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Abstract 
 

 

The deposition and alteration of particulate matter (PM) in soils is a world-wide health concern. 

This study investigates the fate of Copper in organic-rich surficial soil layers (0-5 cm) 

contaminated by mining related activity at the Timmins Kidd Creek metallurgical site, Canada. 

The sequestration and mobilization of Cu by organic material (OM) in the soil layer is investigated 

using focused ion beam (FIB) technology and transmission electron microscopy (TEM). Copper 

occurs as incidental metallic Cu and covellite (CuS) nanoparticles (NPs), formed via ion reduction 

by humic substances and magnetite. Additionally, TEM analysis of the colloidal fraction, extracted 

via ultracentrifugation from the surface soil layer, indicates the occurrence of incidental covellite 

NPs in close association with dissolved OM. This study shows for the first time that Cu is 

sequestered as incidental metallic Cu and covellite NPs within OM and magnetite in surficial 

organic-rich soil layers. Furthermore, the mobility of Cu is facilitated through the transport of 

covellite nanoparticles embedded within organic colloids. 

 

Keywords: Metallic, Copper, Covellite, Incidental, Nanoparticles, Particulate matter, 

Transmission electron microscopy, Organic material, Humic substances, Magnetite, Mobile, 

Sequester, Timmins, Kidd Creek  
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Chapter 1 
 

 

1.1  Soil contamination by mining-related activities 

Industrial processes, especially mining and smelting activities, have contaminated the air, soil, and 

water around the world.1 Common pollutants released from mining activities primarily include 

particulate matter (PM) and aerosols. Many studies have been conducted on contaminated soils at 

various locations for the purpose of determining the magnitude and type of contamination,2-5 the 

bioavailability of metal(loid) species,6-8 and to establish in-depth characterization of the 

interactions and processes that occur between PM and soil constituents.9-12 

 

1.1.1  Particulate matter 

As already noted, the occurrence and processes of PM has been extensively characterized by many 

researchers. Despite this, continuous research is required on this particular topic as the reactions 

and consequences of PM are extremely diverse and differing environmental conditions will 

influence the processes that take place. Reclamation strategies may be employed in areas with 

significant contamination, but in order for these processes to be effective, appropriate strategies 

must be applied. Knowledge on the lifecycle of PM is important to assess the environmental fate 

and impact in different localities so that appropriate remediation efforts are taken. The stages of 

PM include formation, release, transport, deposition, and finally weathering and dissolution. 

Particle formation processes have significant control on the final fate and environmental impact as 

it determines the structure and composition of the contaminant. 
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1.1.1.1  Smelter-derived particles 

Prior to the onset of strict environmental regulations, companies did not employ the use of filters  

for smelter stacks which led to the significant release of smelter-derived particles.3 Despite the 

introduction of equipment for flue gas cleaning, a small fraction of particulates are still released 

by stacks in times of filter degradation.9 Characterized as being spherical in shape with high-

temperature features, including dendritic, skeletal, tabular, and porphyritic patterns, these particles 

are composed of various metal(loid)s that can become mobile in the soil environment.11 Smelter-

derived particulates are produced during high-temperature smelting processes and the subsequent 

cooling process where metal(loid)s are quenched into small melt droplets through collisions 

between solid and liquid particles or through gaseous condensation processes.13 Metal(loid) 

composition and structure is therefore dependent on furnace temperatures and methods used, as 

well as the physical material processed within the smelters.  

 

1.1.1.2  Windblown dust 

Unlike particulates derived from the smelting-processes, angular or irregular shaped particulates 

observed in soils often originate from tailing sites or waste piles. Hence, their formation and their 

aeolian transport from ore and waste-rock piles is related to daily mining operations. These 

particulates contain minerals formed during (a) the ore formation process, (b) the weathering of 

the ore in the vadose zone of the ore deposit, (c) ore processing processes, or (d) the weathering of 

ore and waste rock piles.9 The particulates often undergo alteration processes in soils such as 

oxidation and dissolution–precipitation and consequently exhibit noticeable weathering rims.9 The 

chemical and mineralogical composition and susceptibility for weathering of wind-blown 

particulates will affect the fate of their released metal(loid)s upon soil deposition. 
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1.1.2  Contaminant deposition 

Upon contaminant release to the atmosphere, the resultant spatial distribution is dependent on 

particle size and the wind direction/speed. Smaller particulates travel further than their larger 

counter-parts, however distance can be impeded by structural obstacles such as buildings or 

trees.5,14,15 A variety of processes can occur upon the deposition of PM into soils, the results of 

which are primarily dependent on the composition of the contaminant and the surrounding 

environmental conditions. Of these, the principal factors that determine the fate of PM revolves 

around the constituents of the soil matrix, as this will define the pH, reduction potential, and 

complexing agents (Section 1.3). 

 Elements released during the weathering of PM have been shown to be limited within soil 

profiles as they are primarily retained by the surficial soil layers.16-18 Because of this, concentration 

depth-profiles generally show an exponential decrease of metal concentration when contamination 

is attributed to anthropogenic, airborne deposition. However, total metal concentration is not 

directly related to the concentration that can harm biological species.19,20 While most metal(loid)s 

are sequestered in a bio-unavailable form, over time these metals can be released during 

weathering of their host phases. The extent and speed of this weathering process must be 

determined for individual minerals and environmental conditions in the corresponding soils, which 

is the primary reason why this area of research must be consistently investigated. For example, 

delafossite (Cu1+Fe3+O2) has been shown to be quite stable under short-term weathering 

conditions,21 however Lanteigne et al. reported significant weathering of this mineral in smelter-

contaminated soils of the Sudbury area.11 
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1.2  Kidd Creek complex 

Base metals, including copper (Cu), zinc (Zn), lead (Pb), and nickel (Ni), are important 

commodities for commercial and industrial purposes. In Canada, Cu is the second most common 

element mined and produced, only falling behind iron.22 A prominent mining complex in Canada, 

the Kidd Creek mine site, is the deepest base metal mine in the world and is located 20 km North 

of the Timmins city center. The ore mined at this site includes chalcopyrite (CuFeS2), pyrite (FeS2), 

pyrrhotite (Fe(1-x)S x=0-0.2), sphalerite (ZnS), and galena (PbS), all hosted in felsic rocks.23 The 

metallurgical site, located 27 km South-East of the mine, was closed in 2010 after being in 

operation for 30 years. A Cu and Zn smelter operated in the lower SE section of the complex prior 

to its closure. The copper smelter was based on the Mitsubishi smelting process which utilized 

three furnaces, with a typical temperature of 1200-1270 °C.24 High-temperature features within 

spherical particulates identified within nearby soils are attributed to this process while angular or 

irregular-shaped anthropogenic grains found in nearby soils likely originated from ore and waste 

rock piles within the complex (this study). 

 In 2003, the prevailing wind direction in Timmins was from the North-West and North.25 

This suggests that the largest amount of PM wind-blown from the metallurgical site would have 

been predominantly deposited SE to S. The soils in this area are from glaciolacustrine fine-grained 

deposits26 and exhibit well-defined profiles, provided they are undisturbed. The chemistry and 

processes that can occur within these soils are discussed in the next section. 
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1.3  Soil chemistry 

Soil is an extremely complex matrix with many different layers, constituents, and properties. In 

addition to this, soils derived from different geographic locations or even local environment 

variances will result in a matrix with distinctive properties. In undisturbed areas, soil may exhibit 

discrete horizons to form a soil profile. These horizons can be classified by their colour, texture, 

and most importantly, their composition. A complete discussion of soil profiles is beyond the scope 

of this review and therefore, for the purposes of this review, only the topsoil will be discussed in 

depth. While topsoil is roughly defined as the uppermost layer of soil, clear inconsistencies of 

exact depth is demonstrated in the literature as some researchers define a depth value while others 

consider the natural horizons developed in the profile.2,5 In this study, we have defined the upper 

0-5 cm organic layer as the topsoil, where the organic-rich fraction was the predominant 

constituent. 

 As is common with soils, the composition of surficial soils is extremely diverse. In general, 

these components can be divided in three fractions: biological, inorganic, and organic species. 

Biological species of course refer to living organisms such as earthworms or microbial activity. 

The mobility and diversity of these species greatly impact the chemistry of soils as they can 

consume, alter, and deposit natural and anthropogenic material. However, earth worms are not 

always present in certain soil types or localities, and therefore the mobility of metals in areas with 

earthworm activity may be different than areas without these species. The inorganic components 

include mineral groups such as feldspars, clay minerals, and aluminum/manganese/iron oxides, all 

of which have their own chemical and mineralogical properties and therefore affect the soil 

chemistry in different ways. The third component of typical topsoil is the organic fraction, which 

is the matrix in focus of this thesis.  
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 The organic fraction is composed of both soil organic matter (SOM) and organic residues, 

which are any undecayed plant and animal tissues or their partial decomposition products. Soil 

organic matter is a broad term that includes both humic substances (HS) and non-humic 

substances, but does not include organic residues. Humic substances is a generic term that includes 

many high-molecular weight substances formed by secondary synthesis reactions.27 They are 

arguably the most important component of the organic fraction and as such will be covered in 

depth below. Non-humic substances are comprised of a variety of biochemical compounds 

including, but not limited to, amino acids, carbohydrates, and organic acids. The reduction 

potential (Eh) is a very important parameter that defines the chemistry of a soil, indicating whether 

a given soil is reducing or oxidizing. While the overall reduction potential is not controlled by 

SOM, it can contribute reducing capabilities of a soil layer (Section 3.2.2). 

 Soil organic matter influences soil chemistry in many ways through both its existence and 

decay. Soils high in SOM may demonstrate great buffering activity which prevents large pH 

variations. Similarly, SOM significantly increases the cation exchange capacity (CEC) of a given 

soil, which influences the ability to hold nutrients and also contributes to the buffering capability 

of SOM. Upon decomposition, SOM yields important polyvalent ions and molecules such as 

carbon dioxide (CO2), ammonium (NH4
+), nitrate (NO3

-), phosphate (PO4
3-), and sulfate (SO4

2-).27  

  Soil does not only contain solid material, but also liquids and gases. Through the structure 

of a soil profile, there are many pore spaces of varying sizes creating a nano- and micro-

environments. The chemistry within these pore spaces often cannot be represented by the bulk 

chemistry of a soil due to the occurrence of chemical and mineralogical reactions at solution-

particle interfaces. Soil pore water facilitates the transport of natural and anthropogenic material. 

As such, researchers often consider the chemistry of the pore water to be representative of the bulk 
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chemistry of a given soil by measuring the soil pH, reduction potential, and dissolved organic 

matter (DOM). Within pore spaces, DOM may comprise a significant component of the soil pore 

water. This type of organic matter is composed of organic acids or HS that can pass through a 0.45 

μm filter. As will be later discussed, DOM plays an important role in the mobility of contaminants 

by ways of adsorption and incorporation.  

 

1.3.1  Humic substances 

Major components of SOM are the heterogeneous, high molecular weight humic substances which 

can be subdivided into humic acid (HA), fulvic acid (FA), and humin. These divisions are based 

on the relative solubility of the different components, where HAs are soluble under alkali 

conditions, FAs are soluble under acidic conditions, and humin are not soluble under either acidic 

nor alkaline conditions.27 The formation of these substances can be attributed to different 

pathways, however they are all derived from the slow decomposition of plant residues.Aquatic HS 

can be derived from the decomposition of algal or bacterial residues.28 While soil HS contain more 

aromatic functional groups, those derived in aquatic environments generally contain more aliphatic 

groups due to the organic precursor.28 

The most reactive components of organic matter are HAs and FAs. The reactivity of these 

acids is attributed to their solubility and the high density of available functional groups such as 

carboxyl and phenolic groups.29 As there is a higher proportions of acidic functions groups on FAs, 

they demonstrate a higher total acidity than HAs.27  

Other functional groups include enols and quinones (acidic), alcoholic and carbonyls 

(neutrals), and amines and amides (basic).27 Because of their reactive capabilities, HS has a strong 

influence on the mobility of free and complexed metal species by a variety of mechanisms. As a 
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note, some authors consider humic substances an artifact of extraction, while some authors believe 

they do occur in the environment.30  

 

1.3.2  Interactions of soil components with metal species 

Upon weathering of PM, metal(loid)s will be released and enter the soil pore water. Various soil 

constituents can subsequently bind the metal(loid)s through different mechanisms. Metal(loid)s 

can be sorbed to surfaces by physical or chemical interactions. Physical interactions include van 

der Waals forces and electrostatic forces, which in addition to hydrogen bonds, occur 

predominantly as outer-sphere complexes.31 As these interactions are considered to be relatively 

weak, formation of outer-sphere complexes occurs rapidly and is reversible.27 Conversely, 

adsorption through the formation of chemical bonds between substrate and sorbent occurs through 

inner-sphere complexations, a process often considered to be irreversible in the environment. 

Another process considered irreversible is isomorphic substitution of a trace metal where 

similarly-sized atoms replace the original atom within a mineral lattice (ie. Zn2+ substituting Fe2+ 

in Fe-oxides).32 The type of adsorption or incorporation mechanism that occurs is often dependent 

on a number of factors including the pH and ionic strength of the solution as well as the properties 

and surface loading capability of a given sorbent.27 For example, inner-sphere complexes 

involving cations are dominant in solutions with a higher pH and ionic strength (pH 7 vs. 6).33 

One of the main properties that dictates binding is attributed to the surface charge of 

sorbents, a value based on a given point of zero (pzc) charge due to surficial functional groups. 

