an increasingly viable 
option for inland communities in countries that have limited 
access to fresh surface water supplies or desalinated seawater 
to meet increasing demand [1,2]. Reverse osmosis (RO) is the 
dominant, widely adopted, affordable technology in municipal 
desalination in comparison with thermal desalination. However, 
brine disposal is one of the biggest drawbacks of this technology 
especially for inland areas that have very limited options [1–3]. 

Conversely, coal seam gas (CSG) or coalbed methane is 
an important energy resource in many countries like United 
States, Australia, China, Canada and India [4–6]. Large 
amounts of brackish groundwater are co-produced during 

gas production [7,8]. It is estimated that about 300 GL/year of 
CSG water could be produced over the next two decades in 
Australia alone [4,9]. This large-scale extraction of typically 
brackish groundwater associated with CSG exploitation 
has created concerns over potential adverse effects on 
groundwater resources and arable land. In Australia, the sim-
ple storage of co-produced CSG water is no longer permitted 
[6,10], and advanced treatment by RO is considered the best 
available technology [6,11]. In the USA, deep well reinjection 
is very common [10] although ion-exchange technology has 
been also applied for reducing the concentrations of sodium 
and bicarbonate [12]. In China, CSG water is mainly man-
aged by surface impoundments and evaporation [13].

Overall, RO brine management remains as a significant 
challenge in co-produced CSG water desalination when the 
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huge quantities involved and environmental risks of storage 
are considered [4,8,11,14,15]. 

Since both inland municipal and CSG water treatment 
facilities cannot dispose of RO brine into a large body of 
water, such as the ocean, they operate at high recovery 
rates (Rw) to minimize the volume of brine to be discharged. 
Previous studies have reviewed the state of the art technol-
ogies for RO brine minimization [16,17]. Among these tech-
nologies was the use of two or more RO stages to further 
increase the Rw [2,18]. 

Considering that RO is a membrane separation process, 
the consequences of high Rw on the membranes are increased 
energy demand due to the increased osmotic pressure 
required corresponding to the increase in total dissolved sol-
ids (TDS), reduced permeate quality, and increased scaling. 
Increased concentration also leads to increased scaling. Some 
constituents present in brackish groundwater will precipitate 
if the concentration product of the salt formed exceeds its 
solubility product (Ksp). Sparingly soluble salts that can scale 
the RO membrane are CaCO3, CaSO4, BaSO4, SrSO4, CaF2 and 
SiO2 (silica) [19]. Scaled membranes require higher than nor-
mal operating pressure, and chemical cleaning is required to 
minimize the risk of irreversible scaling [20], which leads to 
reduced membrane lifetime. 

Different technologies, such as adsorption, precipitation or 
ion-exchange, can be applied between consecutive RO stages 
to prevent scale formation and increase Rw. However, further 
research is needed to improve the efficiency [2]. Among other 
technologies, an intermediate ‘high pH precipitation treat-
ment’ allows the removal of undesirable precipitated species 
from primary RO brine by physical separation processes. 

However, not all the brine can be concentrated by apply-
ing multistage RO systems. Once the risk of membrane scal-
ing is overcome, practical restrictions to the osmotic pressure 
become the limiting factor. RO technologies allow brine con-
centration to reach 65,000–75,000 mg/L TDS. After this limit 
is reached, more advanced and expensive concentration tech-
nologies are required [21].

High recovery systems can achieve recoveries above 92% 
depending on the feed water composition [21]. However, 
even if brine is concentrated and reduced in volume, the final 
disposal of this reduced volume remains very difficult for 
inland plants with the focus on avoiding contamination to 
inland aquifers and other environments. This has led several 
researchers to investigate the development of zero liquid dis-
charge (ZLD) applications where brine discharge is not possi-
ble. In this case, reject brine is no longer considered as a waste 
but as a resource from which useful dry salts, metals and 
desalinated water can be recovered so there is no discharge 
of liquid waste from the treatment facility. The technologies 
available aiming at ZLD are expensive and the most common 
approach in municipal desalination involves the following 
steps: primary RO system, intermediate treatment of RO 
concentrate to reduce its precipitation potential, secondary 
RO system, thermal desalination and evaporation ponds [2]. 
Other conventional processing technologies include thermal 
crystallizers, spray dryers and landfills [21].

Overall, RO brine minimization, including possible salt 
recovery, aiming for ZLD is a significant economic challenge for 
inland desalination facilities. Further research is needed to min-
imize capital (Capex) and operating (Opex) expenditure in ZLD 

processes [2,8,21,22]. This paper aims to (a) review the differences 
between seawater, brackish and CSG water desalination and the 
challenges faced; (b) critically review the existing technologies 
for minimizing the brine volume and ZLD in inland desalina-
tion; (c) highlight the scaling potential in these technologies; (d) 
provide insights into strategies integrating an intermediate ‘high 
pH precipitation treatment’ with another concentration system 
for RO brine minimization for groundwater supplies; and (e) 
analyze more complex ZLD and volume reduction systems like 
the high efficiency RO (HERO™) and the SAL-PROC™. 

2. Differences between seawater, brackish groundwater
(municipal desalination plants) and co-produced CSG
water desalination

2.1. Comparison of the quality of the source waters 

As shown in Figs. 1 and 2, seawater has a similar 
composition worldwide [23]. Chloride is the predominant 
ion followed by sodium, sulphate, magnesium, calcium and 
potassium. The standard TDS concentration in seawater is 
35,000 mg/L [23]. In general, desalination costs are influenced 
by ocean salinity and temperature [24]. Boron removal is 
complex [25]. Its concentration in seawater is about 4.8 mg/L. 
Boron content can be reduced below 0.5 mg/L by combining 
RO and ion-exchange technology [26] or applying multipass 
RO with pH adjustment [27]. The Rw in seawater desalination 
is limited by osmotic pressure, energy consumption and 
allowable salinity/boron concentration in the RO permeate 
[23]. On the other hand, RO concentrate disposal is not a 
problem, as brine can be discharged back into the ocean 
with the pumping system and length of piping key factors 
in the design process [25]. Seawater desalination plants are 
often configured with one or more RO passes depending on 
different factors, such as boron concentration, Rw, energy costs, 
and product water standards [25]. Scaling is not considered 
as a limiting factor [23] although seawater membranes can 
be fouled by organic and particulate material [28]. Seawater 
desalination plants working with open intakes are also 
prone to biofouling [23]. About one-third of feed seawater 
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Fig. 1. Relationship (%) between significant cations present in 
seawater (blue colour), brackish groundwater (black colour) and 
co-produced CSG water (red colour).
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is recovered as permeate while two-thirds is discharged as 
RO brine with a TDS level of about 52,000 mg/L. The costs of 
desalinating seawater in Australia and the USA are estimated 
at US$1.5–2.3/m3 [11] and US$1.54–2.43/m3 [29], respectively. 
The use of energy recovery devices in seawater desalination is 
common for reducing overall operating expenses. Efficiencies 
up to 65% were previously reported [30]. (Note: Quality data 
to complete Figs. 1 and 2 represent worldwide characteristics 
and was collected from different books/technical papers 
[3,9,11,23,31–44] and analytical records supplied by the 
Western Downs Regional Council (Australia) from different 
municipal groundwater wells.)

In contrast, brackish groundwater has a lower TDS level 
ranging from 1,000 to 10,000 mg/L [45]. Its chemical compo-
sition varies widely depending on different factors like the 
host-rock type, the nature of overlying soils and rainfall [1]. 
It typically has low particulate or colloidal contaminants and 
low organic carbon content while silica and boron concen-
trations can vary significantly. Therefore, and in contrast to 
seawater, precipitation of carbonates, sulphates and silicates, 
and hence membrane scaling can be problematic. Precipitates 
of CaCO3, CaSO4, BaSO4, SrSO4 and silicates can become lim-
iting factors for desalination. Rw levels in municipal facilities 
vary from 75% to 90%, and the ratios of calcium/TDS, carbon-
ate/TDS or sulphate/TDS are higher than in seawater desali-
nation [25]. Further RO brine minimization is required. Brine 
management costs are also higher in inland desalination 

compared with seawater desalination [16]. A design includ-
ing a single stage system with an additional module con-
nected to treat RO brine is considered the best option both 
economically and environmentally by some researchers as 
shown in Fig. 3. This configuration increases recovery and 
minimizes operating costs [46]. Depending on feed water 
salinity, single stage RO systems are typically sufficient for 
recovery of around 40%–60% freshwater, while two stage RO 
systems can increase Rw up to 80% [23]. Due to lower salin-
ity (<10,000 mg/L) and osmotic pressure of the brackish feed 
water, the first stage in a two stage system commonly oper-
ates at high flux but low pressure (up to 4.1 MPa) [47]. In 
this case, brackish water membranes are selected during the 
design process [23,46]. Brine generated is then treated in an 
additional RO stage at higher pressures (up to 6.9 MPa) [47], 
due to the higher osmotic pressure required when the TDS 
concentration and salinity are higher. Seawater membranes 
are often selected for the second RO stage [46] due to their 
potential to provide higher salt rejection (Rs) while treating 
high salinity feed water of up to 50,000 mg/L TDS [23]. 

Co-produced CGS water in Australia generally has TDS 
levels that range from 300 to 10,000 mg/L [48]. In the Rocky 
Mountains region of USA, the TDS content varies from 150 to 
39,260 mg/L [38]. Overall, CSG water quality can vary signifi-
cantly even between wells in close proximity [6,39]. As shown 
in Fig. 2, co-produced CSG water primarily contains NaCl 
and NaHCO3 [7,8,14]. Sulphate concentration is low. CSG 
water composition is a result of different biological and geo-
logical processes that have taken part in the formation of CSG 
[37].The pH level and sodium adsorption rate can be high. 
In the Rocky Mountains, values of 9.26 and 452.8 mg/L have 
been recorded [38]. In Australia values of 9.1 and 567 mg/L 
have been observed [9]. Co-produced CSG water may also 
contain hydrocarbons or saturated gases depending on the 
well source [49]. Variable amounts of aluminium, silica, bar-
ium, calcium, magnesium and fluoride can also be present. 
Boron concentrations up to 4.7 and 3.1 mg/L were recorded 
in the USA and Australia, respectively [9,38]. In general, 
modular RO plants for co-produced CSG water treatment are 
designed in a multistage configuration [11,39] and Rw levels 
around 75%–80% can be easily achieved [6,14,39,49,50]. In the 
USA, generated RO brine is frequently managed by deep-
well injection [12]. In Australia, RO brine is often placed in 
evaporation ponds while alternative options for beneficial 
uses are explored [6,8,14,48,49]. Layers of clay and synthetic 
membranes are required in pond construction to prevent 
contamination of groundwater aquifers [10]. The design of 
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Fig. 2. Relationship (%) between significant anions present in 
seawater (blue colour), brackish groundwater (black colour) and 
co-produced CSG water (red colour).

Fig. 3. Multistage RO system with intermediate pumps.
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a CSG brine pond generally includes two separate lining 
layers and a monitoring system [14]. Table 1 summarizes the 
general quality characteristics, achievable Rw and existing 
RO brine disposal methods for seawater, municipal brackish 
groundwater and co-produced CSG water desalination.

2.2. Pretreatment options in RO desalination

Seawater pumped from the ocean needs to be pretreated 
to remove suspended solids and other matter in order to 
avoid membrane fouling. Worldwide, conventional pretreat-
ment in RO plants often includes the addition of coagulant, 
pH adjustment, media filtration, cartridge filters, disinfec-
tion and final antiscalant addition [24,51]. Although CaCO3 
precipitation is possible, it is not likely to occur due to the 
low Rw expected in most seawater desalination plants [25].

Brackish groundwater sources for drinking purposes in 
municipal systems have less fouling propensity than surface 
water with consequently less extensive pretreatment needed 
prior to RO. Depending on the microorganism content, dis-
infection may be necessary [52]. Total hardness reduction by 
ion-exchange technology can be limited by water chemistry 
and chemical regeneration costs [53]. Conventional pre-
treatment in municipal facilities often combines media fil-
tration with acid or antiscalant addition to prevent scaling. 
Antiscalants retard the precipitation of sparingly soluble salts 
and promote supersaturation [19]. Commercially available 
antiscalants are relatively cheap [54] and work by inhibiting 
crystal formation or by surface modification of the crystals 
[20]. However, it is important to mention that antiscalant 
addition during RO pretreatment can have adverse effects in a 
later brine treatment that uses precipitation to remove poten-
tial scale forming minerals. In fact, CaCO3 precipitation from 
RO brine can be reduced and filtration performance decreased 
[55]. Moreover, an excessive dose of antiscalants during RO 
pretreatment can increase the risk of biofouling [56,57]. 

Co-produced CSG water can vary in quantity and com-
position, and so requires a reliable and flexible pretreatment 
process. Since the wells are not cased, co-produced water with 
high suspended solids is discharged into the pond from where 
the water is sourced for RO pretreatment. Algae formed in 
the feed pond and dissolved organic compounds from the 
fracking process or the coal seam also need to be removed 

before the desalination process [11]. Reduction of total sus-
pended solids is essential since a silt density index lower than 
3 is required for the desalination process. The use of suitable 
coagulants and flocculants for solid–liquid separation (clarifi-
cation process) requires screening work and later sludge man-
agement [49]. Particle separation technologies frequently used 
during CSG water pretreatment are dissolved air flotation and 
microsand ballasted flocculation [7]. Lime softening or weak 
acid cation resins can also be used for CSG water softening 
before RO desalination [4]. Variable levels of fluoride, silica, 
barium, sulphate and calcium render the treatment process 
difficult and may require the use of specific antiscalants [49]. 
Disinfection can be achieved by chlorination/dechlorination 
[49] or ozone addition [4]. Recently, the use of containerized
treatment plants combining microfiltration for suspended sol-
ids removal with spiral wound RO membranes has shown to
be a cost-effective and reliable solution for CSG water treat-
ment. These mobile treatment plants can be automatically
controlled via a programmable logic controller [58].

3. ZLD and RO brine minimization technologies in inland
desalination plants

3.1. ZLD concepts, brine minimization technologies, 
and challenges in municipal desalination

High recovery systems aimed at brine minimization have 
been defined in municipal desalination as those systems 
achieving recoveries higher than 92% [21]. ZLD is defined 
as a high recovery system allowing that no effluent leaves 
the ground-level plant boundary. In a ZLD approach, all the 
brine is either recovered by a combination of technologies to 
produce desalinated water or dry salts. Technologies com-
monly recommended in ZLD processing systems include: 
RO, vacuum evaporators, crystallizers, evaporation ponds 
and spray dryers. Salinity and composition of the brine to be 
processed in the ZLD system has a substantial influence on 
capital and operating costs. Sequential and selective removal/
recovery of salts from concentrated brine should follow the 
sequence shown in Table 2, from low to high solubility lev-
els. Although technically feasible, high recovery and ZLD 
systems are currently not economically viable in municipal 
desalination [21]. 

Table 1
Differences between seawater, brackish groundwater (municipal facilities) and co-produced CSG water

Seawater desalination Brackish groundwater 
desalination

Co-produced CSG water 
desalination

Water quality Chloride is the  
predominant ion 
TDS = 35,000 mg/L [24]

Chemical composition is variable 
TDS = 1,000 to 10,000 mg/L [45]

Bicarbonate is often the dominant 
anion species [9,14] 
TDS = 300 to 10,000 mg/L [9,48]

Rw during RO 
desalination

35%–50% [25] 75%–90% [25]
65%–85% [21]

75%–80% [6,14,39,49]

RO brine disposal 
methods 

Discharged back into the 
ocean [25]

Evaporation ponds, surface 
water discharge, discharge to 
wastewater treatment, subsurface 
injection and land application [21]

In Australia RO brine is temporally 
disposed of in evaporation ponds 
while other options are studied 
[6,8,14,48–50]. In the USA, deep well 
injection is common [8,12] 
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As previously stated, membrane desalination is consid-
ered to be the predominant technology to be used in munic-
ipal desalination [2] and ZLD systems. Operating costs are 
reduced by applying a system including consecutive RO stages 
for brine minimization. Fig. 3 shows a ‘two-stage RO system’ 
with modules connected to reject brine with booster pumps. 
By implementing ‘seawater membranes’ in the second stage, 
Rw increases and additional permeate output can be achieved 
[52]. The osmotic pressure depends on the concentration of 
dissolved salts in solution [31]. Due to the lower salinity of the 
brackish feed water, ‘RO line 1’ operates at a lower pressure. 
The brine generated in ‘RO line 1’ is then fed into ‘RO line 2’, 
where the salinity becomes higher. Overall, tandem RO pro-
cesses for maximum water recovery and RO brine minimiza-
tion are considered to be promising alternatives in brackish 
water desalination. However, particular process conditions 
need to be analyzed carefully on a site-by-site basis [18]. 

Electrodialysis (ED) or electrodialysis reversal (EDR), 
forward osmosis (FO) and membrane distillation (MD) are 
also membrane separation processes. ED is another desalina-
tion technology that employs electrical potential difference 
to move ions through ion-exchange membranes. As shown 
in Table 3, ED is considered as an alternative to RO but it 
is often only recommended for treating brackish water with 
TDS level below 10,000 mg/L [23]. For higher salinities, RO is 
more competitive since ED cost is proportional to the amount 
of salts carried through the membrane [59]. Further research 
is required to avoid scaling in ED units and to improve selec-
tivity and permeability of membranes [17].

FO is another technology for brine concentration with 
low energy consumption [17]. In contrast to RO, the osmotic 
pressure is the driving force for mass transport [60]. The main 
drawbacks of FO technology are the risk of salt precipitation 
on the membrane, the need to develop more robust mem-
branes and a suitable draw solute to improve the separation 
process [17,60]. Finally, MD is a promising alternative for 
treating highly concentrated water. The vapour pressure dif-
ference induced by the temperature difference across a hydro-
phobic membrane acts as the driving force [8,14,50]. Still MD 
is not a mature technology and most of the research work 
thus far published has focussed on laboratory scale studies to 
investigate the influence of operating conditions [61].

Although RO is the leading technology in inland desalina-
tion and ZLD systems, not all of the RO brine can be concen-
trated using additional RO stages [2]. The configuration shown 
in Fig. 3 increases Rw but is far from achieving ZLD [17]. Once 

the brine is highly concentrated (TDS > 50,000 mg/L) and thus 
limited by the osmotic pressure, RO technology is not effective 
[23]. In this situation another downstream process, such as vac-
uum evaporation, has to be applied in municipal desalination 
facilities [18]. In this approach, vacuum evaporation follows 
RO when sufficient treatment has been performed to remove 
potential scalants. This approach minimizes costs and reduces 
the volume of brine that eventually has to be concentrated by 
the evaporator, as shown in Fig. 4 [2,21]. Finally, concentrated 
brine can be disposed of in an evaporation pond. Alternatively, 
it is technically possible to obtain salts in a solid, dry and crys-
talline form by applying a later crystallization process [62]. 
Such a ZLD solution is environmentally friendly with conse-
quent nil discharges into the environment. However, further 
research is required to reduce energy requirements and to 
develop new systems recovering residual heat or steam [17]. 
Table 3 summarizes the main features of significant concentra-
tion technologies applicable in municipal desalination depend-
ing on feed water salinity. 

As shown in Table 3, RO is by far the most cost-effective solu-
tion in terms of energy consumption, capital and operating costs. 

MD, FO and ED technologies have been tested on a pilot 
plant scale for RO brine minimization in inland desalination, 
although it is difficult to assess their feasibility on an industrial 
scale. Martinetti et al. [68] tested/compared vacuum-enhanced 
direct contact membrane distillation (VEDCMD) and FO for 
RO brine minimization in two different streams with TDS lev-
els averaging 7,500 and 15,000 mg/L. Rw levels in both tech-
nologies were limited by salt precipitation. Water recoveries 
up to 90% and 81% were achieved, respectively, by FO and 
VEDCMD. In both cases, antiscalant addition was shown to be 
effective at maintaining high water flux for an extended time.

Korngold et al. [69] applied ED for the treatment of RO 
brine saturated with CaSO4 and/or SiO2. The RO brine was 
generated in a brackish water desalination facility in Mashabei-
Sadeh. The ED treatment was undertaken under reverse 
polarity in a non-continuous operation. The brine, circulating 
through the ED system, also passed through a separate CaSO4 
precipitator. Mineral precipitation was enhanced by the addi-
tion of gypsum seeds. RO brine concentration was successfully 
increased from 1.5% to 10%. Eventually, further RO brine min-
imization was limited by SiO2 precipitation in the ED brine.

Oren et al. [70] also applied ED for RO brine minimization. 
The feed to the ED unit corresponded to RO brine generated 
during the desalination of brackish water from the Negev 
Highlands (Israel). Water recoveries around 97%–98% were 
achieved by combining RO with ED. Brackish feed water was 
concentrated from 3,000 to 100,000 mg/L TDS. Chloride lev-
els around 200 mg/L or less were measured in treated water. 
The ED system was run in a batch mode. Scaling during the 
ED treatment was prevented by acidification, operating the 
ED module in a reversal mode (EDR) and by incorporating 
a side loop crystallizer/settler module. Eventually, concen-
trated brine from the ED treatment was further concentrated 
by Wind Aided Intensified eVaporation (WAIV) that brought 
final brine concentration to over 300,000 mg/L TDS.

Closed circuit desalination is another alternative for brine 
minimization based on a batch-like operation. Generated 
RO brine is recirculated to the same RO membrane. A pre-
vious study conducted with brackish water achieved 97% 
water recovery in a single stage operation system and was 

Table 2
Sequence for salt recovery/removal in a ZLD process
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Table 3
Recommended operating range, maximum concentration capabilities, energy requirements and production costs for different con-
centration technologies applicable in brackish water desalination

Technology System Operating range Concentration 
capacity

Energy requirements Production costs 
(US$/m3)

RO membranes Membrane 
separation 
process

Brackish water RO  
membranes: TDS,  
50–12,000 mg/L [23]

Seawater RO membranes: 
TDS, 8,000–50,000 mg/L [23]

–

TDS: 65,000–
75,000 mg/L [21]

Brackish water 
(0.54 kWh/m3)a

Seawater  
(4–6 kWh/m3)b

Municipal brackish 
water desalination 
(US$0.28 to 0.63/m3)c

CSG water 
(US$1.54/m3)d

US$1.5–2.3/m3 
(seawater)e

Electrodialysis 
(ED/EDR)

Membrane 
separation 
process

TDS: 300–10,000 mg/L [23] TDS: up to 
100,000 mg/Lf

Up to 15 kWh/m3,g

6.6–8.7 kWh/m3 (TDS = 
0.45 g/L) [59] (seawater)

US$0.38–6.38/m3 
(brackish water)h

Mechanical 
vapour recom-
pression (MVR) 
evaporators 

Thermal 
separation 
process

Following RO desalination TDS: above 
160,000 mg/Li

36 kWh/m3,j 
30–50 kWh/ton of 
distillate [67]

(US$2.1–4.7/m3)K

Crystallizers Thermal 
separation 
process

Following vacuum 
evaporationl

Solid 
Most of remain-
ing water is 
recovered as 
distillate [21]

Vapour compression 
crystallizers: 52.8–66 
kWh/m3 of feed water 
[21]

MVR crystallizer: 
(US$7.4–10.5/m3)k

Mechanical forced 
circulation crystallizer: 
(US$14.8–25.4/m3)k

aBrackish water RO treatment plant. Feed water TDS = 4,000 mg/L. Rw = 80% [52].
bSydney seawater desalination plant: 4.2 kWh/m3. Kwinana (Perth) desalination plant: 4–6 kWh/m3 [24].
cCost of brackish groundwater desalination in Texas [63].
dCSG water desalination in Australia. TDS content in CSG feed water = 6,000 mg/L [11].
eCost of seawater desalination in Australia [11].
fEDR technology. Brackish water was concentrated from 3,000 to 100,000 mg/L [64].
gTypical values of operational parameters for ED units [65].
hEDR treatment costs for treating brackish waters. Production costs depends on Rw and brine disposal costs [66].
iConcentration capacity depends on feed water salinity. 160,000 mg/L for a feed water salinity of 60,000 mg/L [21].
jFalling film vacuum evaporator. 4,000 L/h capacity [62].
kData provided by Condorchem Envitech. Environmental engineering firm specialized in evaporation techniques.
lConcentration and precipitation of salt or sludge from liquid brines.

Fig. 4. Traditional ZLD ‘lay-out’ (municipal desalination).
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only limited by salt scaling. This process required less feed 
pressure and energy when compared with a three stage RO 
system. In addition, this alternative improved membrane 
performance and eliminated the use of energy recovery 
devices [17,71]. 

