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Due to the position of microwave (MW) radiation in the electromagnetic 

spectrum, it has not yet been successfully utilized to inactivate waterborne 

microorganisms at a reasonable (energy) cost. Exceptional properties at the nano-scale, 

namely MW absorption-abilities of carbon nanotubes and excellent spectral conversion-

capabilities of lanthanide series metal oxides in concert, hold promise to overcome the 

energetic barrier of this widely used and affordable MW technology. This dissertation 

reports the synthesis of a nano-heterostructure that combines carbon nanotubes’ and 

erbium oxides’ properties to generate reactive oxygen species (ROS) and inactivate 

Pseudomonas aeruginosa. Detailed characterization of the synthesized nanohybrid (NH) 

material with electron microscopy, X-ray techniques, and thermal gravimetric analysis 

confirms effective hybridization. At least one log unit of microbial inactivation was 

achieved via ROS generation with only 20 s of microwave irradiation at 110 W (0.0006 

kW·h energy use), using a conventional MW oven. Inactivation studies with ROS 

scavenger molecules prove that generated oxygen species played the dominant role in 

bacterial inactivation. The roles of wavelength, input power, and irradiation time on 

inactivation are explored, in an effort to unlock the mechanism of inactivation. To 

achieve such results with a high degree of control, a setup including a MW power 



 viii 

generator and waveguide, capable of delivering precise frequency, while controlling input 

power and irradiation exposure time, has been designed and constructed. Results 

demonstrate inactivation of P. aeruginosa in presence of MW irradiation and aided by the 

nanohybrids. Finally, the inactivation efficacy of MW spectral conversion for a wide 

range of waterborne microorganism is determined. Inactivation of Legionella 

pneumophila, Flavobacterium columnare, Bacillus subtilis spores, and MS2 

bacteriophages was also attempted using this system. A low degree of inactivation 

varying between (0.38 to 4.13 log removal) was achieved. These initial results are 

promising, but they do demonstrate a need for redesign of the NH and and 

reconsideration of the key irradiation parameters to achieve higher log removal, which 

will enable development of a technology that will be elevated from an agent of 

inactivation to an enabler of disinfection.  
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Chapter 1: Introduction 

1.1 INTRODUCTION TO THE STUDY 

The Schumpeterian trilogy of technological change, i.e., invention, innovation, 

and diffusion, highlights the importance and benefits of societal acceptance of any new 

technology1. Once a technology has diffused deep into the societal fabric, the spectrum of 

its application expands and allows for unintended uses, some of which might be 

transformative. One such example is mobile communication, which was not originally 

engineered to assist in healthcare, but now is utilized to disseminate medical information 

and has transformed this sector globally2,3. Microwave (MW) technology is affordable 

and similar in social adoptability and thus can be utilized to impact low-income 

communities across the globe, particularly to gain them access to safe drinking water. 

Although the position of MW radiation in the electromagnetic spectrum precludes its use 

in disinfecting water at a reasonable cost, finding a way to harness the power of MW 

radiation in an effective disinfection technology could potentially benefit a large global 

population. 

 

Ensuring water safety via disinfection4 has largely relied on the use of chemical 

oxidants since early 1900s5. Chemicals commonly used for this purpose include chlorine6, 

chlorine dioxide7, and ozone8. Ammonia added simultaneously or consecutively with 

chlorine forms another common disinfectant, chloramines, which is a less effective, but 

more persistent as compared to chlorine6. However, chemical disinfectants lead to the 

production of disinfection by-products (DBPs), which have raised public health concerns 

since the early 1970s9. Alternative non-chemical based disinfection technologies became 



 
 

2 

necessary, and ultraviolet (UV) irradiation has been developed as an effective 

disinfection alternative10. UV’s germicidal effect is a result of the UV action on the 

nucleic acids of microorganisms and its efficacy depends on light intensity and exposure 

time11. Disadvantages of UV technology are the absence of disinfection residual beyond 

treatment facility10,12, its need for a clear optical pathway to enable penetration of UV rays 
13, and maintenance to prevent fouling of lamps14. Furthermore, UV technology is not 

commonly available at every household15, but rather needs to be custom-made with the 

purpose of disinfecting water. Microwave-enabled inactivation technology can be a long-

lasting, easy to use, and cost-effective alternative. The growth of the global microwave 

oven market in the near future16 will enable to reap the unanticipated benefits of 

disinfection using this novel technology. Furthermore, such a technology can be used on 

a community basis where either access to electricity is limited or affordability of such a 

device is out of range at a household level. 

 

Irradiation-based disinfection technologies are gaining popularity because of 

advances in equipment reliability and reduction of undesirable disinfection by-products12. 

The rapid growth of nanotechnology has prompted significant interest in environmental 

applications, and nano-scale materials are now being incorporated into such irradiation-

based disinfection devices to improve reliability, reduce operating costs, and increase 

their disinfection efficiency4,17. Nanoparticles are used as photocatalysts to enhance and 

accelerate the inactivation rate of pathogenic microorganisms17. Light irradiated onto 

photocatalytic materials can effectively generate reactive oxygen species (ROS, see 

appendix C), one of the key modes of disinfection4,18. Of particular interest are 

combinations of materials and irradiation systems that use low-cost visible and/or UV 
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light to achieve high disinfection capacity. However, efficiency of any such technology 

depends on incident flux and wavelength of the radiation, specific water characteristics, 

absorption length in water, geometry and reactor hydrodynamics, contact efficiency of 

species in water and the photocatalysts, and inactivation kinetics4. 

 

A growing interest in enhancing low-energy electromagnetic radiation, e.g., 

visible and near infrared radiation, has successfully prompted new studies on production 

of ROS19 as a part of the continuous effort to develop new alternative disinfection 

technologies. Such amplification of low energy photons to higher energy20 has been 

successfully demonstrated using lanthanide series metals (e.g., Er3+ and Tm3+)21,22. Their 

unique 4fn (n = 0–14) 5d0–1 inner shell configurations are well shielded by the outer filled 

5s25p6 sub-shell electrons and thus have an abundance of unique energy levels. When 

populated, these states can be long lived (up to 0.1 s), making these ideal to serve as 

electron donors23. This group of trivalent metals is also doped to engineer the band 

architecture and utilized in different applications24. To-date, successful utilization of low 

energy MW radiation for efficient generation of ROS and subsequent inactivation of 

waterborne pathogens has not been demonstrated. However, there is promise in carbon 

nanomaterials’ ability to absorb MW energy25 and lanthanide series metal’s capacity to 

enhance spectral-conversion, if used in concert 23. 

 

Developed during the Second World War, low-frequency MWs (at least 5 orders 

of magnitude lower than UV) have disseminated into industry and later into the 

household consumption market in a short period of time26. MWs lie between infrared 

radiation and radio frequencies and correspond to wavelengths of 10-3 to 1 m (300 GHz to 
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300 MHz frequencies, respectively)27. In this region, the energy of the MW photons 

(between 1.24×10-3 and 1.24×10-6 eV) is too weak to break chemical bonds28, when 

compared to that of photons emitted by UV lamps with wavelengths ranging between 200 

to 280 nm (6.20 to 4.43 eV). However, even this apparently weak MW radiation has 

proven to be germicidal when used at high intensity and for an extended period of time in 

sterilizing dry materials29. MW technology is effectively used to disinfect dentures and 

dental tools/devices26, where 10 min of microwaving at 720 W is required for 

sterilization30,31. The antimicrobial impact of MW radiation is not well understood, but it 

is hypothesized to emanate mostly from thermal action32 and also from dielectric 

rupture33. However, inactivating or disinfecting water with MW has not been successful 

to-date, likely due to an extended irradiation period and associated energy costs. 

 

In this dissertation, the MW absorption-potential of carbon nanotubes (CNTs) has 

been combined with spectral conversion-ability of lanthanide series metal erbium oxides 

to attain effective inactivation of waterborne microorganisms. Such a carbonaceous-metal 

oxide nanohybrid (NH) has been synthesized and characterized, utilizing a modified sol-

gel technique reported in a parallel dissertation work34. Design of the NHs for this 

dissertation was underway when the method was being modified. This dissertation 

synthesized the NHs varying the composition of the materials with the goal of harnessing 

the power of microwave, which is unique and independent when compared to the 

environmental implication aims pursued in the parallel dissertation. Inactivation of an 

opportunistic pathogen P. aeruginosa has been achieved using a conventional MW oven 

with the NHs, and later, using a controlled MW irradiation system that is designed and 

built as a part of this research effort. The dominant mechanism underlying inactivation 
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has been identified to be ROS-mediated inactivation. The roles of wavelength and 

irradiation time of MW on inactivation are also explored, and finally, the efficacy of this 

technology to effectively inactivate a wide range of waterborne microorganisms has been 

examined. Results obtained in this study show a proof-of-concept of a new irradiation-

based water disinfection technology that can utilize low-energy intensive and widely 

available MW devices to inactivate waterborne microorganisms. This groundbreaking 

study paves the way for further development of such a technology that can effectively 

and affordably disinfect water. 

 

1.2 OBJECTIVES AND HYPOTHESES 

Below, the four primary objectives of this dissertation are stipulated. These 

objectives will be achieved by testing the corresponding hypotheses. 

 

Objective 1. Perform a detailed literature review to better understand the 

multifunctional properties of NHs. 

Objective 2.  Design, synthesize, and characterize a novel NH, capable of MW spectral 

conversion for inactivation of P. aeruginosa. 

 Hypothesis 1: Sol-gel method can be utilized to synthesize CNT-

lanthanide series metal oxide NHs with different carbon to erbium ratios 

and achieve control over the hybridization process. 

 Hypothesis 2: NHs capable of MW absorption and spectral conversion 

will effectively inactivate P. aeruginosa. 
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Objective 3.  Exploring the roles of MW wavelength and irradiation time on 

inactivation effectiveness of P. aeruginosa in an effort to unlock the 

energetic balance in the disinfection system. 

 Hypothesis 3: Wavelength and irradiation time of MWs will strongly 

influence inactivation of P. aeruginosa. 

Objective 4.  Determine the inactivation efficacy of the MW spectral conversion NHs 

for a wide range of waterborne microorganisms. 

 Hypothesis 4: The NHs will be capable of MW spectral conversion and 

thus inactivate a wide range of waterborne microorganisms. 

 

1.3 RESEARCH VISION AND PLAN 

The research described in this dissertation presents a nascent and novel 

irradiation-based water disinfection technology for the first time. At the core of my 

research agenda lies the idea of deepening the knowledge on MW-enabled inactivation 

technology as well as to develop a novel material to effectively inactivate pathogens. To 

achieve these goals, the following tasks were performed (Figure 1.1). 

 

Task 1: Literature review on multifunctional NHs. 

Task 2.1: Design, synthesis, and characterization of a novel NH, capable of MW 

spectral conversion. 

Task 2.2: Assessment of inactivation potency of the NH and exploration of underlying 

inactivation mechanism(s). 
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Task 3:  Exploration of the roles of wavelength and irradiation time of MWs on 

inactivation potency of P. aeruginosa. 

Task 4:  Evaluation of inactivation efficacy for a wide range of waterborne 

microorganisms. 

 

 

Figure 1.1: Research vision and plan of this dissertation showing interconnected spheres 
of knowledge. NH: nanohybrid, MW: microwave, WL: wavelength. 

 

1.4 DISSERTATION STRUCTURE 

This dissertation is organized into chapters containing the following information: 

Chapter 2: Multifunctional Properties of NHs 

Contains a detailed overview on multifunctional properties of NHs, stimuli-

responsive nanomaterials, and CNT responses to MW radiation. 

Chapter 3: Harnessing the Power of Microwave for Inactivation with Nanohybrids 
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Presents preliminary results of design, synthesis, and characterization of the novel 

NHs that can harness the energy of MW to inactivate P. aeruginosa. This is the first 

study of its kind presenting groundbreaking results of this emerging technology. 

 

Chapter 4: Exploration of the Roles of Wavelength and Irradiation time of MW on 

Inactivation Potency of P. aeruginosa 

Presents the first preliminary results on the design, optimization, and performance 

of a controlled MW irradiation system implemented at lab scale for testing waterborne 

pathogen inactivation with NHs. 

Chapter 5: Evaluation of Inactivation Efficacy for a Wide Range of Waterborne 

Microorganisms 

Assesses the efficacy of the designed NHs (in Chapter 3) using the reactor 

developed (in Chapter 4), to evaluate its “breadth” of application to inactivate surrogates 

for pathogenic bacteria, viruses, and protozoa of environmental relevance. 

Chapter 6: Conclusions and Recommendations 

Outlines major findings pertaining to the main objectives of this work and 

provides recommendations for future studies to advance this technology. 
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Chapter 2: Multifunctional Properties of NHsi 

2.1 INTRODUCTION 

This chapter intends to provide a detailed literature review to better understanding 

the multifunctional properties of NHs. After an extensive literature review performed on 

multifunctional NHs35-37, design of a NH capable of MW absorption and spectral 

conversion, and thus suitable for effective inactivation of waterborne pathogens was 

attempted. This vast literature made it possible to better understand the synergistic aspect 

of multicomponent materials to gain an understanding of the state of the NH materials 

field. Consequently, I led a peer-reviewed article on stimuli-responsive NH38 and 

gathered critical knowledge to pursue design of a multi-component NH that responds to 

electromagnetic radiation and will likely generate ROS, a key driver in bacterial 

inactivation. This review was particularly focused on stimuli-responsive materials, which 

activate under an external chemical or physical stimulus. 

 

This chapter is based and adopted from the peer-reviewed article on stimuli-

responsive NHs38 and complemented with a section on carbon nanotube (CNT) responses 

to MW radiation. 

 

2.2 LITERATURE REVIEW 

During the past decade, material science at the nano-scale has witnessed the 

emergence of a new wave of research and development that has shifted from single 

                                                
i Adopted from: Plazas-Tuttle, J.; Rowles, L., III; Chen, H.; Bisesi, J., Jr; Sabo-Attwood, T.; Saleh, N. B. 

(2015). Dynamism of Stimuli-Responsive Nanohybrids: Environmental Implications. Nanomaterials, 5 
(2), 1102–1123. doi:10.3390/nano5021102. Plazas-Tuttle, J, is the main author, wrote the article, draw 
the figures, and performed 90% of the literature review and data collection. 
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passive nanostructures to complex hierarchical nanosystems39. Such hierarchical 

structures are designed via hybridization of multiple nano-scale entities or by conjugation 

of a nanomaterial with heterocyclic organic coatings. These nanohybrids (NHs) exhibit 

enhancement in their individual component properties35 and are driving the frontier of 

material science development with applications in biomedicine40,41, electronics42,43, optical 

imaging44,45, water quality management46,47, controlled drug delivery48,49, biomedical 

systems and devices50-52, and energy related applications53-55. Such applications demand 

multifunctionality, necessitating design and development of adaptive and responsive 

materials where manifestation of material properties evolves in a more predictable and 

controllable fashion in response to the surrounding environment or stimuli. Hybridized or 

conjugated nanostructures are suspected to present complexity in nano-EHS35-37. 

Dynamism of the adaptive nanohybrids (ANHs) will likely introduce an additional degree 

of uncertainty and complexity to nano-EHS, i.e., dynamic time-dependent evolution of 

the soft coating. 

 

The necessity to achieve ‘on demand’ control over material functionality and the 

ability to functionalize nanomaterials with unique combinations of organic polymer 

blocks have encouraged design and synthesis of stimuli-responsive nanoparticles56 or 

ANHs. Today’s drugs are not only required to optimize targeted delivery but are also 

designed to manifest superior control over their release57. Complex combination of 

multiple soft organic blocks allows for achieving such molecular level control in response 

to an environmental stimulus—e.g., pH49, ionic strength58, solvent polarity59, heat60, 

magnetic61 or electric field62, light63, and sound64—and enable their applications in 

targeted drug delivery, development of artificial muscles and sensing materials, robotics, 
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and molecular electronics65,66. Next generation molecular electronics and bio-engineered 

applications are more encouraged to employ such stimuli-responsive ANHs and thus 

necessitate careful assessment of their potential environmental and toxicological 

consequences. 

 

Stimuli-responsive ANHs are composed of well-studied nanostructures, e.g., 

carbonaceous47,67 and metallic53,62,68, as well as polymeric69-71 materials, however, with a 

complex soft-layer at the exterior. EHS studies on nano-scale metal or metal oxide 

particles as well as on carbonaceous nanomaterials have been aimed at correlating EHS 

responses of nanomaterials (NMs) with their properties such as size, shape, surface 

chemistry, electronic structure and surface charge72-77. The role of NM surface 

functionality, i.e., of both covalent surface moieties and of soft polymeric/surfactant 

coatings, on aggregation, deposition, transformation, and toxicity has also been 

evaluated76,78-81. However, the coatings considered were rather passive in a given 

environment. Complexity and uncertainty in EHS of ANHs will likely arise from the 

dynamic nature of the surface coatings, as their surface conformation and participation in 

potential ligand exchange will evolve over time in presenting their chemical 

functionalities to the surrounding environment and biological species, while responding 

to the external stimuli. If a soft surface coating is composed of multiple functional blocks 

where one or more of these blocks respond to an external stimulus (e.g., exfoliate or 

compress in response to the stimuli), the aggregation/deposition (where steric interaction 

will dynamically change) and toxicity (cells or species interacting with the exposed block 

will evolve dynamically) assessment will need to account for such dynamism to 

accurately assess their EHS. 
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Figure 2.1: Representation of ANHs: (a) pH-responsive poly(acrylic acid) (PAA) at 
mesoporous silica nanoparticle (MSNPs)82, (b) AgNPs in a thermo-
responsive network of poly(styrene) (PS) and poly(N-isopropylacrylamide) 
(PNIPA)83, and (c) photo-responsive Cu-doped ZnO NPs on multiwalled 
carbon nanotubes (MWNT)84. 
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2.3 PRINCIPLE FOR DISCERNING ANHS 

Since ANHs involve surface coated metallic, carbonaceous, or polymeric NMs, 

discerning the differences between passive and adaptive nano structures is important in 

directing EHS efforts appropriately. Here is the first attempt to lay down the principle for 

identifying ANHs. This principle is derived from earlier NH foundational work36. 