The pzc of a compound corresponds to the pH value where the net surface charge density is zero. 

Hence, when the pH is less than a given pzc, the compound is positively charged, and if the pH is 

greater than the pzc, the surface charge is negative. Because the majority of functional groups on 
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HS are carboxyls and phenolic groups, the typical pzc value of most organic based compounds in 

soil is 2-3, indicating that surface charge of organic material at pH values typical for soils (pH > 

4.5) will be negative.27,34 This allows for significant electrostatic interactions between organic 

material and cationic species in the pore solution.  

While Ca2+ is abundant in soil solutions, trace metals such as Cu2+ and Pb2+ have been 

demonstrated to preferentially sorb to the negative binding sites on SOM.35 In fact, many studies 

have indicated that trace metals such as Cu2+ are predominantly sequestered by organics.36-40 Other 

researchers have found contradicting results where Cu2+ was found to be preferentially bound to 

Fe-(hydr)oxides.41,42 This contradiction is a result of the interpretation of extended x-ray 

absorption fine structure (EXAFS) data. Here, Yang et al.42 argued that similar bond lengths 

between Cu-O and Cu-N can lead to false conclusions with respect to the bonding of Cu to organic 

matter. The authors therefore used a combination of EXAFS and micro x-ray fluorescence (μ-

XRF) to study the occurrence of Cu in contaminated soils. Their study indicated that Fe-

(hydr)oxides were the dominant host for Cu in contaminated mineral soil. However, the authors 

indicated that the soils analyzed in their study had a much lower SOM amount compared to 

previous studies (0.55 % vs. 2.2-75 %).38-40 Hence, the authors suggested that at low SOM content, 

Cu would bind predominantly to Fe-(hydr)oxides.43 Studies have shown that Cu primarily binds 

to Fe-(hydr)oxides through inner-sphere complexations which suggests a stronger retention of Cu 

by Fe-(hydr)oxides than by organic material, where Cu appears to be more weakly bonded.42,44,45 

Not only can binding mechanisms cause metal immobilization, they can also influence the 

properties of minerals or induce speciation changes. The sorption of different constituents to others 

(ie. DOM onto the surface of Fe-(hydr)oxides) can alter the surface reactivity of the sorbent.46 

Additionally, surface precipitation processes can lead to the formation of metal-bearing phases on 
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the sorbent surface.47 This mechanism typically only occurs when there is a high coverage of metal 

species sorbed to a surface. Contrary to this, when there is a low surface coverage, complexation 

is more likely to occur.48 Not only do surface precipitates influence the speciation of a metal, they 

also result in the modification of the surface properties which can affect subsequent binding of the 

mineral to solute in solution.  

The speciation of metal ions can also be changed by sorption onto specific functional 

groups of HS that are capable of inducing reduction. Redox-active moieties on HS have been 

demonstrated to accept electrons from microorganisms in the soil and then subsequently donate 

those electrons to metal species.49 The functional groups that exhibit this redox activity are 

quinone-hydroquione and phenolic moieties.50,51 Both soil and aquatic HS have been shown to 

induce the reduction of many metal species, including the formation of metallic species.28,49,52-54 

 

1.3.2.1  Factors that influence metal mobility in soils contaminated by atmospheric deposition 

In addition to the sorption of metal(loid)s to OM and mineral surfaces, their chemical distribution 

in the soil profile is also controlled by the sorption of PM onto surficial soil constituents (ie. organic 

material). This sorption prevents the mobilization of smaller PM and therefore limits exposure to 

pore waters. The mobility of metal(loid)s or metal(loid)-bearing PM in the soil profile depends on 

many factors such as grain size, surface charge, pH, Eh, bacterial activities, and type of organic 

matter and DOM. For example, DOM has significant influence on metal mobility as it can strongly 

bind metals and, due to their nanometer size, be easily mobile in the soil profile upon release.27 

Additionally, DOM can also sorb to mineral surfaces. High DOM loading on mineral surfaces 

leads to coatings which alter the surface composition and charge. When this occurs, the surface 

charge of the DOM coated mineral can become neutral or even reversed, depending on the soil pH 
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and the type of adsorbed DOM.46 Mineral surface coatings composed of DOM may lead to higher 

cation retention, especially under acidic conditions where the surface of the coated mineral is 

commonly negatively charged.55  

 Colloid-facilitated transport has been demonstrated to be an important mechanism for 

metal mobility. The efficiency of this transport mechanism depends on the stability and relative 

mobility of a given colloid, as well as its surface area and charge.4 While the charge of a given 

colloid is generally controlled by the pzc, its charge may be modified by the adsorption or 

formation of DOM or Fe-(hydr)oxide surface coatings.46 These coatings commonly increase the 

relative stability of a colloid55 but can also result in an increase of the metals adsorbed or 

incorporated into the colloid. An important mechanism of colloid release can be attributed to heavy 

rainfall or upon the snow-melt in spring, as this instigates a significant influx of low ionic strength 

water causing a decrease in chemical and physical forces, thus favouring the release of colloids 

attached to larger particles.56 

To summarize, transport and retention mechanisms of metals are influenced by many 

different variables such as the soil pH, Eh, constituents present, as well as the composition of the 

particulate being weathered. These variables are so diverse, even within one location, that 

mechanisms of metal mobility cannot be generalized for soils contaminated by atmospheric 

deposition of metal(loid)-bearing PM. Furthermore, the size and diversity of surface binding sites 

and colloids commonly limits an in-depth characterization using bulk analytical tools such 

sequential extraction methods and synchrotron-based spectroscopy methods. Hence, nanoscale 

analysis techniques such as transmission electron microscopy are often required to truly 

understand retention, mobility, and speciation of metals in the environment. 
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1.4  Transmission electron microscopy 

The study of environmental processes often requires the application of many techniques to fully 

characterize basic to complex features in the collected samples which can reveal past or present 

processes. An important subsection of analytical instruments involves the use of an electron beam 

to form images or to produce secondary radiation (electrons or x-rays). The greatest advantage of 

electron beam instruments is the ability to focus on and discern nanoscale components within a 

sample, which cannot be accomplished using bulk analytical methods. The in-depth 

characterization of a distinct specimen on the nanoscale can be achieved with transmission electron 

microscopy (TEM). The difference between TEM and other electron beam techniques is its ability 

to observe and identify features on the 10-9 to 10-6 meter-scale. Scanning electron microscopy 

(SEM) is primarily used to characterize samples at the micrometer scale (10-4 to 10-2 m). The 

characterization of a sample with SEM is often an important step prior to TEM analysis as it 

ensures that the area selected for TEM analyses is representative. Transmission electron 

microscopy is not a routine method for contaminant characterization due to both cost and the 

requirement for skilled operation. Nonetheless, more researchers are beginning to apply this 

technique to evaluate environmental processes and impacts of PM. In fact, without the use of TEM, 

researchers would not have identified toxic, incidental titanium oxide phases in air, soil, and water 

around the world.57-59 Scanning-TEM (STEM) combines the capabilities of SEM and TEM, 

allowing for the analysis of thin samples by the addition of scanning coils and appropriate 

detectors. Transmission electron microscopes can either be a hybrid of TEM and STEM or they 

can be a dedicated STEM. In STEM mode, a small electron probe is scanned over the specimen in 

a raster pattern and the transmitted electrons are collected.60 For simplicity purposes, only the TEM 

acronym will be used for the remainder of this chapter. 
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The basis of TEM relies on the detection of various electron-specimen interactions. As 

shown in Figure 1, there are many scattering events that can occur upon the interaction of an 

electron beam with a sample, however not every event may be possible or detected in a single 

analytical technique. For imaging purposes in TEM, only electrons that are transmitted through 

the specimen are detected and translated into an image.60 Both the direct and diffracted electron 

beam can form an image and beam selection determines the imaging mode. Most transmission 

microscopes also have an attached detector for the purpose of chemical analysis which can acquire 

and quantify either incident x-rays or electrons, dependent on the detector.  

 

 

 Electron dispersive x-ray spectroscopy (EDS) quantifies characteristic x-rays released 

from a specimen upon electron bombardment. When an incident electron knocks out an inner shell 

electron, an electron in an outer shell will fill the vacancy. As an electron is moving from a higher 

energy to a lower energy shell, the energy difference that is associated with this transition is 

released as a characteristic x-ray.60 Emitted x-rays have an energy that correspond with the element 

Figure 1. Possible scattering events that can occur in electron beam analysis. 

Red text indicates important scattering events for TEM imaging and blue text 

indicates important scattering for EDS quantification. Adapted from [60]. 
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it originated from and the specific electron transition that transpired, involving the shell and 

subshell of both the electron hole and of the location where the electron transferred out.61 The data 

is plotted as energy versus intensity and the characteristic spectral lines are superimposed onto the 

background represented by the bremsstrahlung pattern, which is formed by the energy loss of the 

direct beam through the deceleration of the incident electron.60 

Electron energy loss spectroscopy (EELS) is a method that quantifies the energy 

distribution of inelastically scattered electrons produced and transmitted during the interaction of 

the direct beam with the electrons in a specimen. The quantified energy is related to the local 

environment of the electrons that interacted with the primary beam and therefore information about 

the chemical and physical properties of a given area of the specimen can be gained.62 Like the 

requirements for TEM, the application of EELS requires thin samples for sample analysis. 

 

1.4.1  Imaging modes in TEM 

Nanoscale analysis using TEM can be accomplished by a variety of methods. As noted above, 

chemical data can be gathered using EDS or EELS, however morphological and mineralogical 

data can also be gathered through various imaging modes (Fig. 2). Upon the interaction between 

the incident electron beam and the sample, the diffracted electrons pass through an objective lens 

that focusses the electrons onto the back focal plane of the instrument, producing a diffraction 

pattern. 
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In conventional imaging, an objective aperture is inserted near the back focal plane to select 

a single beam of electrons, and its exact location defines the type of imaging mode. A bright field 

image (BF) is created by placing the objective aperture below the back focal plane. This creates 

an image of the transmitted beam (Figure 2a) in which darker and brighter tones defines areas of 

high and low interaction between the primary beam and the atoms in the sample, respectively. 

Dark field (DF) imaging is accomplished by obstructing the beam that is not diffracted and 

collecting only the diffracted electrons for image formation, which can be accomplished by two 

methods.63 Dark field mode 1, shown in Figure 2c, occurs when the objective aperture is positioned 

so that it excludes the transmitted beam but allows for a portion of the diffracted beam to pass 

through. Dark field mode 2 occurs when the incident electron beam is tilted prior to interaction 

with the specimen causing the beam path of the un-diffracted electrons to be blocked by the 

objective aperture, allowing the electrons that are diffracted along a specific angle to travel along 

Figure 2. Beam paths for the different operational modes of TEM. The directly 

transmitted beam is represented by the gray line and the diffracted beams are shown 

by the blue and yellow lines. Adapted from [63].  
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the central axis to pass through the aperture (Figure 2d).63 As such, darker and brighter tones in 

the DF image represent low and high interactions with the specimen, respectively. 

If the objective aperture is removed, both the transmitted and diffracted beam will be 

allowed to pass through the column (Figure 2b). When the diffracted and transmitted electrons are 

allowed to pass through the column, interference between the diffracted electrons results in a 

diffraction pattern on the viewing screen.60 These diffraction patterns are formed by electrons that 

are diffracted by a regular array of atoms in a crystal,64 following Bragg’s law: 

𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃                                                         Eqn. 1 

where n is the order of diffraction, 𝜆 is the wavelength of the incident electrons, d is the lattice 

spacing between planes, and 𝜃 is the incident angle of the electrons.60 Additionally, because 

diffraction patterns are caused by interference between coherently scattered waves, to have a 

strong diffraction signal, the waves must be in phase to allow for constructive interference.65 

The addition of a selected area (SA) aperture allows the recording of a diffraction pattern 

from a site-specific location through blocking electrons from the surrounding sample. Recording 

selected area electron diffraction patterns allows for the identification of larger nanoparticles or an 

assemblage of smaller nanoparticles with diameters as small as d = 170 nm. 

 

1.4.2  Focused ion beam technology 

Samples that are analyzed using TEM must be extremely thin (< 100 nm) for basic operation as 

the various imaging modes rely on the physical transmission of the incident electron beam. If 

samples are too thick, incident electrons will only undergo alternative interactions with the 

specimen (e.g. become backscattered or form secondary electrons). As such, specific sample 

preparation techniques are required to ensure electron transparency. There are multiple methods 
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that can be chosen for sample preparation and the method selected is often dependent on the 

characteristics of a given sample (hard vs. soft, inorganic vs. biological). For samples that are 

composed of soft material, a common, inexpensive approach is the use of an ultramicrotome, 

which allows the slicing of electron transparent sections with a diamond or glass knife. However, 

for environmental soil samples with a mineral component, the use of an ultramicrotome is limited 

due to the hardness of many soil components (e.g. quartz with a hardness of 7). An alternative 

method is the use of focused ion beam (FIB) technology. Despite the high costs and skills required 

for preparation, this technique is often selected due to its high specificity and versatility. Unlike 

the preparation of a sample with an ultramicrotome, FIB sectioning is site specific as it allows the 

selection of the area prior to extraction. The examination of a FIB section with TEM allows 

researchers to study chemical, mineralogical, and textural features of a specific micrometer-size 

area in a chemical and geological sample. 

 The preparation of FIB sections is achieved with an instrument combining FIB and SEM. 