WAIV technology was also proposed and compared with 
traditional evaporation ponds for RO brine minimization. This 
technology uses wind energy to increase the evaporation rate of 
brine. This technology, influenced by weather conditions, incor-
porates a support structure with fabric sheets. During the pro-
cess, the brine is initially distributed across the sheets. Then, it 
is concentrated as it flows down the sheets assisted by the evap-
oration effect of the wind passing across the surfaces. Collected 
brine at the bottom of the unit can be recycled and further con-
centrated again in the WAIV plant [72]. Katzir et al. [73] used 
bench pilot WAIV units to further concentrate ED and RO brines 
generated during desalination of brackish groundwater. This 
study also aimed at salt recovery. ED brine was concentrated by 
WAIV up to 230,000 mg/L TDS. During the experiments, CaSO4 
precipitation on the feed basin and the evaporation surfaces was 
reported. This circumstance led to an enrichment of magnesium 
relative to sodium in the resulting super-concentrated brine [73]. 
Overall, one of the main drawbacks of WAIV technology is that 
it can also pollute groundwater. More experiments at industrial 
scale are required for process optimization [17].

3.2. ZLD and RO brine minimization technologies in CSG water 
desalination

The ‘CSG Water Management Policy 2012’ states the 
position of the Queensland Government in relation to CSG 
water management and use. This Policy prioritizes the recov-
ery of useable products from CSG brine wherever feasible 
[6,8,14,74].

Different studies have been carried out in Australia 
aiming at RO brine minimization and ZLD in CSG facilities 
[6,8,14,75]. In this regard, Simon et al. [75] investigated the 
feasibility of producing NaOH from CSG brine by mem-
brane electrolysis (ME). NaHCO3, Na2CO3 and NaCl are the 
dominant sources of sodium available in CSG brines. In this 
research, synthetic solutions of these salts were prepared and 
used as feedstock for the experiments. ME was shown to be 
more effective for desalting NaHCO3 solutions followed by 
NaCl and then Na2CO3 solutions of equivalent concentra-
tion. Moreover, water recovery rates increased as the brine 
concentration decreased. Finally, it was also reported that 
the use of 100 g/L NaHCO3 solutions resulted in NaOH pro-
duction with lower strength (about 12% w/w) than that pro-
duced from NaCl solutions with the same concentration. This 
issue was attributed to the lower electrical conductivity and 
osmotic pressure of the NaHCO3 solutions. 

Duong et al. [8] researched a process for CSG brine  
(TDS = 14,100 mg/L) minimization including a pilot MD 
plant equipped with a novel spiral-wound air gap MD mod-
ule. Water recoveries around 95% were reported by a pro-
cess combining UF/RO and MD. Membrane scaling was not 
observed in these experiments. This phenomenon could be 
attributed to the addition of antiscalant during RO pretreat-
ment and the small temperature gradient applied in the MD 
step. However, SiO2 and calcium scales could be present in 
long-term operation and further research was recommended. 

Nghiem et al. [6] investigated a process for the treatment 
of slightly brackish CSG water (TDS = 2,510 mg/L) generated 
in the Gloucester Basin (Australia). The process combined 
UF, RO and multieffect distillation (MED). Water recoveries 
around 95% were achieved. Generated super-concentrated 
brine was predominant in NaHCO3 (TDS = 48,000 mg/L). It 
was reported that antiscalant addition to the RO brine pre-
vented scaling on the evaporative tubes during MED oper-
ation. However, mineral deposition on the sight glass of the 
MED evaporative chamber was observed. The issue was 
addressed by chemical cleaning with sulphamic acid and 
NaOH at the end of the experiments.

Duong et al. [14] successfully investigated NaOH pro-
duction from CSG RO brine by a combination of MD and 
ME. The feasibility of ME technology for NaOH production 
using brine generated in seawater or CSG water desalination 
facilities had been reported in previous studies [75,76]. CSG 
brine concentration to near saturation was initially required 
for NaOH production by ME. For this research, synthetic 
solutions mixing NaCl and NaHCO3 were prepared simu-
lating CSG brine. The MD plant was operated at 90% water 
recovery and no membrane scaling was observed during 
the tests. Higher Rw levels resulted in precipitation of NaCl, 
NaHCO3 and Na2CO3 on the membrane and a decrease in 
distillate quality and water flux. This study concluded that 
ME combined with MD for NaOH production can achieve 
energy savings for both processes [14].

Duong et al. [50] also focussed their research on mem-
brane scaling control during RO brine (TDS = 17,100 mg/L) 
minimization using MD. Generally, prevention of mem-
brane scaling should always be considered as the first option 
regardless of the efficacy of chemical cleaning. MD experi-
ments showed that water recoveries above 70% resulted 
in salt precipitation and water flux decline. In this regard, 
later membrane cleaning was not able to completely remove 
scale deposits from the membrane. As a consequence, con-
centration polarization and membrane scaling increased 
while MD performance decreased. It was also reported 
that water recoveries around 80% were achievable without 
membrane scaling by reducing concentration polarization 
phenomenon by way of limiting feed brine temperature and 
water flux. 

WAIV technology was also tested for CSG RO brine min-
imization. Initial experiments by a CSG operator were con-
ducted in Roma (Australia) with a demonstration unit. This 
study concluded that WAIV is able to evaporate 24 times 
more water than a conventional evaporation pond of equiva-
lent footprint area [72]. 

Overall, RO brine management remains as a significant 
technological challenge in CSG desalination and only a 
limited number of studies on a pilot plant scale have been 
undertaken in Australia and worldwide [75,77]. Feasible 
alternatives need to consider RO brine composition and the 
huge volumes involved. NaOH production from CSG RO 
brine by ME seems to be a promising option. This alterna-
tive has been reported in different technical papers [14,75]. 
However, the total volume of impurities present in CSG brine 
could be a limitation for this ZLD approach [76]. Moreover, 
no matter which technology is initially selected for RO brine 
minimization/concentration, further research is required to 
reduce/avoid scaling problems. 
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3.3. Scaling potential in ZLD and brine minimization technologies

The concentration factor (CF) in RO desalination can be 
defined by the following equation where Cc and Cf are the 
brine and feed water concentrations, respectively, and Rs is 
the nominal salt rejection [25,56]:
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According to Eq. (1), when Rw is increased above 70%, 
CF increases dramatically enhancing the precipitation of 
sparingly soluble salts on the RO membrane. Maximum 
achievable Rw during brackish water desalination can be lim-
ited by antiscalant efficacy and salt precipitation on the RO 
membrane. 

In thermal desalination, scaling of heat transfer sur-
faces is also of great concern having a substantial influence 
on the overall performance of the desalination process [78]. 
The scaling risk also has to be reduced when applying other 
desalination technologies including FO, MD or ED. Table 4 
shows references found in the literature of common spar-
ingly soluble salts that might limit overall Rw and scale differ-
ent concentration technologies. 

3.4. Scale minimization technologies: ‘high pH precipitation 
treatment’ vs. acid/antiscalant addition

Two opposite and contradictory solutions can be con-
sidered to avoid scaling while increasing recoveries in 
existing inland desalination plants. The first one, involving 
acid/antiscalant addition to the RO brine, allows salt super-
saturation to a certain extent. Then, Rw can be increased by 

implementing an additional RO stage. In this case, achievable 
Rw is limited by antiscalant efficacy. 

The second option looks at the integration of an interme-
diate ‘high pH precipitation treatment’ for RO brine minimi-
zation between consecutive RO stages or between RO and 
another brine concentration system. In contrast to the use 
of antiscalants, this solution involves mineral precipitation 
and removal of sparingly soluble salts from the RO con-
centrate. Following pH adjustment and possible antiscalant 
addition, the softened brine can be further concentrated by 
an additional RO stage or another advanced concentration 
technology. Higher Rw is achievable by applying this second 
strategy [56,85] with salt recovery options available. 

The integration of an intermediate ‘high pH precipitation 
treatment’ during municipal brackish water desalination was 
broadly investigated by different researchers. Most of the 
work was undertaken on laboratory scale and, using pilot 
plants, aimed at increasing Rw during inland desalination. 

Ning et al. [88] investigated an intermediate lime soften-
ing treatment for the concentrates (TDS = 7,465 mg/L) gen-
erated in a primary RO system operated at 85%–90% water 
recovery. That precipitation treatment successfully removed 
SiO2 and BaSO4 from primary RO brine. In addition, an extra 
70% brine concentration was achieved in a secondary RO 
unit.

Williams et al. [89] examined the removal of calcium, 
barium, strontium, magnesium and silica from primary RO 
concentrate generated from desalting Colorado River water 
(TDS = 585 mg/L) to allow further concentration in a second-
ary RO step. A chemical precipitation treatment including 
coagulation, sedimentation and filtration was applied before 
further concentrating the brine in a secondary RO stage. 
Rw of 98% was possible by following this path. 

Table 4
Potential scaling salts affecting different desalination technologies

Technology Reverse 
osmosis (RO)

Forward 
osmosis (FO)a

Membrane  
distillation (MD)b

Electrodialysis 
(ED/EDR)c 

Thermal  
desalination systemsd 

Scalant RO membrane FO membrane MD membrane Ion-exchange 
membrane

Tubing and process 
surfaces

CaCO3 Yes [20,23] Yes [50,79,80] (at relatively 
high saturation indexes)

Yes [81] Yes [20,82]

CaSO4 Yes [20,23] Yes [83,84] Yes [50,79,80,85] Yes [69] Yes [20,82]
BaSO4 Yes [20,23]
SrSO4 Yes [20,23]
SiO2 Yes [20,23] Yes [84] Yes [8,50,79,80] Yes [69]
Ca3(PO4)2 Yese Not found in MD literature 

[79]
CaF2 Yes [23]
Magnesium 
scales

Yesf Yes [20,82]

aFollowing chemical cleaning, FO shows better flux recovery than RO in the event of silica scale. Chemical cleaning is also more effective in 
FO than in RO in the event of CaSO4 scale [84].
bCalcium sulphate scale was found to be a common problem in MD [50]. Overall, MD is more fouling resistant than RO [79,86].
cElectrodialysis reversal (EDR) has the advantage of descaling membrane surfaces by utilizing a flow and polarity reversal [4,87].
dThermal brine minimization is often limited by precipitation of sodium sulphate, sodium carbonate and sodium chloride [21].
eCalcium phosphate scaling can be common when RO is applied to municipal wastewater [23].
fFeed solutions with high levels of Mg2+ may cause problems in MD [50,79].
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Rahardianto et al. [56] looked into the application of 
accelerated precipitation softening (APS) for the treatment 
of primary RO from desalting mildly brackish surface water 
(TDS = 941 mg/L) to allow further concentration in a sec-
ondary RO process. The treatment involved alkaline pH 
adjustment, calcite crystal seeding, microfiltration and pH 
adjustment to avoid scaling issues during secondary RO. It 
was demonstrated that high Rw in brackish desalination was 
achievable by using this technology.

Qu et al. [85] conducted a similar study combining APS 
with direct contact membrane distillation for the treatment of 
primary RO brine, increasing overall Rw from 50% to 98.8%. 
The process included pH adjustment with NaOH, followed 
by calcite seeding and final microfiltration. 

Gabelich et al. [90] explored an intermediate chemical 
demineralization treatment for primary RO brine (TDS = 
4,995 mg/L) generated from desalting Colorado River water. 
The process included NaOH and NaHCO3 addition for salt 
precipitation followed by pH neutralization with H2SO4, and 
achieved an increase of the Rw from 85% to 95%. 

Sanciolo et al. [91] studied the application of APS technol-
ogy for the treatment of primary RO brine generated in inland 
municipal wastewater treatment plants. The removal of ‘cal-
cium scale precursor ions’ was tested with three different seed 
materials: (a) CaCO3, (b) CaSO4, and (c) Ca3(PO4)2. The first 
two were not effective. Best results were achieved after addi-
tion of Ca3(PO4)2 seed particles at 20 g/L or PO4

3– ion in stoi-
chiometric excess of the Ca concentration. Although effective, 
this treatment resulted in high chemical and energy costs.

Mohammadesmaeili et al. [92] studied the removal of 
different potential scalants from reclaimed water RO brine 
by selective precipitation. Products with resale value were 
recovered during the precipitation process. Three differ-
ent softening processes were tested including: (a) the tradi-
tional lime-soda ash treatment; (b) a modified process with 
preacidification to eliminate carbonate, and (c) another one 
including a gypsum crystallization step in combination with 
the modified process to be applied with high sulphate brines. 
Overall, good quality calcite and gypsum were recovered 
in the precipitation process while high efficiency in foulant 
removal was achieved.

Bond et al. [2] carried out bench scaling tests with RO 
concentrates of different characteristics in order to remove 
different insoluble salts affecting Rw during RO desalination. 
This intermediate process was considered critical since it has 
a direct impact on following treatment steps like secondary 
RO or possible thermal desalination. Different technologies 
were evaluated either individually or in combination includ-
ing chemical precipitation, fluidized bed crystallization, 
adsorption with activated alumina and ion-exchange.

In summary, most previous work was aimed at maximiz-
ing recovery of water in municipal desalination by remov-
ing the potential scale forming offenders from primary RO 
by using “high pH treatment” aided by NaOH, Ca(OH)2, 
NaH(CO)3, Na2CO3 and also by inducing the crystal for-
mation by adding seed crystals such as CaCO3 and CaSO4. 
The nature of the chemicals added essentially depends on 
the RO brine characteristics, cost and salts recovery options 
from generated sludge. Overall, NaOH is easier to store and 
manipulate than other chemicals and could be more effective 
for treating both low and high alkalinity waters [93]. 

There is an existing groundwater treatment facility in 
Southern California incorporating an intermediate softening 
process. This installation includes a high-rate pellet soften-
ing and solids clarifier system to treat primary RO brine. 
Softened and filtered brine is eventually fed to a secondary 
RO stage. This plant produces CaCO3 pellets that can be used 
in different applications [94].

Since the initial RO pretreatment in inland desalina-
tion plants is usually aided with antiscalant addition, other 
researchers have investigated antiscalant scavenge/removal 
when applying an intermediate ‘high pH precipitation treat-
ment’ between consecutive RO stages. 

Greenlee et al. [55] investigated the impact of antiscalants 
added during RO pretreatment on a later brine treatment, 
including salt precipitation and solid/liquid separation pro-
cesses. It was shown that antiscalant addition during RO 
pretreatment reduced calcium precipitation from RO brine 
and negatively affected the following solid/liquid separation 
process. Overall and for higher antiscalant doses, a greater 
decrease in calcium precipitation was observed during RO 
brine treatment. In another report, Greenlee et al. [95] also 
investigated an intermediate RO brine treatment between 
consecutive RO stages including the following steps: 
optional oxidation of antiscalants with ozone and H2O2, ‘high 
pH precipitation’, and solid–liquid separation. The oxidation 
step was shown to increase calcium precipitation, while the 
antiscalants solubilizing capabilities were reduced. The Rw 
increased from 80% to 90% for the non-ozonated brine and 
from 80% to 94% for the ozonated brine. 

Rahardianto et al. [96] also studied a two-step 
chemically enhanced seeded precipitation (CESP) process 
performed between consecutive RO stages for the treat-
ment of primary RO brine. The process combined lime 
treatment to allow CaCO3 precipitation and antiscalant 
(polycarboxylic acid) scavenge followed by CaSO4-induced 
precipitation with gypsum seeding. This process could be 
less chemically intensive than conventional softening while 
increasing overall Rw from 63% to 87% by applying a sec-
ondary RO stage. 

McCool et al. [97] investigated antiscalant removal 
from an RO concentrate with high gypsum scaling poten-
tial by lime treatment prior to seeded gypsum precipitation 
(CESP process). Adequate antiscalant removal (up to 90%) 
was achieved after the lime treatment process facilitating 
later seeded gypsum precipitation. Then, Rw can be further 
increased by implementing a secondary RO stage [97].

Overall, previous research has shown that the application 
of an intermediate ‘high pH precipitation treatment’ was able 
to decrease the adverse impacts of residual antiscalant added 
during RO pretreatment in municipal desalination. Lime 
treatment or direct contact with CaCO3 is potential solutions 
to mitigate negative effects of antiscalants on later salt pre-
cipitation and solid/liquid separation processes. This can be a 
significant issue when considering feasible strategies for RO 
brine minimization and salt recovery in municipal desalina-
tion. Further research is needed to find economical chemical 
treatments. 

Conversely, high bicarbonate concentration in the CSG 
RO brine remains as a major constraint for the integration 
of an intermediate ‘high pH precipitation treatment’ for 
scale control and RO brine minimization during CSG water 
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desalination. This issue could be addressed to some extent 
when an acid is initially added to the RO brine to covert 
HCO3

– into CO2, which may be off-gassed. This alternative 
reduces the quantity of solids generated in the downstream 
‘high pH precipitation treatment’ and the alkaline reagent 
demand associated with increasing the pH level, though the 
neutralization of the initially added acid needs to be fac-
tored in.

3.5. Other ZLD and volume reduction systems 
(commercially available or patent protected)

Other existing ‘volume reduction technologies’ are the 
ARROW™, HEEPM™, HERO™, and VSEP™ systems. With 
the exception of HERO™ the rest of the systems is consid-
ered as emerging technologies [21]. The HERO™ system,  
patented by Mukhopadhyay [98], is a process conceived for  
treatment of water in membrane separation processes. The 
integration of the HERO™ system in a two stage RO system 
has already been considered by different authors [17,21]. The 
hardness/alkalinity ratio in feed water is most often initially 
adjusted by alkali addition. Then, hardness is removed quan-
titatively from the primary RO brine in a weak acid cation 
exchange resin given the adequate hardness/alkalinity ratio. 
Following that, CO2 is removed in a degasification process. 
Eventually, the pH is increased up to 10.5 or higher enhanc-
ing the rejection of various species such as silica in the sec-
ondary RO membrane system. This technology minimizes 
the risk of salt precipitation on the RO membrane and water 
recovery above 90% is achievable when treating brackish 
water [17]. The application of HERO™ minimizes Capex rel-
ative to the brine concentration system. However, although 
energy costs are also reduced, chemical and solids disposal 
costs are increased [21].

SAL-PROC™ is a ZLD system that allows the sequential 
extraction and recovery of different salts like gypsum, NaCl, 
Mg(OH)2, CaCl2, CaCO3 and Na2SO4 from RO brines [16]. 
This system is particularly recommended for brackish inland 
brines and for brines with high concentrations of sulphate, 
potassium and magnesium [17]. SAL-PROC™ combines 
multiple evaporations and/or cooling stages, supplemented 
by mineral and chemical treatments. When RO technology 
is combined with SAL-PROC™ the system is referred as 
Reverse Osmosis SAL-PROC (ROSP) [15]. Recovered prod-
ucts are high quality. Ahmed et al. [99] have suggested some 
potential applications for recovered salts. SAL-PROC™ tech-
nology was tested by Arakel et al. [15] for the treatment of 
brackish water from Lake Tutchewop. This solution allowed 
the recovery of saleable products and achieved ZLD. 

SAL-PROC™ was also tested for the treatment of RO 
brine generated during CSG water treatment in Queensland 
(Australia). The volumes of saline water were huge. ROSP 
technology produced fresh or irrigation quality water, chem-
icals and minerals products as shown in Fig. 5. Overall, SAL-
PROC™ technology allows sustainable management and 
could facilitate a cost-effective solution for large volumes of 
saline effluent [15].

There is an existing patent for the manufacture of sodium 
hydroxide and sodium chloride products from CSG RO brine 
containing NaCl and at least NaHCO3 or Na2CO3. This solu-
tion combines different processes including lime addition, 

chemical precipitation for RO brine purification, concen-
tration by evaporation and cooling [100]. In addition, the 
‘Optimised Salt Recovery’ process has also been presented as 
an alternative to traditional costly selective salt recovery pro-
cesses. This process works through modification of the CSG 
brine chemistry to avoid co-precipitation of major salts, while 
trace impurities are removed from the RO brine [101].

Finally, the optimized pretreatment and unique separa-
tion (OPUS) process developed by Veolia is recommended 
for desalination of hard water with high concentrations 
of silica, organics, heavy metals, boron and particulates. 
It involves a combination of different processes, such as 
degasification, precipitation softening, media filtration, ion-
exchange, cartridge filtration and RO operated at high pH. 
The OPUS system has been tested in the oil and gas, and min-
ing industries. The application of this system provides high 
Rw levels, reduced waste volume, low energy consumption 
and facilitates an effective control of scaling. OPUS II is a new 
version of this system specifically focussed on the oil and 
gas industry. OPUS II simplifies the pretreatment by using 
ceramic membranes that improve oil removal and facilitate a 
more compact design [102]. 

4. Advantages and shortcomings of ZLD, RO brine
minimization, and scale control technologies:  
further research opportunities

The advantages and disadvantages, and research needs/
opportunities of the most relevant technologies and systems 
for RO brine minimization, ZLD and scale control in inland 
desalination plants have been summarized in Table 5. 

Fig. 5. Application of SAL-PROC™ technology to CSG produced 
water [15].
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Table 5
Summary of characteristics of relevant technologies and systems described in this review paper for RO brine minimization, scale 
control and ZLD in inland desalination

RO brine concentration technologies

Technology/system Maturity Technical Economic aspects

Evaporation 
ponds

Industrial scale Risk of groundwater contamination 
Discouraged or banned for CSG water management in 
Queensland (Australia) 

Requires large areas of land 

WAIV technology Pilot plant scale Risk of groundwater contamination 
Influenced by weather conditions 
Risk of scaling and fouling
Further research required for process optimization

Higher evaporation rates than 
evaporation ponds

Multistage RO Industrial scale Leading technology
Rw limited by the risk of scaling and the practical limits to 
provide the osmotic pressure

Cost-effective solution in terms 
of energy consumption, Capex 
and Opex

Evaporators and 
crystallizers

Industrial scale Rw in evaporators limited by scaling
Further research required to develop new systems recover-
ing residual heat or steam

ZLD approach for RO brine
High Capex and Opex

ED Pilot plant scale Cost-effective only for treating waters with TDS level 
below 10,000 mg/L
Further research required to avoid scaling and to improve 
selectivity and permeability of membranes

NaOH production from CSG 
RO brine can be feasible by ME 
technology 
High Capex and Opex

FO Pilot plant scale High concentration capacity
Rw limited by the risk of scaling
Need to develop more robust membranes and a suitable 
draw solution

Simplicity
Moderate energy consumption

MD Pilot plant scale Promising alternative
Further research required to avoid scaling

High Capex
Lower energy requirements than 
evaporators and crystallizers

Closed circuit 
desalination

Industrial scale [17] Rw limited by the risk of scaling High Capex

Scale control technologies
Technology/ 
system

Maturity Technical Economic aspects

Acid/antiscalant 
addition

Industrial scale Limited efficacy
An excessive dose can cause biofouling

Simplicity
Low Capex
High Opex

‘High pH precipi-
tation treatment’

Industrial scale Feasible alternative when antiscalants are not further effective
Further research required to find economical chemical 
treatments
Its application for CSG brine minimization can be limited 
by bicarbonate concentration

Salt recovery options
Chemically intensive
High Capex
Later acid/antiscalant addition 
can be required

Other ZLD and volume reduction systems
Technology/ 
system

Maturity Technical Economic aspects

HERO™ Industrial scale 
for non-municipal 
applications

Interstage system
Minimizes risk of salt precipitation

Minimizes Capex relative to the 
brine concentration system

SAL-PROC™ Patented
Tested for the 
treatment of CSG 
brines

Combines multiple technologies
Reduction of environmental and operational footprints 

Allows selective recovery of 
salts from RO brine
High Capex and Opex

OPUS/OPUS II Tested in the oil 
and gas and min-
ing industry

Combines multiple technologies.
Reduces scaling risk

Reduced brine volume
Low energy consumption
High Capex and Opex
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5. Conclusions

RO is the dominant technology applied in inland
municipal desalination and for treating CSG water in 
Australia. However, RO brine disposal is considered to be 
an environmental challenge and one of the main handicaps 
of this technology. Antiscalants are often dosed during RO 
pretreatment to prevent membrane scaling. Water recover-
ies are then limited by antiscalant efficacy and large volumes 
of brine are mainly disposed of in evaporation ponds while 
alternative options for RO brine minimization and ZLD are 
researched. Overall, high recovery and ZLD systems could 
only be applied in specific cases considering the high Capex 
and Opex involved. In addition, no matter which concen-
tration technology is selected for RO brine minimization, it 
becomes necessary to cope with the scaling potential problem. 

The traditional ZLD approach recommended in munici-
pal desalination combines sequential RO stages with vacuum 
evaporation/crystallization when sufficient treatment has 
been performed to remove potential scalants. This solution 
requires further research to reduce energy requirements and 
to develop new systems recovering residual heat or steam. 
Alternatively, MD, FO or ED technologies have also been 
proposed for RO brine minimization. However, those tech-
nologies were tested at a laboratory level or at a pilot plant 
scale making it difficult to assess their feasibility on an indus-
trial scale. 