 

 “Conjugated nano structures composed of carbonaceous, metallic, or polymeric 

materials when coated with a soft chemically bound exterior polymeric layer, resulting in 

core-shell type hybrids that respond to external stimuli that has enhanced properties or 

multifunctionality, can be identified as adaptive nanohybrids or ANHs.”  This principle 

includes ANHs composed of metallic, carbonaceous, or polymeric NMs and NHs 

functionalized with stimuli-responsive coronas or polymers85-88 (Figure 2.1a), and NMs 

suspended or loaded with linear and branched stimuli-responsive co-polymers or cross-

linked polymer networks70,83,89 (Figure 2.1b). ANHs in which stimuli-responsive coatings 

are covalently bonded to drug molecules90 or to metallic NMs with tunable properties60 

(Figure 2.1c), and polymer brushes grafted91 or strongly bonded via sulfur bonds85, can 

also be included. 

 

This principle would exclude selection of the following as ANHs; (i) NMs and 

NHs with coatings that are not stimuli responsive (e.g., NHs comprised of dihydroxotin 

(IV) porphyrin functionalized single-walled carbon nanotubes (SWNTs)44, NHs 

composed of quantum dots (QDs) and Cytochrome P45042, and NHs containing carbon 

nanotubes (CNTs) and CdSe QDs 45), (ii) that are not covalently bound (e.g., QDs coated 

with thermo-responsive92 or pH-responsive polymers93 by simple ligand exchange 
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methods), and (iii) those that will detach from the NM surfaces upon environmental 

contact (e.g., NHs of PS core and a multi-armed pH-responsive weak polyampholytic 

poly(2-vinylpyridine)-b-poly(acrylic acid) diblock copolymer94, or MSNPs capped with 

poly(propylene imine) dendrimers through reducible disulfide bonds that enable 

detachment upon stimulus95). This principle will facilitate identification of ANHs for 

nano-EHS evaluation. However, further modification or amendment of the stated 

principles will likely be required as advances are made in the research and development 

of similar new materials. 

 

2.4 CLASSIFICATION OF ANHS  

The behavior of ANHs is controlled by the external stimulus that can cause the 

exterior coatings to shrink/swell, change optical, mechanical, or luminescence response 

of the nanostructure, to name a few. Although the field of ANHs is relatively new, there 

are numerous opportunities to design new nanosystems with single- or multi-stimuli-

responsive attributes. The following discussion classifies ANHs on the basis of stimuli 

that invoke responses from the particles. A comprehensive literature search has been 

performed to identify relevant ANHs. A total of 812 publications from 1996-2014 were 

retrieved and classified using the Web of Science® search engine. After a list of relevant 

terms was identified, a search algorithm was designed using wildcards and Boolean 

operators, in combination with title field tag as the search criteria to limit the results to 

the most relevant studies in ANHs. Figure 2.2 shows the rapid growth rate of this ANH 

field as reflected by the near exponential increase in publication number over the past ten 

years. 
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Follow-up searches were performed for each individual stimulus of concern, i.e., 

for pH-, photo-, thermo-, ion-, chemical-, salt-, magneto-, acoustic-, redox-, glucose-, 

glutathione-, enzyme-, thiol-, radiation-, and multi-stimuli responsive materials. Results 

reveal the relative importance of each of the stimulus in the contemporary ANH 

literature. The distribution of ANH publications based on the most relevant stimuli is 

shown in Figure 2.3a, which identifies that pH, temperature, and photo-responses as the 

most prominent stimuli in ANH design and development. 

 

 

Figure 2.2: Number of publications per year on ANHs in the Web of Science® 
according to our search criteriaii. 

                                                
ii (Ti=[nanomaterial* or nano-material* or nanoparticle* or nano-particle* or nanostructure* or nano-

structure* or nanohybrid* or nano-hybrid*] and Ti=[stimul*-respons* or *responsive or stimul*] and 
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Stimuli-responsive soft-layers enable ANHs to perform switchable functions and 

show considerable changes in their physical and chemical properties in response to small 

changes in their environment. The classification of ANHs can be done in a number of 

ways. Here we present a classification scheme based on key environmental stimuli, 

namely pH-, thermo-, photo-, and multi-stimuli-responsive ANHs. 

 

 

Figure 2.3: (a) Distribution of ANH publications based on stimuli. *Include: ionic, 
chem, salt, electri, sound, redox, glucose, gluta, and enzyme as keywords. 
NR: not relevant. (b) Distribution of ANH publications on multi-stimuli. 
Other includes: pH-enzyme, pH-glucose, glucose-pH-thermo, photo-thermo-
magnetic, and ultrasound-pH-magnetic multi-stimuli publications. 

 

                                                                                                                                            
Ti=[pH or light* or photo* or thermo* or temperature* or heat or ion* or chem* or salt* or *magnet* or 
*electri* or *sound or acoustic or *sonic* or redox* or glucose* or gluta* or enzym* or thiol* or radiat* 
or multi*]) 
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2.4.1 pH-Responsive  

One of the most common stimuli is pH, where functional moieties on ANH 

surfaces respond to specific pH range and perform desired functions. pH-responsive 

moieties are mostly acidic that include carboxylic, amino acid, or sulfonic acid groups. 

Depending on the pH, these polymers undergo a transition between 

protonation/deprotonation, relative to their pKa or pKb (equilibrium acidity or basicity 

constants). Weak acids are water-soluble via deprotonation while weak bases become less 

soluble at these pHs as protonation reduces surface potential and hence their relative 

polarity. Thus, in an aqueous environment, the ionization leads most commonly to 

swelling or shrinking of the polymeric shell of ANHs. For instance, at low pH, carboxylic 

functional groups are protonated and hydrophobic interactions dominate, leading to 

volume shrinkage of the polymer that contains them. On the other hand, at high pH, 

carboxylic groups dissociate resulting in a high charge density in the polymer, resulting 

in swelling of the polymer. Another common pH-responsive functional group is pyridine, 

which responds in the opposite way to the carboxylic group with the changes in pH 

values96. 

 

Representative polymers with pH-dependent conformational changes via 

protonation/deprotonation include PAA82, poly(methacrylic acid)97, poly(maleic 

anhydride)98, poly(2-dimethylaminoethyl methacrylate) (PMAEMA)99, and poly(4-

vinylpyridine) (P4VP)100, to name a few. But polymers containing phenylboronic acid87 

and phosphoric acid derivatives101 have also been reported to form ANHs. 

Poly(amidoamine) is a biologically-responsive polymer that has also been observed to 

undergo conformational changes from a relatively coiled (hydrophobic) to a rather open 
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(hydrophilic) structure, when exposed from a neutral to an acidic environment with many 

interesting properties in applications in intracellular drug delivery102. 

 

pH-responsive ANHs are used as drug delivery carriers, imaging agents, sensors 

in biomedical purposes, with potential applications in other fields such as water-repellent 

inexpensive agents to coat glass surfaces, polymeric nanofibers, and paper surfaces as a 

function of the pH of interest. An example of a pH-responsive ANH capable of delivering 

both therapeutic cargo molecules and bio-relevant metal ions is a nano-gate composed of 

two iminodiacetic acid (IDA) molecules and a metal ion latch, assembled on MSNPs. 

This ANH forms a gating mechanism and is capable of storing and releasing metal ions 

and molecules trapped in the pores. Pore openings derivatized with IDA can be latched 

shut by forming a bis-IDA chelate complex with a metal ion. No cargo release is 

observed in a neutral aqueous environment; however, when the environment is acidic, 

(pH ≤ 5.0) and/or when a competitive binding ligand is introduced, the cargo release is 

observed103. Similarly, MSNP cores with PAA shell can serve as nano-carriers for loading 

molecules for a wide range of biomedical applications82. The PAA layers on the surface 

of MSNPs could be reversibly opened and closed, triggered by pH, and thus could 

regulate the uptake and release of drugs from MSNPs. At low pH (pH = 1.2) PAA is 

insoluble and is collapsed, whereas, at high pH (pH = 8.0) PAA is soluble and rather 

exfoliated to allow for the bioactive molecules contained in the MSNPs to be released82.  

 

By altering the polymer shell structure, the ANH responsiveness to the stimulus 

can also be controlled. For example, a silica oxide core when modified with poly(2-

vinylpyridine) (P2VP) shell, and decorated with AuNPs, can be used as free-standing 
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single-particle sensors in various miniaturized analytical systems. The P2VP polymer 

brush of the ANH undergoes reversible swelling/shrinking as pH changes from 2.5 to 5.7. 

Such dynamic change in the polymer brush conformation alters the access of the 

surrounding fluid to the metallic AuNP surfaces and Plasmon resonance behavior is also 

modulated by a purple-blue shift (from red)91. An inexpensive system for water repellent 

applications can be achieved using poly(2-(diisopropylamino)ethyl methacrylate) or PDP 

hybridized silica nanoparticles (SiNPs) with low pKa (6.3) and high hydrophobicity (pH 

≥ pKa). Adsorption/desorption of PDP-SiNPs onto/from the proposed substrates can be 

controlled by varying solution pH resulting in the protonation/deprotonation of the PDP 

in a simple and effective way104. 

 

2.4.2 Thermo-Responsive 

Due to the simplicity of control, temperature is one of the most widely used 

external stimulus in ANHs design. Temperature can trigger response from ANHs coated 

with thermo-responsive polymers that contain hydrophobic (e.g., methyl, ethyl, and 

propyl) moieties. The properties of thermo-responsive polymers are governed by the 

lower critical solution temperature (LCST), defined as the temperature at which the 

polymer undergoes a phase transition from a soluble to an insoluble state71,96. In general, 

the solubility of most of the polymers increases with the increase in temperature; 

however, in the case of polymers that exhibit LCST, increase in temperature decreases 

the water solubility due to hydrophobic associations of polymer molecules and reduction 

in hydrogen bonding between polymer and water molecules105. 
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Temperature-responsive polymers can be classified depending on the mechanism 

and chemistry of the polymer groups: (a) poly(N-alkyl substituted acrylamides), e.g., 

PNIPA with an LCST of 34.5-35 ºC106,107, and (b) poly (N-vinylalkylamides), e.g., 

poly(N-vinylcaprolactam), with an LCST of about 31–38 ºC, depending on the molecular 

weight and concentration of the polymer108,109. PNIPA has been widely studied for its 

ability to switch surface wettability, that consists of fluctuations in the competition 

between intermolecular and intramolecular hydrogen bonding below and above the 

LCST, hydrophilicity, and hydrophobicity, respectively110. 

 

For instance, the optical and light scattering properties of AuNPs are known to be 

altered by the conformational and chemical changes of their thermo-responsive polymer 

shells, and this property is exploited in the design of ANHs. AuNPs can be functionalized 

with cross-linked poly(2-(2-methoxyethoxy)ethyl methacrylate), PMEO2MA. The 

thermo-responsive coating undergoes a phase transition from a hydrophilic water-swollen 

state to a hydrophobic globular state, when heated above its LCST. Such changes result 

in modification of the light scattering properties of the nano-system and cause a change in 

the turbidity of the gel network of PMEO2MA60. Different degrees of swelling at high 

and low temperatures influence the range of applications of core-shell ANHs. AuNPs 

encapsulated in a thermo-responsive microgel (e.g., PNIPA) are used as catalysts in the 

electron-transfer reaction between hexacyanoferrate(III) and borohydride ions. The 

thermo-sensitive PNIPA network acts as a “nano-gate” that can be opened or closed to a 

certain extent, thereby controlling the diffusion of reactants toward the catalytic core; 

such is the control of the catalytic activity of the encapsulated AuNPs via temperature 

modulation111. Similarly, AgNPs, when embedded in a thermo-responsive polymeric 
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network of PNIPA cross-linked with N,N’-methylenebisacrylamide, can dictate the 

dissolution properties of the ANHs83. Metallic NPs are fully accessible to reactants at low 

temperature (as the polymer is exfoliated). However, at higher temperatures the rate of 

reactions is considerably slower due to the shrinkage of thermo-responsive polymer 

network83. 

 

2.4.3 Photo-Responsive 

Light stimulation and response is a particularly useful external trigger to 

efficiently manipulate ANH responses. A number of parameters (light intensity, time of 

exposure, and wavelength) can be tuned for a specific target, which allows to designing a 

wide selection of stimuli-responsive ANHs. Photo-responsive, particularly, photo-

cleavable polymers e.g., PNIPA-o-nitrobenzyl alcohol-poly(4-substituted-3-

caprolactone)112, poly(methyl methacrylate)-poly[poly(ethylene glycol) methyl ether 

methacrylate]113, and P4VP-poly(methylmethacrylate)114 have received attention in recent 

years, since they can be degraded into smaller molecular fragments by irradiation. These 

photo-responsive polymers are used for synthesis of ANHs and applied as nano-carriers 

for drug delivery112 and as photodynamic therapeutic agents115.  

 

Photoisomerizable molecules such as azobenzenes have been incorporated to 

macromolecules to produce macroscopic changes in the polymeric material. Azobenzene, 

is a well-known photo-responsive molecule that has been widely used in a diverse set of 

optical devices and to achieve multifunctionality; e.g., photo-switching116, photo-optical 

image recording117, and molecular detection118. The azobenzene moieties can undergo 

reversible photo-isomerization between the stretched trans (E-isomer) and the bent cis (Z-
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isomer), when exposed to light at a certain wavelength (alternating irradiation at visible 

(465 nm) and UV (350 nm) range) or heating, and can lead to considerable changes in 

molecular shape, size, and dipole moments116. Thus, the azobenzene photo-responsive 

group allow for photo-controllable self-assembly of block copolymers and other photo-

responses of lower molecular weight molecules. For instance, controlling the 

interparticular space between particles by reversibly bringing out the trans-cis-trans 

isomerization of photo-responsive molecules containing an azobenzene moiety 

incorporated into networks of benzyldimethyl- stearylammoniumchloride and 

octadecylamine capped AuNPs, results in changes from red to blue in the optical spectra 

of the surface Plasmon peak position of the NH network119. Similarly, NMs coated with 

polyaniline (PANI), a conducting polymer possessing interesting electronic, 

electrochemical, and optical properties, can be prepared by incorporating the 

photosensitive coumarin moieties into 2-acrylamido-2-methyl-1-propanesulfonic acid 

copolymer micelle. The resulting ANH exhibits reversible photo-cross-linking and photo-

decrosslinking behavior upon irradiation with UV120. 

 

Other examples include bipyramidal DNA nanocapsules based on photo-

responsive oligonucleotides that release AuNPs when photo-irradiated, via strand 

displacement mechanism121. Such release is guided by reversible cage–opening that 

depends on the wavelength of the photo-irradiation (i.e., from visible to UV). 

Aminopropyl-silsesquioxane (POSS-NH2) has been employed to functionalize graphene 

oxide (GO) sheets. The combination of the GO sheets with POSS-NH2 produces a hybrid 

silicon/graphite-based NP, which when exposed to visible light exhibits dielectric or 

insulating behavior, rendering photoconductive response122. 
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2.4.4 Multi-, Bio-, and Other-stimuli Responsive Nano-Systems  

Many ANHs are designed with polymer blocks that respond to more than one 

stimulus or are only responsive to biological stimuli (Figures 2.3a and 2.3b). pH and 

redox are two of the strongest stimulus in such multi-stimuli platforms that are designed 

for cancer treatment123. Other examples of a multi-stimuli ANH platform include a 

multilayer film (layer-by-layer) formed around PEGylated NPs  (i.e., thiolated 

synthesized via self-condensation of 3-mercaptopropyltrimethoxysilane) and light-

sensitive azobenzenes that respond to pH, light, and ionic strength, simultaneously124. 

Such ANHs have the potential applications as multi-responsive nano-carrier for drug 

delivery or as drug-releasing films. Similarly, switchable drug-release nano-platforms 

utilizing degradable poly(ether urethane) generates ANHs that respond to changes in 

temperature, pH, and redox potential125. A triple-stimuli of temperature, pH, and 

magnetism can trigger responses from poly(N-isopropylacrylamide-co-methacrylic acid) 

coated magnetic SiNPs126. Similarly, responsive polycarbonate membranes have been 

prepared with the combination of multi-responsive PNIPA and AuNPs to create 

responsive valves for the spatiotemporal delivery of bioactive agents, cell array, and 

advanced cell culture. The synthesized membranes showed, experimentally, a switch in 

response to temperature and light and achieved differences in fluid flow127. 