The FIB component in this instrument is used to extract and mill out the section. The SEM 

component is used to monitor the extraction and milling process. Although there are different 

methods for FIB preparation, this discussion is focused on the lift-out technique which can be 

broken into two main sections: trenching and thinning (Fig. 3). At the first stage, the operator 

deposits Pt glue over the area of interest for protective purposes. A beam of Ga+ ions is 

subsequently used to mill out trenches on either side of the sample; i.e. a few microns underneath 

the platinum glue and at the boundary between the desired area and the bulk material. The section 

is removed from the bulk material using a nanomanipulator needle and then mounted onto a holder. 

Using a low current beam of Ga+ ions with a small incident angle, the section is subsequently 

milled down to electron transparency. 
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In any sample preparation procedure, the production of artifacts is a serious issue. During 

FIB extraction, artifacts are formed through the deposition of Ga+ or Pt within soft material, the 

removal of water from hydrous phases, or the creation of an artificial topography. The deposition 

of metallic Ga often occurs within soft phases but can be identified through the analysis of 

diffraction patterns with TEM. In some cases, the bombardment of a sample with Ga+ ions can 

result in phase transformations such as the formation of FeGa3 precipitates upon reaction of the 

Ga+ ions and Fe in a sample.66 Dehydration of a hydrous phase commonly occurs under vacuum 

in the FIB-SEM or TEM and can be sometimes associated with morphological deformations.67,68  

 

 

 

 

 

 

Figure 3. SEM backscattering electron images of the FIB extraction process.  
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Chapter 2 
 

Abstract 

This study investigates the fate of Cu in organic-rich soils contaminated by mining related 

activities at the Timmins Kidd Creek metallurgical site, Ontario, Canada. The surficial soil layers 

(top 5 cm) contain on average 13000 ppm Cu, predominantly in the form as Cu-Fe-sulfide PM 

attached to organic residues. The sequestration of Cu by organic material (OM) is investigated 

with a combination of focused ion beam (FIB) technology and transmission electron microscopy 

(TEM). FIB sections are extracted from the interior of OM as well as along the interface between 

OM and a Cu-Fe sulfide grain. Nanoscale analyses show that Cu occurs as incidental metallic Cu 

and covellite (CuS) nanoparticles (NPs) within the OM. These NPs can occur along the interface 

towards the attached Cu-Fe sulfide grain, in remote pore spaces in the interior of the OM, and in 

association with magnetite precipitates within the OM. These occurrences suggest that Cu is 

sequestered by OM through various redox and precipitation mechanisms, induced by ferrous iron 

or humic substances. Additionally, the colloidal (mobile) fraction of the upper 1 cm of the studied 

soil was extracted through column experiments and ultra-centrifugation. Subsequent TEM 

examinations indicate that the Cu-bearing colloidal fraction is predominantly composed of 

incidental covellite NPs embedded within colloidal OM. These observations indicate that Cu is 

recycled in surficial organic-rich soil through repetition of (a) sequestration processes within OM, 

(b) decomposition of OM resulting in the release of Cu-bearing incidental NPs, and (c) re-

adsorption to newly formed OM as solutes or incidental NPs. 
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2.1  Introduction 

Metal-bearing particulate matter (PM) released from mining related activities are often deposited 

onto surrounding soils, resulting in elevated concentrations of metals. For example, in 2015, 

industrial activities just within Canada resulted in the release of approximately 3 million tonnes of 

PM and aerosols to the atmosphere.69 Upon deposition, particulates typically remain in the surficial 

layers of soil, however environmental conditions induce weathering and subsequently the release 

of metal(loid)s from altered PM surfaces. Processes that drive PM weathering are dependent on 

the atmospheric and soil matrix conditions, pore water volume, and composition as well as the 

chemical and mineralogical composition of the particulates.70 

 The majority of studies assessing deposition and fate of PM are primarily focused on spatial 

distributions or total and bioavailable metal concentrations within soils surrounding a specific 

contaminant source.2,10,11,16,71,72 Although these studies are important, they often do not specifically 

characterize the PM or determine the speciation of the metals within particulates or secondary 

phases. This characterization is required to understand how metal(loid)s are sequestered and 

transported within soils, allowing for a better comprehension on the level of contamination as well 

as providing the capability of designing targeted reclamation strategies. Specific, in-depth 

characterization of the fate of metal(loid)s in soils can be accomplished using electron beam 

techniques such as scanning electron microscopy (SEM) or transmission electron microscopy 

(TEM). For example, Buatier et al.73 used TEM to characterize the speciation of Zn and Pb in 

smelter-contaminated soils in France. Knight and Henderson72 characterized smelter dust in humus 

layers from Rouyn-Noranda using SEM imaging and although they showed evidence of 

weathering, they did not characterize sequestration and transport of released metal(loid)s. Mantha 

et al.,74 Lanteigne et al.,10,11 and Caplette et al. 75 characterized PM in sandy soils and on rock 
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coatings around the smelters in Sudbury, ON and Trail, BC (both Canada) using TEM and other 

techniques to determine mineralogical and chemical compositions, as well as alteration products 

of PM. Schindler and Hochella12,57,76 and Schindler et al.77 examined mineral surface coatings 

(MSC) and mineralized organic matter (MOM) in smelter-contaminated soils in the Sudbury, ON 

and Trail, BC areas using a combination of the focused ion beam technology (FIB) and TEM. 

These authors showed that metal(loid)s released by PM are sequestered within pore spaces of MSC 

and MOM in the form of oxy-salt minerals such as jarosite (KFe3(OH)6(SO4)2) or anglesite 

(PbSO4) or minerals of the spinel group such as trevorite (NiFe2O4), gahnite (ZnAl2O4), and 

franklinite (ZnFe2O4). 

Classical sequential-extraction methods of organic-rich soils contaminated by atmospheric 

deposition have suggested that organic material can be an important (even dominant) sorbent for 

metals in the surface horizons of soils, dependent on the type of organic matter, and the ratio 

between the total surface areas of organic matter and minerals.2,47,78 However, synchrotron-based 

spectroscopy and diffraction studies have not provided a uniform picture of the fate of metal(loid)s 

in surficial soils containing minerals and organic material (OM). For example, some studies state 

that Cu predominantly sorbs to OM,39 whereas other work reports a close association of Cu with 

Fe-(hydr)oxides.42 The latter observations indicate an uncertainty with respect to the sequestration 

of metal(loid)s by OM in soil horizons containing both organic and inorganic material. In an 

organic-rich environment, metals such as Cu can be complexed by a variety of organic molecules 

that are derived from the decomposition of natural soil organic matter (SOM). A wide array of 

compounds form throughout these processes, leading to the formation of humic substances (HS), 

which are classified as humic acids (HA), fulvic acids (FA), and humin.79 There are many different 

organic molecules capable of binding metals and numerous metal-organic interactions can occur, 
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including inner- and outer-sphere complexation. Carboxylic acid functional groups were found to 

be important in Cu-HS binding, however the presence of phenolic groups induced an increase in 

binding strength.80 However, Cu-HS complexes are heavily dependent on a variety of factors such 

as the type/origin of the HS, pH, and ionic strength, and therefore the extent of binding is dependent 

on local conditions. 

This study reveals insights into previously unknown sequestration and transport processes 

of Cu by organic matter and colloids in an organic-rich surficial soil layer in proximity to the 

former Kidd Creek metallurgical site in Timmins, Ontario. Using a combination of FIB and TEM, 

this study shows for the first time that Cu-bearing PM is transformed on the surface and within 

pore spaces of organic material into secondary incidental nanoparticles (NPs) that are composed 

of metallic Cu and Cu-sulfides. It further shows that Cu can be transported in the colloidal fraction 

as incidental Cu-sulfide nanoparticles embedded within larger organic colloids.  

In this study, organic material is used to describe the overall organic fraction (i.e. organic 

residues and matter) whereas the term organic matter defines decomposed organic material (i.e. 

humic substances). Similarly, dissolved organic matter (DOM) is defined as the fraction of organic 

matter that is capable of passing through a 0.45 μm filter, and therefore is no longer considered 

particulate organic matter. Additionally, in this study, the colloidal fraction is defined as the 

fraction that deposits during centrifugation, colloids are considered particles with diameters 

between 50 and 450 nm and the term nanoparticle is used when particles have diameters smaller 

than 50 nm. 
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2.1.1  Environmental Significance Statement 

The deposition of metal(loid)-bearing particulate matter (PM) on soils adjacent to and downwind 

from a contaminant source is a world-wide environmental issue. The exponential decrease in the 

concentration of metal(loid)s with depth in these soils suggests that they are retained by inorganic 

and organic constituents in the surficial layers of these soils. An in-depth nanoscale investigation 

of the interaction of Cu-bearing PM with organic material (OM) in Cu-contaminated soils reveals 

for the first time that even under oxic conditions in surficial soil layers, the Cu pollutant can be 

sequestrated by OM in the form of metallic Cu and covellite (CuS) incidental nanoparticles (NPs). 

Furthermore, this study provides insights into potential mobilization mechanisms for Cu in 

organic-rich soils as it identifies covellite NPs embedded within mobile organic colloids. 

 

2.2  Materials and Methods 

2.2.1  Background information on the Kidd Creek Smelter 

The Kidd Creek metallurgical site, located within the city limits of Timmins, Canada, was in 

operation for 30 years, closing in 2010. The ore processed at this location predominantly contained 

chalcopyrite (CuFeS2), pyrite (FeS2), pyrrhotite (Fe(1-x)S x=0-0.2), sphalerite (ZnS), and galena 

(PbS).23 The ore was shipped by train from the mine site (27 km away) to the metallurgical site for 

processing. The Mitsubishi copper smelting process was employed at start-up with furnaces 

operating around 1200-1300 °C.24 From 2002-2009, the average amount of total PM (< 100 μm) 

released to the atmosphere was 844 tonnes/year.81 
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2.2.2  Sample collection 

Surficial soil samples (~upper 5 cm) were collected in October 2016 from various sites surrounding 

the former Kidd Creek smelter. The selected sites exhibited well-developed and undisturbed soil 

profiles. The surficial sample from site 1 was thoroughly characterized on the nano to micrometer 

scale (Fig. 4). Site 1, located 10 m from the highway within a birch stand with a grassy understory, 

exhibits 5 cm of an LFH layer with a 10 cm Aheg layer (Fig. S1). Site 2 and 3 were used as control 

sites, with site 2 exhibiting a 4 cm  LFH layer, 6 cm Aheg layer, and a 5 cm Aeg layer and site 3 

exhibiting a 3 cm LFH layer and a 14 cm Ah layer (Fig. S2, S3). Sampling at site 1 continued in 

May 2017, when samples were collected at 1 cm increments to a depth 10 cm. All samples were 

transported to the lab in a cooler, dried at 80 °C, sieved (< 1.4 mm), and stored under dry 

conditions. 

 

 

Figure 4. Satellite image of the area surrounding the Kidd Creek metallurgical site; the main sample 

location is indicated by the red dot and the two control sites are designated and labelled by the blue dots; 

the yellow rectangle indicates where the copper smelter was located prior to its removal; an inset image 

shows the location of Timmins within Ontario. 
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2.2.3  Chemical analysis 

Soil pH was measured by mixing 2 g of soil with 10 mL of a 0.01 M CaCl2 solution (1:5 

soil:solution ratio). After stirring multiple times over a 30-minutes period, the mixture was allowed 

to settle for 15 minutes before the pH measurement. Reduction potential was measured in triplicate 

analysis from five separate wet surficial samples, taken within a 10 x 10 m area at site 1. For the 

control sites (site 2 and 3), dried and sieved samples were measured. Samples were prepared by 

mixing 2 g of soil with 10 mL of distilled water, stirred for 5 minutes and allowed to settle for 30 

minutes. Samples were then measured using a Ag/AgCl reference electrode which was calibrated 

with ORP standard. The uncertainty of the measured soil pH and reduction potential are 0.2 units 

and 10 mV, respectively. 

Total carbon and sulfur within the 0-5 cm fraction of site 1 was measured in the Ontario 

Geological Survey Geoscience Laboratories (Geo Labs) with a LECO CS844. In short, 

approximately 0.2 g of soil was combusted in a stream of purified O2 gas and passed over a heated 

catalyst, oxidizing total S and C to SO2 and CO2, respectively, which are then detected by two non-

dispersive infrared cells.82 Total soil digestion and inductively coupled plasma-mass spectrometry 

(ICP-MS) measurements of the 0-5 cm fractions were completed by Testmark Laboratories with a 

ELAN DRC II (Perkin Elmer) instrument. Soils were digested using a concentrated HNO3/HCl 

mixture, as per the BC SALM protocol83 and then analyzed using the SW846-6020A method for 

ICP-MS. Chemical analyses of the samples collected in the depth profiles (ten samples for the first 

10 cm and one sample for the 10-15 cm depth) were analyzed at the Geo Labs, Sudbury, ON, 

Canada. Samples were prepared in a reverse aqua-regia digest following the method of Burnham84 

and analyzed with an iCAP Q ICP-MS (Thermo Scientific).  
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2.2.4  Preparation of soils for electron microscopy and focused ion beam extraction 

The interaction between PM and OM occurs at the nanoscale and can be studied best through the 

extraction of focused ion beam (FIB) sections along their interfaces. However, extraction and 

subsequent thinning of a FIB section requires that the area to be extracted is free of fractures or 

larger pore spaces. From our experience, these topographic homogenous areas can be best located 

with SEM on surfaces of sand-size grains. Hence, the interaction of PM with OM, including the 

chemical characterization of PM, were mainly investigated in the fine to coarse sand size fraction 

(180 μm - 1.4 mm) of the surficial soil layer of site 1. Samples of both the clay to sand size fraction 

(< 180) and fine sand to coarse sand size fraction (180 μm - 1.4 mm) were embedded into epoxy 

pucks and then carefully polished to prevent damage or loss of OM. 