Conversely, the Queensland Government Policy, in 
regard to ‘CSG water management and reuse’, has prioritized 
the recovery of useable products from CSG brine when feasi-
ble. Initial studies performed in Australia have revealed the 
possibility of producing NaOH from CSG brine by ME. In 
addition, CSG RO brine minimization has also been achieved 
on a pilot plant scale by the application of processes combin-
ing UF/RO and MED or UF/RO and MD. Overall, economic 
aspects of these promising alternatives require further inves-
tigation, including identifying areas where cost reduction 
might be possible. 

The integration of an intermediate ‘high pH precipita-
tion treatment’ in municipal brackish water desalination was 
broadly investigated on a laboratory scale, and using pilot 
plants in the USA. The application of this treatment between 
consecutive RO stages or between RO and another concentra-
tion system is chemically intensive and expensive. However, 
this approach could overcome antiscalant limitations and 
increase Rw levels, while salt recovery options are enhanced. 
But options that can be used to increase the water recovery 
and to facilitate a ZLD solution require rigorous laboratory 
investigation due to groundwater and RO brine site specific 
characteristics. Additionally, the application of this precipita-
tion treatment for scale control and brine minimization in the 
CSG industry can be limited by high bicarbonate concentra-
tion in the CSG RO brine. 

Finally, more complex systems for ZLD and RO brine 
minimization like the SAL-PROC™ have been successfully 
tested for the treatment of brackish water and CSG brine 
increasing water recoveries while producing saleable prod-
ucts. SAL-PROC™ involves high Capex making its imple-
mentation on an industrial scale difficult. However, recovery 
of saleable products can help to reduce costs, thus making 
this technology more attractive. 
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3.3 Concluding remarks 

 

Freshwater Rw in inland desalination systems using RO technology is often limited by 

AS efficacy, and large volumes of concentrate are mainly disposed of in evaporation 

ponds. Alternative options for RO concentrate minimization and ZLD were 

researched. Overall, no matter which concentration technology is selected for RO 

concentrate minimization, coping with scaling is necessary. This Chapter shows that 

the integration of an intermediate ‘High-pH pretreatment’ in municipal brackish water 

desalination was broadly investigated on laboratory scale, and using pilot plants in the 

USA. This approach could overcome AS limitations and increase water Rw levels, 

while salt recovery options could be enhanced. However, options that can be used to 

increase the water Rw and facilitate by-products recovery, require rigorous laboratory 

investigation due to groundwater and RO concentrate site-specific quality. In this 

regard and in contrast to the previous studies, the brackish groundwater used for this 

research program had a magnesium concentration higher than the calcium 

concentration. 

 

Generally speaking, high recovery and ZLD systems could only be applied in specific 

cases considering the high Capex and Opex involved. However, the final objective of 

this study was to encourage the beneficial use of the RO concentrate in a way that 

protects the environment and maximises its productive use as a valuable resource. 
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CHAPTER 4 

Research on ‘High-pH precipitation treatment’ for RO 

concentrate minimization and salt recovery in a municipal 

groundwater desalination facility 

 

PAPER II 

 

Rioyo, J., Aravinthan, V., Bundschuh, J., & Lynch, M. 2018. Research on ‘High-pH 

precipitation treatment’ for RO concentrate minimization and salt recovery in 

a municipal groundwater desalination facility. Desalination, 439, 168-178. 

(Published). 

 

4.1 Introduction  

 

This paper explores ‘High-pH pretreatment’ of RO concentrate followed by secondary 

RO treatment to increase overall water Rw in a municipal desalination facility. In 

contrast with previous studies that used calcium dominated waters, this study deals 

with RO concentrate with a magnesium concentration higher than the calcium 

concentration. This approach is shown to be promising for overcoming AS limitations 

and membrane scaling during RO desalination. Scale-forming precursors including 

magnesium, calcium, strontium, barium and SiO2 are removed from the primary RO 

concentrate by precipitation and adsorption/enmeshment mechanisms. The study also 

evaluates CaCO3 and CaO recovery from the precipitated sludge through CO2 gas 

injection to selectively dissolve magnesium.  
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A B S T R A C T

This study evaluated ‘high-pH precipitation treatment’ of a reverse osmosis (RO) concentrate followed by sec-
ondary RO treatment to increase overall water recovery in an existing inland desalination system. In contrast
with previous studies that used calcium dominated surface waters, this study dealt with magnesium dominated
groundwater. The high-pH process removed scale-forming precursors including magnesium, calcium, strontium,
barium and SiO2 from primary RO concentrate by precipitation and adsorption/enmeshment. Lime and soda ash
were determined to be the superior caustic agents when compared to sodium hydroxide for the high pH de-
mineralization process. Following ‘high-pH precipitation treatment’, pH readjustment and antiscalant addition,
the use of secondary RO enabled the overall water recovery to be increased from 80 to 97%. In addition, this
study evaluated CaCO3 and CaO recovery from the precipitated sludge through CO2 gas injection to selectively
dissolve magnesium.

1. Introduction

On a global scale, membrane desalination using reverse osmosis

(RO) or nanofiltration membranes has been the leading technology
applied in inland desalination [1]. However, concentrate management
remains as one of the main limitations of this technology considering
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the limited disposal options available [2]. In order to minimize the
volume of RO concentrate to be disposed of, brackish water desalina-
tion systems tend to operate at high water recovery rates (Rw), typically
from 65 to 85% [3]. However, fresh water recovery in RO desalination
of brackish waters is limited by salt scaling. Different salts, such as
CaCO3, BaSO4, CaF2, CaSO4, Mg(OH)2 or SiO2, can precipitate on the
RO membrane if the concentration product of the salt forming con-
stituents present exceeds the solubility product (Ksp) [4]. Salt scaling on
the RO membrane can lead to permeate flux decline and reduced
membrane life [5]. In addition, operating pressures are higher in scaled
membranes while salt rejection is lower [6]. In order to mitigate this
problem, antiscalants are often injected during RO pre-treatment to
prevent salt precipitation [4,7,8]. Antiscalants retard the precipitation
of sparingly soluble salts by inhibiting crystal formation or by surface
modification of new crystals [6]. Eventually, Rw in the desalination
system becomes limited by antiscalant efficacy, and this is an impedi-
ment to achieving high product water recovery in inland plants [5].

Another concurrent strategy to enhance both fresh water recoveries
and concentrate minimization during the desalination process is to re-
move scale-forming precursors by the application of an intermediate
‘chemical precipitation treatment’ to the RO concentrate between pri-
mary and secondary RO stages [1,9–12]. In contrast with previous RO
concentrate demineralization studies performed in the USA with
brackish surface waters, groundwater and RO concentrate collected at a
municipal desalination facility located in the Western Downs Regional
Council (Australia) had a relatively higher magnesium concentration
and a lower calcium concentration. The mass ratio Ca/Mg in the RO
concentrate was only 0.74, while the same ratio in the studies carried
out in the USA ranged from 1.77 to 2.98 [5,9–11,13].

In studies carried out in the USA with calcium dominated con-
centrate, the presence of inorganic scalants, such as CaSO4, BaSO4, and
SiO2, limited overall Rw in the desalination system when conventional
scale-control strategies based on pH adjustment and antiscalant addi-
tion were applied. In all cases, an intermediate precipitation strategy
was tested for scale-forming precursor removal [5,10,11].

Silica and/or magnesium silicate are poorly studied scalants that are
often present in waters with high magnesium levels, limiting fresh
water recoveries in water treatment systems [6]. In this regard, no
studies have been conducted in order to find out the effect of magne-
sium dominated RO concentrate in salt precipitation and salt recovery
following a ‘high-pH precipitation treatment’. It was hypothesized that
Rw could be enhanced in facilities treating magnesium dominated
waters since magnesium-bearing minerals that precipitate at high pH
treatment could concurrently remove other scale forming precursors
including silica through precipitation and adsorption/enmeshment
[14]. In addition, calcite and quick lime recovery from precipitated
sludge could be possible through CO2 gas injection to selectively dis-
solve magnesium.

Therefore, the aim of this research was to generate knowledge about
the integration of a ‘high-pH precipitation treatment’ between con-
secutive RO stages for the treatment of magnesium dominated con-
centrates. As a case-study, an existing groundwater desalination facility
in Australia was used. Fig. 1 shows a proposed plant layout aiming at
RO concentrate minimization and salt recovery. The specific objectives
of this research were a) removal of scale-forming precursors from pri-
mary RO concentrate, which included magnesium, calcium, barium,
strontium and silica, to increase Rw in a secondary RO; and b) recovery
of by-products, such as CaCO3 and quicklime, from precipitated sludge
for later utilization.

2. Background

Some researchers have extensively studied state of the art technol-
ogies for RO concentrate minimization [15–17]. A design including
consecutive RO stages was suggested as a feasible method to maximize
water recovery [3,8,17–19]. This solution could be applied to some

extent in existing plants, though further membrane stages cannot be
applied for concentrate minimization without first treating the existing
RO concentrate to decrease its membrane scaling potential [1]. This
could be achieved by applying an intermediate chemical precipitation
treatment between consecutive RO stages, allowing for the addition of
new RO stages to an existing facility. This intermediate step removes
undesirable precipitated species from the primary RO, thus permitting
both further concentrate minimization and higher water recovery
[1,9–12].

The application of an intermediate ‘chemical precipitation treat-
ment’ between consecutive RO stages has been broadly reported in
relation to calcium dominated waters. Most of the research, which was
carried out using pilot plants, was aimed at maximizing recoveries by
precipitating potential scale-forming salts from primary RO con-
centrates. Precipitation was induced by the addition of different alka-
line reagents such as NaOH, NaHCO3, Ca(OH)2 and Na2CO3 [1,5,9–12].
In some cases, a preferential surface area for heterogeneous nucleation
and crystal growth was also facilitated by adding seed crystals, such as
calcite or gypsum [5]. Previous research has also described the impact
of antiscalants added during RO pre-treatment on a later precipitation
treatment for RO concentrate minimization. It has been demonstrated
that antiscalants inhibit CaCO3 precipitation and precipitated particles
were smaller than those formed in the absence of antiscalant [20].
Research was also performed on antiscalant scavenging and removal by
different methods. Different strategies, like adding ferric chloride to
remove phosphonate inhibitors by way of co-precipitation with ferric
hydroxide [13] or advanced oxidation processes with ozone and hy-
drogen peroxide [21], were successfully tested. Finally, it was also re-
ported that effective antiscalant scavenging could be achieved by an
initial RO concentrate treatment with lime and direct contact with
precipitated CaCO3 particles. CaSO4 de-supersaturation in the RO
concentrate could then be achieved by seeded gypsum precipitation
[22,23].

The concentrate used in most of these previous experiments was
derived from desalination plants treating brackish surface waters
[5,10,12] or reclaimed water [9] in the USA, rather than groundwater.
The groundwater may have specific characteristics depending on the
aquifer [24].

Brackish surface waters tend to be rich in calcium and low in so-
dium compared with seawater, while sulphate tends to be the pre-
dominant anion as opposed to chloride [25]. In these studies that dealt
with Colorado River water in the USA, the concentration of inorganic
scalants such as BaSO4, CaCO3, Ca(SO)4, SrSO4, MgSO4 and SiO2 clearly
increased above their solubility limits when higher fresh water re-
coveries were considered [5,10,12]. To cope with this problem, most
tested interstage precipitation strategies afforded significant removals
of scale-forming ions, such as calcium, barium and strontium, while
magnesium and SiO2 removal efficiency was variable [5,10,12]. In that
regard, accelerated precipitation softening technology at pH 10.5
achieved a moderate reduction (10–20%) of SiO2 and magnesium [5].

Conversely, this study targeted the maximum magnesium removal
from the primary RO concentrate generated in a groundwater desali-
nation facility. It was considered that silica removal could be max-
imized through high pH precipitation of magnesium-bearing minerals.
Concurrently, calcium, barium and strontium could also be removed
during the demineralization process and salt recovery options could be
achieved through maximum concentrate purification.

3. Material and methods

3.1. RO concentrate generation and desalination plant description

This study was carried out with RO concentrate collected at an in-
land desalination facility located in the Darling Downs region of
Queensland (QLD), Australia. The plant was able to treat up to
3700m3/day of brackish groundwater, depending on household water
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demand. According to the plant management, water recoveries of up to
80% were achievable. This facility generated an average of 300m3/day
of RO concentrate which was disposed of in four evaporation ponds.

Fig. 2 shows the layout of the desalination plant. RO feed water was
supplied from up to 3 of the 5 different artesian wells available in the
vicinity of the plant. Its pretreatment process combined media filtration
(gravel, sand and anthracite), antiscalant/dispersant (SpectraGuard SC)
addition, bag and cartridge filters, and UV disinfection. Pre-treated
water was then pumped through a 2-stage RO filtration system. Fol-
lowing filtration, the produced permeate was aerated to remove CO2

and the pH was adjusted by NaOH addition. Finally, RO permeate was
blended with groundwater to increase water hardness and alkalinity.

The RO plant had two stages. Stage 1 used low-energy RO mem-
branes (DOW FILMTEC™ XLE-440, The Dow chemical company, USA)
operated at 0.95MPa, whereas stage 2 used high-rejection brackish
water membranes (DOW FILMTEC™ BW30-400, The Dow chemical
company, USA) at 1.6 MPa.

RO concentrate for these experiments was taken from the RO3
discharge and preserved in a laboratory refrigerator below 5 °C. No
precipitates were observed using this storage method. The main char-
acteristics of well feed water and RO concentrate are summarized in

Table 1.

3.2. ‘High-pH precipitation treatment’ studies

Batch demineralization tests were carried out in the University of
Southern Queensland environmental laboratory at room temperature
(23–25 °C) using a VELP ‘jar test’ apparatus (model JLT6) containing six
1-L plastic beakers. In all experiments, a ‘high-pH precipitation treat-
ment’ strategy was applied to assess the removal of scale-forming pre-
cursors including magnesium, calcium, strontium, barium and SiO2.

RO concentrate was treated with varying amounts of NaOH (1 N) to
give six different pH levels (10.0, 10.3, 10.6, 10.9, 11.2 and 11.5).
Considering RO concentrate quality shown in Table 1, the addition of
soda ash was not required for non‑carbonate hardness (NCH) removal
when softening was performed with NaOH at high-pH levels. This
meant that an excess of carbonate ions were available to remove most
of the calcium ions as CaCO3 precipitate.

For comparison purposes, experiments were also conducted ap-
plying both the lime and the lime-soda ash softening treatments to the
RO concentrate. Required lime and soda ash doses were calculated
according to the methodology described in ‘Introduction to

Fig. 1. Proposed plant layout for RO concentrate minimization.

Fig. 2. Darling Downs desalination plant layout.
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Environmental Engineering, Third Edition’ [26].
All reagents were added at the beginning of the initial rapid-flash

mixing time (2min at 150 rpm). Thereupon, following a 30min slow
mixing time at 50 rpm, all waters were allowed to settle for one hour.
Finally, supernatant samples and the dissolved fraction obtained by
filtration were collected for analysis. Settled solids were also collected
by vacuum filtration and dried at 50 °C before being analysed by
scanning electron microscopy-energy dispersive X-ray spectroscopy
(SEM-EDX), X-ray diffraction (XRD) and Fourier transform infrared
spectroscopy (FTIR). All jar test trials were repeated three times.

To simulate a worst-case scenario, additional experiments were
carried out spiking with magnesium sulphate heptahydrate to the RO
concentrate in order to increase both magnesium and sulphate con-
centration. The same jar test methodology described above was applied
when softening the spiked concentrate with NaOH and lime. However,
for samples treated by the lime-soda ash softening a two-stage process
was required in order to effectively remove calcium by precipitation. In
such cases, the jar test sequence was modified to include the following
steps: 1) 2min rapid mixing time at 150 rpm including lime addition; 2)
30min slow mixing time at 50 rpm; 3) 2min rapid mixing time at
150 rpm including soda ash addition; 4) 30min slow mixing time at
50 rpm; and 5) 1 h settling time.

3.3. Quicklime recovery studies

The feasibility of quicklime recovery from precipitated sludge was
only studied for RO concentrate treated by the lime-soda ash softening
process. This option was considered less feasible for RO concentrate
softened with caustic soda due to the higher residual alkalinity and
expected lower presence of CaCO3 in the precipitated sludge.

At completion of the jar tests and following settling time, the clear
supernatant of softened concentrates was carefully syphoned and
around 300mL of decanted slurry was collected in a 1 L beaker.
Agitation was then provided using a magnetic stirrer model Bibby
HB502. CO2 gas was bubbled through the slurry solution from a 50 L
(food grade) cylinder supplied by BOC Australia in order to dissolve
precipitated magnesium. The flow of CO2 gas using an ‘aquarium type
air stone’ was regulated to produce micro-fine and well dispersed

bubbles. During that time, the pH was continuously monitored. CO2 gas
addition was stopped when the slurry pH level was around 7.3.
Previous studies in conventional water treatment plants had reported
that further CO2 addition could result in the loss of CO2 to the atmo-
sphere [27].

The remaining sludge, mainly CaCO3 and impurities, was dewatered
and collected by vacuum filtration. Recycled CaCO3 was then calcined
at 900 °C for 20min in a laboratory muffle furnace, model Labec LCF
1512, for quicklime recovery. Samples of dewatered CaCO3 and pro-
duced quicklime were analysed by FTIR. Additional samples were sent
to an external laboratory for XRD analysis. The chemical reaction for
the calcination step is shown below [28]:

⎯ →⎯⎯ +
↑
⏐⏐⏐⏐CaCO CaO CO

heat
3 2 (1)

Finally, a magnesium bicarbonate solution was also collected from
the filtrate. Possible applications of this solution were studied. This
alternative, favoured by the high magnesium concentration in the RO
concentrate, has never been tested in inland desalination plants aiming
at RO concentrate minimization and salt recovery.

3.4. Reagents and analytical methods

All chemicals employed in the analyses were ‘reagent-grade’ sup-
plied by HACH, Chem-Supply, Sigma Aldrich and Australian Chemical
Reagents.

The pH was determined using a pH electrode, model Eutech PC
2700, calibrated in buffer solutions of pH 4, 7, and 10. Conductivity
was measured using a conductivity meter, model Sper-Scientific.
Analysis of turbidity was performed using a Lovibond turbicheck-meter.

A titration technique using H2SO4 was applied for total alkalinity
determinations [29]. TDS concentration was determined according to
the Standard Methods: 2540 C ‘Total Dissolved Solids Dried at 180 °C’
[30].

A Shimadzu atomic absorption spectrophotometer (AAS), model
AA-7000, was used for the quantitative determination of cations. All
samples were acidified using concentrated nitric acid before commen-
cing the analysis. When the air-C2H2 flame was used, chemical inter-
ferences were prevented by addition of a lanthanum solution. In the
case of N2O-C2H2 flame utilization, potassium chloride was added in-
stead of the lanthanum solution.

Sulphate and chloride were analysed by ion chromatography using a
Dionex ICS-2000 analyser according to Thermo Scientific application
note n-154 [31]. An IonPac AS15 (4mm) column was used to perform
these analyses.

Fluoride and molybdate-reactive silica were determined using a UV-
VIS spectrophotometer (HACH model DR-2700), according respectively
to the SPADNS (HACH 10225) and the silicomolybdate (HACH 8185)
methods [32,33].

SEM-EDX determinations in precipitated solids were undertaken
using a SEM-JCM6000 scanning electron microscope.

Powder XRD analysis of precipitated solids were performed using a
Philips X'Pert apparatus with CuKα=1.542 A radiation, operating at
40 kV and 20mA in the 10° to 80° 2-theta scanning range. The dif-
fraction patterns were compared using the X'Pert HighScore Plus soft-
ware. Powder diffraction files (PDF) from the International Centre for
Diffraction Data were used as references.

FTIR spectra of precipitated solids were undertaken using a
Shimadzu RF-6000 spectrophotometer incorporating the LabSolutions
IR software for surface functional groups analysis. Surface functional
groups play an important role in the adsorption processes. In all cases,
10 scans were taken for both the background and the samples and the
FTIR spectra resolution was set at 8 cm−1. All samples were prepared
mixing 0.2mg of sample and 200mg of KBr.

Table 1
Characteristics of well water (Western Downs Regional Council) and RO con-
centrate.

Parameter Well water characteristics RO concentrate
characteristics

Min. Max.

pH (Units) 7.5 7.85 7.9
Conductivity (mS/cm) 3.4 3.5 14.5
Turbidity (NTU) 0.1 0.6 < 1
TDS (mg/L) 1860 2050 9334
Alkalinity (mg/L

CaCO3)
324 370 2150

Sodium (mg/L) 526 580 3357
Potassium (mg/L) 2.8 3.2 25
Calcium (mg/L) 44 52 277
Magnesium (mg/L) 69.6 84.7 372
Strontium (mg/L) 2 2.5 13
Barium (mg/L) 0.05 0.06 0.35
Sulphate (mg/L) 130 160 788
Chloride (mg/L) 786 934 3752
Fluoride (mg/L) – – 2.2
Silica (mg/L SiO2) 31 35 191

Note: Well water quality data corresponds with ‘bore n-12’ and was supplied by
the Western Downs Regional Council. Well water characteristics were very si-
milar in the 5 different artesian wells available in the vicinity of the plant. All
wells tapped into the same aquifer so that the water from each well was es-
sentially the same.
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3.5. Saturation indexes (SI) calculation

For this research, the scaling potential by SiO2 and other salts was
calculated using ASTM standards for RO applications [34–37]. The
Reverse Osmosis System Analysis (ROSA) software by DOW Water &
Process Solutions was also applied to estimate RO concentrate mini-
mization capacity and membrane scaling potential following a ‘high-pH
precipitation treatment’. ROSA software has been frequently used in
membrane modelling for detailed design in spite of being limited to
applications incorporating DOW membranes [38].

4. Results and discussion

4.1. Justification of an intermediate ‘high-pH precipitation treatment’ for
RO concentrate minimization

Table 2 shows calculations of the scaling potential by SiO2 and
different salts in the RO concentrate by ASTM standards. For this pur-
pose, the ionic strength (I) of the RO concentrate was approximated by
the formula [34,39]:

∑=I m z1
2 i i

2
(2)

resulting in a value of 0.2 (molal), where mi and zi were the molal
concentration and ionic charge of ion i, respectively.

As shown in Table 2, the performed SI calculations suggest that the
RO concentrate was saturated with respect to CaCO3, BaSO4 and SiO2.
Further volumetric minimization of the RO concentrate could be
achieved by implementing new RO stages. Nevertheless, as shown in
Figs. 3 and 4, SI values for most problematic salts increased as the RO
concentrate was further minimized. In no case was Mg(OH)2 pre-
cipitation feasible at this pH level (7.9).

The risk of CaCO3 scale could be controlled by acid addition
[39,40]. BaSO4 and CaF2 precipitation could also be avoided by anti-
scalant utilization [39]. Commercial antiscalants like Vitec 4000, allow
an increase in the BaSO4 and CaF2 SI levels up to 105 and 1000 re-
spectively [41].

That being said, the rate of concentrate minimization in the new RO
stages was limited by the risk of SiO2 precipitation on the RO mem-
brane, which has been a common issue in many inland desalination
plants [25,42]. To prevent this problem, there are some specific anti-
scalants which target SiO2 scale, in which SiO2 concentration in the

super concentrated waste could be increased by up to two times the
saturation under certain operating conditions [41]. However, for
practical applications it has been recommended to limit SiO2 con-
centration to 200mg/L [6] (currently 191mg/L in the RO concentrate).
Consequently, further minimization of the concentrate by secondary RO
would require adopting a different approach.

Figs. 5 and 6 show calculations of the scaling potential by different
inorganic salts in the RO concentrate as the pH was adjusted at different
levels ranging from 4 to 11 by HCl/NaOH addition. As shown in Fig. 5,
Ca(SO)4, Ba(SO)4, Sr(SO)4 and CaF2 SI levels were found to be almost
pH insensitive as the pH level in the RO concentrate increased. How-
ever, CaCO3, Mg(OH)2 and SiO2 solubility were pH dependent. As
shown in Fig. 6, a pH level of about 9.5 was required to saturate the
primary RO concentrate with Mg(OH)2. Therefore, the integration of an
intermediate ‘high pH precipitation treatment’ could facilitate magne-
sium and calcium removal from primary RO concentrate. Concurrently,
other scale forming precursors including barium, strontium and SiO2

could be removed during the softening treatment by precipitation and
adsorption/enmeshment mechanisms.

Overall, to cope with limitations imposed by conventional scale-
control strategies, an intermediate ‘precipitation treatment’ for divalent
cation removal including magnesium, calcium, barium and strontium
together with coagulated SiO2 and colloidal matter, could be

Table 2
RO concentrate. SI levels calculation.
T= 25 °C.