 

ANHs that are designed to respond to other stimuli include those that respond to 

biological molecules such as glucose128, where insulin is released via poly(vinyl alcohol) 

and poly(N-vinyl-2-pyrrolidone) with pendent phenylboronic acid moieties and applied 

for diabetes treatment. Similarly, glutathione129 is used as a cancer therapy agent, where 
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hollow SiNPs carriers of doxorubicin respond to stimulus for release of treatment agents. 

Biocatalytic enzymes also are employed for diagnostics, drug targeting, and drug release, 

where proteases are employed as cleavers130. ANHs that respond to biochemical stimuli 

are of great importance if released to the environment; however, the literature is not as 

elaborate. 

 

2.5 EHS IMPLICATIONS 

Environmental implications of passive nanostructures have been extensively 

studied, where the role of size [96], shape131, surface functionality132, surface coatings133, 

and atomic orientation134 have systematically been assessed. System complexity, i.e., 

chemical variability (pH, ionic strength, bio-fluid conditions)135, presence of geo- and 

bio-macromolecules76, heterogeneity of environmental collectors, i.e., sand and 

sediment136, even presence of secondary particulates137 have been evaluated to understand 

NM fate, transport, transformation, and toxicity under rather realistic environmental 

conditions. The key underlying overtone of such studies was that NMs were considered 

to be passive with respect to the surrounding environment—other than apparent charge 

neutralization through ionic strength effects—where the NM surface attributes were not 

designed to evolve over time and specifically respond to changing environments. The 

inception of ANHs has primarily been guided by targeted delivery of nano-scale agents 

where NMs were deliberately given exterior functionality (in form of surface coatings) 

with abilities to respond to a specific environment and dynamically evolve in response to 

select stimuli. Release of these ANHs to the natural environment will expose them to a 

variable and rather complex environment, where co-existence of multiple stimuli and 
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change in stimuli composition can create unforeseen environmental and toxicological 

behavior; hence necessitate additional considerations to assessing nano-EHS. 

 

When NMs are released in the natural environment they undergo aggregation, 

primarily by the interplay of the inherent van der Waal’s attractive forces and surface 

charge mediated electrostatic repulsive forces138. Aggregation can lead to ‘fall out’ of the 

NMs from the water column to the sediment and enhance the removal of these particles 

within the pore space by increased deposition139 and limit organism size-selective 

uptake140. Furthermore, passive NMs undergo natural modifications and/or chemical 

transformations due to interactions with various environmental components such as 

sunlight, dissolved oxygen, ionic strength, and dissolved organic matter35. Since 

environmental systems are dynamic and unpredictable, the physicochemical changes 

experienced by NMs complicate the understanding of risks associated with environmental 

release of NMs. NMs that might show high aggregation or deposition propensity and 

manifest toxic responses at the laboratory-scale, are not necessarily prone to such 

behavior demonstration when discharged to real aquatic environments. When such 

uncertainty exists in the case of passive NMs, ANHs with increased dynamism on their 

surfaces introduce an additional degree of complexity to the EHS assessment. For 

instance, fullerene suspensions are destabilized in relatively weak electrolyte solutions 

driven by electrostatics, resulting in aggregation and filtration in environmental systems. 

The propensity of fullerenes to aggregate in relatively weak electrolyte solutions suggests 

that, if released into natural systems, typically with ionic strengths greater than 0.001 M, 

these materials will likely form large aggregates that may settle out of suspension, deposit 

to environmental collectors, or become otherwise immobilized141. These phenomena may 
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partially offset any risk presented by possible fullerene toxicity due to a reduced potential 

for exposure. However, other components present in natural waters, such as humic or 

fulvic acids may re-mobilize fullerenes and change their aggregate size, while 

transformation (photo or chemical) may continue to alter their potential health effects 

compared with those observed in laboratory-based toxicity studies142.  

 

The following section will discuss the role of select environmental stimuli (pH, 

temperature and photo-activity) in influencing the behavior and toxicity of emerging 

ANHs, with a focus on the aquatic environment. We will consider what we have learned 

from studying passive NMs in predicting how the environment should be considered with 

respect to ANH behavior and toxicity. 

 

The role of pH in nano-EHS has traditionally centered around the concept of 

protonation/deprotonation of surface moieties, which control the surface charge and thus 

the stability, transport, and in some cases toxicity of the NMs. High salt concentrations 

and pHs close to isoelectric point (IEP) promote NM aggregation by compressing 

electrical double layer repulsion73. IEP has served as a threshold for charge-reversal, 

which has depended primarily on acidity/basicity of the surface groups. However, pH in 

any such analyses is an environmental parameter and in equilibrium with the entire 

particle surface (not partial) at all times, mediating particle behavior over a wide range. In 

the cases of pH-responsive ANHs, the polymeric coatings respond differently to pH, 

based on the chemistry of the polymer block. For example, PAA contains carboxylic 

groups that can deprotonate at high pH (pH ≥ 8) increasing its solubility, but protonate at 

low pH (pH ≤ 4.0) making it poorly soluble; i.e., it collapses onto a surface to avoid 
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interaction with the surrounding polar medium in such conditions82. On the other hand, 

pyridine is an acid-swellable group. Under acidic environment the pyridine groups are 

protonated giving rise to internal charge repulsions between neighboring protonated 

pyridine moieties143. 

 

pH-responsive ANHs that combine PAA and pyridine soft layers and other NMs 

have great potential for application in drug delivery systems. Thus in natural 

environments, the relative collapse or exfoliation of surface coatings on ANH surfaces 

will present with variable aggregation and deposition (each polymer/polymer block has 

differing electrostatic and steric stabilization contribution), transformation (differential 

dissolution based on the polymer conformation), and toxicity (non-uniform cell-ANH 

interaction, based on polymer conformational differences). Studies performed to-date 

have shown that coatings like PAA influence NM solubility as a function of the ambient 

pH. For example, metal NPs coated with PAA are typically less soluble but show 

enhanced ion release under acidic conditions144 and such a low pH environment has been 

suggested to adversely affect fish growth and development (e.g., inhibition to 

hatching)145. Unique properties of ANHs, such as the ability to ‘swell’, would likely 

impact organism uptake and bio-distribution and will also depend on the environment 

that will influence such ‘swelling’ (i.e., water column versus gastrointestinal (GI) tract 

versus lysosomes). For example, in the acidic stomach environment, single AgNPs can 

agglomerate and precipitate, while deposition of NHs composed of AgNPs and silicate 

clay, in the same acidic environment is minimized146. Design of pH-responsive ANHs for 

drug delivery, such as Doxorubicin, has been shown to be successful in targeting and 

delivery to tumors in case of a more acidic environment (6.0 – 6.5)147,148. This brings up a 
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number of issues relevant to assessing toxicology where such ANHs are released into 

environments with dynamic pH ranges and could lead to a number of diverse and 

unpredictable scenarios. For example, ANHs in a more basic/neutral environment can 

carry cargo into exposed organisms where they are then released in acidic GI tracts or 

lysosomes or perhaps release of the cargo in an acidic environment could allow for rapid 

uptake of the free cargo. 

 

It is known that pH affects hydrodynamic radii of NPs and that select size ranges 

are associated with observed toxic effects such as lethality, reduced growth, and 

reproduction rates149-151. In cases of metal oxides, altered pH has led to reactive oxygen 

species (ROS) generation and peroxidation150, which were associated with observed 

toxicity. While pH has been a common parameter to monitor and assess EHS of passive 

NMs, ANHs that are pH responsive present a more complex surface that evolve in 

response to this parameter; where the ANHs behave non-uniformly, depending on the 

type of the polymer and its chemistry. Not only the dynamic pH responsive coatings will 

evolve in response to the changing environment, the metallic NPs will also likely undergo 

enhanced dissolution and thereby influence toxicity.  

 

Temperature is not considered a key factor in assessing nano-EHS. However, the 

use of thermal-responsive polymers in decorating ANHs, introduces new complexity in 

understanding their environmental and toxicological behavior. The temperature range at 

which these ANHs respond is within the range of physiological conditions (i.e., 31-38 

ºC)96. These thermo-responsive ANHs thus when in human body or at elevated 

temperature, will allow exfoliation of the polymeric coatings influencing stability and 
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reactivity. However, when these ANHs are released to a natural environment, the 

polymeric coatings will likely collapse, thus altering the fate, transport, transformation, 

and toxicity of these particles. For example, PNIPA swells at room temperature but 

undergoes phase transition around 30 °C. This transition is perfectly reversible and 

PNIPA is thus a great candidate for design of ANHs with specific temperature-delivery 

applications83. PMAEMA on the other hand, shows temperature sensitivity similar to 

PNIPA but is a uniquely responsive polymer; as observed via its response to temperature 

and pH in aqueous solution96. While the process of shrinking and re-swelling can be 

repeated without degradation, the polymeric network will be fully accessible to any other 

material at low temperatures after its intended use and the ANH then serves as a vehicle 

for transport of other contaminants in the environment. Certainly, this cyclic ‘swelling’ 

and ‘shrinking’ would likely pose varied environmental partitioning, exposure, and 

uptake that have strong toxicological consequences. Studies showing acute toxicity of 

NMs dispersed in PNIPA to amphibians was observed but these particles were ‘passive’ 
152 and therefore adaptive parameters had not been considered in toxicity studies to-date. 

It is plausible that ANHs designed to swell in high temperature (e.g., in human body) 

may collapse in the natural low temperature environment; which will almost certainly 

alter the toxicokinetics of the ANHs and their potential for adverse health effects. Thus, 

consideration of nano-EHS of these ANHs require assessments of their behavior in 

changing temperature conditions, where dramatic transition in their aggregation, 

deposition, and toxicity is likely when temperature is near the LCSTs of their polymeric 

coatings. 
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Transformation of passive NMs primarily focuses on studying the alteration of the 

particles’ photoactivity153, reactivity154, and surface properties (via adsorption of geo- and 

bio-macromolecules)76. However, none of these NMs are designed to respond to photo-

irradiation, rather such transformation occurs incidentally. On the other hand, ANHs 

possess functional moieties that are designed to respond to photo-activation, thus are 

more likely to undergo such transformation when released in the natural environment. 

For example, o-nitrobenzyl alcohol is a photo-sensitive group that uses as a photo-

cleavable junction between hydrophilic and hydrophobic polymer blocks, and can form 

micelles for drug delivery applications112. Light triggers the breakage of the block 

copolymer chains at the junction points and the encapsulated drug is released. Thus, these 

materials can be more prone to photo-transformation, where ANH surfaces may not only 

lose their original surface coating (via cleavage or fragmentation upon photo-irradiation) 

and subsequently undergo ligand-exchange with environmental ligands, but can also 

present contrasting behavior (with the changing polymer morphology via photo-

activation). Most of the literature on photo-toxicity has been performed with TiO2 that 

primarily show that photo-oxidation increases ROS and toxicity. In fact, many studies 

have shown that cellular uptake of NMs is not necessary to induce toxicity, however, 

membrane damage by photo-oxidation mediated oxidative stress control the nanotoxicity 

mechanism18,155,156. 

 

The nano-EHS community needs to consider modification of the strategies on 

assessing these dynamically evolving stimuli-responsive ANHs. The underlying 

assumption of uniform surface properties in theoretical models and experimental 

assessment fall apart for these new sets of materials. The assumptions of potential 
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transformation in the environment are also not applicable, as some of these ANHs will 

certainly undergo transformation, if exposed to the relevant stimulus. Furthermore, 

parameters that are otherwise ignored in nano-EHS, e.g., temperature, will require more 

attention in case of these ANHs. New experimental tools are likely required to monitor 

dynamic evolution of the coatings under changing stimuli conditions. The current state-

of-the-art techniques mostly assess equilibrium processes, and are not capable to evaluate 

time-dependent changes in surface properties. 

 

With the growing number and composition of NMs–including contemporary 

ANHs–it is evident that a shift to predictive modeling is needed. A number of models 

have been proposed to meet the growing demand to satisfy EHS testing157-159. A recent 

paper on the current state of modeling in assessing nano-EHS in aquatic systems suggest 

that while the nano-EHS community is making significant progress in assessment of 

passive nanostructures, models are evolving to reflect the dynamic nature of both the 

particle and environmental system157. The ANHs introduce a new dynamism in nano-EHS 

studies, where stimuli-responsive coatings demand new models that can capture such 

dynamism. Similarly, ‘real world’ environments necessitate systematic assessment of 

nano-EHS in complex environmental conditions; e.g., heteroaggregation, multi-particle 

transport, surface area-dependent chemical transformations, and toxicity evaluation in 

realistic biological conditions. It is thus imperative that the EHS community needs to foil 

material complexity with system heterogeneity and take the next big step to reliable 

safety assessment of these new-generation nano-conjugates. 
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2.6 CARBON NANOTUBE RESPONSES TO MICROWAVE RADIATION 

Beneficial physical characteristics of CNTs are encouraging for its use in 

electronics, medicine, material science, and environmental applications160. CNTs are 

single or multiple concentric all carbon tubules (single-walled SWNT or multiwalled 

MWNT) with open or closed ends161,162. 

 

When CNTs are irradiated with MW, strong energy absorption has been observed 

with subsequent strong heat release, outgassing, light emission, even nanotube 

reconfiguration and/or “welding” at elevated temperature (1500 ºC)163. Although the 

mechanism of CNT-MW interaction is only partly understood, MW systems are used for 

purification164, chemical functionalization of CNTs165, or to provide a reactive setting to 

stimulate the modification, e.g., curing, of other materials in presence of CNTs166. 

 

The rapid molecular rotation induced by electric field oscillation is the principal 

heat-generating pathway for solvents, e.g., water (dipolar polarization). Such rapid 

rotation at the solvent/solute boundary layer provides efficient localized mixing27. 

However, dipolar polarization seems to have little contribution to CNT-MW absorption, 

i.e., no electric dipoles exist in CNTs. Conduction heating, a phenomenon in which 

electrons are accelerated in an electric field, cause sample heating due to electrical 

resistance. Due to its unique one-dimensional shape and symmetry properties, CNTs have 

shown to be a ballistic conductor167,168, meaning its resistance is quantized along the tube, 

is independent of length, and no energy is dissipated due to electron mobility163. Because 

of this low energy dissipation, CNTs have conductivities considerably higher than that of 

copper168. But in the case of raw CNTs, impurities acquired during synthesis (e.g., 
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residual metal catalyst, support materials, disordered carbon, and other nanoparticles) 

result in reduced ballistic transport, and subsequently, heat emission. This mechanism, 

which initially appears to satisfactorily explain the heating in CNT-MW interactions still 

remains unclear163,168. 

 

Response of CNTs to electromagnetic radiation has been a subject of many 

exciting investigations162. For instance, CNT irradiation has been studied as a method for 

producing hyperthermia in cancer research. When Malignant cells are incubated in vitro 

and subsequently irradiated with radiofrequencies, heating of aqueous suspensions due to 

internalized CNTs, results in thermal destruction of cancer cells that contain internalized 

CNTs169. MWs constitute one of the more interesting possibilities among the frequencies 

that can be employed. Although the MW spectrum covers frequencies ranging from 300 

MHz to 30 GHz, most microwave systems operate at designated frequencies of either 900 

MHz or 2.45 GHz170. MW-enabled NH catalysts are being developed to replace widely 

used, but potentially toxic, TiO2 and ZnO nanoparticle photocatalysts for environmental 

remediation applications (i.e., degradation of dyes from textile industries)171. Other 

potential applications include high-strength but low-weight electromagnetic interference 

(EMI) shielding materials172. Because a nanotube composite's electromagnetic (EM) 

shielding or absorbing efficiency is dependent on the electronic structure of the CNTs, 

the bulk properties of composites can be effectively tuned by altering the electronic 

structure of CNTs, via functionalization and hybridization173. 
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2.7 KEY FINDINGS 

This review was particularly focused on stimuli-responsive materials, which 

activate under an external chemical or physical stimulus. This vast literature made it 

possible to better understand the synergistic aspects of multicomponent constituents to 

gain a better understanding of the state of the NH materials field. 

 

Stimulation via light or electromagnetic (EM) radiation is particularly useful to 

efficiently modulate NH responses. A number of parameters (light intensity, time of 

exposure, and wavelength) can be tuned for a specific target, which allows designing a 

wide selection of stimuli-responsive NHs. EM in the form of MW radiation is of 

particular interest to this study since MW appliances have diffused into societal fabric, 

globally, and can be taken advantage of to extract unintended benefits. Large and small 

communities, in urban or rural areas, can greatly benefit from the versatility and 

inclusiveness of this technology at centralized water treatment facilities or as point-of use 

treatment solutions. 