The diffusion of epoxy into pore spaces stabilizes interfaces between OM and attached 

minerals which allowed efficient extraction of sections along these interfaces with FIB technology 

(see below). Some mineral phases may alter under ambient conditions during storage, which may 

have been limited through the storage of the samples under dry conditions. Significant 

mineralogical and chemical transformations can occur under high vacuum and exposure to 

electron- and ion-beams during FIB extraction and TEM usage. Examples of these alterations 

include the potential for either the removal of phases, phase transformation (e.g. dehydration of 

hydrous minerals) or deposition of (semi)metallic Ga and Pt nanoparticles in soft materials. These 

processes have been studied in depth66-68 and therefore artifact fabrication is carefully considered 

and caution is taken so that the significance of results is not overstated. 
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2.2.5  X-ray powder diffraction, scanning electron microscopy, and electron 

microprobe analysis 

Powder X-ray diffraction (XRD) was done with an automated Philips PW3050/60 and PW 1729 

X-ray diffractometers using Co K radiation (1.79 Å) at a voltage and current of 40 kV and 30 

mA, respectively. X-ray diffraction patterns from well-mounted powdered samples were collected 

over a scan range of 5-65 2𝛳 with a step size of 0.02 2𝛳 and a dwell time of 2 s. Chemical 

analyses of PM were performed with a Cameca SX50 electron microprobe. Data was collected by 

wavelength-dispersion spectroscopy (WDS) with counting times of 30 s on the peak and 10 s on 

the background. The operating voltage was 20kV, beam current of 20 nA, and a focused beam of 

20 nA. Data reduction was done with a PAP routine85 using the XMAS software package. 

Chalcopyrite was used as the standard for Cu (L), Fe (K), and S (K). Characterization of the 

(semi-quantitative) chemical composition of organic material was accomplished using scanning 

electron microscopy (SEM) with a JEOL 6400 SEM, operating with an accelerating voltage of 20 

kV and a beam current of 1 nA, in combination with energy dispersive X-ray spectrometry (EDS). 

 

2.2.6  Focused ion beam technology and transmission electron microscopy 

An interface between a sulfide grain and organic residue (Fig. 5a,b) and the interior of a Cu-rich 

organic residue (Fig. 5c,d) were selected for extraction of FIB sections with a FEI Helios 600 

NanoLab FIB (March, July 2017). The sections were subsequently lifted using a platinum gas-

glue, thinned to electron transparency by ion gas milling (Ga+ ions) and mounted on a molybdenum 

holder. Transmission electron microscopy was conducted with a JEOL 2100 transmission electron 

microscope (a field thermionic emission analytical electron microscope) at the Virginia Tech 

National Center for Earth and Environmental Nanotechnology Infrastructure (NanoEarth) (April, 

August 2017). Measurements were taken with an accelerating voltage of 200 kV and a beam 
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current of approximately 107 mA. EDS point analyses and maps were acquired in STEM mode 

with JEOL bright field (BF) and JED-2300T EDS detectors. Selected area electron diffraction 

(SAED) patterns were acquired using a Gatan Orius SC200D detector. Nanoparticles and larger 

crystals were identified using a combination of SAED, fast Fourier transformations (FFT) of lattice 

fringes, and EDS-STEM chemical distribution maps. 

Figure 5. SEM back-scattered electron images (BSE) of organic residues from site 1 within a 0-5 cm coarse fraction chosen 

for nanoscale analysis. (a,b) extraction site of FIB section 1 (c,d) extraction site of FIB section 2; open rectangles in (a) and (c) 

indicate the the location of the areas shown in (b) and (d); filled rectangles in (c) and (d) indicate the exact locations of the FIB 

sections; red and blue arrows indicate the occurrences of sulfide silicate grains, respectively. 
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2.2.7  Colloid preparation and transmission electron microscopy 

Soil leachates were collected during a column leaching experiment. Hollow, plastic tubes were 

filled with approximately 0.8 g of the dried and sieved (< 1.4 mm) 1 cm fraction with a small layer 

of inert and plastic beads on the top and bottom of the soil sample. A 0.01 M CaCl2 solution was 

passed through the column at an approximate rate of 3 mL/hr until 30 mL was collected in a tube 

below the column. A fraction of the leachate was centrifuged using a Beckman Coulter JA-17 

centrifuge rotor 8000 rpm at 480 minutes which, according to the Stokes equation, will remove all 

spherical particles (density=8.96 g/cm3) greater than 12 nm from solution. A second fraction (neat) 

was filtered using a 0.45 μm membrane. Neat and centrifuged leachates were acidified prior to 

analysis by ICP-MS to determine the total and dissolved metal concentration. Samples were 

acidified to 1 % HNO3 and analyzed on a ELAN DRC II (Perkin Elmer) instrument at the Geo 

Labs. Concentrations of the metal(loid)s in the colloidal fraction (> 12 nm) were calculated by 

subtracting their concentrations in the solutions after centrifugation from the total metal(loid) 

concentration (which has not been centrifuged). 

To prepare the colloids for TEM analysis, soil leachates were centrifuged using a Sorvall 

ST16 centrifuge equip with a TX-400 swing-bucket rotor. A molybdenum TEM grid (400 mesh 

lacey carbon, 100 μm) was fixed to an epoxy support at the bottom of the centrifuge tube and the 

tube was then filled with 2 mL of the leachate. According to the Stokes equation, spherical particles 

greater than 16 nm (density=8.96 g/cm3) deposit onto the grid with a speed of 5000 rpm for 8 

hours. The colloidal fraction on the TEM grid was examined with a field emission TEM FEI Talos 

F200x at the Manitoba Institute of Materials. Imaging and SAED was performed with an 

accelerating voltage of 200 kV in bright and dark field mode with a 16 MB ceta camera and a 
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Fischicone high angle annular dark field (HAADF) detector. Compositional analysis was 

performed in STEM-EDS mode with 4 SDD detectors. 

 

2.3  Results 

2.3.1 Bulk soil chemistry 

The brownish black humic gley soils are oxic, slightly acidic and organic-rich soils with a pH/Eh 

of 5.0/726 mV at the time of sampling (Table 1). At site 1 the concentrations of Cu, Pb, and, Zn 

exponentially decrease with depth from 9220 ppm (Cu), 447 ppm (Pb), and 3280 ppm (Zn) at 

depth 0-1 cm to 265 ppm, 38ppm, and 964 ppm at depth 9-10 cm, respectively (Table S1, Fig. S4). 

The concentrations of these metals also decrease with distance from the contaminant source; the 

concentrations of Cu, Pb, and Zn in the surface layers at the two control sites (sites 2 and 3) are 

approximately 100 ppm (Table 1). These significant drops in metal concentration with depth and 

distance (Table 1 and S1) are typical for soils contaminated by atmospheric depositions from a 

point source, that being the former Kidd Creek smelter complex.2,86 

 

Table 1. Selected trace metal concentrations and physiochemical parameters of the 0-5 cm fraction of site 1. Trace metal 

concentrations are given for two control sites (site 2 and 3) for reference. 

Site 

Trace Metal Concentration (ppm)a Physiochemical Parameters  Distance to 

former smelter 

complex (km) 
Cu Zn Pb Fe pH 

Eh 

(mV) 

Total C 

(wt %) 

Total S 

(wt %) 

1 13000 8210 685 2.07 % 5.0 726 > 110 0.411 1.3 SE 

2 117 123 31 4135 4.8 626 - - 2.5 ENE 

3 92 163 15 5720 5.1 613 - - 7.5 NE 

a Concentration reported in ppm except where noted. 
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2.3.1.1  Mineralogical composition 

The fine to coarse sand size fraction (> 180 μm) of the surficial soil layer at site 1 (0-5 cm) is 

composed predominantly of OM with minor amounts of quartz (SiO2) and traces of digenite 

(Cu9S5), talnakhite (Cu9(Fe,Ni)8S16), and magnetite (Fe3O4, Fig. S5). The finer clay to sand size 

fraction (< 180 μm) contains mainly quartz, hematite (Fe2O3), and albite (NaAlSi3O8) (Fig. S6). 

Scanning electron microscope analyses indicate that many organic residues in the coarse fraction 

contain dispersed Cu- and Si-bearing particles on their surfaces and within their pore system (Fig. 

S7). Electron microprobe analyses (n = 63) indicate that the majority of grains attached to organic 

residues are composed of Fe- and Cu-Fe-sulfides with minor amounts of Fe-oxides (Fig. S8). The 

fine fraction lacks organic residues containing Cu-bearing phases but contains a higher proportion 

of silicified organic grains, spherical smelter-derived particulates and angular silicate-based 

particles (Fig. S9).  

 

2.3.2  Chemical and mineralogical composition at the interface 

The first FIB section was extracted along the interface of a Cu-Fe-sulfide (mooihoekite, Cu9Fe9S16) 

grain attached to a highly porous organic residue (Fig. 5a, Fig. S10). The organic material around 

the sulfide grain contains elevated concentrations of Cu in the range of 0.5-2.0 wt %, which can 

be recognized as brighter areas in backscattering electron images (BSE, Fig. 5b). The FIB section 

itself has been severely damaged but contains an intact sulfide grain and residuals of the organic 

material (Fig. 6) 
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Chemical analyses, STEM imaging, and electron diffraction patterns indicate the presence 

of a porous magnetite/maghemite (Fe3O4 / Fe2O3) layer that formed along the exterior of 

mooihoekite and occurs along the interface of the organic material (Fig. 7, S11). Magnetite and 

maghemite are isostructural and therefore cannot be distinguished with electron diffraction. The 

diameter of the magnetite/maghemite layer varies between 30 and 160 nm. Elongated pore spaces 

occur throughout the layer with diameters in the range of 3-9 nm and with orientations parallel and 

perpendicular to the interface (Fig. 7b). Fragments of magnetite/maghemite also occur within OM 

in close proximity to the interface (Fig. 8b, S12). A Cu-rich area containing minor S and Fe occurs 

on the edge of the sulfide grain where no magnetite/maghemite surface layer occurs. Fast Fourier 

transformation patterns of lattice fringes and SAED patterns indicate the presence of the prominent 

d-spacings of 2.45 and 2.01 Å, however more than 10 other d-spacings occur in the FFT and SAED 

patterns suggesting the presence of an unknown structural derivative of a Cu-rich sulfide (Fig. 

Figure 6. Bright field (BF) STEM image of the entire FIB section 1. 

Numbered rectangles indicate the locations of the TEM images shown in the 

Figures 7-10. 
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S13). Adjacent to the Cu-rich area occur fragments of boehmite (𝛾-AlO(OH)) and diaspore (𝛼-

AlO(OH)) which are embedded in the organic material (Fig. S14). Copper-bearing nanoparticles 

< 2 nm occur within the organic material along the interface of the Cu-rich area and the aluminum 

hydroxide fragments (Fig. S15). Fast Fourier transformations of lattice fringes of these 

nanoparticles indicate interplanar spacings of 2.10, 1.80, and 1.25 Å, matching the prominent 

(111), (200), and (220) d-spacings of metallic copper. However, various other d-spacings also 

occur suggesting that some of the NPs might be composed of a Cu-oxide or -sulfide. 

 

2.3.3  Chemical and mineralogical composition of phases within organic material 

The FIB section extracted along the interface exhibits numerous porous, carbon-based features 

which are often associated with magnetite/maghemite. Copper occurs as NPs within both organic 

material and magnetite/maghemite (Fig. 8a-d). These NPs are a mixture of covellite (CuS), a 

Cu2+/1+ bearing phase, and metallic Cu NPs.  

 

Figure 7. (a) STEM-EDS chemical distribution map for Fe, O and S along the interface between the sulfide grain (blue) and 

organic material (red), indicating the occurrence of an iron oxide layer in between (yellow); (b) dark field (DF) STEM image 

of the Fe oxide layer displaying its high porosity; red arrows indicate pore spaces in different orientations and orange dashed 

lines indicate interfaces between mooihoekite and magnetite/maghemite and magnetite/maghemite and organic material. 
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Covellite (yellow) and metallic Cu (green) are also closely associated in pore spaces of the 

OM further from the interface and as such, not in association with magnetite/maghemite (Fig. 6, 

9). Metallic Cu appears to be attached to spherical NPs of covellite (Fig. 9). Metallic Cu also occurs 

in close association with bornite (Cu+1
5Fe+3S4) and cuprospinel (Cu+2Fe+2Fe+3O4) in the organic 

material/magnetite matrices (Fig. S16). 

 

 

 

 

Figure 8. (a, c-d) BF TEM images of copper-bearing magnetite/maghemite fragments near the interface 

towards the sulfide, (b) STEM-EDS chemical distribution maps of Cu (green), Fe (blue) and C (red).  
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Approximately 1 m from the Cu-Fe-sulfide-OM interface, a layer of 

magnetite/maghemite is embedded within the OM (Fig. 10a, S17). On both sides of the iron oxide 

layer, Cu-bearing NPs occur predominantly in the surrounding OM, and also in a few cases on the 

surface of the magnetite. Selected area electron diffraction patterns indicate the presence of both 

tenorite (CuO) and metallic Cu NPs (Fig. S18). 