Parameter SI

LSI 2.02
S&DSI 1.52
CaSO4 0.11
BaSO4 11.0
SrSO4 0.22
SiO2 1.36

Notes: There is a risk of CaCO3 scale on the
RO membrane for positive Langelier
Saturation Index (LSI) or Stiff & Davies
Stability Index (S&DSI) values [35,36].
CaSO4, BaSO4 and SrSO4 show a pre-
cipitation tendency for SI levels (measured
as the ‘ion product’ divided by Ksp) above
1. SiO2 also shows a precipitation tendency
for SI levels (measured as silica concentra-
tion in RO concentrate divided by calcu-
lated silica solubility) above 1. Mg(OH)2 SI
level calculated by ROSA software resulted
in a value of zero.
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considered as a feasible alternative to increase fresh water recoveries
[43]. Higher Rw levels could be achieved by lowering the silica con-
centration to 20–30mg/L [25]. In addition, salt recovery options from
precipitated sludge could be available. Acid/antiscalant utilization
would be eventually required following an intermediate ‘high-pH pre-
cipitation treatment’ to guarantee maximum process optimization in
the additional RO stages.

4.2. ‘High-pH precipitation treatment’ for RO concentrate minimization

4.2.1. Chemical demineralization efficiency
The experimental results of the NaOH softening process were illu-

strated in Fig. 7. In this chart, the percentage removal of calcium,
magnesium and SiO2 were plotted against the RO concentrate pH level.
Optimal removal rates for calcium and magnesium were achieved at
pH 11.5. In addition, SiO2 removal rates above 95% were observed
when the RO concentrate pH was above 10.6.

A comparison of the simultaneous removal of calcium, magnesium
and SiO2, following a softening treatment with a) NaOH at pH 11.5; b)
lime; and c) lime and soda ash, was plotted in Fig. 8. The calculated
lime dose, 2.9 g/L as Ca(OH)2, was added at the beginning of the lime
softening treatment for carbonate hardness removal. Addition of
Na2CO3 (0.08 g/L) together with the same dose of lime was also re-
quired during the lime and soda ash softening treatment for non-

carbonate hardness removal. The highest calcium removal rates,
around 98%, were obtained in the samples treated only with NaOH at
pH 11.5. As expected, Na2CO3 addition during the lime and soda ash
treatment also facilitated a 5% increase in calcium removal with respect
to the samples treated only with lime. Silica removal rates in all
treatments were very similar around 96–97%. Conversely, magnesium
removal rates in the RO concentrate samples treated with a) NaOH at
pH 11.5; b) lime; and c) lime and soda ash were respectively 95, 98 and
97%. Overall, we could conclude that the three tested treatments were
highly effective in these experimental conditions.

However, the NaOH softening treatment showed some drawbacks
during jar test experiments. Firstly, a 72% increase in total alkalinity
was measured in softened RO concentrate. This had a negative impact
on the LSI/S&DSI. Secondly, conductivity increased up to 16.5mS/cm.
This higher salinity limited water recovery in the new RO stages when
the practical limits to surpass the osmotic pressure were considered.
Energy requirements also increased concurrently. It is important to
mention that concentrates could only be concentrated by RO to a
maximum of 65,000–75,000mg/L, in NaCl dominated waters [44].
Thirdly, pH normalization using HCl or H2SO4, together with anti-
scalant addition were required before passing softened RO concentrate
through the new RO stages. As a consequence of the increased alkali-
nity, the cost for final pH stabilization also increased for RO concentrate
samples softened only with caustic soda. Finally, flocs produced during
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the NaOH softening treatment were smaller and more disperse.
Therefore, polyelectrolyte addition was required to improve the solid/
liquid separation process.

As shown in Fig. 9, the TDS level increased as the softened RO
concentrate (by the three previous mentioned methods) was further
concentrated by additional RO stages. RO concentrate softened with
NaOH appeared to be the most unfavourable alternative since Rw was
limited to around 80% (total Rw=95%) when additional RO stages
were implemented. On the other hand, softened RO concentrate treated
by the lime and the lime and soda ash softening treatment could
achieve fresh water recoveries of around 87% (total Rw=97%) in both
cases. Since the risk of salt precipitation was properly minimized
through a ‘high-pH precipitation treatment’, Rw calculations were
carried out on the basis that the softened RO concentrate (following pH
stabilization and antiscalant addition) was further concentrated by
additional RO stages to a maximum of 70,000mg/L TDS.

This research targeted the maximum Mg removal from the existing
RO concentrate. The goal of this research was to achieve maximum
concentrate purification to increase Rw while enhancing salt recovery
options. By contrast, some studies performed in the USA, limited Mg
(OH)2 precipitation during the intermediate demineralization treatment
due to its poor settling characteristics [13] and related difficulties
during the solid-liquid separation process [5].

4.2.2. Silica removal mechanism
4.2.2.1. Silica removal efficiency during ‘high-pH precipitation
treatment’. Two main mechanisms were considered for silica removal
during a softening treatment: a) precipitation as calcium and/or
magnesium silicate; and/or b) by adsorption/enmeshment in
precipitated Mg(OH)2 and/or CaCO3 [14,45]. The first mechanism
can become more predominant at pH levels above 11 [14]. As shown in
Table 3 and based on the pKs constants, precipitation of magnesium

silicates is more feasible than Mg(OH)2 precipitation. Moreover,
magnesium silicate precipitation is favoured against calcium silicate
precipitation due to its lower solubility.

According to the bibliography, the catalytic effects of dissolved
magnesium in the silicic acid condensation reaction become visible for
water pH levels above 9. In addition, experiments conducted in batch
runs have demonstrated that magnesium concentration affects the silica
precipitation process more than calcium concentration [6].

Overall, it is considered that silicon can be removed during soft-
ening treatment by co-precipitation of magnesium silicate when the
molar ratio Si/Mg is higher than 1/6 [46,47]. For silica precipitates,
such as enstatite (MgSiO3), a molar ratio Si/Mg=1/1 is required. This
ratio would be lower if silica precipitates as Mg2SiO4 (forsterite) or
Mg3Si2O5(OH)4 (antigorite) [45]. Previous studies have also reported
that a molar ratio Si/Mg of 1/22 was required for adsorption of SiO2 on
Mg(OH)2 [47]. Considering the data provided in Table 1, sufficient
magnesium ions were present in the RO concentrate to remove most of
the silica as magnesium silicate. In this regard, the molar ratio Si/Mg in
the RO concentrate was 1/5 resulting in a mass ratio Si/Mg of about 1/
4.

Fig. 10 shows SEM images of precipitated solids obtained after
softening the RO concentrate with a) NaOH at pH 11.5; b) lime; and c)
lime and soda ash. In all cases, the formed solids showed some crys-
talline phases within amorphous precipitates. Semi-quantitative che-
mical analysis of precipitated solids shown in Fig. 10 were also pro-
vided in Table 4. Results were obtained from the EDX analyser. This
technique analysed the solid surface with 1–2 μm penetration depth.
The most interesting finding was that the measured atomic Si/Mg ratios
were about 1/4 in all cases. Therefore, and considering the high-pH
levels, precipitation as silicate appeared to be the main mechanism for
silica removal.

Powder XRD and FTIR analysis were also performed on the pre-
cipitated solids. XRD analysis identified the calcite pattern in all sam-
ples. However, since precipitated magnesium silicate can show an
amorphous structure in these experimental conditions, no match was
found using the XRD technique. The crystalline solids as seen in Fig. 10
could therefore be related to calcite. Secondly, the presence calcium
carbonate was also confirmed by FTIR analysis. FTIR spectra also
showed in all cases a band between 1100 and 900 cm−1 that could be
attributed to silicate ions [48]. Fig. 11 shows a comparison between the
FTIR absorption spectra of precipitated solids obtained after softening
the RO concentrate with lime and soda ash and the FTIR absorption
spectra of calcium carbonate.

We conclude that maximum silica reduction, apparently through
magnesium silicate polymerization, was favoured by the high-pH of the
softening treatment and the existing Si/Mg and Ca/Mg ratios present in
the RO concentrate.

4.2.2.2. Effect of increased magnesium and sulphate concentration on silica
removal efficiency during ‘high-pH precipitation treatment’. In order to
simulate a worst-case scenario, magnesium sulphate heptahydrate was
added to the RO concentrate to increase magnesium and sulphate
concentration up to 574 and 1586mg/L, respectively. This also resulted
in an increase in the non‑carbonate hardness of the RO concentrate.
Overall, an increase in dissolved magnesium concentration can enhance
the silica removal process when insufficient hardness is present in raw
water [14]. The higher magnesium concentration also resulted in
higher Mg(OH)2 SI levels as the RO concentrate pH level was
increased. Required doses of NaOH (1 N), lime and soda ash were
recalculated according to these new conditions resulting respectively in
81mL/L, 3.5 g Ca(OH)2/L and 0.9 g Na2CO3/L.

Experiments softening the RO concentrate with a) NaOH at pH 11.5;
and b) lime, were repeated in triplicate following the same jar test
methodology described in Section 3.2. In this regard, NaOH addition
provided average calcium, magnesium and SiO2 removal rates of 96, 93
and 97%, respectively. Conversely, softening experiments with lime
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Table 3
Negative log ksp values of common salts.

Name Formula pKs Reference

Antigorite Mg3Si2O5(OH)4 34.5 [45]
Forsterite Mg2SiO4 26.9 [45]
Enstatite MgSiO3 16.6 [45]
Brucite Mg(OH)2 11.6 [45]
Calcite CaCO3 8.5 [39]
Aragonite CaCO3 8.2 [39]
CaH2SiO4 CaH2SiO4 8.16 [45]
Lime Ca(OH)2 5.15 [45]
Calcium sulphate CaSO4 4.3 [39]
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achieved average magnesium and SiO2 removal rates of 98 and 95%,
respectively. In contrast, calcium concentration increased due to the
higher required lime dose to remove spiked magnesium.

The jar test methodology had to be modified for RO concentrate
samples softened by the traditional lime and soda ash treatment.
Process kinetics were altered and more reaction time was required for
effective calcium removal. As described in Section 3.2, a two-stage
process was applied where the lime was added in the first stage and the
soda ash during the second stage. Recorded average removals of cal-
cium, magnesium and SiO2 were respectively 95, 98 and 92%.

Overall, no sulphate reduction was observed in any case, and high
silica removal rates were achieved. However, the lower Si/Mg molar
ratio of about 1/7.5 in the spiked sample could have altered the silica
removal mechanism. In a such a case, adsorption/enmeshment of silica
in precipitated Mg(OH)2 and/or CaCO3 could have occurred.

4.2.3. Barium, strontium and fluoride removal efficiency
Barium removal rates above 71% were measured in the RO con-

centrate softened respectively with a) NaOH at pH 11.5; b) lime; and c)
lime and soda ash. While performing this study, barium analytical de-
terminations were conditioned by the achievable detection limit in the
AAS unit. Conversely, recorded strontium removal rates following the
same softening treatments described above were 97, 92 and 94% re-
spectively. No sulphate reduction was observed in any of these soft-
ening experiments. Sulphate removal can be possible by precipitation
with lime as CaSO4, however the latter is limited by its solubility [29].

Achieved barium and strontium removal rates could be seen to be in
agreement with the bibliography. A previous study treating reclaimed
water RO concentrates by a modified lime-soda ash softening also re-
ported barium removal rates from 72 to 77% and strontium removal
rates above 95% [9]. In addition, another study applying a 3-step in-
termediate chemical demineralization treatment to nanofiltration con-
centrate enhanced barium removal rates above 90% using homo-
epitaxial templating employing barite itself as a seed crystal during the
last step [13].

Barium and strontium can be removed during a softening treatment
by co-precipitation with CaCO3 [10,49]. The removal of both cations
during the precipitation treatment can be correlated with the main
operational factors affecting calcium removal: a) calcium and carbonate

Fig. 10. SEM images of precipitated solids following RO concentrate softening with a) NaOH at pH 11.5; b) lime; and c) lime and soda ash.

Table 4
Average composition of precipitated solids (EDX analysis) shown in Fig. 10.

Precipitated solid Softening treatment C O Na Mg Si Cl Ca Au Si/Mg

(Atomic %)

Fig. 10a) NaOH pH 11.5 17.95 56.86 1.33 11.14 2.77 0.85 6.10 3 1/4
Fig. 10b) Lime softening 18.98 56.44 0.60 9.42 2.41 0.80 9.51 1.88 1/4
Fig. 10c) Lime-soda ash softening 44.71 38.91 – 1.22 0.31 – 11.54 3.32 1/4

Note: Detected chloride and sodium in precipitated solids could be related to trapped concentrate collected in the precipitate. Detected Au in all samples corre-
sponded to the sputter coating process applied to the specimens before undertaking SEM analysis.

Fig. 11. Comparison between a) FTIR absorption spectra of precipitated solids
obtained after softening the RO concentrate with lime and soda ash and b) FTIR
absorption spectra of pure CaCO3.
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concentrations; and b) effluent pH level [10]. The former hypothesis
was demonstrated in Fig. 12. There was a clear correlation (R2=0.967)
between calcium and strontium ‘remaining concentrations’ in the RO
concentrate softened with NaOH. As the pH increased, both calcium
and strontium removal rates increased. Conversely, the lime and soda
ash softening achieved a slight improvement in strontium removal with
respect to the RO concentrate treated only with lime, due to the extra
calcium removed.

Table 5 shows the solubility product constants of different barium
and strontium salts. If carbonate alkalinity is present in the raw water
or added as soda ash, barium removal by precipitation as barium car-
bonate is possible due to its low solubility. In contrast, barium pre-
cipitation as barium hydroxide during a softening treatment is difficult
considering that its solubility is much higher than that of the magne-
sium hydroxide. Finally, extra barium or strontium removal is also
possible by sorption to other solids formed during the softening treat-
ment [50].

Some investigators have shown that the presence of magnesium ions
in solution can inhibit the precipitation of CaCO3 [51,52]. Previous
research has also provided power law kinetic models to understand the
simultaneous precipitation of Mg(OH)2 and CaCO3 in the water soft-
ening process [51]. The crystallization of CaCO3 and Mg(OH)2 ap-
peared to be independent [51,53]. During the lime and soda ash soft-
ening treatment, the kinetics of the Mg(OH)2 crystallization process are
a sensitive function of pH [53].

In summary, barium and strontium removal from the RO con-
centrate should have occurred by substitution of calcium in the calcite
crystal lattice structure. The efficacy of the treatment could be limited
by the available calcium and alkalinity concentration in the RO con-
centrate. However, extra barium and strontium removal could also have
happened by sorption to other precipitated compounds coupled with
the high-pH of the softening treatments.

Conversely, fluoride concentration was reduced by>50% in the RO
concentrate softened respectively with a) NaOH at pH 11.5; b) lime; and
c) lime and soda ash. Fluoride analytical determinations in this study
were also conditioned by the achievable detection limit in the UV
spectrophotometer. According to the bibliography, fluoride in ground-
water can be precipitated using lime as calcium fluoride leaving about
8mg/L F− in the water [54]. In this study and considering the low
fluoride concentration in the RO concentrate (2.2 mg/L), fluoride re-
moval could have occurred by adsorption onto magnesium precipitates.
In that regard, the existing Ca/Mg ratio in the RO concentrate could
have facilitated the fluoride removal process.

4.3. Quicklime recovery studies

Sludge generated after the lime and soda softening treatment was
selected for recovery tests in order to maximize CaCO3 recovery. For
this purpose, around 300mL of decanted slurry was collected in a 1 L
beaker and carbonated by bubbling pure CO2 until the pH level was
adjusted to around 7.2 in the different trials. During this step, CO2 gas
dissolved magnesium from precipitated sludge. Carbonated sludge,
mainly CaCO3 was then filtered and a magnesium bicarbonate solution

was collected from the filtrate.
A saturated solution of calcium bicarbonate has a lower pH than a

saturated solution of magnesium bicarbonate, therefore as CO2 is in-
jected, the solution is buffered at a pH of around 7.5 (due to the
magnesium bicarbonate). This circumstance guarantees that little cal-
cium will dissolve [55].

Table 6 shows the composition of this magnesium bicarbonate so-
lution. Although limited by its high electrical conductivity and silica
content, this currently non-commercially valued solution could be used
as a coagulant in industrial water treatment. Alternatively, it could be
disposed of in evaporations ponds or further concentrated by another
technology for possible magnesium recovery. Overall, the high TDS
content of this non-saturated magnesium solution could preclude its
direct discharge to the sewer [56]. Eventually, about 55% magnesium
recovery was achieved by following this methodology.

Figs. 13 and 14 show the powder XRD pattern and the FTIR trans-
mission spectra of samples of carbonated sludge. X'Pert HighScore Plus
(XRD) and LabSolutions IR (FTIR) software packages for data analysis
revealed that following the carbonation step, the sludge contained
CaCO3 with a density of 2.7 g/cm3. Fig. 13 matched the XRD pattern of
rhombohedral calcite (PDF 01-072-1937 - 74% similarity) with peaks at
23.0°, 29.4°, 35.9°, 39.4°, 43.1°, 47.4°, 48.5° and 57.3°. The strongest
diffraction intensity was indexed to the calcite (104) 2-theta= 29.4°.

CaCO3 identification was also confirmed with the bibliography,
since carbonate ions in the FTIR spectra should appear in the following
group frequencies: 1490–1410/880–860 cm−1. As shown in Fig. 14, the
first absorption was intense and broad, and the second had medium
intensity and was narrow [48]. The FTIR spectra also showed a wide
band at 3448 cm−1, which was due to OeH vibration [48], and that
could be attributed to water and hydroxide groups. In addition, the
peaks at 1103 and 462 cm−1 could be associated with the bands of

Table 5
Ksp values of different salts [50].

Name Formula Ksp

Barium sulphate BaSO4 1.1× 10−10

Barium carbonate BaCO3 5.1× 10–9

Barium hydroxide Ba(OH)2 5.0× 10−3

Strontium sulphate SrSO4 3.2× 10−7

Strontium carbonate SrCO3 1.1× 10−10

Strontium hydroxide Sr(OH)2 Slightly soluble
Magnesium hydroxide Mg(OH)2 1.8× 10−11

Calcium carbonate CaCO3 2.8× 10−9

Table 6
Characteristics of recycled magnesium bicarbonate solution.

Parameter Magnesium bicarbonate solution

Average (mean) Standard deviation

pH (Units) 8.4 0.12
Conductivity (mS/cm) 15.8 0.5
Alkalinity (mg/L CaCO3) 3999 490
Calcium (mg/L) 33.2 23
Magnesium (mg/L) 681 79
Silica (mg/L SiO2) 165 33

Notes: Carbonation trials were undertaken in triplicate. Following filtration an
increase in the pH solution was observed. The carbonation process redissolved
magnesium, but SiO2 as well.
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Fig. 13. XRD pattern of recycled CaCO3.
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characteristic frequency of residual magnesium silicate. According to
the bibliography, silicate ions are related to group frequencies ranging
from 1100 to 900 cm−1 [48] while the peak around 460 cm−1 could be
attributed to MgeO vibrations [47].

The CaCO3 recovery process could be optimized on an industrial

scale by applying a flotation process to remove impurities [57,58]. In
addition, if the quicklime recovery process by calcination was not
shown to be useful, the application of the CaCO3 cake in agriculture as a
pH stabilizer for soil could be a feasible alternative to be tested. Ahmed
et al. also suggested other possible applications for recovered CaCO3

from RO concentrate in inland desalination plants such as a) paper
coating pigment; and b) filler in plastics paint, ink and sealant pro-
duction [59].

Figs. 15 and 16 show powder XRD analysis and FTIR transmission
spectra (from 2000 to 400 cm−1) of recycled CaCO3 following calci-
nation at 900 °C. The data analysis confirmed the production of a
quicklime with a density of 3.35 g/cm3. Fig. 15 matched the XRD pat-
tern of cubic calcium oxide (PDF 01-077-2010) with peaks detected at
32.2°, 37.3°, 53.8°, 64.1°, and 67.3°.

As shown in Fig. 16, the strong IR absorption band around
400 cm−1 could be related to the lattice vibrations of calcium oxide.
The FTIR spectra also showed a peak at 1006 cm−1 that could be at-
tributed to the presence of a silicate ion group [48] in the calcined
product. Produced CaO could be applied for water treatment or soil
stabilization in construction projects.

5. Conclusions

The integration of an intermediate ‘high-pH precipitation treatment’
between consecutive RO stages for concentrate minimization and salt
recovery in inland desalination plants was studied for the first time with
magnesium dominated waters. RO concentrate from an existing
groundwater desalination plant in Australia was treated with different
alkaline reagents, such as NaOH, Ca(OH)2, and Na2CO3, resulting in
significant removal of scale-forming precursors including magnesium,
calcium, strontium, barium, and SiO2 by precipitation and adsorption/
enmeshment mechanisms. SEM-EDX and FTIR determinations per-
formed on the generated solids showed that precipitation as silicates
appeared as the main mechanism for SiO2 removal. Considering feasible
salt recovery options and performance, the lime soda and ash softening
treatment showed more advantages than the caustic soda treatment for
the high-pH precipitation process. In that regard, the NaOH softening
treatment increased RO concentrate alkalinity and conductivity with
consequent negative impact on the LSI/S&DSI, achievable fresh water
recoveries and energy requirements during the desalination process. In
addition, the process resulted in smaller and more disperse flocs.

Software simulations suggested that following RO concentrate
softening with lime and soda ash, pH re-adjustment and antiscalant
addition, overall Rw could be further increased from 80% to 97% by
using secondary RO. Conversely, CaCO3 recovery from precipitated
sludge during the lime and soda ash treatment was shown to be feasible
through CO2 injection to selectively dissolve magnesium. Recovered
CaCO3 was then re-calcined as quicklime. This intermediate ‘high-pH
precipitation treatment’ for RO concentrate minimization coupled with
the quicklime recovery process could be easily retrofitted in an existing
desalination plant dealing with magnesium dominated waters.
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Additional note regarding economic considerations for the implementation of a 

‘High-pH pretreatment’ for RO concentrate minimization 

 

An experienced engineering company (Condorchem Envitech) estimated the capital 

cost of a modular ‘High-pH pretreatment’ plant for RO brine softening (500 m3/day) 

to be US$ 844,186.00. The price included the supply of raw water tanks, pumping and 

dehydration systems with press filter, coagulation-flocculation and lamellar settling 

equipment, chemicals dosing systems and clarified storage tanks. Civil works, 

assembly and interconnections of equipment on site and government approval for the 

installation were not included in this preliminary budget.  

 

Table 7 shows the cost of chemicals for ‘High-pH pretreatment’ of the RO concentrate 

with a) NaOH at pH 11.5; b) lime; and, c) lime and soda ash. It also shows the current 

cost of AS utilization in the desalination plant. Regardless of an increase in the 

chemical cost, ‘High-pH pretreatment' could increase freshwater Rw from 80 to 97 % 

and reduce the cost of RO concentrate management and disposal. Generally speaking, 

waste and by-products management represents an important factor that has to be 

carefully studied considering the high volumes involved in these kind of projects.  

 

Table 7 

Comparison of current pretreatment cost and ‘High-pH pretreatment’ cost for scale control 

Scale control technology Freshwater Rw (%) Price (US$/m3 raw water) 

Current pretreatment (AS addition) 80 0.02 

NaOH pH 11.5 95 0.93 

Lime softening 97 0.43 

Lime and soda ash softening 97 0.46 

Notes: Concentrated AS price used for this calculation was US$48.597/L and was provided by the 

Western Downs Regional Council. The plant is currently dosing 3 ppm AS of a diluted batch (10:1) 

in the first RO stage and 6 ppm in the secondary RO stage. NaOH, Ca(OH)2 and Na2CO3 prices used 

in the softening calculations were 310, 150 and 275 US$/ton respectively (Bevacqua et al.). The cost 

of acid (for final pH stabilization) and AS following ‘High-pH pretreatment’ are not included in Table 

7. 
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The ‘High-pH pretreatment’ process must be complemented with additional RO stages 

for softened RO concentrate minimization. It is important to mention that the efficacy 

of the ‘High-pH pretreatment’ will have a significant impact on: a) the longevity of 

the new RO membranes (typically three to five years in brackish water desalination); 

b) RO membrane productivity; and c) RO membranes cleaning frequency. Eventually, 

this should lead to an optimization of the Opex costs.  

 

BW30 membranes used in the first RO stage can only treat feed waters up to 10,000 

mg/L TDS without reaching the maximum operating pressure of 4.1 MPa. Therefore, 

seawater membranes supplied by The DOW chemical company should be selected for 

secondary RO stages. Seawater membranes can be applied to feed waters up to 50,000 

mg/L TDS. Table 8 shows the flow performance range of different commercially 

available seawater elements (DOW, 2007). 

 

Table 8 

FILMTEC element characteristics (DOW, 2007) 

Element type  Diameter (cm) Permeate flow at standard 

conditions (L/h) 

Maximum operating 

pressure (MPa) 

SW30 6.3, 10.1 24-300 6.9 

SW30HR 20.3 950 8.4 

SW30HRLE 20.3 1200 8.4 

SW30XLE 20.3 1400 6.9 

 

The flux limit to be used in the design of the secondary RO system depends on the 

fouling tendency of the feed water. Since data of other RO membrane systems 

operating in similar feed water conditions are not available, the flux limit could be 

collected from information available in the RO Design Guideliness (DOW, 2007). 