 

When multiwalled carbon nanotubes (MWNTs) are hybridized with metal oxide 

nanomaterials, the resulting hybrids exhibit excellent light absorption in visible light 

region, which in return demonstrates photocatalytic action and charge separation to make 

these materials useful in a range of applications38,84. NHs that respond to EM radiation 

and will likely generate ROS, a key driver in bacterial inactivation, hold promise for a 

new irradiation-based technology. But, thus far, absorption of MW radiation and spectral 

conversion has not been combined. If successful, this NH will be capable of using a low 

energy source to provide spectral conversion to a higher energy, which will have 



 
 

35 

important implications as a new disinfection development. Thus, this dissertation will 

focus on MW as the EM radiation, and will aim to utilize this radiation as a stimulus that 

can result in generation of ROS and thus inactivate waterborne microorganisms. 
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Chapter 3: Harnessing the Power of Microwave for Inactivation with 
Nanohybrids iii,iv 

3.1 INTRODUCTION 

The motivation of this chapter emanates from nanomaterials’ ability to harness 

electromagnetic (EM) radiation and thus potentially utilize it to inactivate waterborne 

microorganisms. After a comprehensive literature review on multifunctional properties of 

nano-heterostructures, a NH comprised of carbon nananotubes and lanthanide series 

metal oxides has been designed, synthesized, and characterized, and its efficacy in 

inactivating a model microorganism has been evaluated. 

 

Microwave (MW) radiation is at the weak-end of the EM spectrum and hence is 

not typically as effective to inactivate microorganisms as the smaller wavelength 

radiation with higher energy potency (e.g., ultraviolet rays, x-rays, and gamma rays). To 

overcome this limitation, localizing the radiation and increasing the energy footprint is 

necessary. Only then can that energy be utilized for spectral conversion. Design of the 

NHs thus involved combining multiwalled carbon nanotubes (MWNTs), one of the most 

effective materials to absorb MW radiation, with lanthanide series oxides, which are 

known to be one of the most efficient metal oxides capable of spectral conversion. 

 

Enhancing low-energy electromagnetic radiation, e.g., visible and near infrared 

radiation, has effectively produced ROS in the past19. Such amplification of low energy 

photons to higher energy has been successfully demonstrated using lanthanide series 

                                                
iii Plazas-Tuttle, J.; Das, D.; Sabaraya, I. V.; Saleh, N. B. (2017). Harnessing the Power of Microwave for Inactivating 

Pseudomonas Aeruginosa with Nanohybrids. Water Res., (In review). 
iv Saleh, N. B. and Plazas-Tuttle, J. (2016). Microwave Absorbing Carbon-Metal Oxides and Modes of Using, 

Including Water Disinfection. (Patent Pending). Application #15230041. 
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metals (e.g., Er3+ and Tm3+)21,22. Such metal ions have 4fn5s25p6 electron configuration. 

Their unique 4fn with n = 0–14 is responsible for their unique optical and magnetic 

properties. For n electrons in 14 available orbitals there are 14 over n possible 

configurations and all configurations can have different energies. Their 5s and 5p shells 

serve as a shield for the 4f inner shell, and thus, the electronic transitions are independent 

of the surrounding host materials. To-date, successful use of MW radiation for efficient 

inactivation has not been confirmed. However, there is promise in carbon nanomaterials’ 

ability to absorb MW energy25 and lanthanide series metal’s capacity to enhance spectral-

conversion23, if successful hybridization is achieved, thus producing inactivation. 

 

In this chapter, the MW absorption properties of carbon nanotubes (CNTs) and 

the spectral conversion-ability of lanthanide series metal erbium oxides are combined to 

study inactivation of waterborne microorganisms. Such a nanohybrid (NH) has been 

synthesized and correctly characterized. Inactivation of an opportunistic pathogen P. 

aeruginosa has been achieved using a conventional MW oven with the NH. The 

dominant mechanism underlying inactivation has been identified to be ROS-mediated 

inactivation. Results obtained in this chapter confirm a proof-of-concept of a new 

irradiation-based water disinfection technology that can utilize low-energy intensive and 

broadly available MW devices for microbial inactivation. 
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3.2 EXPERIMENTAL 

3.2.1 Materials 

Isopropanol (2-propanol, 99%, USP), nitric acid (70%), and concentrated sulfuric 

acid were obtained from Fisher Scientific (Houston, TX). MWNTs (> 95% carbon purity) 

with an average diameter of 8-15 nm and length of 10-50 µm were obtained from Cheap 

Tubes Inc., (Cambridgeport, VT). Amplex® UltraRed reagent (Cat. No. A36006) and 

Amplex® Red/UltraRed stop reagent (Cat. No. A33855) were procured from Invitrogen 

(Carlsbad, CA). Erbium(III) oxide (99.5%, REO) was purchased from Alfa Aesar™ 

(Ward Hill, MA) while erbium(III) nitrate pentahydrate (99.9% trace metal basis) was 

procured from Acros Organics™ (Geel, Belgium). Catalase (CAT), superoxide dismutase 

(SOD), and methanol (MET, 99.9%) were obtained from Sigma (St. Louis, MO). Other 

reagents were purchased from Fisher Scientific (Houston, TX), unless otherwise noted. 

 

3.2.2 Synthesis of NHs 

MWNTs with an average diameter of 8-15 nm and >95% purity (Cheap Tubes 

Inc., Cambridgeport, VT) were first acid-etched by refluxing in a 1:1 (v/v) mixture of 

concentrated nitric (70%) and sulfuric acid (96.5%) at 80 ºC for 3 h. Functionalized 

MWNTs were thoroughly washed with ultrapure water (Synergy ultrapure water, EMD 

Millipore, Darmstadt, Germany) and vacuum-filtered using porous 

polytetrafluoroethylene (PTFE) membrane filters (0.2 µM, EMD Millipore, Darmstadt, 

Germany). The MWNT cake obtained was washed with distilled water until the pH was 

neutral, dried in a desiccator, and subsequently hand-grinded with mortar and pestle to 

fine powder to be dispersed in anhydrous isopropanol with an ultrasonic dismembrator 

(Q700 Qsonica, Newtown, CT). NHs with three C:Er molar ratios, NH-1 (16:1), NH-2 
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(8:1), and NH-3 (4:1), were synthesized (Table A.1) via a sol gel process34. For this 

purpose, erbium precursor (Er(NO3)3·5H2O) was dissolved in isopropanol (Table A.1), 

bath sonicated, and added drop-wise at a constant rate (0.435 mL/min) to the previously 

dispersed MWNTs under ultra-high purity N2 (NI UHP15A, Airgas) at 80 ºC for 3 h. The 

mixture was then evaporated and the residue was calcined under N2 at 400 ºC for 3 h in a 

tube furnace (Lindberg/Blue M TF55035A-1, Thermo Scientific, Asheville, NC). Finally, 

the NHs were hand-grinded with mortar and pestle and dispersed ultrasonically in 

ultrapure water before use. 

 

3.2.3 NHs Characterization 

A rich suite of characterization tools has been utilized to determine particle 

morphology, crystallinity of the metal oxide nanocrystals on the surface of MWNTs, 

composition of the materials, and the chemical bonding of the metal oxides with MWNT 

surfaces. A JEOL 2010F HRTEM (JEOL USA Inc., Pleasanton, CA) at various 

magnifications and at an accelerating voltage of 200 kV collected MWNT and NH 

images. The same equipment was used to obtain high annular angle dark field STEM 

images at high magnification alongside with EDX to obtain elemental mapping of the 

materials. Crystalline structures of the powdered samples were investigated by 

performing XRD using a Rigaku R-axis Spider (Rigaku Americas Corporation, The 

Woodlands, TX). The XRD has a curved imaged plate diffractometer equipped with an 

image plate detector and Cu-Kα irradiator (0.154 nm wavelength) and a graphite 

monochromator. Thermal oxidation properties were examined using a TGA with 

differential scanning calorimetric capabilities (Mettler-Toledo AG, Schwerzenbach, 

Switzerland). TGA was performed by flowing air from 25 to 800 ºC with a heating ramp 
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of 10 ºC min-1. XPS (Kratos Axis Ultra DLD, Kratos Analytical Ltd., Manchester, UK) 

spectra were recorded on dry powders to examine the surface chemistry of the samples. 

 

3.2.4 Disinfection Potency 

Microbial inactivation was assessed by exposing a Gram-negative opportunistic 

pathogenic strain of P. aeruginosa PAO1 to the NHs with appropriate controls. P. 

aeruginosa is ubiquitous in the natural environment, resistant to conventional 

disinfection, and its biofilm form protects it from chemical disinfectants, UV light, and 

other environmental stressors174; these attributes make it a perfect model microorganism 

that is more resistant than other planktonic bacteria174. A freezer stock of PAO1 was 

streaked on a Luria Bertani (LB) agar plate and grown overnight. A single colony from 

the plate was inoculated in 15 mL LB medium and incubated at 37 °C on a shaker (200 

rpm) for 16 h. 100 μL of the culture was added to a fresh LB medium and was incubated 

at 37 °C for 4-6 h until the culture reached mid-exponential phase (optical density at 600 

nm of 0.25-0.30). The suspension was then centrifuged (5810R, Eppendorf AG, 

Hamburg, Germany) at 2,500 × g for 15 min, and the supernatant was removed. The 

remaining cell residue was re-suspended in 15 mL 1X GibcoTM phosphate buffer saline 

(PBS) solution (Fisher Scientific, Pittsburgh, PA). This procedure of centrifugation and 

re-suspension in PBS media was repeated twice to remove the remaining LB growth 

medium. Concentrations of 10 mg/L erbium salts, erbium oxide, MWNTs, and NHs 

samples were prepared in 1X PBS as stocks. Each sample was autoclaved and bath 

sonicated for 30 min prior to the exposure studies. A 20-μL aliquot was then added to 

180 μL of the bacterial suspension (in PBS) on a microtiter plate to achieve a final 

bacterial exposure concentration of 1 mg/L for each sample. A control was also prepared 
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by adding 20 μL sterile ultrapure DI water to the bacterial suspension to account for the 

same dilution as that of the other samples. Bacterial suspensions were then subjected to 

MW irradiation (20 s at 110 W), while an identical set of samples was kept in the dark for 

the same exposure time. Each sample was tested in triplicate. The samples were then 

serially diluted using 1X PBS, 10 µL samples were pipetted and grown on LB agar 

plates, incubated for 12-16 h at 37 ºC, and finally colonies were enumerated by viable 

plate counts. 

 

3.2.5 Disinfection Mechanism Determination 

During nanomaterial exposure, bacteria can experience stress from a selected set 

of stressors, among which dissolved metal ions and ROS are most common. Bacteria can 

also be stressed via heat shock and other chemical stressors, e.g., hydrogen peroxide. To 

identify the dominant underlying mechanism for disinfection, the following protocols 

were established. 

 

Measuring Temperature Change 

The temperature of the samples was measured by a k-type beaded wire stainless 

steel thermocouple (SC-GG-K-30-36, Omega, Stamford, CT) before and after MW 

irradiation. The thermocouple was connected to a digital thermometer (CL3512A, 

Omega, Stamford, CT), with a temperature range of -220 to 1372 °C. It is acknowledged 

that such measurements will produce bulk change in temperature and will be incapable of 

determining local variation at the nano-scale. 
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Determination of H2O2 Concentration 

A non-radical derivative of oxygen as a surrogate for ROS, H2O2, was monitored 

with Amplex® UltraRed Reagent (Cat. No. A36006) hydrogen peroxide/peroxidase 

assay kit with Amplex® Red/UltraRed Stop Reagent (Cat. No. A33855). This compound 

is non-fluorescent until it is reacted with a combination of H2O2 and horseradish 

peroxidase. Samples of erbium salt, erbium oxide, MWNTs and NHs were individually 

dispersed in ultrapure DI water at 1 mg/L. The prepared samples and nanomaterial 

suspensions were added to the working solution of the ROS assay kit using a 96-well 

black assay microplate (Corning, NY), following the manufacturer’s protocol. To 

evaluate the MW-induced H2O2 generation, the suspended samples were irradiated for 20 

s at 110 W (611 mW·h) with a conventional MW oven (1100 W, 2.4 GHz, 

JES1460DSBB, GE®). An identical set of samples was kept in the dark for the same time 

of exposure. Amplex Ultrared stop reagent was added to each sample to capture the 

fluorescence of the oxidized product until measured using a Synergy-HT microplate 

reader (Biotek, Winooski, VT) with appropriate excitation (485 nm) and emission filters 

(590 nm). Each measurement was performed on triplicates and the background 

fluorescence intensity (for DI water) was subtracted from all readings. 

 

ROS Scavengers 

To further investigate the potential role of ROS by MW-irradiated NHs, CAT, 

SOD, and MET scavengers of H2O2, superoxide (O2
•-), and hydroxyl radical (OH•) 

respectively, were utilized. Cell suspensions (2 mL) were treated with 1.0 mg/L of NH-1 

in the presence or absence of CAT (286 units, Sigma, St. Louis, MO), SOD (200 units 

Sigma, St. Louis, MO) and MET (0.3 M, Sigma, St. Louis, MO). The bacterial 
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suspensions were then subjected to MW irradiation (20 s at 110 W), while an identical set 

of samples was kept in the dark for the same exposure time. Each sample was tested in 

triplicates. Antimicrobiality was assessed by plating onto LB agar medium and 

subsequent counting of colonies following the method described in the disinfection 

potency section. 

 

3.2.6 Enhanced Inactivation Performance 

Additional experiments were performed to increase the inactivation performance 

of the irradiated samples. For this purpose, bacterial samples (with and without NPs) and 

appropriate controls were prepared as previously described in the disinfection potency 

section. Then, 200 µL sample were pipetted into wells of a microtiter plate, at equidistant 

points from the center of rotation of the MW oven’s turntable, so that the samples could 

get equal amount of irradiation (Figure A.6). Bacterial suspensions were then subjected to 

MW irradiation (1X=20 s, 2X, 4X, and 8X, at 110 W), while an identical set of samples 

was kept in the dark. Each sample was tested in triplicates. The samples were then 

serially diluted using 1X PBS, and 10 µL samples were pipetted and grown on LB agar 

plates, incubated for 12-16 h at 37 ºC, and finally colonies were enumerated by direct 

count. Temperature of the sample was carefully controlled as mentioned earlier. This is 

important in order to avoid convolution of the inactivation mechanisms by introducing 

heat shock. 
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3.3 RESULTS AND DISCUSSION 

3.3.1 Synthesis and Characterization of the NHs 

NHs with three C:Er3+ molar ratios, i.e., 16:1 (NH-1), 8:1 (NH-2), and 4:1 (NH-

3), were synthesized (Table A.1) via a sol gel process. Representative HRTEMs and 

STEM micrographs show successful hybridization of MWNTs with Er (Figure 3.1 and 

Figure A.1). The HRTEM micrograph displays debundled MWNTs with average shell 

thickness of 21.3±2.6 nm (Figure 3.1a), where some crystalline features are uniformly 

distributed at the surfaces of the MWNTs indicating hybridization with a metal/metal 

oxide nanocrystal (Figure 3.1b and Figure A.1). The elemental composition of the 

hybridized MWNTs and the uniformity of the metal oxide nanocrystals are presented via 

STEM imaging (Figure 3.1c). Representative STEM element-specific micrographs show 

uniform distribution for C, Er, and O, throughout the MWNT backbone. Control over 

synthesis with loading and distribution uniformity of erbium oxide on MWNTs is 

demonstrated via STEM images, elemental mapping, and elemental composition (Table 

A.2 and Figures A.2 and A.3). 

 

Quantitation of elemental composition for the NHs is presented with XPS analysis 

(Figure 3.2a). XPS spectra for the NHs with varied Er loading reveal the presence of 

characteristic O1s, C1s, and Er 4d peaks (Figure 3.2a). O1s peaks (at 532 eV) are narrow 

and confirm the presence of different forms of erbium oxide and C-O bonds on the 

surface of the MWNTs. C1s (at 284.8 eV) peaks are typical for sp3 hybridized C-C 

bonds. The region of Er 4d does not exhibit a typical free ion doublet structure at the 

region between binding energies of 167.5 and 169.5 eV, and the complex multiplet 

structure to the left of the peak at 169.5 eV is attenuated as shown by the 3 NH signals 
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(Figure 3.2b)175. However, the peaks at binding energy 169 eV are typical of Er2O3 

compound, which will change the spacing and intensity of the doublet peaks after an 

annealing process175. The atomic ratios of C:Er3+ obtained (Table A.3) via XPS are 1.29 

(NH-1), 0.72 (NH-2), and 0.19 (NH-3), which demonstrate achieving control over the 

hybridization process. 

 

 

Figure 3.1: Representative HRTEM micrograph of (a) MWNT (> 95% carbon purity, 8-
15 nm average diameter, and 10-50 µm length) and (b) NH-1 (inset shows 
crystalline erbium oxide lattices). (c) STEM image and elemental mapping 
of NH-1. Samples of aqueous dispersions for (a) and (b) were placed on 
lacey carbon coated copper TEM grids (SPI Supplies, West Chester, PA) 
and air-dried over a few minutes. HRTEM and STEM accelerating voltage 
set to 200 kV. Several representative micrographs were obtained. 