 

Figure 9. (a) DF STEM image of an inclusion of covellite and metallic copper within a pore space in organic material 

approximately 2 μm from the sulfide grain (b) corresponding STEM-EDS chemical distribution map of Cu (green) and S (red); 

the covellite and metallic Cu inclusions are coloured in yellow and green and are labelled as Ct and Cu, respectively. 

Figure 10. (a) BF TEM image of a magnetite/maghemite layer within organic material (b) corresponding STEM-EDS chemical 

distribution map of Fe (blue), Cu (green) and C (red); magnetite/maghemite, porous organic material and metallic Cu NPs are 

indicated in blue, red and green, respectively; an arrow indicates the direction where the main sulfide is located. 
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2.3.4  Copper NPs within the interior of organic material 

A second FIB section was extracted from the interior of an organic residue (Fig. 5d) as the organic 

matrix in the first FIB section was severely damaged during the extraction. Numerous Cu-sulfide 

and silicate grains are attached to the organic residue (Fig. 5c). The area around the FIB extraction 

contains higher Cu concentrations than its surroundings. The organic matrix of the extracted FIB 

is more homogeneous in terms of mineralogical and chemical features, as well as texture relative 

to the matrix in FIB section 1 (Fig. 11a). The average Cu-concentrations in the section is 2 wt % 

(on the basis of STEM-EDS). Scanning-TEM images, SAED patterns, and STEM-EDS chemical 

distribution maps for Cu (green) and C (red) indicate the occurrence of metallic Cu NPs (Fig. 11b-

d, S19). These NPs are relatively uniform in size (6-20 nm) and have an average diameter of 9 ± 

3 nm (n= 330). These size ranges do not include aggregates of NPs, which can be composed of up 

to five spherical NP’s (Fig. 11e). 

 

Figure 11. (a) BF STEM overview of FIB section 2 extracted from the interior of an organic residue; (b-c) BF-TEM and 

corresponding STEM-EDS chemical distribution maps for Cu (green) and C (red) indicating the occurrence of metallic Cu NPs 

(green) within organic material (red); (d-e) BF high resolution TEM images of individual and agglomerated metallic Cu 

nanoparticles. 
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2.3.5  Chemical and mineralogical composition of the colloidal material 

The total concentration of Cu in the soil leachate from site 1 (0-1 cm depth) is 6630 ppb. The 

proportions of the dissolved and colloidal fraction of Cu in the leachate are 88.6 % (5872 ppb) and 

11.4 % (758 ppb), respectively. TEM analysis of the colloidal fraction indicates that the bulk of 

the colloidal material is composed of carbon-based material with particle sizes often greater than 

200 nm. Copper-bearing NPs are in close association with these larger colloids and occur either 

within or are attached to their surface (Fig. 12a,b). Colloids composed exclusively of inorganic 

based NPs include unidentified titanium oxide nanoparticles with surface precipitates containing 

Cu and S (Fig. 12c,d, S20). 

Figure 12. Dark field STEM images and corresponding STEM-EDS chemical distribution maps (a-b) covellite NPs 

embedded in carbon-based material with Cu in green, S in red and C in blue (c-d) Cu-S-bearing surface precipitates on 

rounded titanium oxide crystals with Cu in red and Ti in blue. 
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Scanning-TEM-EDS chemical distribution maps and fast Fourier transformations of lattice 

fringes indicate that the majority of Cu-bearing NPs in carbon-based colloids (Fig. 13a,b) are 

composed of covellite with two NPs identified as anilite (Cu7S4) and chalcocite (Cu2S) (Fig. S21). 

Nanoparticles of covellite are mainly spherical and have diameters in the range of 15-35 nm. They 

are often composed of smaller nanoparticles which depict lattice fringes with d spacings of 3.08 

(102), 2.73 (006), 1.88 (110), and 1.66 (200) Å. In some cases, the NPs are agglomerated in a 

random fashion with lattice fringes in different orientations whereas in others, fringes depict the 

same orientation (100, 200), with the exception of newly attaching NPs (Fig. 13c,d). In addition 

to lattice fringes with different orientations, attachment of NPs with diameters of approximately 

1-4 nm to larger particles cause a distortion of their spherical shapes (Fig. 13e). Spherical 

nanoparticles identified as anilite and chalcocite occur in close proximity (< 5 nm) to each other 

(Fig. 13f) and have diameters of approximately 26 and 16 nm, respectively. 
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2.4  Discussion 
Examinations of a soil sample at the nanoscale using a combination of FIB and TEM allows for a 

site-specific, in-depth chemical and mineralogical analysis of an area of interest. For example, the 

Cu-Fe-sulfide in FIB section 1 (Fig. 5a) was initially identified as chalcopyrite and assumed to 

attach directly onto the OM (using SEM). However, the nanoscale investigations in this study 

indicate the occurrence of the sulfide mooihoekite (with a similar composition relative to 

chalcopyrite) and the attachment of the mooihoekite grain to OM by a magnetite/maghemite 

surface layer. The TEM studies show sequestration of Cu by OM occur through metallic Cu and 

covellite formation, though both phases were not identified using SEM and EMPA.  

Figure 13. Cu-bearing nanoparticles in organic colloids within the leachate of the 0-1 cm fraction of the soils at site 1 (a-b) 

BF High resolution TEM image and corresponding STEM-EDS chemical distribution maps with Cu in red, S in green and C 

in blue of a covellite nanoparticles (in yellow) attached to organic material (blue), (c)-(d) BF high resolution TEM images of 

covellite nanoparticles with nano-domains of different orientation, (e) TEM image depicting the distortion of the spherical 

shape of a covellite nanoparticle most likely due to the attachment of new nanoparticles; (f) high resolution TEM image of 

an anilite (An) nanoparticle in close proximity to a chalcocite (Ch) nanoparticle with nano-domains of different orientations. 

In (a), (c), (d) and (f) white parallel lines indicate lattice fringes and white lines indicate boundaries between nanoparticles 

or nano-domains of different orientations; the fringes are labelled with their corresponding (hkl) notations.  
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However, care must be taken to not overstate the significance of findings discovered at the 

nanoscale. For example, a FIB section is typically only 5 x 20 μm, and the high costs and skills 

required to prepare FIB sections and operate the TEM limit the preparation of many subsamples 

at the nanoscale. Furthermore, the soil sample collected for this TEM study originates from only 

one location in close proximity to the former Kidd Creek smelter. This area was chosen to ensure 

the presence of anthropogenic Cu-bearing phases. Therefore, it is not realistic to claim that the 

results presented in this study are representative for the speciation and mobilization of Cu in all 

organic-rich soils in the Timmins area. For example, the speciation of Cu may differ at sites which 

are (a) located farther from the former smelter (lower Cu concentrations) or (b) characterized by 

different environmental conditions (i.e. wetlands or non-forested areas). However, this study 

provides for the first-time insights into complex nanoscale dissolution-precipitation-reduction 

processes along the interfaces of PM, Cu-bearing pore solutions, and OM; processes that cannot 

be visualized using bulk analytical methods such as sequential extraction or synchrotron-based 

spectroscopy.  

 

2.4.1  Origin of the particulate matter observed in the surficial soil layer of site 1 

Atmospheric deposition of PM derived from mining-related activities onto surficial soils can be 

detrimental to the environment. In this study, Cu-bearing PM is found to be associated with organic 

residues in the 0-5 cm coarse fraction of soils sampled near the former Kidd Creek smelter complex 

(Site 1). The observed particulates have angular shapes, are heterogeneous in terms of their 

mineralogical and chemical composition, and lack cooling or crystallization features such as rims 

or idiomorphic crystals in a glass matrix.87 Furthermore, the Cu- and Fe-bearing particulates have 

a similar chemical composition as the processed ore, with the major ore minerals being 
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chalcopyrite and pyrrhotite. Hence, the particulates observed on the surfaces of organic residues 

were most likely wind-blown from waste piles to site 1. Contrary, smelter-derived PM commonly 

have a spherical shape and display high-temperature features such as dendritic, skeletal, tabular, 

and porphyritic patterns.11 The latter particulates occur predominantly in the fine fraction (< 180 

μm) but have not been identified on the surface or within organic residues in the coarse fraction 

(Fig. S6). 

 

2.4.2  Attachment of sulfide grains to organic material 

The majority of the grains present in the < 1.4 mm soil fraction are composed of partially 

decomposed organic material with attached Cu-Fe-sulfides. The latter phases predominantly occur 

as clay to silt-size grains (< 75 m) and therefore are expected to occur in the fine fraction after 

sieving and in the colloidal fraction after extraction. The predominant occurrence of these particles 

in the coarse sand-size fraction and their absence in the colloidal fraction suggests that (a) 

attachment is based on electrostatic forces rather than being a result of forced compression and (b) 

nanometer-size airborne Cu-Fe-sulfides are not stable in the oxic pore water at site 1.  

The attachment of sulfide grains to the organic residue via electrostatic forces can be 

understood when considering the point of zero charge (pzc) of these compounds. The typical pzc 

value of most organic based compounds in soil is 2 to 3.27,34 If the surfaces of the organic grains 

are not modified through mineralization processes, their surface should be negatively charged in 

the pH environment of the Timmins soils (pH = 5.0). Copper-Fe-sulfides such as chalcopyrite have 

a pzc value of approximately 2.88 Hence, the surface of these sulfide grains would be negatively 

charged and therefore these grains do not electrostatically attach to organic material due to 

repulsive forces.  
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The attachment of sulfides to organic material requires a positively charged surface on the 

sulfide grain. In this study, a nanometer thick surface layer of magnetite/maghemite was identified. 

This layer most likely had a positive surface charge at the time of attachment as the observed soil 

pH conditions at site 1 is pH = 5.0 and the pzc of magnetite, maghemite, or a Fe-(hydr)oxide 

precursor of magnetite is above 6.5.89 That being said, surfaces of minerals with pzc > 6.5 can be 

also negatively charged in weak acidic, organic-rich soils due to the presence of adsorbed organic 

molecules.90 In such a case, the negatively-charged surface would promote the mobility of a 

mineral grain or NP in an organic-rich soil column.  

 

2.4.2.1  Formation and properties of the alteration layer 

Sulfides are known to readily oxidize in the environment. The oxidation of sulfides exposed by 

mining activities can be accomplished through atmospheric oxidation prior to soil deposition or 

by electrochemical oxidation (pH/Eh dependent) after deposition. A combination of the two 

processes likely contributed to the formation of the magnetite/maghemite surface layer, as 

suggested by the lower solubility of chalcopyrite relative to other sulfides.91,92 Studies on oxidation 

mechanisms of chalcopyrite indicate the formation of Fe-(hydr)oxide surface layers on its surface, 

though the Fe-(hydr)oxide minerals in these studies are not unequivocally identified.91,93 The first 

generation of alteration products on the surface of Fe-sulfide minerals is commonly composed of 

schwertmannite (under acidic conditions) and ferrihydrite (under weak acidic to alkaline pH 

conditions).94 The formation of these nanocrystalline phases follows Ostwald’s Rule that a solid 

phase with the lowest interfacial free energy forms first although it may not be the most stable by 

bulk thermodynamics. The second generation of Fe-sulfate or hydroxide phases include jarosite at 
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pH < 4 and goethite, magnetite, maghemite, and hematite at pH > 5.94 These phases form through 

the re-arrangement of the iron oxide polyhedra or through dissolution re-precipitation processes.95 

The observed alteration layer on the surface of the sulfide is composed of magnetite and/ 

or maghemite (Fig. 7, S11). Magnetite can form from ferrihydrite through a dissolution re-

precipitation processes under reducing conditions in alkaline soils or in flooded soils with high Fe 

(II) concentrations.94,95 Since oxidation is required for the formation of a Fe-(hydr)oxide alteration 

layer on a sulfide surface (i.e. oxidation of S2- to SO4
2-), the magnetite surface layer could not have 

formed in contact with the observed oxic pore water. Hence, the formation of magnetite most likely 

occurred after attachment to the organic residue as an interface between an organic compound and 

a sulfide grain should have a lower reduction potential than a surface exposed to oxic pore water. 

This conclusion is also supported by the observation that a layer of magnetite/maghemite occurs 

within the OM (Fig. 10). Maghemite commonly forms through oxidation of magnetite, though it 

can also form from a ferrihydrite precursor under high temperature (> 150 °C) or through the 

transformation sequence ferrihydrite-goethite-maghemite under alkaline conditions.96,97 However, 

the latter two conditions can be ruled out for the surficial weakly acidic soils at site 1.  

Hence, we propose the following sequences for the formation/transformation processes on 

the surface of the sulfide: (1) sulfide oxidation followed by the precipitation of ferrihydrite, (2) 

transformation of ferrihydrite to magnetite under reducing conditions, and (3) perhaps partial 

transformation of magnetite to maghemite through the oxidation of Fe2+. 

During a mineral replacement reaction, coupling between the dissolution of a parent 

(sulfide) and precipitation of a daughter (precursor to magnetite) can be achieved when the 

controlling mechanism is the dissolution rate of the parent and when the activation energy barrier 

for the nucleation of the daughter is low.98 This is most likely the case during the alteration of the 
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sulfide, as ferrihydrite is commonly the precursor of magnetite. Putnis98 emphasizes that (a) 

porosity in the product phase is commonly generated when there is a volume deficit reaction and 

(b) the porosity of the replacing phase allows the mass transfer of material from the solution 

reservoir to the reaction interface. The observed porosity in the alteration rim (Fig. 7b) suggests 

that the replacing phases of the first and second generation (ferrihydrite and magnetite) have 

smaller molar volumes than the phases to be replaced (sulfide and ferrihydrite). This is indeed the 

case: the molar volumes decrease from mooihoekite (Vm = 363 cm3/mol) to ferrihydrite (Vm = 167 

cm3/mol) to magnetite (Vm = 44 cm3/mol). Additionally, molar ratios of parent to daughter 

minerals confirm this volume deficit (Table S2). 