According to the FILMTECTM technical manual, the average system flux ranges from 

13 to 20 L/m2.h  for 8 inch FILMTEC elements in seawater applications. Therefore, 

this average system flux could be aplicable to this project. However, selection of the 

right membrane element type with its respective membrane surface area, calculation 

of the average membrane flux, number of elements, pressure vessels and stages needed 

for this project should be accomplished by an experienced design engineering 

company as well as the required Capex for the upgrade of the desalination plant.  
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The total cost of desalination depends on key factors such as: a) energy requirements; 

b) feed water salinity and water quality; c) economies of scale; and d) operating and 

maintenance costs (NSW Public Works, 2011). The operating costs could also be 

affected by environmental regulations. Eventually, a comprehensive  study on a pilot 

plant scale would be required to assess whether ‘High-pH pretreatment’ of the RO 

concetrate is cost-effective for this single project, but this is beyond the scope of this 

PhD project work. The increase in Capex, energy, operator/maintenance, membrane 

replacement, and chemical costs should be compensated by the reduction of the cost 

of RO concentrate management.  

 

Regardless of the environmental benefits, high capital cost and operating expenditure 

could be a limitation for the application of this chemically intensive solution in 

municipal desalination. However, this alternative can increase freshwater Rw in 

municipal desalination plants, salt recovery options are available and the volume of 

super-concentrated concentrate requiring final disposal into evaporation ponds is 

minimized. 
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Additional note regarding Fig. 2. Darling Downs desalination plant layout 

 

To make clearer the flow of permeate and RO concentrate in the Darling Downs 

desalination plant, an improved version of Fig.2 (Paper II) has been presented below. 
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Fig. 2. Darling Downs desalination plant layout (updated) 

 

Additional note regarding a minor error in the published paper. 

 

A minor error was recently discovered in the published paper. The FTIR 

spectrophotomer used for these experiments was a Shimadzu model IRAffinity-1S.  

 

4.3 Concluding remarks  

 

The integration of an intermediate ‘High-pH pretreatment’ between consecutive RO 

stages for concentrate minimization and salt recovery, has been studied for the first 

time with magnesium-dominated groundwater. In contrast to previous studies, this 

study targeted maximum magnesium removal from the primary RO concentrate. The 

outcomes of this research show that precipitation with lime and soda ash gives greater 

efficiency than caustic soda utilization. The chemical demineralization process 

resulted in significant removal of scale-forming constituents including magnesium, 

calcium, strontium, barium, and SiO2 through precipitation and 

adsorption/enmeshment mechanisms. SEM-EDX and FTIR determinations performed 

on the precipitated solids demonstrated that precipitation as silicates appears to be the 

main mechanism for SiO2 removal.  

 

Following ‘High-pH pretreatment’, pH re-adjustment and AS addition, overall water 

Rw was shown to be further increased from 80% to 97% using secondary RO. In 

addition, CaCO3 recovery from the precipitated sludge was possible through CO2 
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injection to selectively dissolve magnesium. Recovered CaCO3 was then re-calcined 

as quicklime. These findings show that this intermediate ‘High-pH pretreatment’, for 

RO concentrate minimization and by-products recovery, could be retrofitted in an 

existing desalination facility in Australia.  
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CHAPTER 5 

The effect of ‘High-pH pretreatment’ on RO concentrate 

minimization in a groundwater desalination facility using 

batch air gap membrane distillation 

 

PAPER III 

 

Rioyo, J., Aravinthan, V., & Bundschuh. 2018. The effect of ‘High-pH pretreatment’ 

on RO concentrate minimization in a groundwater desalination facility using 

batch air gap membrane distillation. (Under Review, Submitted on 4 February 

2019, reference number: SEPPUR_2019_448). 

 

5.1 Introduction  

 

Chapter 3 showed that the integration of an intermediate ‘High-pH pretreatment’ in 

municipal brackish water desalination was broadly investigated on a laboratory scale 

and using pilot plants in the USA. However, options that can be used to increase the 

water Rw and facilitate by-products recovery require rigorous laboratory investigation 

due to the quality of site-specific groundwater and RO concentrate. Thus, Chapter 4 

investigated the integration of an intermediate ‘High-pH pretreatment’ between 

consecutive RO stages for concentrate minimization and salt recovery in an inland 

desalination plant in Australia dealing with magnesium-dominated groundwater. Now, 

for the first time, Chapter 5 investigates the implementation of an intermediate ‘High-

pH pretreatment’ between RO technology and batch AGMD for scale control and RO 

concentrate minimization in the same municipal desalination facility.  

 

This manuscript compares the efficacy of a) ‘High-pH pretreatment’ and b) AS only 

addition to high salinity RO concentrate for scale control and RO concentrate 

minimization in a lab-scale AGMD unit. The paper hypothesizes that the High-pH 

demineralization treatment (followed by pH readjustment and final AS addition) will 

permit operation of the batch AGMD system at a higher temperature, thus increasing 

permeate flux. 
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ABSTRACT 

This study compared the efficacy of two different scale control strategies: (i) ‘High-

pH pretreatment’; and (ii) antiscalant (AS) addition for reverse osmosis (RO) 

concentrate minimization in a lab-scale air gap membrane distillation (AGMD) unit. 

In contrast with previous studies that investigated the demineralization of low 

conductivity RO concentrate and ulterior minimization using direct contact membrane 

distillation (DCMD), we systematically investigated the performance of batch AGMD 

configuration with and without the preliminary reduction of scale-forming constituents 

from high salinity RO concentrate. The results indicated that ‘High-pH pretreatment’ 

was more productive than sole AS addition to the RO concentrate which resulted in 

significant salt precipitation once the concentration factor (CF) in the AGMD system 

increased above 1.3. Following ‘High-pH pretreatment’, pH re-adjustment, and final 

AS addition, the use of AGMD enabled us to minimize the existing RO concentrate 

with an initial total dissolved solids (TDS) level of 10.8 g/L by a CF of 3.2. This 

approach controlled the formation of mineral scales in crucial components of the unit 

such as the AGMD membrane, feed water tank, and heating element. In addition, this 

chemical demineralization process allowed the operation of the AGMD unit at a higher 

temperature, and thus permeate flux also increased. 

 

Keywords: reverse osmosis; inland desalination; brackish groundwater; air gap 

membrane distillation; concentrate minimization; 
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1. Introduction 

 In the USA, more that 96 % of the municipal desalination systems are located 

inland, making reverse osmosis (RO) technology the preferred option for drinking 

water production [1]. In Australia, most inland desalination systems also employ RO 

technology to supply high quality freshwater from brackish groundwater [2]. 

Concentrate management and high cost prevail as major limitations of this membrane 

technology, restricting the construction of new facilities [1]. The operation of these 

municipal systems at high water recoveries (Rw) can reduce the amount of RO 

concentrate that eventually needs to be disposed of.  However, Rw is limited by the 

precipitation of sparingly soluble inorganic salts on the RO membranes. This occurs 

when the concentration product of the salt-forming precursors goes beyond its 

solubility product (Ksp). Even if scale inhibitors are injected during RO pretreatment, 

Rw becomes limited by the scale suppression capacity of the selected antiscalant (AS) 

[3, 4].  

Some researchers have proposed membrane distillation (MD) technology for 

minimization of RO concentrate and high salinity streams volume [5-13]. MD is a 

thermally driven technology which involves the transport of vapour molecules though 

a microporous hydrophobic membrane [14]. In such a context, temperature is 

considered a key factor related to scaling [15]. Salt precipitation and deposition can 

occur on different elements of the MD system such as the membrane, pipes, feed water 

tank or heating element. Overall, scaling of the MD membrane has remained as a 

challenging problem, as reported in the literature [15, 16]. The use of AS can minimize 

the membrane scaling problem [15, 17]. This solution is always preferable to 

membrane cleaning [17]. However, the drawbacks of using AS include the following: 

(a) an excessive dose of AS can foul the membranes by promoting biofouling; (b) AS 

can react with other chemicals added during RO pretreatment, promoting adverse 

effects on the membranes; (c) AS can react with metal ions enhancing scales on the 

membranes [16]; and (d) many AS molecules can also decrease the surface tension of 

the feed water solution, causing membrane pore wetting as well as reduced lifetime in 

MD membranes [18].  

Overall, the need to explore alternative techniques to alleviate the scaling 

problem is predicated on the understanding of the scale formation mechanisms 

specifically occurring in MD systems. We previously investigated the incorporation of 
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a ‘High-pH pretreatment’ between serial RO stages for membrane scaling control, 

concentrate reduction and by-products recovery [4]. In order to conduct this research 

project, an existing groundwater desalination plant in inland Queensland (Australia), 

was used. In contrast to previous studies performed in the USA, well water and RO 

concentrate collected at the municipal desalination plant had a relatively lower calcium 

concentration and a higher magnesium concentration. The ‘High-pH pretreatment’ 

reduced the concentration of scale forming constituents including calcium, 

magnesium, strontium, barium and silica [4]. However, the inorganic precipitation 

process in MD plants may be different from those of pressure driven membrane 

technologies such as RO, due to variation in operating conditions such as temperature. 

The literature survey found that only one paper evaluated chemical demineralization 

pretreatment of a RO concentrate followed by MD technology [19]. The aim of the 

research was to decrease the scaling potential of RO concentrate when using direct 

contact membrane distillation (DCMD) technology. The case-study, conducted by Qu 

et al., used  low conductivity (960 µS/cm) RO concentrate generated in a drinking 

water preparation system in Beijing (China)  [19]. Most studies reported in the research 

papers have utilized a DCMD configuration when evaluating MD technology for 

different applications. In that regard, salt precipitation might have a different effect on 

other configurations such as AGMD [16, 17]. To date, none of the previous studies has 

investigated the treatment of RO concentrate from groundwater sources and assessed 

the performance of batch AGMD configuration with and without the preliminary 

removal of scale-forming precursors. Therefore, this study focused on the integration 

of AGMD technology with a ‘High-pH pretreatment’ for RO concentrate reduction in 

an inland desalination facility treating magnesium-dominated groundwater. Fig.1 

illustrates a proposed lay-out. The main objectives of this study were to compare the 

efficacy of two different technologies, AS addition and ‘High-pH pretreatment’ 

(followed by pH adjustment and final AS addition), in terms of RO concentrate 

minimization in a batch AGMD unit and scale prevention on different elements of the 

desalination system.  
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Fig.1. Proposed lay-out for RO concentrate reduction using AGMD technology. 

 

2. Background 

 MD is a promising technology still in the premature stages of development and 

commercial deployment [15, 20-22]. In MD systems, the vaporization process takes 

place at the membrane’s hot surface [20]. MD involves the transport of vapour 

thorough a non-wetted, porous and hydrophobic membrane. This process is driven by 

a water vapour pressure difference across the membrane, induced by the temperature 

difference across the same membrane [23, 24]. The water flux (J) of the AGMD system 

in L/m2.h can be calculated according to the next equation, where Km is the system 

mass transfer coefficient and ∆P is the water vapour pressure difference between the 

feed and the coolant stream [17]: 

*mJ K P=      (1) 

 MD technology is operated at lower hydrostatic pressure than RO and at a 

lower operating temperature than conventional evaporation technologies [14]. MD 

membranes have low thermal conductivity and low resistance to mass transfer, which 

assists in avoiding heat loss across the membrane [20].  Membrane thickness decreases 

mass and heat transfer through the MD membrane [18, 24]. Permeate flux is also 

favoured in membranes with higher porosity since they present a bigger surface area 

for evaporation [21]. In addition, permeate flux and mass transfer are also enhanced 

with the increase in pore size [13]; nonetheless, the pore size should be kept as small 

as possible to minimize the risk of pore wettability [21, 25].  

In MD systems, both temperature and concentration polarization are key 

parameters affecting the process. Temperature polarization can be defined as the 

temperature gap between the liquid-vapour interface and the bulk solution. 

Temperature polarization phenomenon came to be significant at high feed water 
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concentrations, high feed water temperatures, and low feed water velocities. 

Concentration polarization can be defined as the intensification of solute concentration 

on the membrane surface with respect to the bulk solute concentration [20].  

Since MD technology is not greatly affected by feed water salinity, it could be 

considered as an interesting alternative for certain desalination applications [26]. 

Besides, it is less susceptible to fouling than RO technology. Therefore, it does not 

require such an intensive pretreatment in comparison to RO [17]. However, the main 

disadvantages of MD technology are:  (a) the lower permeate flux rates when 

compared with RO technology; (b) temperature and concentration polarization 

phenomena; (c)  membrane fouling and scaling issues; (d) limitations in the design of 

membranes and MD modules; and (e) the high thermal energy requirements [16].  

Among these drawbacks, membrane scaling has remained a challenging 

problem which attracted growing attention, as reflected in recent literature [15-18]. 

This can be prevented to a certain degree by pretreatment and chemical cleaning [15]. 

The consequences of membrane scaling are: (a) pore wetting; (b) permeate flux 

reduction; (c) increased temperature and concentration polarization; and (d) membrane 

damage and chemical degradation. The phenomenon of permeate wetting occurs when 

the pressure in the feed water channels of the membrane goes beyond the liquid entry 

pressure (LEP) [15].  

To date, the following four configurations have been investigated in MD 

systems: (a) DCMD; (b) AGMD; (c) sweeping gas membrane distillation (SGMD); 

and (d) vacuum membrane distillation (VMD) [20]. Fig. 2 illustrates these MD 

configurations. DCMC is considered the simplest MD configuration, though the heat 

loss by conduction is considered its main handicap [20]. In this set up both the feed 

water solution and the cold permeate are in direct contact with both sides of the 

membrane [27]. The vapour is moved across the membrane to the permeate side. Then, 

condensation occurs inside the membrane module. It has been employed in the food 

business for the concentration of aqueous solutions [20]. In AGMD systems the vapour 

crosses a stagnant air gap and condenses over a cold surface [20]. In this configuration 

the driving force is the temperature difference over the membrane and the gap [27]. 

Despite the reduction in heat loss by conduction, the existing air gap increases heat 

and mass transfer resistances, so permeate flux is reduced [24]. At lab scale, AGMD 

produced fluxes that were up to four times lower than DMCD, while at pilot scale, 

AGMD could produce higher fluxes than DCMD [27]. Overall, AGMD could be 
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considered more energy efficient than other MD configurations [7]. SGMD is another 

variation in MD technology that applies an inert gas to sweep the water vapour at the 

permeate side of the membrane. Condensation then happens outside the membrane 

module [28]. Its main limitation is the requirement for a large condenser, since a small 

volume of permeate diffuses in a large sweep gas volume. Finally, VMD uses a pump 

to generate a vacuum in the permeate membrane side. In this case, heat loss by 

conduction is insignificant and condensation occurs outside the membrane module 

[20].  

 

 

Fig.2. Common configurations in MD systems: a) DCMD; b) AGMD; c) SGMD; and d) 

VMD. 

The influence of key operating parameters such as feed water temperature, 

coolant temperature, feed water flow-rate and salinity on AGMD performance have 

been described in different studies and with different kinds of water, including high 

salinity solutions and CSG produced water [7, 12, 22, 29-31]. Table 1 summarizes the 

main findings. 

 

To date, none of the previous studies have focused on the treatment of high 

TDS RO concentrate produced during the desalination of magnesium-dominated 

groundwater sources or assessed the performance of batch AGMD configuration. One 

point specifically hypothesized in this research was that the combination of RO 

technology, an intermediate ‘High-pH pretreatment’ for scale control, and batch 

AGMD could help to solve the limitations of the single units by using their synergetic 

capabilities in order to enhance RO concentrate reduction and freshwater recovery of 

the overall desalination system.   
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 Table 1 

 Effect of operating parameters on AGMD performance. 

Operating 

parameter 

Effect on permeate flux 

(J) 

    Reasons 

Feed water temperature 

increases 

 • Water vapour pressure grows 

exponentially with the feed water 

temperature. Therefore, the driven force of 

the MD system is favoured [12]. 

Feed flow rate increases  • As a consequence of the higher mass 

transfer coefficient, the gap between the 

bulk and membrane surface temperature 

and the difference between the bulk and 

membrane surface concentration are 

reduced. Consequently, temperature and 

concentration polarization phenomena on 

the membrane surface are reduced [12, 31].  

Feed water concentration 

increases 

 • Water vapour pressure decreases, and 

temperature polarization increases [29]. 

Energy consumption is likewise expected 

to rise as the feed water concentration 

grows [13]. 

Coolant temperature 

rises 

 • The vapour pressure difference across the 

membrane decreases [12]. 

 

 

3. Materials and methods 

3.1 RO concentrate characteristics 

 The RO concentrate used for these experiments was collected in an inland 

desalination facility located in Dalby, Queensland, Australia. Table 2 includes the 

composition of the RO concentrate used for this study. 

                                                                        Table 2  

        Characteristics of the RO concentrate used for 

these experiments. 

Parameter RO concentrate  

pH (Units) 8.1 

Conductivity (mS/cm) 15.9 

TDS (mg/L) 10829 

Alkalinity (mg/L CaCO3) 1421 

Potassium (mg/L) 17 

Sodium (mg/L) 3229 

Magnesium (mg/L)  320 

Calcium (mg/L)  148 

Strontium (mg/L) 5 

Barium (mg/L) 0.2 

Chloride (mg/L) 4746 

Fluoride (mg/L)  1.25 

Sulphate (mg/L)  584 

Silica (mg/L SiO2) 115 
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3.2 Lab-scale AGMD system description 

 The AGMD unit available at University of Southern Queensland was supplied 

by Scarab Development AB (Sweden), as shown in Fig. 3a. This lab-scale unit 

incorporates an immersion heater (model Ratek TH5/TH52K) inserted in a feed water 

tank (25 L capacity) that can regulate the feed water temperature. The feed water flow-

rate can be set to a maximum of 40 L/h by manipulating the pump speed of a 

submersible pump (model SEAFLO 12 v). Manufacturer recommended that higher 

feed water flow-rates could cause high pressure levels inside the membrane cassette, 

overcoming the mechanical resistance of the membrane. In addition, the feed water 

pump can be operated to a maximum of 60oC. The cooling system (model Ratek RC1) 

was designed to cool the condensation plates inside the AGMD device using tap water. 

The system also includes a water tank (33 L capacity) for tap water storage. The 

coolant flow-rate and temperature in the AGMD system can be adjusted to 200 L/h 

and 10 ± 2oC. 

 This MD system incorporates a ‘solid steel casing’, including one cooling 

serpentine and one cooling surface on each side. In between both cooling surfaces is 

placed a plastic cassette, which is covered by the membrane in both sides [30]. The 

total available membrane surface of every cassette is 0.1955 m2. Figs. 3 b) and 3 c) 

illustrate the ‘solid steel casing’ and a membrane cassette used in the lab-scale AGMD 

unit. Each of the air gaps (4 mm wide) creates a gap between the membrane and the 

cooled condensation surfaces. The purpose of the stagnant air gap is to act as a thermal 

insulation layer [32].  

 

 

Figs. 3. a) Lab-scale AGMD system; b) solid steel casing; and c) membrane cassette to be placed in the 

solid steel casing. 

 Polyvinylidene fluoride (PVDF) membranes supplied by Hangzhou Anow 

Microfiltration Co., Ltd. (China) were used for these desalination experiments. Table 

3 shows the main features of these membranes.  
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Table 3 

AGMD Membranes characteristics 

Membrane 

reference 

Material Pore size Thickness Bubble point test 

JMV045 PVDF 0.45 µm 0.09-0.11 mm  ≥0.06 MPa 

(Alcohol) 

Note: Bubble point test has often been used to estimate the integrity of membrane filters [33]. This test has to be 

performed under gas pressure and the filter has to be initially wetted with an appropriate fluid [34]. This test 

determines the minimum pressure at which a continuous stream of bubbles was initially seen downstream of the 

wetted filter [33].  
 

 The operation of the lab-scale AGMD unit is illustrated in Fig. 4. 25 L of RO 

concentrate was added to the feed water tank (Batch 1). During the process, the feed 

water (RO concentrate) enters in the lower inlet of the cassette and leaves via the upper 

outlet. This allows direct contact between the feed solution and the membrane surface. 

In batch mode operation, the feed water is returned to the tank and re-circulated again 

through the cassette. This allows the progressive concentration of the solution in the 

feed water tank. Concurrently, there is a decrease in the water level in the feed water 

tank because of permeate production and water losses by evaporation. Once the 

feasible concentration factor (CF) is achieved, the feed water tank is cleaned and 

refilled with fresh RO concentrate (Batch 2). A previous study reported that a 

semibatch membrane distillation process has a lower thermal energy consumption than 

a steady process (one pass through system). In addition, a lesser amount of feed water 

was required to generate the same amount of permeate [28]. As shown in Fig. 4, the 

lab-scale AGMD unit allowed the measurement of temperature. The permeate flux was 

recorded by means of an electronic balance (model Ohaus PioneerTM PA4102C) and a 

stopwatch. Feed water and coolant flow-rate were determined using a 1 L glass 

cylinder and a stopwatch while all conductivity determinations were undertaken in the 

laboratory. 
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Fig. 4. Experimental set up of the batch AGMD unit. T = thermocouples type Y.  

 

3.3 Analytical methods 

 Analytical methods and laboratory equipment utilized in this research were 

described in our previous publications [4, 35]. All pH and conductivity analyses were 

undertaken using a multi-parameter meter model Eutech PC2700.  SEM-EDX analyses 

of MD membranes (new and scaled) and precipitates were carried out using a scanning 

electron microscope (JEOL model SEM-JCM6000). This technique allows the 

analysis of the morphology structure and composition of the surface of the membrane 

[9, 18]. The presence/absence of membrane scaling on the membrane surface can be 

confirmed by SEM images of the membrane surfaces [8]. Finally, FTIR spectra of MD 

membranes and precipitates were carried out using a FTIR spectrophotometer 

(Shimadzu model IRAffinity-1S). To perform all spectra, 45 scans were taken for both 

the background and the samples. In addition, FTIR spectra resolution was adjusted at 

4 cm-1.  

3.4 Experimental protocols 

3.4.1 ‘High-pH pretreatment’ studies  

 All precipitation tests were conducted in the water laboratory available at the 

University of Southern Queensland, in a controlled environment (23±0.5oC). A jar-test 

flocculator (model VELP SCIENTIFICA JLT series), containing six 1-litre PVDF 
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beakers was used for the demineralization of RO concentrate using lime and soda ash. 

Required Ca(OH)2 (2.2 g/L) and Na2CO3 (0.44 g/L) doses were calculated according 

to standard methodology [36]. Previous research that we performed with RO 

concentrate of similar characteristics had proved that this option was more favourable 

than the NaOH softening treatment. The latter option resulted in an increase in 

conductivity and total alkalinity of the softened RO concentrate, and also led to a 

negative impact on the Langelier Saturation Index (LSI) and the Stiff & Davis Stability 

Index (S&DSI) [4]. Jar testing was comprised of the following steps shown in Table 

4. 

 

Table 4 

Jar test protocol followed to study the efficiency of ‘High-pH pretreatment’ of RO concentrate 

Step Treatment  Duration time 

(minutes)  

Mixing speed  

(rpm) 

1 Addition of lime - rapid mixing 2 150 

2 Slow mixing 30 50 

3 Addition of soda ash - rapid mixing  2 150 

4 Slow mixing 30 50 

5 Settling  60 -- 

6 Collection of supernatant samples for 

experiments within the AGMD lab-scale unit 

-- -- 

 

All jar test trials were conducted several times in order to gather enough 

volume of softened RO concentrate for the MD experiments. The removal of scale-

forming constituents such as magnesium, SiO2, calcium, strontium and barium was 

measured, and ROSA software used for saturation indexes (SI) calculation. Table 5 

shows the composition of the softened RO concentrate following pH readjustment to 

8.1 by HCl/NaOH addition.  
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Table 5  

Characteristics of the softened RO concentrate.  

(Lime & soda ash softening treatment + pH 

readjustment to 8.1). 

Parameter RO concentrate 

characteristics 

pH (Units) 8.1 

Conductivity (mS/cm) 15.3 

Turbidity (NTU) 1.5 

TDS (mg/L) 9325 

Alkalinity (mg/L CaCO3) 37 

Potassium (mg/L) 15 

Sodium (mg/L) 3549 

Magnesium (mg/L)  12 

Calcium (mg/L)  20 

Strontium (mg/L) 0.7 

Barium (mg/L) 0.11 

Chloride (mg/L) 5106 

Fluoride (mg/L)  0.6 

Sulphate (mg/L)  574 

Silica (mg/L SiO2) 4.5 

 

3.4.2 Batch AGMD studies for RO concentrate minimization and scale control 

 Two different samples were desalinated in the lab-scale AGMD unit: (a) 

Treatment 1: RO concentrate (pH 8.1 and ‘SpectaGuard SC’ AS added); and (b) 

Treatment 2: RO concentrate treated by the lime and soda ash softening process (the 

pH level of softened concentrate was readjusted to 8.1 and ‘SpectraGuard SC’ AS 

added). For comparison purposes, both samples were desalinated at the same pH level. 