 

EDS (Table A.2) and XPS analyses (Table A.3) on the three NHs showed 

consistent results for the Er nanocrystal loading on MWNTs. Estimating the precise 

stoichiometry of the reactions is challenging due to a lack of information on the accurate 

spatial distribution of the carboxylic groups on the nanotubes as well as due to the 

variations in number and type of defect sites specific to each individual tube. These 

factors have an influence on the position and configuration of nanocrystals in the 
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resulting NH. In light of the latter, Tables A.2 and A.3 demonstrate that the quantity of Er 

has been overestimated when compared to the reagents added during synthesis. 

 

The crystallinity of erbium oxides on MWNT surfaces is confirmed with XRD 

spectra (Figure 3.2c). MWNT XRD spectrum (gray) shows a distinctive sharp peak and 

small broad peaks at 26.3º and 43º, which correspond to (002) and (100) lattice planes, 

respectively176. The XRD spectrum of erbium oxide (dash blue) shows highly crystalline 

Er2O3 signature with a sharp peak at 29.4°, which corresponds to (222) diffraction planes. 

Other diffraction planes analyzed, i.e., (211), (431), (440), and (622), are consistent with 

literature reports177. The XRD spectrum of the representative NH-1 shows suppressed 

peak occurrences for those of the MWNTs. The relatively less defined peaks for NHs 

indicate either presence of amorphous structures, which can be hydroxides and/or oxides 

of Er metal178. The chemical binding between the metal structures and the MWNTs can 

also cause such broadening of the peaks178.  Further adjustment of the synthesis 

conditions, e.g., calcination temperature, may lead to more ordered nanostructures. 

 

To determine whether the erbium oxide nanocrystals crystalized onto MWNT 

surfaces with no chemical bonding or rather true hybridization has been achieved, peak 

oxidation temperature of the MWNTs and NHs is determined. TGA results (Figure 3.2d) 

show a significant downward shift of the peak oxidation temperature (from 636 ºC to 475 

ºC) for MWNTs upon hybridization. Such a shift can be attributed to enhanced heat flow 

onto MWNT surfaces via chemically bonded metallic nanocrystals179,180. The downward 

shift in the peak temperature persisted with the increase in erbium oxide content, which 

further supports the heat flow analysis. Analyzing the %mass loss profiles of these 



 
 

47 

materials (Figure A.4) reveals mass remaining percentages of unhybridized and 

hybridized MWNTs, i.e., 6.8% (MWNT), 48.1% (NH-1), 60.7% (NH-2), and 73.2% 

(NH-3), which concur well with the metal content analysis obtained from EDX (Table 

S2). The differences between XPS and TGA/EDX ratios for C:Er3+ suggest that erbium 

oxides are being crystalized not only on the surfaces but might also be incorporated 

within the carbon tubules as may be observed in Figure 3.1b. 

 

3.3.2 Disinfection Potency 

Inactivation of the opportunistic pathogen P. aeruginosa with an initial population 

density of ~107 CFU/mL is successfully achieved with MW irradiation in presence of 

NHs (Figure 3.3). The control samples (irradiated and non-irradiated Er salt, Er oxide 

particles, and MWNTs) show no significant impact on bacterial viability (Figure 3.3a). 

NH-1 shows at least one log unit reduction of P. aeruginosa when compared to 

appropriate non-irradiated controls and other irradiated materials. Inactivation of P. 

aeruginosa with other samples is not observed. The increase in Er oxide loading onto 

MWNTs (irradiated samples) shows a negative correlation with bacterial viability 

reduction (Figure 3.3b). 
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Figure 3.2: (a) XPS spectra, (b) XPS region displaying typical Er4d multiplet structure, 
(c) XRD spectra of MWNT, erbium oxide, and NH-1, and (d) differential 
mass loss curve from TGA for the MWNT and NHs. Thin layers of dried 
samples were analyzed using a Kratos XPS equipped with a monochromated 
Al 𝐾2 X-ray source (1.486 keV). XRD equiped with Cu-Kα irradiator 
(0.154 nm wavelength) and a graphite monochromator was used at a step 
width of 0.02° (between 2θ values of 20° and 60°) and a scanning rate of 2° 
min-1. Dry samples (3-5 mg) were heated at 10 ºC min-1 ramp up to 800 ºC 
for TGA/DTG determination. 
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Figure 3.3: (a) Bacterial inactivation of P. aeruginosa exposed to NH-1, and appropriate 
controls; (b) comparison of logarithmic cell removal of P. aeruginosa 
exposed to NHs. Material concentration utilized in all experiments was 
maintained at 1 mg/L. Initial concentration of P. aeruginosa ~107 CFU/mL. 
Samples (200 µL) were irradiated in microtiter plates for 20 s at 110 W (611 
mW·h) using a conventional MW oven. Error bars represent one standard 
deviation measured from experimental triplicates. NP: nanoparticle, 
MWNT: multiwalled nanotube, NH: nanohybrid. 

 

Microwave’s potency of inactivating P. aeruginosa compares well with literature 

reports; however, such reports are based on photocatalytic disinfection of water as a 

function of a complex set of variables. Our study presents breakthrough inactivation 

results, and as such, comparison of these results with other reported data is presented to 

highlight its potential to compete with other irradiation-based technologies. Literature 

evidence suggests that strains of P. aeruginosa (AOH1 and NCIMB 10421), when 

exposed to photocatalytic Ag-TiO2 films and irradiated with UV for at least 1-6 h, can 

result in one log bacterial reduction (energy expenditure: 2.24 mW·cm−2)181. Similarly 
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single log inactivation of P. aeruginosa (NCTC 10662) was also achieved by 

photocatalytic TiO2 thin film treatment, when irradiated with UV (3 mW·cm−2) for 35 

min182. Comparable inactivation efficiency of P. aeruginosa (ATCC 9027) is observed 

for solar irradiated TiO2 when irradiated for 1 h (energy expenditure: 1 kW·h)183. 

Escherichia coli (OH157:H7), a more susceptible bacterial species to irradiative 

inactivation (compared to P. aeruginosa), underwent single log inactivation with C70-

modified TiO2 NHs under 10 min irradiation of visible light (energy expenditure: 0.05 

kW·h). The results presented herein demonstrate superior inactivation performance of the 

novel NHs prepared in this study, where an opportunistic pathogenic strain is irradiated 

with the lowest intensity electromagnetic radiation, MWs. In this study, a significant 

reduction in exposure time (20 s) and expended energy (0.0006 kW·h) compared to 

literature reported UV and visible radiation excited nanomaterial cases, further proves the 

efficacy and transformative nature of this nano-enabled disinfection technology. 

 

3.3.3 Proposed Disinfection Mechanisms. 

Dissolution of metal ions 

Literature suggests that dissolution of metal ions from high curvature nano-sized 

particles can serve as a dominant mechanism for disinfection; e.g., nano-Ag, which 

contributes ionic silver, is utilized as an effective disinfectant135. The NHs utilized in this 

study, however, contain a lanthanide series metal oxide (i.e., erbium), which has 

extremely low aqueous solubility184, thus likely will not incur antimicrobiality via 

dissolution. Results presented in Figure 3.3a further validates this claim. P. aeruginosa 

when exposed to dissolved Er3+ in an amount equivalent to Er present in the NHs show 
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no appreciable inactivation. Thus, dissolved ions are not likely the cause of bacterial 

inactivation in this case. 

 

Microwave Heating 

An increase of temperature over time can result in denaturation, damage to the 

cell membrane, and coagulation of protein materials inside the bacterial cells, affecting 

their viability. Studies have shown that viable counts of high bacterial density cultures of 

P. aeruginosa (1.7×109 CFU cm-2) decrease up to 6 orders of magnitude when subjected 

to 50-80 ºC for 1-30 min185. However, the maximum temperature change recorded in this 

study is 2.10±0.30 ºC from room temperature, when the samples were MW-irradiated for 

20 s at 110 W (Table A.4 and Figure A.5). Such evidence suggests that inactivation by 

thermal shock of P. aeruginosa or MW heating is unlikely to be the dominant mechanism 

for inactivation for this study; however, it should be noted that adaptation of P. 

aeruginosa to temperature change needs further assessment. As indicated above, a global 

change of temperature may not play a significant role on bacterial inactivation; however, 

local temperature at the NH-water interface might experience higher temperature 

differentials, and such changes might occur over a short duration. Both the local 

temperature changes (hyperthermia) and its rate of change may contribute to stresses that 

P. aeruginosa might experience in such conditions185,186. These effects need to be further 

evaluated. 
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Synergistic Effects of combined MW heating and ROS species 

Antimicrobial action via MW heating can be enhanced significantly if 

complemented with a low concentration of H2O2
187. Both cell destruction and DNA 

injuries can be achieved as shown for exposure of E. coli (K-12) and P. aeruginosa (102) 

to consecutive MW irradiation (up to 50 ºC) and addition of H2O2 (0.08% v/v). It is 

believed that the synergistic effects consist of inhibition of the repair mechanisms in 

bacteria due to ROS addition. However, in this study, no additional H2O2 was added to 

the system. The range of temperature increase (~2 ºC) and no H2O2 addition thus remove 

this mechanism as a possible route for disinfection in this study. 

 

ROS-Mediated Microbial Inactivation 

The remaining possible mechanism for disinfection is extracellular ROS, which 

can be produced due to irradiation of the samples with an external energy source (i.e., 

MW). Formation of H2O2 species is measured as a surrogate for ROS generation in this 

study (Figure 3.4). When irradiated with MW, NH-1 produces at least two twice the 

amount of H2O2 (8.71 µM) compared to the unirradiated case (4.46 µM), and at least 7 

times as much as the control samples (i.e., Er salt, Er oxide, and MWNTs) as shown in 

Figure 3.4a. It is possible that the peroxide production in the absence of MW radiation is 

due to stray visible light impacting the NH, as can be observed in the un-irradiated case 

(Figure 3.4a). NH-1 (16:1 molar ratio) is the most effective of the 3 NHs synthesized in 

producing H2O2 (Figure 3.4b). The increase in Er loading on MWNTs negatively 

correlates with the ROS production ability, as presented in Figure 3.4b. NH-2 and NH-3 

do not produce significant amounts of H2O2 as compared to NH-1. A balance between the 
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MW absorption ability of the MWNTs and the electron donation capacity of the metal 

oxides is necessary to achieve enhanced disinfection efficiency. 

 

The role of catalases in in protecting planktonic and biofilm cells of P. aeruginosa 

against H2O2 has been investigated in previous studies188. Such investigations have reveal 

that cell viability decreased steadily in planktonic cells exposed to a single dose of 

peroxide, whereas cell viability remains steady after an initial decrease when P. 

aeruginosa is exposed to H2O2, meaning that bacteria can quickly adapt to ROS stressors. 

The effect of H2O2 was the only species measured and the synergistic effect of other ROS 

species has not been evaluated. 

 

 

Figure 3.4. (a) H2O2 production with and without MW irradiation by NH-1 and by the 
appropriate controls; (b) comparison of ROS production between the NHs. 
Material concentration utilized in all experiments was maintained at 1 mg/L. 
Samples (100 µL) were irradiated in microtiter plates for 20 s at 110 W (611 
mW·h) using a conventional MW oven. LOD is 100 CFU/mL. Error bars 
represent one standard deviation measured from experimental triplicates. 
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ROS scanvenger study 

Bacterial inactivation in the presence of CAT, SOD, and MET scavengers 

definitively prove that ROS played a leading role in the antimicrobiality of P. 

aeruginosa. Figure 3.5 shows that significant bacterial inactivation was not observed in 

any of the controls, irrespective of MW irradiation. What these results particularly reveal 

is that NH-1, when irradiated with MW in presence of any (or all) of the three scavengers 

shows little to no inactivation, but it shows 1.64±0.09 log removal of bacteria in absence 

of the scavengers. Such scavenger studies have been utilized in earlier studies to 

demonstrate a definitive role of ROS in antimicrobiality189-192. 

 

 

Figure 3.5. Logarithmic cell reduction of P. aeruginosa exposed to NH-1 with and 
without H2O2, O2

•-, and OH•, scavengers CAT, SOD, and MET, respectively. 
Material concentration utilized in all experiments is maintained at 1 mg/L. 
Samples (200 µL) were irradiated in microtiter plates for 20 s at 110 W (611 
mW·h) using a conventional MW oven. LOD is 100 CFU/mL. Error bars 
represent one standard deviation measured from triplicate samples. 
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Enhanced Inactivation Performance Results 

Results after irradiation of bacteria in the presence of NH-1, confirm more than 1-

log inactivation of P. aeruginosa. Significant inactivation is accomplished only after MW 

irradiation is performed (Figure 3.6). Importantly, samples irradiated for longer periods 

of time, in 20 s intervals, show a minor increase in logarithmic reduction after a second 

cycle of irradiation of P. aeruginosa (initial population density of ~107 CFU/mL), but 

they did not show any further increase in inactivation upon additional cycles of 

irradiation (Figure 3.6). Log reduction reaches a maximum of 1.25±0.07 after the second 

cycle. A possible explanation might lie in the aggregation propensity of the NHs, thus 

affecting their distribution in the aqueous solution and thus losing available sites for 

harnessing MW and generating ROS, which eventually causes the inactivation. Further 

studies to assess the role of NH aggregation during an extended period of irradiation need 

to be performed. However, this limitation can be avoided by device engineering, where 

the NHs will not be suspended in the water sample but will be immobilized, for instance 

on a surface. However, such immobilization of the NHs could also limit the ability to 

produce ROS in sufficient amount. Device engineering thus needs immediate attention to 

further this technology. 

 

It is also to be noted that the experiments were performed under a strong 

electrolyte condition (in presence of the buffer), hence can induce aggregation to the 

NHs. Thus, MW harnessing process by the nanotube surfaces might become limited and 

ROS produced might also be sequestered within the aggregates, limiting the potency to 

inactivation. Thus, subsequent cycles of irradiation, for NH-1, show limited enhancement 

in inactivation (Figure 3.6). 
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Figure 3.6: Inactivation of P. aeruginosa exposed to NH-1, and appropriate controls; 
Bacterial cells were irradiated for 1X (20 s), 2X, 4X, and 8X duration. 
Temperature upon 8X irradiation increased no more than 20 °C. NH 
concentration utilized in all experiments was maintained at 1 mg/L. Samples 
(200 µL) were irradiated in microtiter plates at 110 W (611 mW·h) using a 
conventional MW oven. LOD is 100 CFU/mL. Error bars represent one 
standard deviation, measured from experimental triplicates. 

 

3.3.4 Possible ROS-Generation Mechanisms 

The synergistic effect of MWNT and Er2O3 to favorably generate ROS may be 

explained with published literature on photocatalytic nanomaterials, e.g., carbon 

nanotubes-TiO2 nanohybrids193-200. The overall phenomenon is likely a two-step process 

of electron promotion and subsequent electron transport to the neighboring MWNT or 
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Er2O3 surfaces with the following possible scenarios. i) MW absorption ability of 

MWNTs likely allows for the weak and otherwise dissipated MW energy to be localized 

on the tubular carbon surfaces (Figures 3.7a and 3.7 b)25. MWNTs acting as sensitizers, 

absorb this energy and as a result electron-hole pairs are generated on the MWNTs (Eq. 

3.1 and Figure 3.7c). An energized electron from MWNT can get transported to 

chemically bonded Er2O3’s conduction band allowing the formation of superoxide 

radicals (Eq. 3.2). ii) Subsequently, the positively charged MWNTs can remove an 

electron201 from the valence band of Er2O3, leaving a hole on the metal oxide crystal, 

which can then react with water to form hydroxyl radicals (Eq. 3.3). iii) Alternatively, the 

localized energy may reach sufficient intensity to excite electrons from Er2O3 valence 

band to a higher energy state, while leaving a hole behind. The promoted electron on 

Er2O3 crystals can either react with dissolved oxygen in the surrounding water envelope 

to form ROS or iv) can get transported to MWNT (due to its exceptional electron 

transport ability201) and generate ROS via the pathway described earlier. The potential 

pathways of electron-hole pair formation and ROS generation are illustrated in Figure 

3.7d and captured in the following set of reactions. It is to be noted that these ROS 

species undergo further reactions to form hydrogen peroxide (Appendix C), which has 

been measured in this study.  
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Figure 3.7: Schematic representation of possible underlying mechanisms for ROS 
generation. (a) NHs suspended or attached to a relevant carrier in contact 
with water, (b) MW energy absorption by the NHs, (c) absorbed MW 
energy is transferred to neighboring nanocrystals resulting in charge 
separation and generation electron-hole pairs in the erbium oxide layer and 
MWNTs that will produce ROS, and (d) potential pathways of electron-hole 
pair formation and ROS generation. 
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𝑀𝑊𝑁𝑇/𝐸𝑟:𝑂<

=>
𝑀𝑊𝑁𝑇/𝐸𝑟:𝑂< 	+ ℎ* + 𝑒$  Eq. 3.1 

 

𝑂: + 𝑒$ → 𝑂:•$      Eq. 3.2 

 

𝐻:O + ℎ* → 𝑂𝐻• + 𝐻*      Eq. 3.3 

 

It is also reported that modification of the electromagnetic properties of MWNTs 

via hybridization with Er oxide results in improved MW absorbing abilities202, and 

carbon-oxygen-erbium bonds eventually enable expansion of electromagnetic absorption 

range195. Such phenomena also can lead to improvement of catalytic activity of the NHs. 