The solution entering the ferrihydrite alteration rim before and after attachment was likely 

different in terms of composition and reduction potential. The solution entering the ferrihydrite 

prior to attachment was most likely acidic and oxic (Table 1). The pore solution after attachment 

would initially pass through the pore spaces of the organic residue and would thus have contained 

less dissolved O2 and some dissolved organic matter (DOM). The influx of electron donors (DOM) 

could induce the reduction of Fe3+ to Fe2+, promoting the transformation of ferrihydrite into 

magnetite.  

 

2.4.3  Metallic copper in the environment 

Metallic Cu rarely occurs under natural environmental conditions. Ilton and Veblen99,100 

demonstrate the presence of metallic Cu NPs within the interlayer structure of biotite samples 

within oxidized rock from various copper porphyry deposits. The authors note that metallic Cu 

does not occur in Cu-rich chlorites from the same samples and the only reductant present within 

the biotite samples was Fe2+. This observation suggests that the metallic Cu NPs formed via 
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reductive alteration processes and not from magmatic hydrothermal events. Ilton et al.101 

subsequently provided experimental evidence for the formation of metallic Cu NPs within the 

interlayer structure of Fe2+-bearing micas through their interaction with CuSO4 solution. Similarly, 

Ahn et al.102 show that metallic Cu NPs can form in the interlayer structure of Fe-bearing illite.  

The formation of metallic Cu in the presence of OM has been observed in bogs, wetlands, 

and floodplains. For example, metallic Cu can form as sub-micron particles and centimeter-sized 

masses in permanently flooded parts of a bog under anaerobic conditions.103,104 Metallic Cu NPs 

have been identified in laboratory experiments using contaminated floodplain soils and along and 

within roots of two common wetland plant species. In these experiments, the formation of metallic 

Cu NPs is found to be promoted through a combination of limited sulfur availability, copper-

stressed bacteria (Gram-positive Clostridium sp), Fe2+ in clays, or by endomycorrhizal fungi under 

anoxic conditions.49-54 Upon soil drainage (i.e. exposure to higher fO2) or the addition of biogenic 

sulfide, metallic Cu is commonly converted to Cu-bearing aqueous species or Cu-sulfide phases 

such as CuxS phases.105  

In this study, we propose that the metallic Cu NPs identified in OM are products of the 

mobilization of Cu in the form of Cu1+/2+ aqueous species released during the alteration of the Cu-

Fe-sulfide grains. The reduction of the Cu species is induced by Fe2+ or by redox-active functional 

groups present on the surface of humic substances (Fig. 14). In the following sections, possible 

mechanisms for the mobilization and formation of Cu aqueous species and NP are discussed. 
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2.4.3.1  Diffusion of Cu into organic material  

The replacement of the Cu-Fe-sulfide by Fe-(hydr)oxides after attachment of the sulfide grain may 

involv an influx of hydrogen and DOM-species and an outflux of H2S and Cu-bearing species. As 

such, the continuous mineral replacement reaction may be seen as the driving force for the 

diffusion of Cu through the porous Fe-(hydr)oxide layer into the porous OM. The transport of Cu 

through both porous entities might be facilitated by DOM as humic and fulvic acids are known to 

complex Cu.106 The results above show that metallic Cu is incorporated or attached to both OM 

and magnetite/maghemite within the organic residue (Figs. 8-10). This requires porosity along the 

surface of the organic residue, a diffusion gradient between the interface and interior of the organic 

residue, and that inner-sphere adsorption complexes between Cu1+-bearing species and negatively-

charged functional groups on the surface of the residue did not limit the diffusion of Cu into the 

Figure 14. Schematics of the proposed recycling of Cu (black) in organic-rich soils; Cu2+ species become reduced by either ferrous 

iron (red) or reduced humic substances (blue) to metallic copper, which forms nanoparticles in organic residue. Upon degradation 

of the organic residue, nanoparticles are released. Metallic copper can be re-oxidized by the oxic pore water to form Cu2+, allowing 

its diffusion into the organic material. The cycle for sulfur (orange) includes the formation of covellite NPs by the reaction of Cu2+ 

and dissolved hydrogen sulfide or bisulfide within organic matter. The particles are released during degradation of the residue and 

their dissolution results in the formation of Cu2+ which can then re-enter an organic residue. 
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interior of the residue. The latter requirement may have been achieved through neutralization of 

the negatively-charged surface sites through the formation of inner-sphere Cu1+-OM complexes.  

An alternative mechanism of Cu transport may be the diffusion of negatively charged Cu-

DOM species into the organic residue. In this case, immobilization of the Cu-DOM species within 

the OM and subsequent reduction of Cu1+ to Cu0 would require the removal or reduction of 

electrostatic forces to allow bridging between available DOM functional groups and the organic 

residue. A reduction of electrostatic forces can be achieved by an increase in ionic strength56 which 

seems, however, an unlikely scenario for a diffusion pathway into the interior of an organic residue. 

Alternatively, the presence of positively-charged surface groups in the OM could facilitate the 

adsorption of the negatively-charged Cu-DOM species. Although the surface charge of OM is 

predominantly negative at a pH of 5, a small fraction of positively-charged amine and amide 

groups could facilitate the deposition of Cu-DOM complexes within the OM. 

Diffusion of Cu into OM at the location of the second FIB section was likely not a result 

of the weathering of an attached Cu-bearing particulate as the closest attached Cu-Fe sulfides are 

approximately 500 μm from the location of the FIB section extraction (Fig. 5c). Hence, the Cu 

observed within this section likely originated from surrounding soil pore solutions. Diffusion into 

the OM requires porosity, a diffusion gradient, and the absence of attractive electrostatic forces 

between the Cu-bearing aqueous species (Cu1+, Cu2+, Cu-DOM) and the surface functional groups 

of the residue. 

 

2.4.3.2  Reduction mechanisms for copper 

The accumulation of metallic Cu NPs around and within the magnetite layer (Fig. 10) is best 

explained by the reduction of Cu1+/2+ by Fe2+. Ilton et al.101 demonstrates that octahedrally 
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coordinated ferrous iron in micas can induce the reduction of Cu2+ to metallic Cu. Additionally, 

ferrous iron in magnetite and green rusts (Fe2+ bearing species) can induce the reduction of redox-

sensitive metal ions into their respective elemental species.107,108 As such, Cu ions adsorbed to 

magnetite embedded in the organic material were most likely reduced by Fe2+ on magnetite 

surfaces. The oxidation of Fe2+ would result in the subsequent transformation of magnetite into 

maghemite. 

However, these conclusions seem to contradict the absence of metallic Cu NPs in the 

magnetite/maghemite layer along the interface to the sulfide. The absence of Cu NPs in the 

alteration product along the sulfide grain but presence within the interior of the OM may be due to 

differences in their mineralogical, chemical, and textural features. Possible reasons for the absence 

of metallic Cu within the alteration layer are as follows: 

(1) A higher abundance of maghemite, Fe2O3, along surface sites (the presence of only Fe3+ 

may not have facilitated the reduction of Cu species).  

(2) A higher porosity of the layer on the sulfide grain relative to the layer in the interior of 

the organic residue. A higher porosity and permeability may result in an efficient removal of 

metallic Cu NPs formed along adsorption sites as there is a constant flux to and away from the 

alteration layer. 

(3) The higher positive surface-charge of the Fe-oxide layer on the sulfide coupled with 

the positive surface charge of Cu NPs would facilitate a higher mobilization of the Cu-NPs within 

this layer. The pzc of synthetic Cu NPs is shown to be 9.4,109 and therefore metallic Cu NPs would 

be positively charged at pH = 5. The iron oxide layer on the sulfide grain likely has a greater 

positive surface charge relative to the layer within the OM as the former layer is likely exposed to 

pore-water of higher acidity than the latter one.  
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(4) A larger proportion of DOM in and around the layer within the OM. Maghemite surface 

sites that form through the reduction of Cu1+ to Cu0 in the interior of the organic residue may be 

transformed back to magnetite as the influx of DOM species would provide plenty of Fe3+ reducers.  

However, as metallic Cu is identified within OM where no magnetite occurred, an 

additional reduction mechanism for Cu1+/2+ must be considered. Native copper has been 

experimentally proven to form by the direct reduction of Cu ions by reduced functional groups on 

soil HS.52 Research shows that HS can act as electron shuttles where redox-active functional 

groups gain electrons from soil microorganisms and subsequently donate those electrons to 

oxidized metal species. This process is effective for the reduction of various metals by soil or 

aquatic fulvic and humic acids.28,49,52,110 A variety of functional groups have been identified in HS, 

however only those capable of accepting and transferring electrons may induce metal reduction. 

This redox activity of HS can be primarily attributed to the quinone-hydroquione and phenolic 

moieties.50 Although soil HA cannot induce the reduction of Ag+ to metallic Ag NPs at room 

temperture28 and aquatic FA can only reduce Cu2+ ions to the monovalent species54, Fulda et al.52 

shows that soil HA are capable of reducing Cu2+ to metallic Cu NPs. As such, the vast amount of 

Cu NPs dispersed throughout the OM in the second FIB section (Fig. 11) suggests that the 

corresponding OM has experienced significant reduction prior to Cu ions diffusion, subsequently 

enabling functional groups such as quinone or phenolic groups to reduce Cu1+/2+ into Cu0. 

 

 

 

 

 



 

 50 

2.4.3.3  The formation of covellite 

The predominant Cu-bearing NPs identified in the colloidal fraction of the surficial 1 cm soil layer 

is covellite, however covellite NPs have rarely been reported to form in a soil environment. One 

can consider here two approaches that can lead to the formation of the covellite NPs: a top-down 

or bottom-up approach. The top-down approach would involve the formation of covellite NPs 

through the breakdown of larger (micrometer-size) grains of covellite. However, electron 

microprobe analysis of sulfide grains attached to OM do not indicate the presence of grains with 

Cu:S:Fe ratios of 50:50:0 (Fig. S9). This is not unexpected as the pzc value of pristine covellite or 

surface-oxidized covellite has been reported to be less than 4.111 As no positively-charged Fe-

(hydr)oxide layer can form through the alteration of covellite, the surface of the covellite grains is 

likely negative charged and would prevent electrostatic attachment to organic residues. 

Furthermore, no Cu-Fe-sulfide nanoparticles are observed within the leachate, which would be 

expected if the breakdown of larger grains contributes to the formation of mobile nanoparticles. 

An alternative explanation for the occurrence of the covellite NPs can be explained with a 

bottom-up approach. Gramp et al.112 show that in the presence of sulfate-reducing bacteria, a 

CuSO4 solution reacts to form large precipitates of covellite. Weber et al.,113 suggests that the 

formation of these precipitates in solution may be environmentally relevant for low concentrations 

of reactants within soil. Here the formation of covellite colloids (< 150 nm) occurs through the 

reaction of reduced Cu species with biogenic sulfide which forms through the reaction of sulfate 

and sulfate-reducing bacteria.113 Under these experimental conditions, the formation of covellite 

NPs may be most relevant within redox-variable soils with sufficient sulfide gradients.113 Upon 

heavy rain or snow, soils may become temporarily flooded, causing the reduction of Cu2+ into Cu1+ 

or Cu0, at which point biogenic sulfur can react with the reduced Cu to form covellite NPs. 
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Although the mobile covellite nanoparticles observed in our study may have formed 

through the reactions indicated by Weber,113 they may also originate from organic residues similar 

to those analyzed in FIB section 1. In this case, covellite most likely formed through the reaction 

between Cu1+/2+ and H2S released from the attached sulfide or from dissolved sulfur present in the 

pore spaces of the OM (Fig. 14). Upon degradation of a NP-containing organic residue, organic 

colloids containing covellite NPs may be released into the soil pore water. Though it is noted that 

H2S is a stronger reducer than Fe2+, it is still weak and it is unlikely to be strong enough to induce 

copper reduction prior to the formation of a kinetically favourable copper sulfide product. 

The mobilization of covellite NPs within the 1 cm fraction at site 1 is clearly facilitated by 

organic material (Fig. 12a,b). The following observations strongly suggest that these covellite NPs 

formed within the organic material: 

(1) The covellite NPs are always fully embedded in organic material. Although it is 

possible that minor concentrations of covellite could be stable in oxic pore water,114 nanoscale 

analysis of the leachate have not indicated the presence of covellite particles in the absence of 

organic matter.  

(2) The negative surface charges of covellite and the organic material at pH = 5 have not 

favored the attachment of colloid NPs to the surface of the large organic colloids. 

 

2.4.3.4  Formation and agglomeration of nanoparticles 

The formation of NPs requires a decrease in total free energy and the ability for many nuclei to 

develop which can occur by sudden changes in supersaturation, an increase in reaction sites, or 

Eh/pH conditions.12,115,116 Hence, the formation of spherical metallic Cu and covellite NPs is most 

likely induced by a sudden change in the environmental conditions upon the adsorption and 

reduction of Cu species by OM or magnetite. Their formation in the organic residues is most likely 
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promoted by a high number of reductive sorption sites present on or within organic material or 

magnetite. Through an increase in porosity around surface rims and larger pores, these sorption 

sites become available for the adsorption of Cu or S species, the reduction of Cu1+/2+-bearing 

species and the subsequent nucleation of metallic Cu or covellite NPs.  