‘SpectraGuard SC’ is a phosphate free AS that can control the precipitation of CaCO3, 

CaSO4, BaSO4, CaF2 and silica to a certain extent [37]. In all experiments 3 mg/L of 

AS were added to the feed water. As justified in Section 4.1, feed water temperature 

was adjusted to 50oC in the first case (Treatment 1) and 56oC in the second case 

(Treatment 2). Feed water flow-rate was set within the range 30-40 L/h in all 

experiments. Coolant temperature and flow-rate were adjusted to 10oC and 200 L/h 

respectively. For every test, 25 L of sample were added to the feed water tank (Batch 

1) and the solutions were progressively concentrated. MD experiments were 

interrupted when the AGMD unit achieved a CF of about 3.0-3.2. Further RO 

concentrate minimization was not possible due to the technical limitations imposed by 

the heating element and the submergible pump located in the feed water tank. At this 

point the feed water tank was cleaned and refilled with 25 L of fresh RO concentrate 

and the process re-started again (Batch 2). On completion of the experiments, 

precipitated solids collected from the feed water tank, and heating element and 

produced layer of scale generated on the membranes surface were analysed by FTIR 
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and SEM-EDX technology. Produced AGMD permeate and the super-concentrated 

solution were also analysed and a mass balance performed.  

 Before commencing these experiments, the integrity of all tested PVDF 

membranes and cassettes was verified for two hours treating tap water (feed solution) 

in the lab-scale AGMD unit. To this purpose, permeate flux was recorded every fifteen 

minutes under the standard operation conditions previously mentioned.  

 

4. Results and discussion 

4.1 Selection of the intermediate ‘High-pH pretreatment’ for scale control  

Calculation of SI levels at 25oC showed that the RO concentrate (Table 2) was 

initially saturated with respect to (a) CaCO3 with LSI and S&DSI levels of 1.8 and 1.3 

respectively; and (b) BaSO4 with a SI level of 4.66. Calculation of silica, CaF2 and 

CaSO4 SI levels reached values of 0.79, 0.30, and 0.04 respectively. On the other hand, 

the softened RO concentrate (Table 5) was only saturated with respect to BaSO4 with 

a SI level of 3. As a consequence of the chemical demineralization treatment and the 

pH adjustment to 8.1, the LSI and the S&DSI resulted in negative values. In addition, 

silica and CaF2 SI levels decreased from 0.79 and 0.30 to 0.03 and 0.01 respectively. 

Extra volumetric reduction of the RO concentrate could be attained by AGMD 

technology. Figs. 5 and 6 show the evolution of the S&DSI and silica SI levels as the 

RO concentrate (black markers) and the softened RO concentrate (red coloured 

markers) are further minimized. Both CaCO3 and silica solubilities depend on solution 

temperature, though CaCO3 exhibits an inverse solubility to temperature ratio. This 

means that the heating element in an AGMD system could be more prone to CaCO3 

scaling due to the higher temperatures achieved [7]. According to the bibliography, 

CaCO3 scales could also be prevented by decreasing the pH level of the solution [15]. 

However, considering the feed water quality as shown in Table 2 at its natural pH level 

of 8.1 and commercial AS capabilities, both CaCO3 and/or silica may pose a scaling 

risk, limiting freshwater recoveries during the AGMD concentration experiment 

(Treatment 1).   
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Fig. 5. RO concentrate minimization (black markers) and softened RO 

concentrate minimization (red coloured markers). S&DSI calculation at 

different temperatures.  
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Fig. 6. RO concentrate minimization (black markers) and softened RO 

concentrate minimization (red coloured markers). Silica SI calculation at 

different temperatures.  
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Fig. 7 shows CaF2 and BaSO4 SI levels calculated at different temperatures as 

the RO concentrate (black markers) and the softened RO concentrate (red coloured 

markers) are further minimized. Although BaSO4 exhibits a negative correlation of 

solubility with temperature [18], ROSA software provided similar CaF2 and BaSO4 SI 

levels regardless of the change in the solution temperature (40 to 60oC). Nevertheless, 

it was noted that following a ‘High-pH pretreatment’ of the RO concentrate, the risk 

of barite and/or fluorite precipitation was reduced as a consequence of the lowered SI 

levels achieved. Having said this, the risk of CaF2, and BaSO4 scaling during the RO 

concentrate minimization experiments could be controlled to a certain extent by using 

commercial scale inhibitors [15] such as VITEC 4000 [38]. 
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Fig. 7. RO concentrate minimization (black markers) and softened RO concentrate 

minimization (red coloured markers). CaF2 and BaSO4 SI calculation in the range 

of temperatures between 40 and 60oC.  
 

Balancing (a) the fact that the permeate flux in an AGMD unit is favoured for 

higher feed water temperature [29]; (b) the propensity for both silica and CaCO3 to 

scale as shown in Figs. 5 and 6; and (c) the technical limitations imposed by the lab-

scale MD system, a feed water temperature of 50oC was selected to perform the RO 

concentrate minimization experiments following AS addition (Treatment 1). For 

Treatment 2 (‘High-pH pretreatment’ followed by pH normalisation to 8.1 and AS 

addition to the RO concentrate), a higher feed water temperature of 56oC was selected, 

considering the much lower scaling potential of the softened RO concentrate. Higher 
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temperatures were discarded, considering that the feed water pump can only be 

operated to a maximum of 60oC. In addition, taking into account the possible 

utilization of clean sources of energy such as solar thermal energy in a real system 

located in a remote area [28] and the high groundwater volumes involved in inland 

desalination, higher temperatures might be seen as excessive. 

Overall, to cope with the limitations imposed by AS utilization, an intermediate 

‘High-pH pretreatment’ (followed by pH adjustment to 8.1 and AS addition) altered 

the physicochemical properties of the RO concentrate resulting in reduced scaling 

propensity in the AGMD system. Correspondingly, the MD system could be operated 

at higher feed water temperatures, considering the much lower scaling potential of the 

softened RO concentrate. 

 

4.2 Comparison of Treatment 1 (pH 8.1 and AS addition to the RO concentrate); and 

Treatment 2 (‘High-pH pretreatment’ of the RO concentrate followed by pH 

adjustment to 8.1 and AS addition)  

 

4.2.1 Salt precipitation in the AGMD unit: feed water tank, feed water pump and 

heating element 

Significant salt precipitation and deposition was observed on the heating 

element, feed water flow-meter, and the walls and bottom of the feed water tank 

following Treatment 1 (Batch 1 and 2). This phenomenon, initially observed once the 

CF increased above 1.33 (equivalent to 25% fresh water recovery rate), was attributed 

to the higher S&DSI and LSI levels achieved. It seemed that in that scenario the AS 

capabilities for CaCO3 scale control were overcome (LSI >2.5). In addition, the feed 

water pump was damaged, and was twice replaced by a new one. Therefore, the 

operation of the AGMD system for RO concentrate minimization solely by 

preliminary AS addition was demonstrated not to be sustainable under these operating 

conditions. In contrast, no mineral salt scales were visually observed on the heating 

element or the walls and bottom of the feed water tank following Treatment 2 to the 

RO concentrate. Thus, the operation of the batch AGMD system for the minimization 

of softened RO concentrate could be guaranteed at least to a CF of 3.2 under these 

operating conditions. Figs. 8a and 8b show images of the feed water tank and the 

heating element at the end of the AGMD concentration experiments following both 

strategies.  
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Fig. 8. Photos of the walls/bottom of the feed water tank, and surface of the heating element at the end 

of the AGMD concentration experiments. a) Treatment 1; and b) Treatment 2. 

SEM images and EDX spectra of precipitated solids collected in the feed water 

tank and on the surface of the heating element following Treatment 1 to the RO 

concentrate were presented in Figs. 9a and 9b. In both cases, EDX analyses in selected 

points of both samples resulted in amorphous and heterogeneous precipitates 

containing calcium, magnesium and silicon. 

 

 

Fig. 9. SEM images and EDX analysis of the a) precipitated solids collected in the bottom of the feed 

water tank; and b) precipitated solids collected on the surface of the heating element during Treatment 1.  
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FTIR spectra of a sample of precipitated solids collected in the bottom of the 

feed water tank following Treatment 1 was provided in Fig. 10a. Silicate ion bands 

were identified in group frequencies ranging from 1,000 to 900 cm-1, while carbonate 

ion bands were identified in group frequencies ranging from 1,490 to 1,410 cm-1 [39]. 

This could ratify the possible precipitation of calcium carbonate and silicates in the 

AGMD system following Treatment 1 to the RO concentrate. A slight increase in the 

pH level was recorded in the course of the volumetric concentration experiments 

(Batch 1 and 2) from the initial value of 8.1 to a final value of about 9.0. According to 

the bibliography, as the pH increases above neutral values, silicic acid dissociates into 

silicate anions. Thus, insoluble silicate could have been formed in the presence of 

metals like calcium or magnesium [40]. On the other hand, FTIR analysis of the solids 

precipitated on the surface of the heating element (Fig. 10.b) matched with a 75 % 

similarity to CaCO3. This could be explained by the higher temperature achieved in 

this component, which enhanced CaCO3 precipitation due to its inverse solubility to 

temperature ratio. 

 

Fig. 10 FTIR (transmission) spectra of: (a) precipitated solids collected in the bottom 

of the feed water tank; and (b) precipitated solids collected on the surface of the 

heating element. Treatment 1. 

4.2.2. Salt precipitation on the AGMD membrane  

Figs. 11a and 11b show SEM images and EDX spectra of the PVDF (new) 

membrane, and the same membrane at the end of the AGMD concentration experiment 

following Treatment 1 to the RO concentrate. Carbon and fluoride peaks were clearly 

identified in the new membrane. However, as shown in Fig. 11b, mineral salt scales 
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containing ions such as calcium, magnesium and silicon were detected on the surface 

of the wasted membrane.  

 

Fig. 11. SEM images and EDX analysis of the a) PVDF new membrane; and b) PVDF wasted membrane 

at the end of the AGMD experiment. Treatment 1. 

Fig. 12 compares SEM images of the PVDF membranes at the end of the 

AGMD concentration experiments following both strategies. As demonstrated in Figs. 

12c and 12d, the integration of a ‘High-pH pretreatment’ strategy followed by pH 

normalization and AS addition minimized the formation of mineral salt scales on the 

AGMD membrane. The FTIR spectra of the PVDF wasted membrane after completion 

of this second round of experiments (Treatment 2) was shown in Fig. 13b. The FTIR 

spectra did not show indications of membrane scaling and was analogous to the FTIR 

spectra of the PVDF new membrane (Fig. 13a).  
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Fig. 12. SEM images of the PVDF membrane at the end of the AGMD experiments: a) and b) 

Treatment 1; c) and d) Treatment 2. 

 

 

Fig. 13. FTIR (transmission) spectra of: a) PVDF new membrane; and b) PVDF wasted 

membrane at the end of the AGMD experiment during Treatment 2. 
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4.2.3 Influence of Treatment 1 and 2 on permeate flux and permeate water quality.  

Fig. 14a illustrates the evolution of permeate flux in the AGMD system 

following Treatment 1 of the RO concentrate. A linear equation was selected to 

approximate permeate flux, resulting in a standard error of 0.1 kg/m2.h. Permeate flux 

recorded a maximum value of 1.06 kg/m2.h and a minimum value of 0.53 kg/m2.h. In 

addition, the permeate flux was about 18 % lower at the beginning of Batch 2 than at 

the beginning of Batch 1. Overall, a slight decline in permeate flux was observed 

throughout the volumetric concentration experiment. Possible reasons for the 

continuous decline in permeate flux might have been: (a) the progressive increase in 

feed water salinity;  (b) a decrease in feed water flow-rate; and (c) membrane scaling 

phenomenon. Firstly, the increase in feed water salinity resulted in a decrease in water 

activity and a lower transmembrane partial vapour pressure, which is the driving force 

in MD technology [13]. Secondly, the operation of the feed water submersible pump 

was affected as the water level in the feed water tank decreased. Cavitation and a small 

reduction in feed water flow-rate were observed. This circumstance could have led to 

a slight decrease in permeate flux due to the increased temperature and concentration 

polarization phenomena [12]. Finally, membrane scaling decreased the active surface 

for water vapour transport through the AGMD membrane. In addition, the deposited 

layer on the membrane surface would have created extra thermal resistance and 

increased mass transfer resistance through the membrane [9]. However, the permeate 

flux did not decrease sharply to zero or almost zero once the feed water concentration 

reached the saturation point. This phenomenon related to membrane scaling was 

previously reported in different studies [8, 9, 17, 23], most of them performed with 

DCMD configuration at much higher permeate fluxes. In the present study, the higher 

available membrane surface and the lower permeate flux avoided the drastic reduction 

in permeate flux.  

Fig. 14b illustrates the evolution of permeate flux in the lab-scale AGMD unit 

following Treatment 2 of the RO concentrate. Permeate flux was also approximated 

by a linear equation, resulting in a standard error of 0.09 kg/m2.h. On this occasion, 

permeate flux recorded a maximum value of 1.38 kg/m2.h and a minimum value of 

0.72 kg/m2.h. Furthermore, there was no significant difference between permeate flux 

at the beginning of Batch 1 and 2. Firstly, it is important to highlight that the operation 

of the lab-scale AGMD unit at a higher temperature (56oC) resulted in a 37% increase 
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in permeate flux during the first hour of the experiment. Secondly, a slight flux decline 

was also observed in the AGMD system during Batch 1 and 2. In a similar way to 

Treatment 1, the slight decline was attributed to: (a) the increase in feed water salinity 

which led to a reduction in water activity and a lower transmembrane partial vapour 

pressure; and (b) a decrease in feed water flow-rate as a consequence of the technical 

limitations imposed by the feed water pump. However, the formation of scales on the 

AGMD membrane was controlled following Treatment 2 of the RO concentrate.  
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Fig.14 Evolution of the AGMD permeate flux (J) during the RO concentrate 

desalination experiment: a) Treatment 1; and b) Treatment 2. 

 

As shown in Fig. 15a, a deterioration in permeate conductivity was recorded in 

the course of the AGMD concentration experiment following Treatment 1 of the RO 

concentrate. This deterioration in product water quality was attributed to membrane 

pore wetting due to membrane scaling [8, 9]. During this experiment, a maximum 

permeate conductivity level of 530 µS/cm was measured. On the other hand, permeate 

conductivity following Treatment 2 of the RO concentrate was plotted in Fig. 15b. 

Since pore wetting was prevented as a consequence of the softening treatment, 

permeate conductivity remained almost steady during the experiment. Only, a slight 
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increase in permeate conductivity was observed during Batch 1 and 2 that was 

attributed to the higher feed water salinity recorded. A maximum permeate 

conductivity level of 303 µS/cm was recorded following Treatment 2 of the RO 

concentrate. 
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Fig. 15 Variation of AGMD feed water and permeate conductivity during the RO 

concentrate desalination experiments: a) Treatment 1; and b) Treatment 2. 
 

Overall, it was demonstrated that ‘High-pH pretreatment’ (followed by pH 

adjustment to 8.1 and AS addition) enabled us to operate the lab-scale AGMD unit at 

a higher temperature (56oC), and thus permeate flux also increased. In addition, 

permeate conductivity remained almost steady during the volumetric concentration 

experiment. 
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4.2.4 Discussion of characteristics of the AGMD concentrated waste and produced 

permeate. 

Table 6 illustrates the main characteristics of the AGMD concentrated waste 

and produced permeate following Treatments 1 and 2 of the RO concentrate. Firstly, 

a significant decrease in calcium, magnesium, silica, barium, strontium and fluoride 

concentration was measured in the AGMD concentrated waste, with respect to the 

predicted result following Treatment 1 of the RO concentrate. This phenomenon was 

attributed to salt precipitation in the AGMD system. Such a reduction could be related 

to calcium carbonate and silicate precipitation during the volumetric minimization 

process. Conversely, barium and strontium concentration decline might have occurred 

via co-precipitation with CaCO3 [41], while fluoride reduction might be related to 

adsorption onto magnesium precipitates [4].  Secondly, the concentration of calcium, 

magnesium, silica, barium, strontium and fluoride in the AGMD concentrated waste 

clearly increased with respect to the initial concentration of the softened concentrate 

shown in Table 5. Thus, it was demonstrated that Treatment 2 was more effective than 

Treatment 1 in preventing mineral salt precipitation in the lab-scale AGMD system 

under these experimental conditions. 

Table 6 

General characteristics of the AGMD concentrated waste and permeate following: Treatment 1; and b) 

Treatment 2. All samples were collected after Batch 1. 

 
 Treatment 1 Treatment 2 

Parameter Concentrated 

waste 

characteristics 

Permeate 

characteristics 

Concentrated 

waste 

characteristics 

Permeate 

characteristics 

pH (Units) 9.0 7.3 8.7 6.6 

Conductivity (µS/cm) 41400 210 40200 181 

Turbidity (NTU) 10.7 0.1 7.7 0.1 

TDS (mg/L) 29141 115 26731 82.5 

Alkalinity (mg/L 

CaCO3) 

2400 < 40 220 < 20 

Potassium (mg/L) 42 <1 54 <1 

Sodium (mg/L) 10445 36 10990 36 

Magnesium (mg/L)  861 4 40 < 1 

Calcium (mg/L)  14 0.8 65 0.6 

Strontium (mg/L) 1.6 <0.5 2.8 <0.5 

Barium (mg/L) <0.2 <0.2 <0.2 <0.2 

Chloride (mg/L) 14061 53 13705 47 

Fluoride (mg/L)  2.05 <0.02 2.15 <0.02 

Sulphate (mg/L)  1721 6.8 1637 5.3 

Silica (mg/L SiO2) 82.5 1.1 28 < 1 
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Table 7 presents a mass balance of different ions in the AGMD system 

following Treatment 1 of the RO concentrate, assuming the initial concentration of the 

scale-forming ions in the RO concentrate is 100%. The percentage (%) of these ions 

presumably precipitated in the AGMD unit is presented in the last column of Table 7. 

In contrast, Treatment 2 successfully removed the scale-forming precursors and so the 

deposit into the system was greatly reduced. 

Table 7 

Mass balance of different ions in the AGMD system following Treatment 1. 

Parameter  Concentrated 

waste  

 

 

(%) 

Permeate  

 

 

 

(%) 

% of ion 

precipitated 

in the Unit 

 

(%) 

Calcium (mg/L)   2.91 0.11 96.97 

Magnesium (mg/L)  82.87 0.26 16.87 

Strontium (mg/L)  9.86 2.09 88.05 

Fluoride (mg/L)   50.51 0.33 49.15 
Silica (mg/L SiO2)  22.09 0.20 77.70 

  

We could conclude that the desalination of the RO concentrate in the batch 

AGMD unit solely by AS addition was not sustainable considering the membrane 

scaling phenomenon and the significant mineral salt precipitation observed in the feed 

water tank, feed water pump and heating element. The consequences of this process 

could also be critical for the AGMD membrane if higher feed water volumes of RO 

concentrate were desalinated.  

 

5. Conclusions 

An intermediate ‘High-pH pretreatment’ between RO and batch AGMD 

desalination was assessed for the first time for high salinity RO concentrate 

minimization. Lime and soda ash were added to soften the RO concentrate. The 

process attained considerable reduction of scale-forming constituents including silica, 

calcium, magnesium, strontium, barium and fluoride. The ‘High-pH pre-treatment’ 

(followed by pH re-adjustment and AS addition) altered the physicochemical 

properties of the existing RO concentrate, resulting in reduced scaling propensity. As 

a result, the batch AGMD system was operated at a higher feed water temperature, 

initially allowing a 37% increase in permeate flux. This was with respect to the 

traditional strategy comprising solely AS utilization, which was not successful in 

preventing the formation of mineral scale. At the end of the experiment the volume of 
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RO concentrate with an initial TDS level of 10.8 g/L was minimized by a CF of 3.2 

(equivalent to 69 % freshwater recovery without considering the water loses by 

evaporation). A slight decrease in permeate flux recorded during the experiment was 

attributed to the increase in feed water salinity, and a decrease in feed water flow-rate 

as a consequence of the technical limitations imposed by the feed water pump placed 

in the lab-scale AGMD unit. This intermediate demineralization treatment greatly 

reduced the formation of mineral scales in crucial components of the unit such as the 

AGMD membrane, feed water tank, feed water pump and heating element. Eventually, 

SEM-EDX and FTIR analyses also confirmed the suitability of ‘High-pH 

pretreatment’ for scale control in the AGMD membrane. 
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5.3 Concluding remarks  

 

An intermediate ‘High-pH pretreatment’ between RO and batch AGMD was tested, 

for the first time, for scale control and high salinity RO concentrate minimization. The 

results confirm that RO concentrate treated with lime and soda ash, results in 

significant removal of scale-forming precursors including silica, calcium, magnesium, 

strontium, barium and fluoride. The ‘High-pH pre-treatment’ (followed by pH re-

adjustment and AS addition) prevented the formation of mineral scales in the lab-scale 

AGMD system. It also allowed the operation of the batch AGMD system at a higher 

feed water temperature, facilitating an increase in permeate flux. These results contrast 

with the traditional strategy comprising solely of AS utilization, which was not 

successful in preventing the formation of mineral scales.  

 

The results from SEM-EDX and FTIR determinations also confirm the suitability of 

‘High-pH pretreatment’ for scale control in the AGMD membrane. These findings 

show that ‘High-pH pretreatment’ could have a positive impact on the longevity of the 

MD membranes. Eventually, this should lead to an optimization of the Opex costs.  A 

study on a pilot plant scale would be required to assess whether an intermediate ‘High-

pH pretreatment’ between RO and batch AGMD would be cost-effective. 
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CHAPTER 6 

‘High-pH softening pretreatment’ for boron removal in 

inland desalination systems  

 

PAPER IV 

 

Rioyo, J., Aravinthan, V., Bundschuh, J., & Lynch, M. 2018. ‘High-pH softening 

pretreatment’ for boron removal in inland desalination systems. Separation 

and Purification Technology, 205, 308-316. (Published). 

 

6.1 Introduction  

 

This paper investigates, for the first time, the feasibility of a ‘High-pH pretreatment’ 

for boron removal from magnesium-dominated groundwater samples obtained from 

an existing desalination facility. Different alkaline reagents are trialled with brackish 

groundwater initially containing 5 mg/L of boron.  

 

The optimization of the process is researched with the addition of MgCl2·6H2O before 

the softening process. In addition, a secondary polishing treatment by means of 

adsorption with MgO is investigated. This ‘High-pH pretreatment’ could facilitate 

compliance with strict boron standards in inland facilities using RO or ED technology. 
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A B S T R A C T

Boron removal from water remains a challenge. In fact, it is largely unclear whether softening pretreatments
enhance boron removal in groundwater desalination systems. We therefore investigated the feasibility of a high-
pH softening pretreatment for boron removal from magnesium dominated groundwater samples obtained from
an existing desalination facility. Different alkaline reagents were trialled with brackish groundwater initially
containing 5mg/L of boron. The results indicated that the lime and soda ash softening treatment was a better
option than the caustic soda alternative, achieving 33% boron removal by sorption of hydroxyborate ions onto
precipitated magnesium silicates. The process could be further optimized by the addition of MgCl2·6H2O before
the softening process. In addition, a secondary polishing treatment by means of adsorption with MgO was in-
vestigated. A total of 9% extra boron removal was achieved in both cases. This ‘high-pH softening pretreatment’
could enhance compliance with strict boron standards in inland facilities using reverse osmosis or electrodialysis
technology.

1. Introduction

Boron can produce harmful effects on human health depending on
both the frequency and extent of the exposure [1]. Since the influence
of boron on human health is not completely understood, most of the
existing guidelines are still provisional. Therefore, it is anticipated that
future standards in drinking water will become even more stringent
over the next few years [2] which will necessitate the development of
improved removal technologies. According to the World Health Orga-
nization (WHO), the concentration of boron in drinking water should
not exceed 2.4 mg/L [3]. The European Union (EU) Drinking Water
Directive was revised in 1998 including a new standard for boron
concentration in drinking water of< 1mg/L [4,5]. Stricter guidelines
have been adopted in countries, such as Israel and Saudi Arabia, where
the permitted boron concentration in drinking water was limited to
0.3 mg/L [6] and 0.5mg/L [7] respectively.