 

We acknowledge that generated ROS are temporal in nature and undergo a series 

of consecutive reactions where these acquire different chemical form (details in 

Appendix C). H2O2 forms as a reaction product and appears in a later period in the 

reaction sequence (Section S1). Production of H2O2 in this study is thus likely a result of 

electron donation from the NHs when irradiated with MW and production of molecular 

superoxide radical. It is to be noted that formation of other ROS is yet to be determined, 

which will further elucidate the kinetics of oxygen species formation and their subsequent 

effects in disinfection. Electron spin resonance spectroscopy with appropriate spin traps 

can be utilized to determine all ROS generated in this disinfection process. 
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3.3.5 Key Findings 

This is the first study that has developed a nano-scale heterostructure effective in 

harnessing and utilizing MW radiation for ROS production and microbial inactivation. 

Synergistic abilities of MWNTs’ MW absorption-ability with lanthanide series oxides’ 

spectral conversion-capacity has allowed for successful charge-separation and generation 

of ROS. Effective inactivation of waterborne microorganisms via ROS generation with 

the lowest energy radiation (MW) at exceptionally low energy cost (0.0006 kW·h) is 

potentially transformative. This simple yet elegant technological breakthrough will allow 

achieving a beneficial unintended use (of disinfection) from this widely-distributed MW 

technology. The nascent benefits of MW, i.e., its ability to operate in absence of clear 

optical pathways (e.g., in turbid waters), its diffused presence deep into the societal 

fabric, and its potentially low economic and energetic footprints will allow for future 

implementation as an effective point-of-use water treatment solution. The authors 

acknowledge challenges that this technology will need to overcome to be the panacea and 

serve as a platform for disinfection processes in the future. Factors such as costs of the 

technology as compared to proven existing disinfection processes, treatable volume of 

water, material lifespan, and effectiveness of treating water with a wide range of physical 

and chemical characteristics are yet to be determined. Mode of application of the material 

to achieve an effective operational and maintenance feat and systematic evaluation of 

nano environmental health and safety issues have also to be determined. Once the 

material design and parameters of irradiation are optimized and this technology is further 

developed as an affordable and effective point-of-use system, it can potentially be 

transformative to impact a global population by gaining them access to safe drinking 

water. 
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Chapter 4: Exploration of the Roles of Wavelength and Irradiation 
Time of MW on Inactivation Potency of P. aeruginosa 

4.1 INTRODUCTION 

Optimization the efficacy of this nano-scale heterostruction, effective in 

harnessing and utilizing MW radiation for ROS production and bacterial inactivation 

necessitates defining and controlling the wavelength (or frequency), irradiation time, and 

other important parameters. To reveal the mechanism(s) of reactive oxygen species 

(ROS) production, the first challenge is to attain control over the incident radiation, to 

correctly characterize the energetics of the system. A kitchen microwave, like the one 

used in studies described in Chapter 3, lacks control over the irradiation process (in terms 

of the wavelength and irradiation intensity) and thus an improved design of the 

microwave (MW) irradiation system must be developed.  

 

This study aims to develop a reactor where incident MW radiation parameters can 

be controlled and the radiation can be guided into a water sample containing 

microorganisms of concern. The setup consisting of a MW power generator has been 

connected to a copper waveguide. Conventional MW frequency (2450 MHz) has been 

used for such a design. The copper waveguide guarantees that a sample inserted will 

receive the maximum MW radiation energy and input power. Baseline measurements are 

performed to confirm the most appropriate sample holder material. Temperature of DI 

water and NHs suspended in DI and contained in quartz and borosilicate tubes is 

measured. Cyclic irradiation is also investigated to control temperature increase in the 

irradiated samples. Finally, inactivation of P. aeruginosa is studied for a range of MW 

frequency, input power, and irradiation time. Results obtained in this chapter provide 



 
 

62 

guidance for parameter control of a MW-irradiation based microorganism inactivation 

system. 

 

4.1.1 MW Frequency and Wavelength 

MWs are electromagnetic (EM) radiation at frequencies between 300 MHz and 

300 GHz frequency27. Like all EM waves, MWs propagate in free space at the speed of 

light (Figure 4.1). EM waves have both electric and magnetic components (electric field 

and magnetic field), and the wavelength is related to frequency as follows. 

 

𝜆 = 𝑐/𝑓      Eq. 4.1 

 

Where 𝜆 is the wavelength (in m), c is the speed of light (3 × 108 m/s), and f is the 

frequency (in Hz). To avoid interference between different MW applications, e.g., air-

traffic control, weather forecasting, and telecommunications, a limited number of 

frequency bands are assigned. The US Federal Communications Commission (FCC) 

allocates frequency bands for industrial, scientific, and medical (ISM) applications, with 

basic frequencies centered around 896 MHz and 2450 MHz for industrial and domestic 

purposes, respectively203. 
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Figure 4.1: Components of an EM wave. 

 

4.1.2 Waveguide 

Waveguides can be considered as “transmission lines” for high frequency EM 

waves204,205. For such frequencies, EM signals and power are usually transmitted via 

coaxial line, i.e., a wire inside a cylindrical outer-conductor. If the central conductor in 

such coaxial line is removed, it can still carry EM power –a remarkable phenomenon that 

occurs at higher frequencies only. In other words, at high frequencies a hollow tube will 

work just as well as wires204,205. By convention, since the “conduit” is being used to carry 

waves, such a conveyor is called a waveguide which may have either circular or 

rectangular cross sections (Figure 4.2 a and b). 
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Design of a waveguide involves measuring the EM wave using a slotted line setup 

as follows. Energy can be conducted into a waveguide by an antenna (vertical wire or 

driving stub). Figure 4.2a shows the schematic of a driving stub used to connect a coaxial 

cable transmitting MW power to a rectangular waveguide. In order to quantify the EM 

energy an additional stub serving as a probe (pickup stub) can be connected to a detector, 

and moved back and forth along the guide (slotted line) to determine the values and 

locations of the maximum and minimum EM fields waves (Figure 4.2c). 

 

 

Figure 4.2: Schematic representation of: (a) a uniform rectangular waveguide with 
driving and pickup stubs for waveguide design (slotted line) (b) cross 
section of the rectangular waveguide, and (c) example of detector standing 
wave pattern. 
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Cutoff frequency 

The lower cutoff frequency (or upper cutoff wavelength) defines the limits of 

operation of a waveguide. Frequencies below the lower cutoff frequency do not 

propagate down the guide. The accepted limits of operation for rectangular waveguides 

are approximately between 135% and 189% of the lower cutoff frequency. Waveguides 

can support many modes of transmission. The mode depicted in the rectangular 

waveguide in Figure 4.2a is called transverse electric (or TEm,n) mode. Subscripts m, and 

n represent the number of ½-wavelength variations of fields in the “a” dimension (broad-

wall) and the “b” dimension (short-wall). Other kinds of transmission modes are 

described elsewhere204,205 and will be dictated by the geometry of the cross section of the 

waveguide. The lower cutoff frequency, 𝑓KL, or upper cutoff wavelength (𝜆ML) for this 

TEm,n mode is given by: 

 

𝑓KL = 𝑐/ 2 ∙ 𝑎 , 𝜆ML = 2 ∙ 𝑎    Eq. 4.2 

 

Where, a is the dimension of the broad wall and c is the speed of light defined previously. 

The upper cutoff frequency is exactly one octave above the lower cutoff frequency. Thus, 

𝑓ML = 2×𝑓KL 205. If the signal generator, e.g., MW generator, is set at a frequency in the 

range between the lower and upper cutoffs, there will be waves propagating down the 

guide from the driving stub. At laboratory-scale, infinitely long waveguides can be 

studied and modeled by terminating the guide with an absorber in such a way that there 

are no reflections from the far end. Then, since the detector measures the time average of 

the fields near the probe, it will pick up a signal which is independent of the position 

along the guide; its output will be proportional to the power being transmitted204. 



 
 

66 

 

However, if the far end of the guide is shut in a way that produces a reflected 

wave, e.g. closed-off with a cooper sheet, there will be a reflected wave in addition to the 

incoming forward wave. These two waves will interfere and produce a standing wave 

inside the guide. If a pickup probe is moved along the slotted line (Figure 4.2a), the 

detector reading will rise and fall periodically, showing a maximum in the fields at each 

loop of the standing wave and a minimum at each node (Figure 4.2c). The existence of a 

maximum and a minimum allow for the design of a sample port cavity in which a sample 

can be placed so as to receive the maximum irradiation from a MW power generator. 

 

The free-space wavelength (𝜆R), or wavelength in vacuum, is different than the 

real wavelength that travels through the waveguide with a unique guide wavelength (𝜆S). 

The relationship between the two also involves the uppercut wavelength (𝜆ML), and the 

dimension of the broad wall (a) and is given as follows: 

 
T
UV

W −
T
UY

W =
T

UZ[
W =

T
:\ W     Eq. 4.3 

 

The distance between two successive nodes of the standing wave is ½ the 

wavelength in the waveguide (½𝜆S). This gives a convenient way of measuring the guide 

wavelength204. The wavelength in the guide can also be calculated as: 

 
𝜆S =

UY
T$ UY/UZ[ W =

UY
T$ UY/:∙\ W   Eq. 4.4 
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Where 𝜆S is the wavelength of the oscillations along the z-direction (the “guide 

wavelength”), 𝜆R is the free-space wavelength (also equal to 𝑐/𝑓) and a is the width of 

the rectangular waveguide as defined earlier. 

 

By calculating 𝜆S, one can easily determine the maximum (peak) and minimum 

(node) values of the wavelength in the waveguide, and thus, the location of the points of 

maximum and minimum radiation for an exposed sample. 

 

Material Selection for the Sample Vessel 

MW can generate heat by directly transforming the EM energy into molecular 

kinetic energy. Heat generated by a certain volume is a function of the electric field 

strength, the frequency, and dielectric properties of the material represented by its MW 

power dissipation: 

 

𝑃 = 2𝜋𝑓𝜀R𝜀b//𝐸:     Eq. 4.5 

 

Where P is the power absorbed per unit volume or volume energy density (W/m3), f is the 

operating frequency (Hz), 𝜀R is the permittivity of free space (8.85418782 × 10-12 m-3·kg-

1·s4·A2), 𝜀b// is the dielectric loss factor, and E is the electric field strength in (V/m). The 

loss factor is dependent on both the frequency and temperature. The higher the loss factor 

of a material, the better the substance can be heated with MW irradiation. By determining 

the heat loss, one can select a material that is “transparent” to MW radiation, and does not 

generate heat by absorbing radiation. Thus, a material with a low loss factor is essential 
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to ensure that biological irradiated samples are unaffected by external factors, e.g., 

temperature increase, by the sample vessel. 

 

Depending on the MW absorption behavior, materials can be classified as: (i) 

absorbers, e.g., water (𝜀b// = 0.15*); (ii) transparents, e.g., fused quartz (𝜀b// = 0.0001*) or 

Teflon(𝜀b// = 0.00015*); and (iii) reflectors, e.g., metals, graphite205. A high loss factor for 

water and other diluted aqueous substances results in significant MW energy absorption. 

Unfortunately, on account of complexity within interrelationships among parameters, 

calculations of field strength distribution, and therefore volume energy density are only 

possible for simple and ideal experiments. Thus, design of a MW reactor and its 

components still depends strongly on experience and trial runs205. 

 

4.2 EXPERIMENTAL 

4.2.1 Microwave Power Generator 

A variable MW power generator (GMP150, Opthos Instruments Inc., Rockville, 

MD) was used to generate MW radiation at the desired wavelength or frequency (Figure 

4.3a and 4.3b). The operating frequency of the generator is 2.45 GHz ± 25 MHz, and it is 

capable of measuring incident and reflected MW intensities (0–150 W at 1-W resolution). 

The unit has built-in protection to manage total reflected power (i.e., reflected power 

needs to be less than 50 W over 1 min or greater duration). Ripple in the radiofrequency 

signal is less than 0.2%, providing a stable radiation signal that is sensitive to small 

changes in frequency and wavelength. 

                                                
* Measured at 3 GHz. 
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4.2.2 MW waveguide 

A copper reactor was designed and fabricated and a waveguide is utilized to 

irradiate the samples with MW radiation at a desired wavelength (or frequency) (Figure 

4.3a and 4.3b). This design is modified from a previously published work that used a 

similar setup to study MW absorption by MWNTs 166 and to detect MWNTs in biological 

samples206,207. The MW power generator is equipped with a coaxial radiofrequency (RF) 

cable that connects to a brass waveguide (WR340-CPRF 2.10-3.00 GHz, Microtech, 

Cheshire, CT) (Figure 4.3b and 4.3c). The waveguide extends through a custom-built 

copper reaction chamber (l = 16.000 cm; a = 8.634 cm; b = 4.317 cm), which is closed at 

its far end with a removable copper lid and is sealed with copper tape to avoid radiation 

leak. By using Eq. 4.4, the length of the chamber can be calculated from the driving stub 

in the WR340 (17.32 cm), i.e., 𝜆S. Thus, a hole to insert a quartz vial was drilled at 4.33 

cm (¼ 𝜆S) from the closed end of the copper chamber. This ensures that the sample is 

located at an EM maximum and that each sample is uniformly exposed to the same 

radiation conditions. 
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Figure 4.3: (a) Schematic representation of the MW setup, (b) MW power generator, (c) 
waveguide and copper reaction chamber, (d) closed end of the copper 
reaction chamber, (e) quartz vials and sample holders, and (f) sample 
preparation in sterilized quartz tubes. 
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4.2.3 Bacterial Propagation 

Reference cultures of P. aeruginosa PAO1 were used to prepare standardized 

stock and working cultures were utilized for the inactivation studies. The reference 

culture was rehydrated in 25 mL LB medium in a 250-mL Erlenmeyer flask. The 

suspension was incubated for 20 ± 4 h at 36 ± 2 ºC on a shaker table operating at 150 

rpm. Glycerol cryo-protectant was added to the flask (10 mL), mixed well, and 

distributed into cryogenic vials (1 mL aliquots) and stored at -80 ºC. This first passage of 

the bacteria is the stock culture. To prepare working cultures, one vial of stock culture 

was thawed at room temperature and inoculated on a LB agar plate by streak plating to 

obtain colonies. The agar plate was incubated for 20 ± 4 h at 36 ± 2 ºC, and after the 

colonies were visible, 3-5 individual colonies were aseptically inoculated into a 25-30 

mL Erlenmeyer flask (250 mL). The suspension was then incubated for 5 ± 1 h at 36 ± 2 

ºC on a shaker table operating at 150 rpm. Glycerol (10 mL) was added at the end of the 

incubation period. After mixing the suspension, 1-mL aliquots were prepared and stored 

at -80 ºC. Advantages of using working cultures include same starting conditions of the 

bacteria for every set of experiments and increased reproducibility of results. The 

protocol followed was modified from ISO 10705-1:1995 (Section 10. Preparation of Test 

Materials)208. 

 

4.2.4 Inactivation Efficiency 

P. aeruginosa inactivation was used to benchmark the reactor study. Each 

experiment required preparation of a fresh bacterial culture. A working culture of P. 

aeruginosa was thawed overnight in fresh LB media, and the next morning, fresh LB 

media (15 mL) was inoculated with 200 µL of overnight culture. P. aeruginosa was 
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grown until the optical density measured at 600 nm reached 0.25-0.30, which occurred 

after 2.5 h of incubation. The suspension was then kept in wet ice at 4±1 °C to slow down 

replication of bacterial cells until ready for use. For optimal results, the bacterial 

suspension was used within 2 h of incubation. The suspension was then centrifuged 

(5810R, Eppendorf AG, Hamburg, Germany) at 5000 × g for 15 min, and the supernatant 

was removed. The remaining cell residue was re-suspended in 15 mL sterile 1X PBS 

solution (Fisher Scientific, Pittsburgh, PA). This procedure of centrifugation and re-

suspension in PBS media was repeated twice to remove the remaining LB growth 

medium. A 10 mg/L concentration of NH-1 was used to prepare dilutions of 1 mg/L final 

nanoparticle concentration. 

 

Two identical sets of samples were prepared for each experiment (Figure 4.3f); 

one set where bacteria was exposed to NH-1 (1 mg/L final concentration) and was 

irradiated with MW, while the second where bacteria was irradiated with MW but in 

absence of the NH-1. Positive controls, i.e., unirradiated bacteria and unirradiated 

bacteria exposed to NH-1, were also prepared for each run. Each sample was added to a 

quartz vial (10 × 75 mm, glassblowing shop, Department of Chemistry, The University of 

Texas at Austin, Austin, TX) (Figure 4.3e). Each sample was tested in triplicates, which 

were serially diluted (PBS) and plated on LB agar plates. Dried plates were incubated for 

16 ± 4 h at 36 ± 2 ºC, and viable colonies were counted. 

 

Inactivation efficiency is presented in terms of logarithmic fraction remaining and 

is calculated by: 
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𝐿𝑜𝑔	𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = logTR
nY
n

      Eq. 4.6 

 

where, 𝑁R and N are the number of viable microorganisms (i.e., formed colonies) before 

and after treatment, respectively. 