Upon the formation of metallic Cu or covellite, the NPs either attach or repel one another 

upon collision which is controlled by weak attractive van der Waals forces or attraction-repulsion 

forces such electrostatic interactions.117 Nanoparticles naturally agglomerate in order to reduce the 

free energy and thus to increase their stability. However, a limit can be reached where the 

agglomeration of particles no longer increases stability, but rather decreases it. At this point, the 

process of agglomeration would require minimization of repulsion forces, and therefore the 

charged particles must be screened or exhibit a neutral surface charge. Crystalline NPs can attach 

to a surface of a growing aggregate or crystal either in a specific crystallographic orientation (i.e., 

orientated attachment), or in a random orientation. The orientated attachment requires the rotation 

of NPs upon attachment and is controlled by Coulombic and Lewis acid/base interactions between 

the surface atoms of the NPs and aggregate.118 Attachment of a single NP in a random orientation 

requires subsequent structural re-organization for their full integration into the aggregate or bulk 

crystal.47 

As it has been observed in this study, the agglomeration of spherical metallic Cu NPs 

results in the formation of larger aggregates (< 30 nm) in non-spherical moieties (Fig. 11). Smaller 

covellite NPs agglomerate into larger (< 20 nm) particles within organic material (Fig. 13). The 

observed aggregations are likely related to charge screening by DOM or effective van der Walls 

forces. In the case of the growing aggregates of covellite NPs, attachment of the NPs occurs in an 

orientated (Fig. 13d) and non-orientated fashion (Fig. 13a)  
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2.4.4  Colloidal versus solute transport of copper 

During their transport in the soil column, the negatively-charged covellite-bearing organic colloids 

may become immobilized through sorption to positively-charged Fe-(hydr)oxides surfaces. 

Alternatively, microbial activity could degrade their organic material119 which would result in the 

release and oxidative-dissolution of the covellite NPs by the oxic pore water. In the latter case, 

CuSO4 or Cu1+/2+ could be recycled by sulfur-reducing bacteria (see above) or through their 

adsorption and diffusion into organic residues and their subsequent precipitation as covellite or 

metallic Cu within organic residues.  

However, the covellite-bearing colloids likely have a small impact on the transport of Cu 

to greater depths as (a) the colloidal fraction of Cu represents only 11.4 % of the total Cu in the 

leachate, and (b) larger organic colloids (> 200 nm) commonly have a lower mobility than Cu-

bearing aqueous species. The Cu-bearing aqueous species in the leachate have been adsorbed to 

surface sites of the OM and released by the electrolyte solution through the competitive effect 

between Ca2+ and Cu1+/2+ species. 

The observed exponential decrease (Fig. S4) in the Cu concentration with depth suggests 

that the strength of the Cu-OM adsorption complexes significantly limits the transport of Cu to 

greater depth. As such, the observed low mobility of Cu in the organic rich soils in Timmins and 

smelter-impacted areas elsewhere17,18 is most likely a result of (a) the low solubility of most Cu-

bearing PM,9 (b) the attachment of Cu-bearing PM onto organic residues, (c) the sequestration of 

Cu within the organic residue, (d) the minor proportion of Cu-bearing NPs in the colloidal fraction, 

(e) the occurrence of Cu-bearing NPs embedded into larger less mobile organic colloids, and (f) 

complexation of Cu aqueous species by OM.  
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2.5  Conclusion 

The majority of information gathered within this study revolves around the application of 

nanoscale techniques. Without these precise, in-depth analytical methods, data gathered from the 

microscale would have been generalized and therefore approximated. For instance, Cu detected 

throughout the organic grains with SEM likely would have been noted to occur as absorbed 

species. Additionally, the Cu-Fe-sulfides found to be attached to organic grains would have been 

mainly identified as chalcopyrite. From our work, we know that neither of those two situations are 

correct, highlighting the importance of nanoscale analyses. 

The presence of metallic Cu NPs and covellite within surficial, oxic soils has not been 

observed until this study. Their occurrence indicates that even within a soil solution that has a high 

oxidative-reduction potential, Cu can remain in its reduced, native form or in association with S 

as Cu1+. The apparent stability of reduced Cu-bearing NPs in the examined soil is of great 

importance for remediation strategies of Cu-contaminated soils using organic-rich substances. For 

example, Kumpmane et al.120 show that the addition of coal fly ash and peat to contaminated soils 

decreases the amount of leachable metals by 98.2 and 99.9 % for Cu and Pb, respectfully. The 

authors indicate that this reduction of exchangeable metals is due in part to the formation of Cu- 

and Pb-bearing inorganic phases as well as an increase in metal sorption to additional surface sites 

provided by the fly ash and peat. While these explanations are likely true, the results of our study 

suggest that the observed Cu retention could also be attributed to the absorption of Cu by the 

porous organic materials and its subsequent reduction and sequestration to its native form.  

On a broader scale, this study may help to fill in potential gaps in research centered on 

interactions between Cu and organic material. The majority of previous studies focused on the 

interaction between ionic Cu and its sorption to organics or the formation of stable inorganic 
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compounds, independent of the organic-rich environment it may reside in. Adsorption of metals is 

predominantly thought of as a transient mechanism of retention where ionic metal species are 

weakly retained until stronger inner-sphere complexes occur. This study shows that Cu can be 

adsorbed by organic material through the in-situ formation of inorganic Cu NPs which leads 

subsequently to its immobilization within the organic host. Hence, future research studies on the 

retention and sequestration of Cu in organic-rich environments should consider this additional 

mechanism when interpreting their results. 

  



 

 56 

Chapter 3 
 

 

3.1  Conclusion 

In the present study, we characterized at the nanoscale selected areas in two Cu-rich organic 

residues from soils surrounding the Kidd Creek smelter in Timmins, Ontario. Using a combination 

of FIB technology, column experiments, centrifugation, and TEM analysis, we identified the 

occurrence of numerous phases at the interface between organic material and an anthropogenic 

sulfide grain, along a Cu-rich rim of an organic residue, and in dissolved organic matter. This study 

specifically revealed that Cu-Fe-sulfide grains were attached to organic material via porous iron 

oxide layers and this type of attachment effectively sequestered the grains in the upper soil layer. 

The Fe-oxide alteration layer was a product of an oxidation and dissolution/precipitation process. 

The highlights of this study were, however, the identification of the Cu-bearing phases, metallic 

Cu and covellite, within organic residues and DOM within the upper 5 cm of an organic-rich, oxic, 

and acidic soil horizon. Until this study, metallic Cu NPs have only been observed as nano-sized 

inclusions in Fe-bearing sheet silicates and organic material in bogs, wetlands, and floodplains 

under anoxic conditions. In the organic residues, metallic Cu NPs were identified on the surface 

of magnetite/maghemite inclusions and finely distributed within organic material. The existence 

of metallic Cu NPs in these environments was attributed to both the presence of reduced humic 

substances within OM and ferrous iron in the surface structure of magnetite. Nanoparticles of 

covellite were predominantly found in the colloidal, mobile fraction of the top soil layer (0-1cm) 

in which they occurred embedded in organic material. The identification of metallic Cu and 

covellite NPs were unexpected and suggested that confined pore spaces within organic material 

effectively sequestered and preserved phases which were otherwise not stable in the oxic and acidic 

surface layers of the soils.  
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 The occurrence of these NPs may affect the perceived mobility of Cu within similar soils 

or influence potential reclamation tactics. The depth profile of the sampling site indicated an 

exponential decrease in the concentrations of the trace metals from the surficial soil layers to 

deeper layers, indicative of atmospheric deposition of particulate matter. This observation also 

indicated that the majority of metals in the surficial soil layer were relatively immobile. The 

column experiments showed that the proportions of Cu in the colloidal fraction (~10%) were much 

smaller than those in the dissolved fraction (90%) which suggested that the mobilization of 

covellite-bearing colloids would not contribute significantly to the overall mobility of Cu. 

 

3.2  Future Work 

The information gained in this study might influence the direction of future reclamation practices 

in the Kidd Creek area. Common techniques involve the application of a chelating agent coupled 

with DOM, however this method may not have an effect on the reduced Cu species. On a broader 

scale, the identification of metallic Cu NPs within organic material in surficial soil layers may 

impact future studies on the fate of Cu in organic-rich soils. Finally, I recommend that researchers 

planning to characterize soil organic material (or similar soft material) with a combination of FIB 

and TEM should use other sample preparation techniques, such as cryo-FIB or ultramicrotoming, 

as this would prevent significant loss of sample material and minimize the deposition of Ga+ within 

the sample. 
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Table S1. ICP-MS data for Cu, Zn, and Pb for the depth profiles of site 1. 
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Sample calculation for molar ratio. 

Assume 1 mol of mooihoekite (Mhk) dissolves to form ferrihydrite (Fhyd). 

𝑥 mol Fhyd = 9 mol Fhyd ×  
1 mol Mhk

10 mol Mhk
     [as per stoichiometry] 

𝑥 mol Fhyd = 0.9 mol Fhyd                         [per 1 mol Mhk] 

Sample calculation for volumes produced after the transformation of Mhk 

to Fhyd. 

𝑥 Volume Fhyd = 0.9 mol Fhyd ×  167 cm3 mol⁄    [as per molar 
ratio] 

𝑥 Volume Fhyd = 150 cm3 Fhyd                        

Table S2. Compiled data regarding the relative molar ratios and corresponding volumes between mooihoekite/ferrihydrite/ 

magnetite/maghemite. Sample calculations given below table. 
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Figure S1. Site 1 vegetation and 0-15 cm soil profile. GPS Coordinates (latitude/longitude) 

48.544719/-81.067873. 
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Figure S2. Site 2 (control) soil profile. GPS coordinates (48.599656/-81.009367) 
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Figure S3. Site 3 (control) soil profile. GPS coordinates (48.55593/-81.055307) 
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Figure S8. Selected area electron diffraction pattern of the main sulfide grain, mooihoekite. 
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Figure S9. Selected area electron diffraction pattern of the alteration layer.  
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Figure S10. Selected area electron diffraction pattern of the iron oxide fragment at the interface. 
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Figure S11. EDS mapping with Cu (green), Fe (red), and S (blue), revealing the Cu-rich rim. Rotated 180 ° STEM image with 

corresponding SAED pattern (red circle) of the Cu-rich area on the edge of the main sulfide where red arrows indicate d-spacings 

for metallic copper and blue arrows are various other spacings. EDS quantification indicated a ratio of 56/17/27 for Cu/Fe/S. 
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Figure S13. Scanning-TEM images and fast Fourier transformation pattern of lattice fringes of nanoparticles within organic 

material and boehmite (Boh) and diaspore (Dia). Red arrows in FFT indicate metallic Cu, blue arrows indicate unknown d 

spacings.  
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Figure S15. Selected area electron diffraction pattern of the iron oxide core surrounded by organic material.  
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Figure S17. SAED pattern of Cu-based nanoparticles in the second FIB. The 3 green circles indicate the (111), (200), and (220) 

planes of metallic copper, while the fourth indicates the (311) plane which is sometimes listed in diffraction data. 
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Appendix B. The following is a compilation of data from the American Crystal Structure 

Database. All minerals discussed or identified in this study are indicated here, along with their 

respective d-spacing, hkl plane notations, and relative intensities. 
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Table B1. Diffraction data for anilite.121,122 

Intensity d-spacing (Å) H   K   L 

7.59 6.4133 1   0   1 

2.98 6.3863 0   1   1 

2.53 3.9450 2   0   0 

13.51 3.9124 1   1   2 

45.62 3.3563 2   1   1 

24.26 3.3447 1   2   1 

21.68 3.3276 1   0   3 

13.26 3.3238 0   1   3 

36.20 3.2066 2   0   2 

10.47 3.1932 0   2   2 

3.28 3.0631 1   1   3 

1.32 2.9680 2   1   2 

55.37 2.7807 2   2   0 

19.34 2.7525 0   0   4 

39.51 2.6960 2   2   1 

10.49 2.6870 2   0   3 

27.60 2.5989 1   0   4 

3.62 2.5580 3   0   1 

29.53 2.5427 0   3   1 

18.90 2.5419 2   1   3 

22.97 2.5368 1   2   3 

8.56 2.4319 3   1   1 

3.19 2.4201 1   3   1 

21.54 2.3731 3   0   2 

4.96 2.2617 1   3   2 

19.36 2.2163 2   2   3 

6.24 2.1787 2   3   0 

47.40 2.1661 1   2   4 

17.74 2.1423 3   2   1 

6.62 2.1372 2   3   1 

22.03 2.1288 0   3   3 

8.49 2.1209 1   0   5 

3.42 2.1200 0   1   5 

9.09 2.0625 3   1   3 

23.66 2.0553 1   3   3 

21.31 1.9725 4   0   0 

38.17 1.9600 0   4   0 

100.00 1.9562 2   2   4 

16.88 1.9416 4   0   1 

4.41 1.9228 2   0   5 

15.13 1.9015 3   0   4 

2.98 1.8847 4   1   1 

10.02 1.8768 3   2   3 

6.18 1.8674 2   1   5 

3.46 1.8654 1   2   5 

1.20 1.8569 4   0   2 

7.07 1.8479 3   1   4 

2.06 1.8428 1   3   4 

1.79 1.8069 4   1   2 

11.16 1.7979 1   4   2 

5.28 1.7553 2   4   0 

8.99 1.7375 4   0   3 

4.19 1.6963 4   1   3 

4.04 1.6888 1   4   3 

2.14 1.6884 3   0   5 

1.05 1.6839 0   3   5 

16.11 1.6781 4   2   2 

15.77 1.6723 2   4   2 

3.73 1.6638 2   0   6 

11.13 1.6619 0   2   6 

2.97 1.6547 3   3   3 

2.16 1.6468 1   3   5 

2.28 1.6276 2   1   6 

1.04 1.6262 1   2   6 

2.19 1.5884 4   2   3 

1.77 1.5835 2   4   3 

2.35 1.5744 4   3   0 

13.67 1.5585 4   3   1 

1.25 1.5558 3   4   1 

1.35 1.5523 0   5   1 

9.92 1.5506 3   2   5 

1.13 1.5487 2   3   5 

9.54 1.5425 1   0   7 

1.46 1.5421 0   1   7 

2.68 1.5169 5   0   2 

1.53 1.5137 4   3   2 

1.29 1.5135 1   1   7 

3.52 1.4800 2   4   4 

3.38 1.4469 4   3   3 

1.22 1.4447 3   4   3 

7.21 1.4445 2   5   1 

3.20 1.4395 1   4   5 

2.54 1.4363 2   1   7 

1.55 1.4184 1   5   3 

9.28 1.4147 5   2   2 

3.56 1.3903 4   4   0 

4.87 1.3794 4   4   1 
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2.96 1.3758 4   2   5 