Boron can be present in water due to either natural or anthro-
pogenic sources [8,9]. While the average boron concentration in sea-
water is approximately 4.6–4.7 mg/L [7,10], its concentration in
groundwater has been reported to vary from 0.3 to 100mg/L [3,11,12].
Generally boron levels in groundwater are very low (< 0.1mg/L) [13],

though there are some exceptions reported in the bibliography. In a
study carried out in South Texas (USA), boron concentrations ranging
from 5 to 16.2mg/L were measured in 18 out of 112 water wells [14].
In Kizildere and Balçova (Turkey), boron levels of 24.8 and 9.4 mg/L
respectively were detected in natural groundwater [8]. In Italy, Cyprus
and Greece, boron levels up to 8mg/L were measured in regional
groundwater [10]. In geothermal water, due to the underground con-
tact between rocks and hot fluids, boron concentration can also be quite
high [15].

Different industrial processes use boric acid or boron salts [10] and
thus water contamination is possible [12,16]. Currently more than 50%
of the production of boron compounds is used in the glass industry,
although it can also be found in other manufacturing processes, such as
electronics, ceramics, semiconductors and cleaning products [3,12].
Previous research involving the Minerata boron plant in Argentina re-
ported boron values in groundwater of 6.2 mg/L inside the con-
tamination area [13,17]. In domestic wastewaters boron levels up to
2mg/L can also be found [10].

Boron is an important micronutrient for plant growth. Very low
concentrations are required in irrigation water for healthy plant
growth. However, boron becomes toxic if its concentration in irrigation
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water is higher than required [10]. Citrus trees in particular are very
sensitive, showing leaf damage at boron levels of more than 0.3 mg/L
[15].

Boric acid has an acid-dissociation constant of 5.8× 10−10 at 20 °C.
In water, boric acid forms the hydroxyborate ion by the addition of
OH− [18]. Boric acid behaves as a weak Lewis acid according to the
following equation [7]:

+ ↔ +− +B(OH) H O B(OH) H3 2 4 (1)

For concentrations below 250mg/L, boron will only be present in
water as boric acid or hydroxyborate ion, while polyborate anions are
formed at higher concentrations [18]. At low pH, it exists in the aqu-
eous environment as un-dissociated boric acid [15] with a trigonal
planar structure [19]. By contrast, anionic hydroxyborate ion becomes
the predominant species at high pH levels [15,20], adopting a tetra-
hedral structure [19]. As shown in Fig. 1, both species can co-exist as an
equilibrium mixture at pH levels ranging from 7.0 to 11.5.

Some authors have studied different state of the art technologies for
boron removal from different kinds of waters [4,7,9,11,12,15,21].
Different technologies, such as coagulation and electrocoagulation,
adsorption, solvent extraction or membrane processes, including re-
verse osmosis (RO) or electrodialysis (ED) have been investigated, al-
though the use of boron-selective ion-exchange resins seems to provide
the most effective treatment [15]. Boron removal from water is very
difficult [7]. In seawater desalination systems, boron concentration can
be reduced by combining multi-pass RO with pH adjustment. The first
RO pass is operated at a lower pH for salt removal while the second RO
pass is operated at higher pH for effective boron removal [22]. Alter-
natively, RO technology can be combined with ion exchange tech-
nology [23,24]. The latter solution can reduce overall capital and op-
erating costs in seawater desalination systems [24].

In brackish water (BW) desalination systems a second pass at higher
pH is not considered a feasible solution due to (a) the required higher
water recoveries for minimizing the RO concentrates for eventual dis-
posal; (b) the lower boron rejection of brackish RO membranes; and (c)
the presence of scaling ions in the permeate [22]. In addition to this, it
is not economically viable for groundwater containing high boron
concentrations [6]. Cengeloglu et al. [8] tested BW30 membranes (The
Dow chemical company, USA) in a RO pilot plant for boron removal
from synthetic waters with boron initial concentrations ranging from 5
to 40mg/L. Results showed that boron removal does not depend on its
initial concentration in feed water. A 73% boron removal was achieved
at pH 5.5 and 2MPa. Experiments also showed that boron rejection was
enhanced for increasing operating pressures and for pH levels above 9
[8]. Oner et al. [25] also tested BW30 membranes for boron and silica
removal from geothermal water at its natural pH level (8.6). Boron and
silicon initial concentrations were respectively 10.25–11 and
56–65mg/L. Average boron and silica rejections achieved during the
RO treatment were respectively about 65.6 and 99% at 1.5MPa. An

increase in the operating pressure up to 3MPa raised boron removal up
to 78.5% [25]. Finally, Teychene et al. [26] studied arsenic (III) and
boron removal from synthetic brackish water containing 2.6mg/L of
boron by using BW30 membranes among others. Around 72% boron
removal was achieved at pH 7.6 and 2.4MPa (operating pressure). In
this case, boron rejection was also enhanced for increasing transmem-
brane pressure and feed water pH values [26]. However, in real water
desalination systems using brackish water membranes the boron re-
jection can be limited to 15–20% [22]. Consequently, RO technology
using BW membranes alone is not sufficient to fulfil current or future
boron removal guidelines in some countries. In that case, further boron
removal from RO permeate could be achieved by implementing ion-
exchange technology. Alternatively, the process could be optimized in
certain plants by the implementation of additional RO stages using
seawater membranes capable of achieving ‘high boron rejection’ fol-
lowed by additional boron removal by selective ion exchange mem-
branes where required [6]. Overall, seawater RO membranes can pro-
vide the highest boron removal followed by BW membranes at standard
operating conditions (low pH). In that scenario, boron rejection by
nanofiltration (NF) membranes is negligible [2].

Conversely to the previously mentioned technologies, a softening
treatment for boron removal has only been reported in a few studies,
and for different kinds of waters, such as seawater, brackish water and
groundwater [4,20,27–29]. The efficacy of this treatment in magnesium
dominated groundwater is the least explored. In that regard, the ef-
fectiveness of softening treatments for boron removal in groundwater,
and in particular when magnesium concentration is higher than cal-
cium concentration, is yet to be explored thoroughly. Overall, the me-
chanism of boron removal may be related to magnesium precipitation
during the softening treatment. At high pH levels, hydroxyborate ion
could be removed by sorption onto precipitated magnesium compounds
[27]. The common presence of dissolved magnesium in brackish
groundwater could facilitate the boron removal process. A recent study
involving the treatment of seawater achieved 61% boron removal by
precipitation softening at a pH of 11.0 [28].

In addition, boron removal by adsorption of hydroxyborate ions
onto magnesium oxide may also be a suitable method [19,20]. How-
ever, the process is influenced by reagent quality, contact time, tem-
perature, and pH level [19]. Rodarte and Smith reported that the ad-
dition of magnesium chloride (before softening treatment) for boron
removal required two-thirds the dose and one-sixth the cost than MgO
utilization. The former study was performed with flow back and pro-
duced water (oil and gas industry in the USA) containing 60mg/L of
boron [20]. Eventually, one of the main disadvantages of MgO addition
is that it cannot be regenerated using acids [7,19]. In addition, this
process requires large amounts of reagent per gram of boron removed
[7,20,30].

The aim of this study was to investigate the implementation of a
high-pH softening pre-treatment in existing or future inland desalina-
tion plants treating magnesium dominated waters with relatively high
boron concentrations (5 mg/L), to meet stringent boron-specific stan-
dards (< 1mg/L). The mass ratio Ca/Mg in the brackish well water was
3/4. The main objectives of this study were (a) to investigate the re-
moval of boron from groundwater by a softening treatment; (b) to
optimize the boron removal process during the softening step by the
addition of magnesium chloride; (c) to examine a final polishing step
for boron removal from softened water by adsorption of hydroxyborate
ions onto magnesium oxide; and (d) to assess the combined effect of
these chemical treatments with other membrane processes such as ED
using a non-selective membrane.

If successful, this chemical pre-treatment could be retrofitted into
existing or future inland desalination plants dealing with relatively high
boron concentrations (∼5mg/L) to ensure compliance with strict
standards, such as indicated by the EU Drinking Water Directive.
Eventually, if extra boron reduction is required by more advanced
technologies, such as ‘seawater RO membranes’ or ion exchange

pH level

7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5

B
o
r
o

n
 p

r
e
se

n
c
e
 (

%
)

0

20

40

60

80

100

Boric acid

Hydroxyborate ion

Fig. 1. Distribution of boric acid and hydroxyborate ion vs. pH.
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technology, this softening pre-treatment could minimize the require-
ments of such downstream processes.

2. Material and methods

2.1. Brackish groundwater characteristics

This research was performed with well water collected at a desali-
nation plant located in the Darling Downs region of Queensland (QLD),
Australia. Table 1 shows the main characteristics of tested ground-
water.

2.2. Softening studies

Softening tests were undertaken in the University of Southern
Queensland chemical laboratory at a controlled room temperature
(22 °C). A jar-test unit (VELP A –model JLT6), containing six 1-L plastic
beakers, was used in all softening trials. Boron was initially spiked to
the brackish groundwater in order to increase its concentration up to
5mg/L, measured as dissolved boron. Powder boric acid supplied by
MERCK was used as a source of boron. Such a concentration was used to
avoid the formation of poly-borates in the groundwater samples. The
initial boron concentration of 5mg/L was selected in order to in-
vestigate a likely case-scenario of groundwater with high natural boron
concentration in drinking water. For example, Italy and Cyprus may
find it difficult and expensive to comply with the EU Drinking Water
Directive (< 1mg/L) [5]. In such countries boron levels up to 8mg/L
can be found in regional groundwater [10].

The boron spiked groundwater was softened with different amounts
of NaOH (1N) to provide six different pH values: 10.0, 10.2, 10.5, 10.8,
11.1 and 11.4. Silica and boron removal were then investigated in tri-
plicate. A second round of experiments was also undertaken, applying
both the lime and the lime-soda ash softening treatments to the
brackish groundwater. Required lime and soda ash doses were calcu-
lated following standard methodology [31]. All chemicals were added
during the first two minutes of the initial rapid-flash mixing at 150 rpm,
then slow mixing was carried out for 30min at 50 rpm. Following that,
softened waters were allowed to settle in the jars for 60min. Finally,
supernatant samples were collected for chemical analysis. In addition,
samples of precipitated flocs were collected by vacuum filtration and
dried at 50° C for analysis by (a) Fourier transform infrared spectro-
scopy (FTIR); (b) X-ray diffraction (XRD); and (c) scanning electron
microscopy with energy dispersive X-ray spectroscopy (SEM-EDX).

2.3. Preliminary MgCl2·6H2O addition to enhance boron removal during
softening pretreatment

The optimization of boron removal during a ‘high-pH softening
pretreatment’ was also investigated. In order to increase the dissolved
magnesium concentration in groundwater, a soluble magnesium salt
was added before commencing the softening experiments. This strategy
was only applied to the groundwater softened by the lime and soda ash
softening treatment. Initial jar test experiments, shown in Section 3.1.1,
had demonstrated that this alternative could be more efficient than the
caustic soda softening treatment. To this end, 100 and 200mg/L of
MgCl2·6H2O were initially spiked to the groundwater jars to improve
both silica and boron removal during the softening process. All jar tests
were repeated in triplicate following the same methodology described
in Section 2.2.

2.4. Polishing treatment for boron removal by means of adsorption with
MgO

Previous studies have demonstrated that boron removal by ad-
sorption of hydroxyborate ions onto magnesium oxide is possible
[19,20]. To quantitatively corroborate this approach, groundwater pre-
treated by the lime and soda ash softening process was put in contact
with EMAG45 supplied by Swancorp. EMAG45 is a salt rich in MgO
(80% by weight). This chemical is currently used on an industrial scale
for different applications, such as animal feed production, as a fertilizer,
or in sewage treatment [32]. Considering that this adsorption treatment
achieves optimum boron removal at high pH level [19,20], a pre-
liminary pH adjustment of softened groundwater (pH 11.2) following
the high-pH softening pre-treatment was not required.

Three different Mg/B molar ratios were tested for these experi-
ments: 25, 75 and 125. For every test, 100mL of softened groundwater
was mixed with EMAG45 for 30min using a magnetic stirrer. During
the adsorption experiments, the mixing speed was adjusted to the
minimum required to keep the EMAG45 in suspension. Following a
30min sedimentation time, the solution was filtered. All these ad-
sorption tests were conducted in triplicate at room temperature.

2.5. ED experiments for boron removal

Research on both boron and silica removal by ED technology was
conducted using a bench ED pump unit, model PCCell B-ED 2–3. This
apparatus incorporates a Manson switching modem power supply unit,
model 1–30 VDC 20A/ HCS-3402. Fig. 2 illustrates the ED pilot plant.
This laboratory-scale pilot plant uses a non-selective membrane

Table 1
Characteristics of brackish groundwater.

Parameter Well water quality

pH (Units) 7.4
Conductivity (mS/cm) 3.4
Turbidity (NTU) < 1
TDS (mg/L) 1780
Alkalinity (mg/L CaCO3) 360
Sodium (mg/L) 496
Potassium (mg/L) 4.3
Calcium (mg/L) 61
Magnesium (mg/L) 82
Strontium (mg/L) 2.1
Barium (mg/L) < 0.2
Sulphate (mg/L) 154
Chloride (mg/L) 834
Fluoride (mg/L) 0.5
Silica (mg/L SiO2) 34.5

Fig. 2. Bench ED pump unit. Water containers 1, 2 and 3 correspond respec-
tively with: (a) the electrode rinse; (b) the diluate; and (c) the concentrate
streams.
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(Reference: Laboratory Scale Electrodialysis Cell PCCell 200). The two
chamber ED cell includes 10 cell pairs with standard anion and cation
exchange membranes [33]. Table 2 shows the characteristics of the ED
membrane. During the electrochemical separation process, the ions are
transferred through the ion exchange membranes with a direct current
voltage [34].

The ED unit was operated in batch mode at room temperature. To
perform the experiments, the diluate container was filled with two
different samples: (a) 5 L of groundwater softened by the lime and soda
ash softening treatment (the pH level of softened groundwater was
initially reduced to 7.8); and (b) 5 L of groundwater softened by the
lime and soda ash softening treatment (the pH level of softened
groundwater was reduced to 10.0). In this study, pH levels above 10
were prevented in order to avoid damaging the ED unit.

The electrolyte rinse solution assisted in the demineralization process. It
consisted of a solution of 14.2 g sodium sulphate/L [35]. The concentrate
tank consisted of a leftover solution from a previous experiment with a
conductivity that ranged between 32 and 33 mS/cm. The flow-rates for the
diluate and concentrated streams were approximately 40–50L/h in all ex-
periments. Conversely, the flow-rate for the electrolyte rinse circuit was 130
L/h. The voltage in the system was set to 10V and the current (Amperes)
was recorded after 0, 10, 20, 30, 45, 60 and 120min together with the pH
level and conductivity in the diluate stream. The pH level and conductivity
were recorded using a portable pH electrode and a portable conductivity
meter, model Sper-Scientific in both cases. Diluate samples were also col-
lected at these intervals for boron and silica analysis. In all experiments the
electric current decreased.

2.6. Analytical methods and chemical reagents

‘Reagent-grade’ chemicals were supplied by Chem-Supply, HACH,
Australian Chemical Reagents and Sigma Aldrich. The azomethine-H
method was applied for all boron determinations using a HACH DR
spectrophotometer according to Method 10274 [36]. Reactive silica
was analysed according to the HACH silicomolybdate Method 8185
[37]. The pH and conductivity were determined using a pH electrode
and conductivity meter, model Eutech PC 2700. A Lovibond turbicheck-
meter was used for the analysis of turbidity. Total alkalinity determi-
nations were performed by titration with H2SO4 [38]. This method was
validated and the sulphuric acid standardized by using an alkalinity
standard (1000mg/L as CaCO3) supplied by Sigma Aldrich. Total dis-
solved solids analysis was carried out in accordance with the Standard
Methods: 2540 C ‘Total Dissolved Solids Dried at 180 oC’ [39].

Cation analyses in water samples were undertaken using a Shimadzu
atomic absorption spectrophotometer, model AA-7000. Fluoride was mea-
sured using a HACH test, according to the USEPA SPADNS method [40].
Other anions such as chloride and sulphate were determined by ion chro-
matography. A Dionex ICS-2000 apparatus was used to perform these
analyses according to Thermo Scientific application note n-154 [41].

A scanning electron microscope, model SEM-JCM6000, was used to
undertake SEM-EDX observations in precipitated solids. A Philips X’Pert
apparatus with radiation CuKα=1.542 A, operating at 40 kV and
20mA in the 10–80° 2-theta scanning range was used to perform
powder XRD determinations of precipitated solids. The X’Pert

HighScore Plus software was used for pattern identification using the
powder diffraction files (PDF) from the International Centre for
Diffraction Data (ICDD) as references. A Shimadzu RF-6000 spectro-
photometer was used to undertake FTIR analysis of solid samples as KBr
discs. This apparatus incorporates the LabSolutions IR software for
surface functional groups analysis. All solid samples were prepared
mixing 200mg of KBr and 2mg of sample.

3. Results and discussion

3.1. ‘High-pH softening pretreatment’ for simultaneous removal of boron
and silica

3.1.1. Softening alternatives
Fig. 3 shows the experimental results of the caustic soda softening

pretreatment, in which the percentage removal of boron and SiO2 is
plotted against the groundwater pH level. The highest boron removal,
ranging from 26 to 32%, was achieved at pH 11.1. SiO2 removal also
reached a maximum at pH 11.1, oscillating between 62 and 65%. In any
case, both trends plotted in Fig. 3 appeared to follow a similar tendency
as the groundwater pH level was increased.

Fig. 4 compares the concurrent removal of boron, SiO2, calcium and
magnesium, following a softening pretreatment with (a) caustic soda at pH

Table 2
Two Chamber ED cell characteristics [33]

Parameter Characteristics

Membrane size 262×125mm
Active membrane area 207 cm2 per membrane
Processing length 220mm
Cell thickness 0.5mm
Anode material Pt/Ir- coated titanium
Cathode material V4A Steel
Electrode housing material Polypropylene
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Fig. 3. Boron and silica removal (%) vs the pH level. NaOH softening pre-
treatment at different pH levels. (Boron and silica initial concentrations were 5
and 34.5mg/L, respectively).
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Fig. 4. Calcium, magnesium, silica and boron removal (%) by three different
softening pre-treatments: (a) NaOH softening (pH 11.1); (b) lime softening (pH
11.2); and (c) lime and soda ash softening (pH 11.2). (Boron and silica initial
concentrations were 5 and 34.5 mg/L, respectively).
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11.1; (b) lime (pH 11.2); and (c) lime and soda ash (pH 11.2). The required
lime dose, 0.6 g/L as Ca(OH)2, was added during the first twominutes of the
initial flash mixing in order to remove carbonate hardness. Na2CO3 addition
(0.14 g/L) together with Ca(OH)2 was also needed during the lime and soda
ash softening treatment for removal of non-carbonate hardness. Average
boron removal during both the lime and the lime and soda ash softening
treatments were 35% and 33% respectively, which are higher than those
achieved during the NaOH softening of around 29%. In addition, silica re-
moval accounted for an average of 70, 62 and 64% in the three scenarios
previously mentioned. The highest calcium removal, accounting for an
average 62%, was achieved in the groundwater samples softened only with
caustic soda at pH 11.1. On the other hand, soda ash addition during the
lime and soda ash softening facilitated a 42% increase in calcium removal
with respect to the groundwater sample softened only with Ca(OH)2. Fi-
nally, magnesium removal (%) in groundwater samples softened with (a)
caustic soda at pH 11.1; (b) lime; and (c) lime and soda ash were respec-
tively 75% in the first case and 87% in the second and third softening
treatments.

Based on the experimental results, the caustic soda softening pretreat-
ment showed some drawbacks with respect to the lime and soda ash soft-
ening pretreatment. Firstly, total alkalinity (measured as mg/L CaCO3) ac-
counted for 700 and 150mg/L respectively, in the samples softened with (a)
caustic soda at pH 11.1; and (b) lime and soda ash at pH 11.2. The higher
alkalinity in samples softened with NaOH led to an increase in the Langelier
saturation index (LSI). Secondly, conductivity also increased from 3.4 up to
4.1mS/cm in samples softened with NaOH at pH 11.1. This higher salinity
also increased energy requirements and operating costs during the desali-
nation treatment. Finally, pH adjustment using hydrochloric acid or sul-
phuric acid, together with antiscalant addition, were required before

desalinating softened groundwater by RO. Taking into account the higher
alkalinity of the samples softened with NaOH, the cost for final pH ad-
justment also increased.

Table 3 shows a comparison of the results obtained in this study and
by other researchers using conventional softening treatments for boron
removal from different kinds of water.

There are inconsistencies about the efficacy of softening treatments for
boron removal [4,29] perhaps due to the different raw water characteristics
of brackish, sea and wastewater matrices. It has been hypothesised that
boron removal is closely related to magnesium precipitation during a soft-
ening treatment [27,28]. A previous study treating synthetic water has also
demonstrated that regardless of the calcium concentration, no silica or
boron reduction was observed when magnesium was absent in the raw
water [27]. The higher magnesium concentration present in seawater could
have facilitated the relatively higher boron removal shown in Table 3. That
circumstance would also be applicable to the present study since it was
performed with a magnesium dominated groundwater.

3.1.2. Silica and boron removal mechanisms
Silica is believed to be removed from water during a ‘high-pH softening

treatment’ by two different mechanisms: (a) by co-precipitation as calcium
and magnesium silicate; and (b) by adsorption/enmeshment in precipitated
magnesium hydroxide and/or calcium carbonate [42–44]. As shown in
Table 4, precipitation of antigorite, forsterite or enstatite is more thermo-
dynamically feasible than Mg(OH)2 precipitation or calcium silicate pre-
cipitation when both calcium and magnesium ions are present in solution
[43]. According to Parks and Edwards, silica can be precipitated as an
amorphous magnesium silicate during a softening treatment when the
molar ratio Si/Mg is higher than 1/6 [27,44,45]. In that case, boron would
be partially removed from water by sorption of hydroxyborate ions onto
freshly precipitated magnesium silicate [27]. Silica removal by adsorption
on Mg(OH)2 requires a higher magnesium concentration. In this regard,
Chen et al. reported a molar ratio Si/Mg of 1/22 for adsorption of silica on
Mg(OH)2 [44,45]. Considering groundwater quality (shown in Table 1),
enough dissolved magnesium was available to precipitate most of the silica
as amorphous magnesium silicate, and thus to partially remove boron by
sorption of hydroxyborate ions onto this precipitated magnesium silicate.
The initial mass ratio Si/Mg in the groundwater was 1/5, corresponding to a
molar ratio of 1/6.

Fig. 5 shows SEM images of precipitated flocs obtained following

Table 3
Boron removal from water by different softening treatments.

Study Water tested Softening treatment Boron initial concentration (mg/L) % Boron removal Reference

This study Brackish groundwater Lime and soda ash at pH 11.2 5 33 –
Nevgen at al. Brackish water Lime softening 1.7 12 [29]
Kitano et al. Seawater Batch test of calcite precipitation — Insignificant [4]
Ayoub et al. Seawater Softening at pH 11 5.1 61 [28]
Parks et al. Ames Iowa water treatment plant Lime softening at pH 10.8 0.130 56 [27]
Waggot. Wastewater Lime softening 1.6 0–16% [29]
Unknown Wastewater Mg+2 addition required 1.2 50 [4]

Table 4
pksp values of possible compounds formed and calculated molar solubility’s.

Name Formula pKsp [43] Molar solubility (mmol/L)

Brucite Mg(OH)2 11.6 0.0856
Antigorite Mg3Si2O5(OH)4 34.5 0.0191
Forsterite Mg2SiO4 26.9 6.8× 10−7

Enstatite MgSiO3 16.6 5× 10−6

– CaH2SiO4 8.16 0.083

Note: The molar solubilites presented in Table 4 have been calculated from pKsp

values.

Fig. 5. SEM images of formed solids. Softening was performed with (a) NaOH at pH 11.1; (b) lime at pH 11.2; and (c) lime and soda ash at pH 11.2.
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groundwater softening with (a) NaOH at pH 11.1; (b) lime; and (c) lime
and soda ash. EDX analysis of precipitated solids was provided in
Table 5. As indicated in Table 5, a similar Si/Mg atomic ratio of around
1/6 was observed in the three different softening scenarios. This means
that precipitation as magnesium silicate appeared to be the main me-
chanism for silica removal. Therefore, boron removal from ground-
water may have occurred by sorption of hydroxyborate ions onto
formed amorphous silicate. The latter might involve either a co-pre-
cipitation mechanism and/or an adsorption process in which hydro-
xyborate ion adsorbs onto magnesium silicates as they are precipitating.
It is important to mention that EDX technology can only identify ele-
ments with atomic numbers above 6, therefore boron cannot be iden-
tified by this technology [27].