 

4.2.5 Experimental Matrix 

In order to determine the optimum conditions for spectral conversion, aqueous 

suspensions were exposed to different MW frequencies (2445, 2450, and 2455 MHz), 

MW power (20, 40, 60 W), and irradiation times (20, 40, and 60 s), as shown in Table 

4.1. The temperature of the sample was monitored with a K-type stainless steel 

thermocouple (Omega, Model SC-GG-K- 30–36, ungrounded, 0.032’’ diameter). The 

thermocouple was connected to a digital multimeter (HHM9007R), which read the 

temperature of the sample (range -200 to 1372 °C). The increase in temperature of 

aqueous suspensions was used to establish a baseline for wavelength, MW power, and 

exposure time for the experiments. 

 

Table 4.1: Experimental matrix. MW frequency was maintained at 2445, 2450, and 
2455 MHz. 

Time (s) / MW Power (W) 20 40 60 

20 P P P 

40 P P P 

60 P P P 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Baseline Measurements 

To establish a baseline, a series of measurements were conducted with the 

assembled copper reactor. Material selection and geometry of the sample holder were 

considered first. Borosilicate glassv (𝜀b// = 0.001*) and fused quartz (𝜀b// = 0.0001) were 

compared using a 1 mL DI water while irradiating the samples with MW (2450 MHz at 

70 W). Change in temperature of the transparent materials was monitored and is 

presented in Figure 4.4a. Quartz absorbs less MW radiation than borosilicate as was 

expected from the characteristic 𝜀b// values of these materials. Consequently, quartz was 

used in all the microbial inactivation studies. Figure 4.4b, compares the change in 

temperature due to MW absorption for a sample of DI water and a sample of DI water 

with 1 mg/L NH-1. Temperature differences between the two samples were not 

significant; hence, NH-1 will not be a source of heat for these experiments. 

 

                                                
v 10 × 75 mm, Fisherbrand 14-961-25, Fisher Scientific, Pittsburgh, PA. 
* Retrieved from: https://brainresearchlab.com/wp-content/uploads/2013/12/Borosilicate-
Glass%C2%A0Product-Information.pdf 
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Figure 4.4: Temperature change for samples as a function of MW power input and 
irradiation time for: (a) DI water samples in borosilicate and quartz vials, (b) 
DI water samples with and without 1 mg/L NH-1, (c) different volume of DI 
samples (at 30 W MW power), and (d) DI samples in a quartz vial with a 
range of input power. All experiments were conducted under 2450 MHz 
MW irradiation. 

 



 
 

76 

To select a sample volume, quartz tubes with 0.5, 1.0, 1.5, and 2.0 mL were 

irradiated (2450 MHz at 30 W) and temperature was measured before and after 

irradiation (Figure 4.4c). Small volumes result in rapid temperature changes as samples 

tend to equilibrate with room temperature rapidly. Large volumes are not desired because 

of higher material preparation requirements. Thus, 1 mL volumes were selected for all 

inactivation studies. 

 

Temperature changes were recorded when samples were irradiated (10-60s in 10 s 

increments) at 2450 MHz, for varying MW input power (10-90 W in 10 W increments) 

(Figure 4.4d). The objective of these measurements was to determine the operational 

conditions for the MW generator, so that temperature change in the sample can be kept to 

a minimum. 

 

Table 4.2: Sample temperature changes after irradiation at different frequencies, MW 
power, and irradiation intervals (1X = 20 s, 3X = 3 times 20 s, and 6X = 6 
times 20 s). Baseline temperature is 4 ºC. 

 2445 MHz 2450 MHz 2455 MHz 

 
40 W 60 W 20 W 40 W 60 W 40 W 60 W 

1X 12±0.0 18.3±0.0 8.00±0.0 14.00±0.0 19.50±0.0 14.7±0.0 21.7±0.0 
3X 11.8±1.3 17.97±0.3 8.00±0.0 13.17±0.7 19.95±0.7 14.77±1.2 21.03±0.7 
6X 12.4±0.5 18.9±0.5 8.13±0.34 13.83±1.1 20.23±0.9 15.63±0.6 22.83±0.8 

 

Finally, temperature changes were recorded as samples were irradiated for 20 s, 

60 s (in three 20 s intervals), and 120 s (in six 20 s intervals), while varying the MW 

input power and frequency (Table 4.2). Samples were irradiated and immediately 

returned to wet ice within 5 s to control the temperature. Results of this measurement 
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indicate that P. aeruginosa samples irradiated in successive cycles will not be affected by 

temperature increase of the solution as the final temperatures do not increase more than 

50 ºC. 

 

 

Figure 4.5: Log reduction of P. aeruginosa exposed to NH-1 when irradiated with (a) 
2445 MHz, (b) 2450 MHz, and (c) 2455 MHz radiation for 1X = 20 s, 3X = 
3 times 20 s, and 6X = 6 times 20 s at input power of 20 W, 40 W, and 60 
W. Controls with no MW irradiation are presented in the inset figure. 
Irradiated controls were measured only for the highest irradiation condition 
(i.e., 6X irradiation time at 60 W). NH concentration utilized in all 
experiments is maintained at 1 mg/L. Initial concentration of P. aeruginosa 
~107 CFU/mL. LOD is 100 CFU/mL. Error bars represent one standard 
deviation measured from triplicates. 

 

4.3.2 Bacterial Inactivation Results and Optimization 

Inactivation results of P. aeruginosa after irradiation with and without the 

presence of NH-1 under a wide range of incident radiation frequency (2445, 2450, and 
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2455 MHz), input power (20, 40, and 60 W), and irradiation time (1X = 20 s, 3X = 3 

times 20 s, and 6X = 6 times 20 s) is presented in Figure 4.5. A maximum input power of 

60 W was selected for a comparison between the three frequencies tested for protection 

of the MW power generator. Larger incidence MW power (e.g., 70 W) at 2455 MHz 

results in reflected power values above 50 W. Thus, the MW power generator is 

automatically shut down for protection of the electronic components. 

 

Results indicate that maximum reduction of P. aeruginosa achieved at any 

condition is no more than 1.25 log units, irrespective of irradiation frequency, time, or 

input power. Increase in irradiation time and input power both showed minor influence 

on inactivation enhancement (except in the case of 2450 MHz frequency where 120 s 

irradiation time appeared to be most effective. Below, a detailed discussion of each of the 

panels are given below. 

 

Figure 4.5a shows that inactivation increases slightly with the increase in power 

(from 0.63±0.11 to 0.77±0.15 log removal achieved for 40 and 60 W, respectively). 

However, no significant difference in inactivation was observed for increased irradiation 

time (values were within one standard deviation for all these cases). At this frequency, 60 

s irradiation with 60 W input power will result in highest inactivation. Figure 4.5b shows 

interesting difference in trend, particularly for irradiation time. Input power showed 

consistent enhancement in activation; however, irradiation of 60 s showed the most effect 

for both 40 and 60 W power. These results appear to deviate from the expected trend, and 

require further analysis to verify accuracy of the measurements. However, it is to be 

noted that inactivation achieved for 120 s irradiation with 60 W power is comparable to 
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that achieved with the conventional MW, as presented earlier. Panel ‘c’ shows a similar 

trend as observed in panel ‘a’, that is influence of irradiation time and input power was 

minor at 2455 MHz. However, this frequency showed the highest log removal 

(1.27±0.24) among any of the cases studied, when irradiated for 120 s at 60 W input 

power. It is to be noted that these are the first evidences of bacterial inactivation using a 

controlled MW system. Further optimization of the NH design as well as device 

engineering are necessary to achieve higher inactivation. 

 

4.3.3 Key Findings 

This chapter describes design and construction of a MW waveguide enabled 

reactor, which can now be utilized to study microbial inactivation with MW with a high 

degree of control over key irradiation parameters. Baseline measurements performed on 

this setup has identified guideline values of MW frequency, input power, and irradiation 

time that limit the temperature rise to a maximum of 20 °C. Inactivation of P. aeruginosa 

has been achieved for a range of MW frequency, input power, and irradiation time. 

Increasing these parameters results in a minor increase of bacterial inactivation. 

However, the maximum inactivation achieved has not exceeded 1.25 log units, regardless 

of the irradiation parameter utilized. These results are encouraging. Using the waveguide-

reactor and guidelines parameter values the use of these materials can be elevated to a 

disinfection technology. 
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Chapter 5: Evaluation of Inactivation Efficacy for a Wide Range of 
Waterborne Microorganisms 

5.1 INTRODUCTION 

Disinfection of water involves inactivation of a wide variety of disease-causing 

microorganisms. Pathogenic microorganisms in drinking water come in all varieties and 

types including bacteria, viruses, algae, protozoa, and helminths209. Some pathogenic 

microorganisms in these groups originate from fecal discharges of humans and other 

animals. Examples include E. coli O157, Legionella, rotaviruses, hepatitis E virus, 

norovirus, Cryptosporidium, and Giardia210. Conventional disinfection methods, such as 

chlorination, ozonation, and UV disinfection, have proven to be highly effective in 

bacterial4 inactivation. However, the formation of harmful disinfection by-products 

during chemical-based disinfection (i.e., chlorination and ozonation), has raised concerns 

and initiated development of alternate non-chemical-based technologies9. Furthermore, 

highly effective alternative technologies are desired to inactive some pathogens, e.g., 

protozoan cysts4 and viruses211, that have high resistance to chemical disinfectants.  

 

Understanding the efficacy of the developed NH to inactivate a wide range of 

waterborne microorganisms is essential for this technology to progress further as a 

potential disinfection solution. This chapter presents assessment results of the 

nanohybrids (NH) to inactivate surrogates of pathogenic bacteria, viruses, and protozoa. 

These species are Bacillus subtilis, Legionella pneumophila, Escherichia coli 

bacteriophage MS2, and Flavobacterium columnare (relevant to aquaculture water 

quality). Details on each of the microorganisms are described in the following section. To 

inactivate these microorganisms, the waveguide-reactor setup described in Chapter 4 has 
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been used. Conventional MW frequency (2450 MHz) and 70 W input power have been 

employed for all inactivation studies. Baseline measurements for each microorganism 

have been performed to establish initial resistance to inactivation. Results presented in 

this chapter can serve as a guideline for redesign of the NHs to achieve higher log-

removal of a wide range of waterborne microorganisms. 

 

5.1.1 Selected Microorganisms 

Bacillus subtilis 

B. subtilis is a Gram-positive disinfection-resistant spore-forming bacterium, 

ubiquitous in nature212. B. subtilis has been shown to be less sensitive than common 

Gram-negative bacteria to the effects of alternative disinfection technologies such as 

UV18,190. Because of their high resistance to disinfection, spores of B. subtilis have been 

used as an appropriate surrogate to assess inactivation of protozoan cysts, i.e., Giardia 

lamblia cysts and Cryptosporidium parvum (oo)cysts, in drinking water213,214. Even if 

bacillus spores are not indicators of the presence of protozoan parasites in environmental 

systems (Lytle et al., 1996), it is possible to correlate their inactivation with that of the 

protozoan cysts213. Use of an indicator is needed due to the high costs associated with cyst 

detection, their complex identification techniques, and difficult reproducibility of results. 

Conventional irradiation based disinfection methods are not successful to eliminate 

protozoa cysts from water215. Thus, this study offers a great opportunity to explore a new 

irradiation method on these infectious microorganisms. 
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Legionella pneumophila 

L. pneumophila, is a motile, rod-shaped, Gram-negative, aerobic, and facultative 

organism that affects the elderly, those with chronic or pulmonary diseases, and those 

ewith a suppressed immune system. Legionella thrives in warm aquatic environments 

(shower heads, air conditioning systems, cooling towers, etc.) and in rust, algae, and 

organic particles216. Infections to humans are frequently caused by inhalation of 

aerosolized droplets containing infectious cells217. L. pneumophila is the leading cause of 

Legionnaires’ disease218 and the bacterium selects to grow inside other organisms, e.g., 

amoebae, where it reproduces intracellularly using the internal constituents of its host216. 

L. pneumophila is more challenging to inactivate when associated with amoeba and even 

more challenging when associated with amoeba cysts216. Currently, chemical 

disinfectants, e.g., chlorine, bromine, iodine, chlorine dioxide, and copper and silver ions, 

are used with thermal treatment, i.e., heat treatment at >60 ºC, to inactivate this pathogen. 

Alternatives to conventional water disinfection technologies are being explored219. 

Legionella spp. have shown to be sensitive to relatively low levels of H2O2 and O2
•-220, 

which is why this MW irradiation based technique might be effective. 

 

MS2 bacteriophage 

MS2 phage is a RNA coliphage virus within the family Leviviridae that infects E. 

coli221,222. Because of its small size (capsid 23 nm), shape (icosahedral), relatively simple 

composition (molecular weight 3.5-4.3 × 106 kb), and ease of culture222, MS2 is used as a 

model organism to study viral inactivation190. MS2 have also been frequently used as 

surrogates of human enteric viruses and thus has extensively been studied in water during 

drinking water treatment processes223-225. MS2 infects coliform bacteria by attaching to 
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the side of their pilus via its single maturation protein. F-pili are the mating organelles of 

E. coli, enabling male bacteria to transfer a partial single-stranded copy of their 

chromosome to female bacteria, which do not possess pili. These ribbon-like structures 

are composed of a single protein polymerized into a long flagellum (1-2 µm), that 

protrudes from the cell. The precise mechanism by which this phage’s RNA enters the 

bacterium is unknown. However, once inside the cell, viral RNA begins to function 

as messenger RNA for the assembly of phage proteins. In a highly-regulated process, 

coat proteins are immediately translated, and only then, the lysis gene is expressed 

enabling the bacterial machinery to produce additional lysis proteins. Additional 

information on replication of MS2 is available elsewhere222. Bacterial lysis is then 

activated, and release of newly formed MS2 virions occurs when sufficient lysis protein 

has been produced. Irreversibly, lysis proteins attack the host’s cytoplasmic membrane, 

resulting in loss of membrane potential and release of new viral particles221,222. This new 

batch of MS2 viral particles, are then protected by their coat of proteins, which makes 

them more resistant to UV disinfection than are enteroviruses and enteric bacteria; thus, 

making it an excellent surrogate candidate for enteric virus disinfection studies226. 

 

Flavobacterium columnare 

To expand the possible use of this new technology to indoor aquaculture setting, 

Flavobacterium columnare, a waterborne microorganism that causes the disease 

columnaris in fishes in the southeastern U.S., also has been selected. Most species of fish 

are susceptible to F. columnare, particularly after temperature related environmental 

stress (25-32 ºC range) in the spring through fall seasons227. Inactivation of this 

pathogens in aquaculture water is essential to maintain production volume. Though 
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aquaculture is the fastest growing food-producing sector in the U.S. and is currently 

constitutes nearly 50% of seafood supply228, the presence of waterborne pathogens in 

high-density fish farming operations is identified as a primary cause for global 

aquaculture crop loss. One-fifth to half of the aquaculture production is lost to bacterial, 

viral, protozoan, and fungal attacks229.  

 

F. columnare are fastidious, filamentous, Gram-negative, slender gliding rods that 

are slow-growing microorganisms requiring specialized medium for optimal growth in 

the laboratory230. This species is strictly aerobic and can survive for extended periods in 

water230. Additionally, F. columnare has been recovered from biofilms that act as 

reservoirs and thus allows them to protect themselves from environmental stressors in 

aquaculture ponds, during columnaris outbreaks231. Chemical disinfectant options (e.g., 

chloramines-T, potassium permanganate, copper sulfate, hydrogen peroxide, sodium 

chloride) are undesirable for the food industry due to possible bioaccumulation and 

biomagnification232. Therefore, alternative disinfection technologies, e.g., UV 

disinfection, are commonly utilized233. UV disinfection becomes ineffective in such 

cases, where high hardness in water causes scaling and compromises the transparency of 

the water, that is required for UV to be effective. As discussed in Chapter 1, MW 

irradiation does not require a clear optical path, thus making this technology attractive for 

inactivating such pathogens in these conditions. 
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5.2 EXPERIMENTAL 

5.2.1 Materials 

Bacillus subtilis subsp. subtilis (ATCC® 6051TM), Legionella pneumophila 

(ATCC® 33152 TM), E. coli bacteriophage MS2 (ATCC® 15597-B1 TM), E. coli host 

(ATCC® 15597 TM), and F. columnare (ATCC® 23463 TM) were obtained from the 

American Type Culture Collection (Rockville, MD). 

 

Tryptone dehydrated, dextrose anhydrous (glucose), calcium chloride, thiamine, 

iron (II) sulfate heptahydrate, magnesium chloride, calcium nitrate, potassium chloride, 

magnesium sulfate, nutrient agar Difco (BD213000), nutrient broth Difco (BD234000), 

peptone powder, ACES buffer, sodium acetate, sodium chloride, and beef extract were 

purchased from Fisher Scientific (Houston, TX). Yeast extract, charcoal (Sigma C-5510), 

L-cysteine hydrochloride, iron (III) pyrophosphate, potassium hydroxide, were obtained 

from Sigma (St. Louis, MO). Other reagents were purchased from Fisher Scientific 

(Houston, TX), unless otherwise noted. 