3.04 1.3726 2   4   5 

1.69 1.3648 3   4   4 

3.32 1.3558 1   0   8 

4.13 1.3543 2   5   3 

2.07 1.3408 5   3   1 

1.43 1.3368 3   5   1 

4.08 1.3284 1   3   7 

2.50 1.3067 0   6   0 

3.59 1.3002 4   4   3 

3.95 1.2880 6   1   1 

1.16 1.2827 5   0   5 

6.91 1.2813 1   2   8 

4.50 1.2807 4   3   5 

4.89 1.2763 3   2   7 

4.59 1.2753 2   3   7 

3.31 1.2677 5   3   3 

2.93 1.2644 3   5   3 

2.68 1.2552 1   6   2 

2.35 1.2388 6   2   1 

2.49 1.2334 2   2   8 

3.96 1.2194 3   0   8 

2.09 1.2163 1   6   3 

1.77 1.2152 2   5   5 

3.49 1.2127 5   3   4 

6.05 1.2121 1   4   7 

3.40 1.2097 3   5   4 

1.75 1.2089 1   0   9 

1.80 1.2049 3   1   8 

1.40 1.2035 1   3   8 

1.33 1.1993 3   3   7 

1.28 1.1805 6   2   3 

2.09 1.1804 0   6   4 

1.32 1.1732 6   1   4 

1.00 1.1641 4   5   3 

1.29 1.1636 3   6   1 

3.22 1.1446 3   6   2 

1.38 1.1411 2   5   6 

2.77 1.1357 6   2   4 

4.31 1.1309 2   6   4 

1.52 1.1287 4   0   8 

2.32 1.1223 5   4   4 

2.69 1.1175 6   1   5 

2.91 1.1140 5   0   7 

1.76 1.1042 7   0   2 

2.07 1.0996 1   5   7 

1.29 1.0972 1   3   9 

1.38 1.0920 6   4   0 

 

 

  



 

 101 

Table B2. Diffraction data for boehmite.123 

Intensity D-spacing (Å) H   K   L 

100 6.1070 0   2   0 

42.9 3.1605 1   2   3 

0.1 3.0535 0   4   0 

0.1 2.7920 0   1   1 

31.7 2.3446 0   3   1 

0.2 2.2273 1   1   1 

0.2 2.0357 0   6   0 

3.4 1.9795 1   3   1 

20.9 1.8596 0   5   1 

14.1 1.8468 2   0   0 

0.2 1.7828 1   6   0 

4.4 1.7677 2   2   0 

9.2 1.6610 1   5   1 

0.1 1.5803 2   4   0 

0.1 1.5403 2   1   1 

2.9 1.5268 0   8   0 

0.2 1.4906 0   7   1 

7.7 1.4508 2   3   1 

4.4 1.4340 0   0   2 

0.2 1.4110 1   8   0 

1.3 1.3960 0   2   2 

5.3 1.3823 1   7   1 

0.2 1.3678 2   6   0 

8.2 1.3104 2   5   1 

3.8 1.3058 1   2   2 

0.1 1.2267 0   9   1 

0.2 1.2246 1   4   2 

0.6 1.2214 0   10   0 

1.0 1.2069 3   2   0 

1.8 1.1767 2   8   0 

0.1 1.1642 1   9   1 

2.2 1.1596 2   7   1 

0.1 1.1419 3   4   0 

2.5 1.1326 2   0   2 

0.2 1.1265 3   1   1 

0.1 1.1174 1   6   2 

1.0 1.1136 2   2   2 

0.2 1.0900 3   3   1 
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Table B3. Diffraction data for bornite.121,124 

Intensity D-spacing (Å) H   K   L 

38.80 3.1580 1   1   1 

40.00 2.7350 2   0   0 

100 1.9339 2   2   0 

13.29 1.6493 3   1   1 

8.97 1.5791 2   2   2 

13.24 1.3675 4   0   0 

4.53 1.2549 3   3   1 

4.66 1.2331 4   2   0 

4.66 1.2231 4   0   2 

24.24 1.1166 4   2   2 

 

 
Table B4. Diffraction data for chalcocite.121,125 

Intensity D-spacing (Å) H   K   L 

4.94 3.4927 1   0   0 

39.48 3.3695 0   0   2 

54.34 3.1009 1   0   1 

64.68 2.4250 1   0   2 

100 2.0165 1   1   0 

91.09 1.8893 1   0   3 

3.06 1.7463 2   0   0 

30.30 1.7303 1   1   2 

20.17 1.6847 0   0   4 

3.14 1.5505 2   0   2 

2.52 1.5174 1   0   4 

6.76 1.3787 2   0   3 

1.98 1.2955 2   1   1 

3.36 1.2929 1   1   4 

1.57 1.2574 1   0   5 

5.33 1.2291 2   1   2 

3.41 1.2125 2   0   4 

5.57 1.1642 3   0   0 

10.82 1.1381 2   1   3 

1.68 1.1232 0   0   6 

2.81 1.1004 3   0   2 

 

 
Table B5. Diffraction data for metallic copper.121,126 

Intensity D-spacing (Å) H   K   L 

100 2.0860 1   1   1 

45.55 1.8065 2   0   0 

23.27 1.2774 2   2   0 
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Table B6. Diffraction data for covellite.121,127 

Intensity D-spacing (Å) H   K   L 

6.67 8.1800 0   0   2 

1.22 4.0900 0   0   4 

11.06 3.2874 1   0   0 

14.95 3.2230 1   0   1 

44.86 3.0503 1   0   2 

100 2.8154 1   0   3 

44.54 2.7267 0   0   6 

9.47 2.3191 1   0   5 

4.29 2.0987 1   0   6 

4.57 2.0540 0   0   8 

10.57 1.9048 1   0   7 

62.56 1.8980 1   1   0    

23.38 1.7364 1   0   8 

1.23 1.6437 2   0   0 

1.32 1.6355 2   0   1 

4.35 1.6115 2   0   2 

2.42 1.5908 1   0   9 

12.58 1.5738 2   0   3 

33.49 1.5578 1   1   6 

1.60 1.4688 2   0   5 

1.28 1.4647 1   0   10 

5.47 1.3912 1   1   8 

6.24 1.3551 1   0   11 

2.39 1.3445 2   0   7 

6.21 1.2812 2   0   8 

2.68 1.2284 2   1   2 

7.31 1.2115 2   1   3 

1.00 1.1616 2   1   5 

2.33 1.1028 2   0   11 

3.75 1.1011 1   0   14 

1.93 1.0971 2   1   7 

5.75 1.0958 3   0   0 
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Table B7. Diffraction data for cuprospinel.121,128 

Intensity D-spacing (Å) H   K   L 

18.21 4.8310 1   0   1 

28.47 2.9889 1   1   2 

13.36 2.9000 2   0   0 

64.89 2.6010 1   0   3 

100 2.4864 2   1   1 

17.92 2.4155 2   0   2 

13.72 2.1825 0   0   4 

21.42 2.0506 2   2   0 

1.61 1.9363 2   1   3 

4.87 1.7438 2   0   4 

8.85 1.6909 3   1   2 

14.47 1.6719 1   0   5 

10.12 1.6103 3   0   3 

25.69 1.5820 3   2   1 

45.16 1.4945 2   2   4 

19.68 1.4500 4   0   0 

1.15 1.4078 3   2   3 

1.91 1.3713 1   1   6 

1.56 1.3046 3   3   2 

2.83 1.3005 2   0   6 

1.44 1.2969 4   2   0 

4.26 1.2958 3   0   5 

9.39 1.2665 4   1   3 

5.09 1.2432 4   2   2 

4.45 1.2077 4   0   4 

1.83 1.1399 3   1   6 

5.41 1.1240 2   1   7 

1.77 1.1149 4   2   4 

1.62 1.1007 5   1   2 

5.40 1.0952 4   1   5 

3.10 1.0912 0   0   8 
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Table B8. Diffraction data for diaspore.121,129 

Intensity D-spacing (Å) H   K   L 

8.00 4.7126 0   2   0 

100 3.9875 1   1   0 

6.42 3.2164 1   2   0 

29.93 2.5570 1   3   0 

1.73 2.4357 0   2   1 

3.97 2.3893 1   0   1 

8.50 2.3563 0   4   0 

63.08 2.3161 1   1   1 

46.13 2.1311 1   2   1 

46.27 2.0773 1   4   0 

1.75 1.9018 1   3   1 

5.21 1.8148 0   4   1 

1.38 1.7328 1   5   0 

15.70 1.7116 2   1   1 

2.54 1.6777 1   4   1 

50.44 1.6328 2   2   1 

12.63 1.6082 2   4   0 

2.29 1.5709 0   6   0 

5.75 1.5225 2   3   1 

24.35 1.4799 1   5   1 

5.73 1.4316 2   5   0 

16.85 1.4226 0   0   2 

3.50 1.4006 3   2   0 

3.31 1.4000 2   4   1 

19.49 1.3752 0   6   1 

6.59 1.3399 1   1   2 

7.61 1.3292 3   3   0 

4.74 1.3038 3   0   1 

1.68 1.2915 3   1   1 

5.47 1.2876 1   7   0 

1.95 1.2785 2   6   0 

4.41 1.2566 3   2   1 

5.53 1.2432 1   3   2 

2.26 1.2179 0   4   2 

5.20 1.2042 3   3   1 

7.61 1.1737 1   4   2 

3.18 1.1408 3   4   1 

1.05 1.1002 4   0   0 

4.84 1.0928 4   1   0 
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Table B9. Diffraction data of maghemite.121,130 

Intensity D-spacing (Å) H   K   L 

1.30 4.8093 1   1   1 

33.71 4.9451 2   2   0 

100 2.5116 3   1   1 

4.00 2.4047 2   2   2 

16.89 2.0825 4   0   0 

11.16 1.7004 4   2   2 

21.09 1.6031 5   1   1 

7.03 1.6031 3   3   3 

40.17 1.4725 4   4   0 

4.00 1.3171 6   2   0 

8.18 1.2703 5   3   3 

2.30 1.2558 6   2   2 

2.02 1.2023 4   4   4 

4.155 1.1131 6   4   2 

 

 
Table B10. Diffraction data for magnetite.121,131 

Intensity D-spacing (Å) H   K   L 

7.93 4.473 1   1   1 

28.10 2.968 2   2   0 

100 2.5314 3   1   1 

8.27 2.4237 2   2   2 

20.13 2.0989 4   0   0 

9.59 1.7138 4   2   2 

29.94 1.6158 5   1   1 

6.40 1.6158 3   3   3 

41.80 1.4842 4   4   0 

3.54 1.3275 6   2   0 

8.82 1.2803 5   3   3 

3.94 1.2657 6   2   2 

2.62 1.2118 4   4   4 

3.92 1.1219 6   4   2 

8.92 1.0930 7   3   1 

5.54 1.0930 5   5   3 
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Table B11. Diffraction data for mooihoekite.121,132 

Intensity D-spacing (Å) H   K   L 

3.84 7.4847 1   1   0 

1.21 5.3830 0   0   1 

1.90 5.2925 2   0   0 

2.22 4.3702 1   1   1 

3.27 3.7740 2   0   1 

1.29 3.7424 2   2   0 

2.55 3.3473 3   1   0 

100 3.0727 2   2   1 

2.27 2.8425 3   1   1 

5.82 2.6915 0   0   2 

10.94 2.6463 4   0   0 

1.12 2.4949 3   3   0 

1.44 2.2636 3   3   1 

1.20 2.1667 4   2   1 

1.37 2.0975 3   1   2 

51.15 1.8870 4   0   2 

24.80 1.8712 4   4   0 

10.99 1.6180 2   2   3 

20.84 1.5982 6   2   1 

3.20 1.5364 4   4   2 

3.25 1.3457 0   0   4 

6.06 1.3231 8   0   0 

6.65 1.2239 6   2   3 

3.22 1.2152 6   6   1 

5.60 1.0925 4   4   4 
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