XRD analyses of formed solids during groundwater softening with
(a) lime; and (b) lime and soda ash were also undertaken. Calcite (PDF
00-005-0586) was identified in the two mentioned softening scenarios.
This technique provides information about the crystalline material
structure of solid samples [46]. Consequently, the crystalline phases as
seen in Fig. 5(b) and (c) could correspond with calcite. Fig. 6 shows the
FTIR spectra of a sample of precipitated solids obtained during the lime
and soda ash softening treatment. Carbonate ion bands were also de-
tected in the group frequencies ranging between 1490 and 1410 and
880–860 cm−1 [47]. This issue could ratify the presence of calcite in
precipitated flocs. According to the bibliography, the band between
1100 and 900 cm−1 could be attributed to silicate ion [47]. This ob-
servation might also confirm the mechanism for silica removal by
precipitation as magnesium silicate. Finally, the wide band around
3400 cm−1 could be attributed to O-H stretching vibration [47].

In summary, we can conclude that: (a) silica reduction, apparently
through magnesium silicate polymerization; and (b) boron reduction by
sorption of hydroxyborate ions onto formed magnesium silicate, were
enhanced by the high-pH of the softening treatment and the initial Si/
Mg molar ratio (1/6) in the groundwater. The former confirmed the
importance of water chemistry in both silica and boron removal. In
addition, based on the results of the experiments, the lime and soda ash
softening treatment appeared to be a more efficient treatment than the
caustic soda ash softening process.

3.1.3. Optimization of the boron removal process during ‘High-pH softening
pretreatment’ by initial MgCl2·6H2O addition

The initial addition of magnesium chloride can be a feasible strategy
for boron removal from groundwater. However, the high chemical
consumption and limited efficacy in the presence of SiO2 are the main
handicaps of this alternative [20]. This hypothesis was tested regardless

of the initial Si/Mg molar ratio in the groundwater. In order to check
this, the groundwater was spiked with 100 and 200mg/L of
MgCl2·6H2O to increase the dissolved magnesium concentration from
82mg/L to 94 and 106mg/L, respectively. The higher magnesium
concentration also increased the required doses of Ca(OH)2 and Na2CO3

used during the lime and soda ash softening process.
Boron, silica and magnesium removal (%) during the lime and soda

ash softening treatment were plotted in Fig. 7. Both boron and silica
removal improved slightly due to the higher achieved magnesium re-
moval during the softening treatment following the addition of
MgCl2·6H2O. When 200mg/L of MgCl2·6H2O was spiked to the
groundwater, boron and silica removal respectively increased by an
average of 9 and 6% in comparison to the softened sample with no
added MgCl2·6H2O. Conductivity in softened groundwater also in-
creased from 3.4mS/cm to 3.6mS/cm in that scenario.

A Si/Mg molar ratio of 1/8 was recorded in the EDX analysis of
formed solids during softening and after the initial addition of 200mg/
L of MgCl2·6H2O. Such a ratio suggested that silica could have been
removed by precipitation as silicate and/or adsorption on formed
magnesium hydroxide during the softening treatment. According to the
bibliography, a molar ratio Si/Mg of 1/22 is required for pure ad-
sorption of silica on precipitated magnesium hydroxide [44,45],
therefore, boron may have been removed by sorption of hydroxyborate
ions onto these formed magnesium solids. This could be described ei-
ther as a co-precipitation mechanism and/or adsorption process where
hydroxyborate ion adsorbs to formed solids as they are precipitating.

Fig. 8(a) shows SEM images of formed solids during the softening
treatment after the addition of 200mg/L of MgCl2·6H2O, while Fig. 8(b)
and (c) display images of elemental distribution (Mg and Si) in the same
sample. The elemental distributions of Mg and Si provided by the X-ray
mapping confirmed the concurrent removal of Mg and Si during the

Table 5
Composition of formed solids (EDX analysis) during groundwater softening.

Softening pretreatment Mg Si Ca Si/Mg
(% Atomic)

NaOH pH 11.1 12.6 2.16 4.36 1/6
Lime softening 7.21 1.38 11.21 1/6
Lime-soda ash softening 5.70 0.96 12.87 1/6

Fig. 6. FTIR spectra of formed solids obtained after treating the groundwater with lime and soda ash.
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Fig. 7. Added MgCl2·6H2O vs. (a) boron; (b) silica; and, (c) magnesium removal
(%) during the lime and soda ash softening treatment (pH 11.2). (Boron and
silica initial concentrations were 5 and 34.5 mg/L, respectively).
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softening treatment. Carbonate ion bands, due to the presence of cal-
cium carbonate, were also observed in the FTIR spectra of this sample.
As shown in Fig. 9, the XRD diffractogram also showed 47% similarity
with the XRD pattern of calcite (PDF 00-005-0586). In addition, the
FTIR spectra also showed a band between 1100 and 900 cm−1 that
could be attributed to the presence of silicate ion in precipitated solids
[47].

Overall, we can conclude that the addition of MgCl2·6H2O margin-
ally improved silica and boron removal during the lime and soda ash
softening. However, this alternative increased reagent costs and sludge
production during the lime and soda ash softening treatment.

3.2. Polishing treatment for boron removal by means of adsorption with
MgO

A two-step process was tested to enhance boron removal. In that
regard, the groundwater was initially softened with lime and soda ash,
and then softened groundwater was mixed with EMAG 45. EMAG45 has
an approximate 80% content in MgO [32]. For this study, EMAG 45
doses were calculated according to the following Mg/B molar ratios: 25,
75 and 125. Fig. 10 shows silica and boron removal (%) combining the
lime and soda ash softening treatment followed by polishing treatment
by means of adsorption with EMAG45. By applying this secondary
treatment, an extra 9% boron removal and a 15% silica removal were
achieved when softened groundwater was mixed with EMAG45 in a
molar Mg/B ratio of 125.

Previous research performed by de la Fuente García-Soto and
Muñoz Camacho has demonstrated that boron can be removed by ad-
sorption of hydroxyborate ion onto added magnesium oxide at pH le-
vels ranging between 9.5 and 10.5. At this pH and low boron con-
centration, B(OH)4− is the predominant ion. The same study also
showed that high boron removal could also be achieved at pH levels of
approximately 11.0 [19]. Therefore, considering the initial pH level of
the softened groundwater (pH 11.2), no pH adjustment was carried out
in this study before the secondary adsorption step.

Boron removal using MgO is insignificant for pH levels below 8,
since B(OH)3, is the predominant species, presents a low electrical ac-
tivity [19]. However, the electrostatic adsorption reaches a maximum
when the pH is raised. This occurs at pH levels of around 10 when
negatively charged B(OH)4− ion concentration rises [20]. For pH levels
above 10, the concentration of (OH)− ions are increased relative to the
concentration of B(OH)4− ions. There may be competition between
these anions for adsorption sites in such a scenario, and thus boron
removal may decrease [19].

The efficacy of the adsorption process also depends on the quality of
the added reagent and the contact time. According to de la Fuente
García-Soto and Muñoz Camacho, Mg/B molar ratios above 20 were
shown to be effective for boron removal from synthetic waters con-
taining 50mg/L and 500mg/L of boron. In that study, the higher boron
removal was observed in the high concentration sample (500mg/L). In
addition, stirring and repose times of 2 and 48 h were adopted re-
spectively [19]. However, taking into account the huge volumes of
groundwater often treated in inland desalination systems, stirring and
sedimentation times in this research were limited to only 30min in
order to provide a technically feasible solution. Finally, the lower boron

Fig. 8. (a) SEM image of precipitated solids and related; (b) Mg X-ray map; and (c) Si X-ray map following groundwater softening with lime and soda ash and an
initial addition of 200mg/L of MgCl2·6H2O.

Fig. 9. (a) XRD diffractogram of precipitated flocs obtained after softening the
groundwater with lime and soda ash and an initial addition of 200mg/L of
MgCl2·6H2O; and (b) XRD pattern of calcite (PDF 00-005-0586).
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Fig. 10. Added EMAG 45 to the softened groundwater (pH 11.2) vs. boron and
silica removal from groundwater. (Boron and silica initial concentrations were
5 and 34.5mg/L, respectively). Note: The molar ratio Mg/B=0 shown in
Fig. 10 corresponds with the lime and soda ash softening treatment (first step)
without secondary treatment by EMAG 45 addition. In that case and based on
groundwater quality provided in Table 1, the initial molar ratio Mg/B was 7.3.
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concentration in softened groundwater (< 5mg/L) also decreased the
efficiency of the adsorption process.

Overall, similar boron removal was achieved by applying this ad-
sorption strategy and by the addition of soluble magnesium salts before
the softening treatment (Section 3.1.3).

3.3. Combined effect of ‘high-pH softening treatment’ and ED for boron
removal

This set of experiments was conducted with the groundwater sof-
tened with lime and soda ash. Before commencing the ED experiments,
the pH of two softened groundwater samples was reduced from the
initial level of 11.2 to 10.0 and 7.8, respectively. Both ED tests were
performed in batch mode operation. Fig. 11 represents the removal of
boron in the ED system. Conversely, the diluate tank did not in-
corporate a system to control the pH level, therefore a fluctuation of the
pH level was observed during the experiments and plotted in Fig. 12.

The efficacy of ED technology for boron removal depends on dif-
ferent factors like initial boron concentration, solution pH, presence of
other ionic species and tested membrane [48]. As shown in Fig. 11, a
sharp drop in boron initial concentration was observed in both ex-
periments during the first minutes of the treatment, due to the higher
pH levels recorded in the diluate stream. As a consequence of the higher
initial pH levels, the concentration of B(OH)4− ions was higher and the

transport of boron through the anion exchange membranes was fa-
voured [48,49]. After 30min, the pH level dropped below 8.5 and
consequently boron removal slowed down in both cases. The reason for
this lies in the fact that under neutral or acidic conditions boron is
present mainly as un-dissociate boric acid, and thus it is not properly
removed by ED [50].

The fluctuation of the pH level in the diluate stream could be ex-
plained by the migration of ions through the ED membrane. Eventually,
total boron removal, achieved at the end of the experiments, were re-
spectively 49 and 51% for the softened samples at initial pH levels of
7.8 and 10.0. Therefore, the efficacy of ED treatment in these experi-
mental conditions was limited considering that around 30% of boron
removal had been achieved during the softening treatment. On the
other hand, diluate water conductivity and chloride concentration
dropped below 300 μS/cm and 100mg/L, respectively in both experi-
ments. In addition, no silica reduction was observed at the end of the
experiments. Since silica is a neutrally charged species, it cannot be
removed by ED technology [51].

Kabay et al. [48] studied the effect of feed characteristics and in-
terfering ions in boron removal by ED using batch mode operation. This
study was also performed with a stack of 10 pair of cation exchange and
anion exchange membranes. The highest boron transport through the
anion exchange membranes was achieved at pH around 10.5. Boron
removal was not feasible at pH 8.5. It was also demonstrated that boron
removal by ED technology was favoured for higher initial boron con-
centrations. In addition, the presence of chloride in the feed water
decreased boron removal and operation time became longer. Even-
tually, 40% boron removal was achieved when treating a synthetic
solution containing a boron initial concentration of 25mg/L at pH 10.5
[48].

Some investigators have stated that conventional ED can only re-
move about 42–75% of boron from water [52,53]. Therefore, a lime
and soda ash softening pretreatment could facilitate compliance with
strict boron standards in existing ED desalination systems.

4. Conclusions

A ‘high-pH softening pre-treatment’ was trialled for the first time for
boron removal from samples collected in an inland desalination system.
Brackish magnesium dominated groundwater spiked with 5mg/L of
boron was softened with different alkaline reagents in order to remove
boron and other scale forming precursors including SiO2. Since SEM-
EDX and FTIR determinations of formed solids showed that precipita-
tion as silicates appeared to be the main mechanism for SiO2 removal,
boron may have been removed during the softening process by sorption
of hydroxyborate ions to formed magnesium silicates. The latter might
involve either a co-precipitation mechanism and/or an adsorption
process in which hydroxyborate ion adsorbs onto magnesium silicates
as they are precipitating. Based on the experimental results, the lime
soda and ash softening treatment was proved to be more suitable than
the caustic soda treatment, achieving average boron and silica removal
of 33 and 62%, respectively. On this subject, the caustic soda softening
treatment increased groundwater conductivity and alkalinity.
Conversely, an additional 9% boron removal was feasible by (a) mag-
nesium chloride addition before the softening treatment; or (b) a final
polishing step based on adsorption of hydroxyborate ions onto mag-
nesium oxide.

Finally, the application of the lime and soda ash softening pre-
treatment to groundwater samples in combination with latter pH ad-
justment to 10.0 and ED technology achieved a total boron removal of
51%. Since the diluate tank in the ED system did not incorporate a
system to control the pH level, the boron removal in the ED system was
limited to around 21%. Based on previous research further boron re-
moval could have been possible if the pH in the diluate stream would
have been kept around 10.5 during the desalination step. From this
research, we can also conclude that even if additional boron removal is

Time (minutes)

0 20 40 60 80 100 120

B
o
r
o
n

 c
o
n

c
e
n

tr
a
ti

o
n

 (
m

g
/L

)

2

3

4

Softened groundwater pH 7.8

Softened groundwater pH 10.0

Fig. 11. Boron remaining concentration in the diluate stream vs. detention time
in the ED unit.

Time (minutes)

0 20 40 60 80 100 120

p
H

 -
 D

il
u

a
te

 s
tr

e
a

m

6

7

8

9

10

Softened groundwater pH 7.8

Softened groundwater pH 10.0

Fig. 12. The pH level evolution in the diluate stream vs. detention time in the
ED unit.

J. Rioyo et al.

 116



required in existing inland desalination plants by more advanced
technologies like ‘seawater RO membranes’ or ion exchange tech-
nology, this ‘high-pH softening pre-treatment’ could reduce the re-
quisites of such downstream complex processes.
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Additional note regarding a minor error in the published paper. 

 

A minor error was recently discovered in the published paper. The FTIR 

spectrophotomer used for these experiments was a Shimadzu model IRAffinity-1S.  

 

6.3 Concluding remarks  

 

This paper investigated the performance of ‘High-pH pretreatment’ for boron removal 

from groundwater samples collected in an inland desalination facility. Magnesium-

dominated groundwater, initially spiked with 5 mg/L of boron, was softened with 

different alkaline reagents to remove boron and other scale-forming precursors 

including SiO2. The outcomes of this research suggest that the lime and soda ash 

softening treatment is more suitable than the caustic soda treatment; achieving average 

boron and silica removal of 33 and 62 %, respectively. SEM-EDX and FTIR 

determinations of precipitated solids showed that precipitation as silicates appeared to 

be the main mechanism for SiO2 removal. At the same time, boron may have been 

removed during the softening process by sorption of hydroxyborate ions to formed 

magnesium silicates.  

 

The results also show that an additional 9% boron removal was possible by magnesium 

chloride addition before the softening treatment, or by a final polishing step based on 

adsorption of hydroxyborate ions onto magnesium oxide.  

 

From this research, we can conclude that ‘High-pH pretreatment’ of groundwater can 

facilitate compliance with strict boron standards in inland facilities using RO or ED 

technology. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter summarizes the contribution of this thesis and discusses the important 

recommendations for future work. 

 

7.1 Conclusions 

 

The efficacy of ‘High-pH pretreatment’ in existing or future inland desalination 

facilities for scale control, RO concentrate minimization, specific pollutants removal 

(such as boron) and by-products recovery, was investigated in-depth in this study. 

Groundwater and RO concentrate collected in a municipal desalination facility run by 

the Western Downs Regional Council (Australia) was used to carry out this research. 

In contrast to previous studies, the groundwater and RO concentrate used for these 

experiments had a magnesium concentration higher than the calcium concentration. 

No studies have been conducted to discover the effect of magnesium-dominated water 

in scale control, RO concentrate minimization, specific pollutants removal (such as 

boron) and by-products recovery following a ‘High-pH pretreatment’ strategy. The 

study was conducted in four phases:  

 

• Phase 1: The differences between inland and seawater desalination were 

highlighted and the existing strategies for RO concentrate minimization 

towards ZLD in inland desalination were critically reviewed. This phase 

also compared two different scale control technologies: acid/AS addition, 

and ‘High-pH pretreatment’ 

• Phase 2: ‘High-pH pretreatment’ of RO concentrate followed by secondary 

RO was tested to increase overall water Rw in an existing inland desalination 

system. It was hypothesized that Rw could be enhanced in facilities treating 

magnesium-dominated waters since magnesium-bearing minerals that 

precipitate at high pH could concurrently remove other scale forming 

precursors including silica through precipitation and 

adsorption/enmeshment. In addition, CaCO3 and CaO recovery from 
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precipitated sludge could be possible through CO2 gas injection to 

selectively dissolve magnesium 

• Phase 3: Two different scale control strategies: ‘High-pH pretreatment’, and 

AS addition were evaluated for RO concentrate minimization in a lab-scale 

AGMD system. The inorganic precipitation mechanism in MD systems may 

be different from those of pressure driven membrane technologies, such as 

RO, due to variation in operating conditions such as temperature 

• Phase 4: ‘High-pH pretreatment’ was evaluated, at a laboratory scale, for 

boron removal from magnesium-dominated groundwater samples. Before 

commencing the experiments, the brackish groundwater was spiked with 5 

mg/L of boron. To date, it is largely unclear whether a softening 

pretreatment at High-pH can facilitate boron removal from groundwater. 

 

The first phase of this study showed that water Rw in inland desalination is limited by 

AS efficacy, and large volumes of RO concentrate are frequently disposed of into 

evaporation ponds. Overall, no matter which concentration technology is selected for 

RO concentrate minimization, it must address the scaling potential problem. The 

integration of a ‘High-pH pretreatment’ between consecutive RO stages or between 

RO and another advanced concentration system could overcome AS limitations and 

increase water Rw, while simultaneously enhancing salt recovery options.  

 

Therefore, in the second phase of the study, magnesium-dominated RO concentrate 

was treated with different alkaline reagents, such as NaOH, Ca(OH)2, and Na2CO3. As 

a consequence, the concentration of scale-forming precursors including magnesium, 

calcium, strontium, barium, and SiO2 was reduced by precipitation and 

adsorption/enmeshment. SEM-EDX and FTIR determinations performed on the 

generated solids showed that precipitation as silicates appeared as the main mechanism 

for SiO2 removal. Overall, the lime and soda ash softening treatment showed more 

advantages than the caustic soda treatment for the High-pH precipitation treatment. 

NaOH addition increased RO concentrate alkalinity and conductivity with a 

consequent negative impact on the LSI/S&DSI, achievable water Rw and energy 

requirements during the RO desalination process. Software simulations performed 

with ROSA 9, demonstrated that following RO concentrate treatment with lime and 

soda ash, pH readjustment and AS addition, overall water Rw could be further 
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increased from 80% to 97% using secondary RO. Eventually, CaCO3 recovery from 

the precipitated sludge during the lime and soda ash treatment was shown to be 

possible through CO2 injection to selectively dissolve magnesium. Recovered CaCO3 

could be used in agriculture as a pH stabilizer for soil or re-calcined as quicklime at 

900oC. Overall, the second phase of the study positively answers the first two research 

questions regarding the efficacy of ‘High-pH pretreatment’ of RO concentrate 

followed by secondary RO to increase overall water Rw in an existing inland 

desalination system and regarding the capacity to facilitate recovery of by-products. 

 

The scaling risk must also be reduced when applying other advanced desalination 

technologies like MD. The third phase of this study investigated an intermediate 

‘High-pH pretreatment’ between RO and batch AGMD desalination for high salinity 

RO concentrate minimization. RO concentrate was treated with lime and soda ash, 

resulting in significant removal of scale-forming precursors. The ‘High-pH pre-

treatment’ (followed by pH readjustment and AS addition) permitted the operation of 

the batch AGMD system at a higher feed water temperature, initially allowing a 37% 

increase in permeate flux. This was compared to the traditional strategy of AS 

utilization only, which was not successful in preventing the formation of mineral 

scales. Consequently, the volume of RO concentrate with an initial TDS level of 10.8 

g/L was minimized by a CF of 3.2. A slight decline in permeate flux recorded during 

the experiment was attributed to the increase in feed water salinity and a decrease in 

feed water flow-rate as a consequence of the technical limitations imposed by the feed 

water pump placed in the lab-scale AGMD unit. This intermediate chemical treatment 

greatly reduced the formation of mineral scales in different components of the system 

such as the AGMD membrane, feed water tank, feed water pump and heating element. 

SEM-EDX and FTIR analyses also confirmed the suitability of ‘High-pH 

pretreatment’ for scale control in the AGMD membrane. Therefore, the third research 

question has been answered confirming that ‘High-pH pretreatment’ can be combined 

with AGMD for RO concentrate minimization in an inland desalination system. 

 

The final phase of this study investigated the efficacy of ‘High-pH pre-treatment’ for 

boron removal from groundwater samples. Boron can be present in groundwater from 

natural or anthropogenic sources. In this study, brackish groundwater spiked with 5 

mg/L of boron was softened with different alkaline reagents to remove boron and other 
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scale forming precursors including SiO2. Based on the experimental results, the lime 

and soda ash softening appeared as the best option achieving average boron and silica 

removal of 33 and 62%, respectively. SEM-EDX and FTIR analyses of formed solids 

showed that precipitation as silicates appeared as the main mechanism for SiO2 

removal. Consequently, boron might have been removed during the softening process 

by sorption of hydroxyborate ions to formed magnesium silicates. This might involve 

a co-precipitation mechanism and/or an adsorption process in which hydroxyborate 

ion adsorbs onto magnesium silicates as they are precipitating. An additional 9% boron 

removal was made feasible by: a) magnesium chloride addition before the softening 

treatment; or b) a final polishing step based on adsorption of hydroxyborate ions onto 

magnesium oxide. These results have answered the last research question of the project 

regarding the effectiveness of ‘High-pH pretreatment’ in removing boron from 

magnesium-dominated groundwater. Finally, the combination of the lime and soda ash 

softening pretreatment of groundwater samples followed by pH adjustment to 10.0 and 

ED technology achieved a total boron removal of 51%. Since the diluate tank in the 

ED system did not incorporate a system to control the pH level, the boron removal in 

the ED system was limited to around 21%. Based on previous research, further boron 

removal could have been possible if the pH in the diluate stream had been kept at 

around 10.5 during the (batch mode) desalination step.  

 

7.2 Recommendations for further study 

 

The results obtained in this study with magnesium-dominated groundwater and RO 

concentrate showed that the integration of a ‘High-pH pretreatment’ in existing or 

future inland desalination systems for scale control, RO concentrate minimization, 

pollutants removal (such as boron) and by-products recovery could be considered to 

be promising alternative. However, while working on the project, several aspects were 

identified for further exploration. The following aspects are worthy of further 

investigation in future work: 

 

1. The second phase of this study reported the recovery of calcium carbonate from 

pretreatment sludge through CO2 injection to selectively dissolve magnesium. 

Carbonated sludge, mainly CaCO3, was collected by filtration and a magnesium 

bicarbonate solution was collected from the filtrate. The study of possible 
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applications for this magnesium bicarbonate solution could be worthwhile. It 

could be tested as a coagulant in industrial water treatment 

2. The scaling risk also has to be reduced when applying other advanced 

desalination technologies like Forward Osmosis (FO) or Mechanical Vapour 

Recompression (MVR) evaporators. In this regard, the third phase of this study 

investigated an intermediate ‘High-pH pretreatment’ between RO and batch 

AGMD desalination for high salinity RO concentrate minimization. Therefore, 

it is recommended to further extend this phase of study, evaluating the 

combination of ‘High-pH pretreatment’ with thermal desalination systems 

such as MVR evaporators and crystallizers for RO concentrate minimization 

and by-products recovery 

3. The total cost of desalination depends on factors such as: a) energy 

requirements, b) feed water salinity and water quality, c) economies of scale, 

d) operating and maintenance costs, and e) environmental regulations. A study 

on a pilot plant scale would be required to assess whether ‘High-pH 

pretreatment’ of the RO concentrate would be cost-effective for this 

desalination project. The increase in capital, energy, operator/maintenance and 

chemical costs should be compensated by a reduction in the cost of RO 

concentrate management and disposal. Moreover, the influence of ‘High-pH 

pretreatment’ on (secondary RO) membrane productivity, membrane 

replacement and membrane cleaning frequency is also an important factor that 

has to be carefully evaluated. 

4. Most inland desalination systems have low treatment capacity and are often 

located in isolated places. To cut energy costs, it could be effective to use solar 

energy to provide power to inland desalination plants, thus avoiding any 

greenhouse gas emissions. Therefore, testing the integration of the ‘High-pH 

pretreatment’ at pilot plant scale while taking advantage of solar energy to 

reduce the environmental impact of the desalination process, could be 

worthwhile 

5. Episodes of groundwater contamination have been widely reported in the 

literature. To date, the possible advantages of a ‘High-pH pretreatment’ during 

the desalination of sewage contaminated groundwater are largely unclear. 

Therefore, it could be useful to investigate the integration of a ‘High-pH 

pretreatment’ (followed by pH readjustment and AS addition) in inland 
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facilities dealing with sewage contaminated groundwater. The process could 

provide microbial disinfection of groundwater and nutrients removal. The 

efficacy of this chemical approach in terms of biofouling prevention could be 

evaluated in a pilot plant using RO technology.  
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