 

5.2.2 Preparation of Bacterial and Viral Strains 

Bacterial stocks and working cultures were prepared using the protocol described 

in Chapter 4. Freeze-dried MS2 phages were recovered by rehydrating them in ATCC 

271 Escherichia medium (Appendix E). Phage stocks are kept at 4±1 ºC until ready to 

assay. Reference cultures of bacteria were rehydrated in specific broth media and 

acclimatized by incubating them at their specific growth conditions (see Table 5.1). 

Cryovials were then prepared by adding glycerol to the acclimatized cultures. Standard 

working cultures for each experiment also were prepared by isolating individual colonies 
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formed on agar plates. Colonies were then aseptically transferred into fresh growth 

media, incubated, and transferred to cryovials with cryoprotectant media, and stored at -

80 ºC. Other details are presented in Chapter 4. 

 

5.2.3 Inactivation Efficiency 

Inactivation experiments followed closely the protocol developed in 4.3.4. Each 

experiment required the preparation of fresh bacterial cultures, i.e., B. subtilis, L. 

pneumophila, F. columnare, and E. coli host, and a viral suspension, i.e., MS2. The 

general steps followed for the preparation of bacterial and viral strains and typical growth 

characteristics of each microorganism are presented in Table 5.1.  
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Table 5.1: Steps for the preparation of bacterial and viral strains, and their particular 
culturing conditions. 

 B. subtilis L. pneumophila F. columnare E. coli host MS2 phage 
1. Working 
culture strain 

• Previously prepared working culture stored at -80 ºC Reference 
stock was 
rehydrated 
and phages 
are kept at 
4°C ± 1°C. 

• A vial of working culture is thawed and added to 25 mL fresh 
prewarmed broth media, specific for each strain. 

NA 

2. Growth / 
maintenance 
media* 

Nutrient 
broth 
(BD234000) 

ATCC 1099 
CYE buffered 
medium 

Anacker and 
Ordal medium 

ATCC 271 
Escherichia 
medium 

ATCC 271 
Escherichia 
medium 

3. Acclimatization  Overnight at 
30 ± 2 ºC and 
150 rpm 

48-72 hr at 37 ± 
2 ºC and 150 
rpm 

72-96 hr at 
20°C ± 2 ºC 
and 150 rpm 

Overnight at 
37 ± 2 ºC and 
150 rpm 

NA 

4. Inoculation of 
fresh broth 

500 µL of overnight or acclimatized culture are inoculated into 25 
mL fresh broth media. 

NA 

 Cultures are allowed to grow until log-phase is achieved and their 
optical density is monitored. 

NA 

 After reaching log-phase, bacterial suspensions are chilled on wet 
ice to slow replication until ready for use. 

NA 

5. Resuspension 
in buffer media 

Cells are harvested, separated from growth media 
by centrifugation at 5000 × g for 15 min, and 
resuspended in PBS to maintain bacterial 
permeability after each cycle. 

NA NA 

6. Dilutions Suspensions are diluted accordingly. NA 
NA: not applicable 

 

Identical sets of samples were prepared for each experiment: i) an irradiated set 

composed of bacteria or MS2 samples with and without NH-1 (1 and/or 10 mg/L final 

concentration) and ii) an unirradiated set for the same samples. For each experiment, a 1 

mL sample was MW irradiated in sterile quartz tube. Samples were then serially diluted 

(PBS) in 96-well plates, and 10 µL of sample dilutions were pipetted onto agar plates, 

following the protocol developed in Chapter 3. Each sample was tested in triplicates. 

Dried plates were incubated following the individual conditions of the different bacterial 

                                                
* See appendix E for growth media composition. 
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strains (i.e., temperature and incubation time, see Table 5.1), and viable colonies were 

enumerated at the end of incubation by plate counts. Inactivation efficiency is presented 

in terms of logarithmic reduction and is calculated using Eq. 4.6. For phage inactivation, 

MS2 bacteriophages were quantified by a plaque assay (double agar layer), which is 

validated by ISO 10705-1208. 

 

The irradiation protocol is described in details in Chapter 4. Briefly, agar plates of 

ATCC 271 Escherichia medium were prepared following the recipe shown in Appendix 

E. Soft agar of the same growth media is also produced, autoclaved, divided into 2.5-mL 

sterile tubes, and kept in a water bath at 45-48°C. After a fresh bacterial host batch is 

ready, i.e., has reached mid-exponential phase (Table 5.1), a small volume (50 µL) is 

inoculated into each of the tubes of molten soft agar and kept in the hot water bath. The 

solution is gently mixed, to avoid introducing bubbles to the agar, and is rapidly added on 

top of the agar plates, where it is spread by inclining the plate and allowed to solidify. At 

the same time, a set of samples is irradiated with MW energy, while another identical set 

is kept away from direct light exposure. Samples are then serially diluted (PBS) at six 

different dilutions and pipetted onto soft agar plates. For each dilution, agar is punctured 

to leave a reference point where MS2 was injected. Dried plates are incubated at 37±2 ºC 

for 16 to 24 h, and circular zones of clearing (typically 1 mm diameter) in lawn of host 

bacteria are enumerated. Inactivated bacteriophages do not infect and multiply in the 

bacterial host, and thus, no clearings are obtained. Resulting plaques are reported in 

plaque-forming units (PFU/mL)_for MS2. Inactivation efficiency is presented in terms of 

logarithmic reduction as calculated by Eq. 4.6. 
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For B. subtilis studies, sporulation was carried out in 2X SG medium (Appendix 

E), and spores were allowed to form while incubating after 7 days at 30±2 ºC and 150 

rpm. Following incubation, B. subtilis spores were isolated and washed as previously 

described. A heat shock treatment at 65 ºC for 30 min is performed to the freshly 

harvested cells, in order to inactivate any remaining vegetative cells. This heat treatment 

has no effect on the viability of spores. 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 B. subtilis inactivation 

Baseline experiments were performed with B. subtilis spores exposed to NH-1 (1 

mg/L final concentration) and irradiated for 20 s at 70 W input power at 2450 MHz 

irradiation (results not shown). Preliminary data did not result in successful inactivation 

of the bacterial spores. Thus, a longer irradiation regime (60 s, 3X 30s, and 9X 30s) 

combined with an increase of the NH-1 concentration (10 mg/L final concentration) was 

selected. Figure 5.1 shows that no significant inactivation of B. subtilis spores is achieved 

until irradiation was applied for 270 s. When the concentration of NH-1 is increased to 10 

mg/L, irradiation produced a minor increase in log reduction (0.38±0.17) compared to the 

1 mg/L concentration. These results are encouraging but still not satisfactory if compared 

to other technologies. However, results are consistent with studies that use combined 

UV/H2O2 advanced oxidation234, where H2O2 and UV/H2O2 combined treatment did not 

show any inactivation of B. subtilis spores. In another study, OH radicals seemed to play 

a minor role in the inactivation of the spores and ozone is presented as the most efficient 

chemical disinfectant available to inactivate them235. However, a proper inactivation of 
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the more resistant C. parvum oocysts with ozone, might generate harmful concentrations 

of DBPs because of the high doses and contact times required235. Thus, an altered design 

of the NHs, for these spores, capable of producing higher concentration of ROS is 

desired. 

 

 

Figure 5.1: Inactivation of B. subtilis exposed to NH-1, and appropriate controls. 
Material concentration utilized in all experiments was varied at 1 and 10 
mg/L. Initial concentration of B. subtilis ~107 CFU/mL. LOD is 100 
CFU/mL. Error bars represent one standard deviation measured from 
experimental triplicates. 

 



 
 

91 

5.3.2 L. pneumophila inactivation 

Baseline experiments where ~2×104 CFU/mL cells were irradiated for 20 s at 70 

W at 2450 MHz (results not shown), did not result in significant differences between 

controls and bacteria exposed to NH-1 (1 mg/L). For extended irradiation conditions (70 

W at 2450 MHz for 60, 180, and 360 s), the temperature of the sample was controlled 

between irradiations cycles (with a cold water bath) to minimize convolution of 

inactivation mechanisms. Figure 5.2 shows that irradiation time plays a significant role in 

inactivation for NHs used at 1 mg/L concentration. Increasing the NH concentration to 10 

mg/L did not improve the log removal and also showed less sensitivity to higher 

irradiation time. The highest inactivation was observed for 1 mg/L NH concentration 

irradiated 360 s (1.17 ± 0.17 log reduction).  
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Figure 5.2: Inactivation of L. pneumophila exposed to NH-1 and appropriate controls. 1 
and 10 mg/L NH concentration was utilized up to three cycles of irradiation. 
Initial concentration of L. pneumophila ~2×104 CFU/mL.  LOD is 100 
CFU/mL. Error bars represent one standard deviation measured from 
experimental triplicates. 

 

 Results obtained are comparable to the those for P. aeruginosa discussed in 

Chapter 4. Our results are in agreement with other literature findings using photocatalytic 

materials and UV radiation236. Inactivation of L. pneumophila by photocatalytic oxidation 

results in effective disintegration of the cytoplasmic membrane of cells due to ROS 

formation and inactivation of bacterial strains 219. Additionally, L. pneumophila has 

exhibited sensitivity to relatively low levels of H2O2
220, making this bacteria especially 
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susceptible to this technology. Improvement in material composition could enhance log 

removal of this important waterborne microorganism. 

 

5.3.3 F. columnare inactivation 

An initial concentration of ~2×108 CFU/mL was exposed to NH-1 and an 

identical sample was irradiated with MW power for 60 s (70 W and 2450 MHz). 

Irradiation of NH-1 for 60 s resulted in 4.13±0.7 log reduction, while its irradiated 

control (bacteria without NPs) resulted in 2.22±0.06 log reduction. Clearly, temperature 

is important in inactivating F. columnare, but the treatment with MW irradiation in the 

presence of NH-1 resulted in two-orders of magnitude higher reduction. Similar 

irradiation-based technologies, i.e., photocatalytic irradiation, are able to obtain more 

than 5-log and 2-log reduction upon 30 min of irradiation, with initial cell concentrations 

of 108-109 CFU/mL and 104-106 CFU/mL, respectively237. Additionally, hardness and pH 

also have been shown to play important role in the photocatalytic inactivation process237. 

Clearly, this MW irradiation technology provides an economic/energetic advantage over 

the existing radiation based disinfection technologies with comparable removal 

efficiency. These preliminary results are not only promising but could be a new way of 

disinfecting aquaculture ponds with an innovative irradiation technology that do not pose 

the same risks as the chemical-based disinfectants used conventionally229,232. 
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Figure 5.3: (a) Colonies of F. columnare grown in Anacker and Ordal agar and (b) 
inactivation of F. columnare exposed to NH-1. 1 and 10 mg/L NH 
concentration was utilized up to three cycles of irradiation. Initial 
concentration of F. columnare ~2×108 CFU/mL. LOD is 100 CFU/mL. 
Error bars represent one standard deviation measured from experimental 
triplicates. 

 

5.3.4 MS2 inactivation 

Baseline experiments are performed with ~6×108 PFU/mL MS2 exposed to 1 

mg/L NH and irradiated for 20 s at 70 W power at 2450 MHz (results not shown). 

Preliminary data did not result in successful inactivation of the MS2, and hence, a longer 

irradiation cycle (i.e., 180 and 360 s) and increased NH concentration (10 mg/L final 

concentration) are utilized. 
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Figure 5.4: Inactivation of MS2 bacteriophage exposed to NH-1 and appropriate 
controls. 1 and 10 mg/L NH concentration was utilized up to three cycles of 
irradiation. Initial concentration of MS2 ~6×108 PFU/mL.  LOD is 50 
PFU/mL. Error bars represent one standard deviation measured from 
experimental triplicates. 

 

Figure 5.4 shows that at least 360 s irradiation is required to achieve any 

noticeable inactivation of MS2. Increase in the concentration of the NHs did not enhance 

MS2 inactivation, substantially. The highest inactivation achieved was 0.29±0.078 log 

with the higher NH concentration and at maximum irradiation time. Evidence shows that 

MS2 phages when exposed directly to a high dose of H2O2 (150 mg/L), are only 

inactivated up to 0.2 log 211. However, other studies have shown that OH· might enhance 

inactivation efficacy of MS2 by causing damage to the viral capsid, and facilitating 
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diffusion of other types of ROSs into the virions238. Thus ROS produced by this specific 

NH might not be sufficient to achieve adequate inactivation but enhanced material design 

might lead to improved inactivation. 

 

5.3.5 Key Findings 

This chapter assessed the efficacy of the designed NHs to inactivate a wide range 

of surrogates of pathogenic bacteria, viruses, and protozoa. Different degrees of 

inactivation were obtained for different species studied. B. subtilis spores showed no 

significant inactivation after these were irradiated for 270 s. Increasing material 

concentration (from 1 to 10 mg/L) produced a minor increase in the removal of viable 

colonies. For L. pneumophila, results are more in agreement with those obtained with P. 

aeruginosa (in Chapter 3 and 4). However, 1.17 log reduction is only achieved after 360 s 

of irradiation. Significant removal of the aquaculture-relevant microorganism F. 

columnare (~4 log reduction) has been achieved, which shows promise for this 

technology to those microorganisms that are sensitive to ROS. These results are 

promising and indicate that a better material design is necessary to elevate this to a 

disinfection technology. 
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Chapter 6: Conclusions and Recommendations 

In this dissertation, the design, synthesis, characterization, and efficacy of a new 

NH that can harness the power of MW to inactivate a wide range of pathogens has been 

presented. This is the first report to-date where MW irradiation utilized over a short 

duration was successful in inactivating a variety of waterborne pathogens. Though the 

results obtained show promise, significant improvement in bacterial and viral log removal 

is necessary to elevate this technology as an effective disinfection process for point-of-

use applications. The key findings from this dissertation and recommendations for future 

work are discussed in this chapter. 

 

Objective 1 (Chapter 2). Perform a detailed literature review to better understanding 

the multifunctional properties of NHs. 

 

A comprehensive review was performed on stimuli-responsive materials, to better 

understand synergy between multiple nano-scale entities. During this review, it was 

found that when MWNTs are hybridized with metal oxides, the resulting hybrids exhibit 

excellent absorption properties in visible light region and thus can be engineered to 

extract useful photocatalytic properties 38,84. From this review, a NH based on MWNT and 

lanthanide series components, that can absorb electromagnetic (EM) radiation and 

subsequently produce ROS, was found to be a potential candidate for inactivation of 

bacteria. EM stimulation in the form of MW radiation was of particular interest since 

MW applications have spread in all economies worldwide, and the MW market continues 

to grow16. Further, MW radiation constitutes an affordable technology that can be 
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adopted for unintended uses, such as disinfection, making it a versatile technology with 

potential applications at both centralized or point-of use scales. 

 

Objective 2 (Chapter 3).  Design, synthesize, and characterize a novel NH, capable of 

MW spectral conversion for inactivation of P. aeruginosa. 

 

Successful hybridization of MWNT-Er2O3 NH with a wide range of metal oxide 

has been achieved utilizing a modified sol gel process developed in a parallel dissertation 

work34. The design of these materials was independently done and the sol-gel method was 

utilized with a unique objective of utilizing the MW absorption capabilities of MWNTs 

and spectral conversion abilities of lanthanide series metals. Characterization of the 

materials showed metal/metal oxide crystalline features that were chemically bound to 

MWNTs. Control over synthesis with loading and distribution uniformity of erbium 

oxide on MWNTs is demonstrated via STEM images, elemental mapping, and elemental 

composition using STEM, XPS, XRD, and TGA characterization techniques. 

 

Inactivation potency of the NHs has been achieved upon irradiating P. aeruginosa 

with MW in the presence of NHs. The results show the first evidence of nano-scale 

heterostructures that can harness MW radiation to produce ROS and subsequently 

inactivate a waterborne microorganism. The energy footprint for achieving these results 

is also low (0.0006 kW·h) and hence demonstrates promise of this technology to be used 

as a point-of-use treatment solution in a practical and affordable way.  
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Objective 3 (Chapter 4).  Exploring the roles of MW wavelength and irradiation time 

on inactivation effectiveness of P. aeruginosa in an effort to 

unlock the energetic balance in the disinfection system. 

 

With an objective to better understand the role of irradiation parameters (i.e., 

irradiation time, radiation frequency, and input power) on inactivation, a MW radiation 

device has been designed and constructed. The efficiency of the reactor design was tested 

with P. aeruginosa inactivation.  

 

This constitutes the first development of a reactor with appropriate control of MW 

radiation for samples of bacteria exposed to NHs. The setup includes a MW power 

generator and a copper waveguide that has been designed exclusively for this purpose. 

The initial studies show that the reactor transmitted MW radiation as expected (via 

temperature measurements) and that bacterial inactivation studies can be performed using 

such a setup, controlling the necessary parameters. The design and start up experiments 

served as a methodical approach to inactivation of waterborne pathogens. 

 

Inactivation of P. aeruginosa was achieved while varying wavelength, MW input 

power, and MW irradiation time. Exposing samples to a higher energy, results in a slight 

increase in bacterial inactivation. However, the maximum inactivation achieved at any 

condition did not exceeded 1.25 log units regardless of irradiation frequency, input 

power, or irradiation exposure. The inactivation achieved is still not adequate for this 

technology to be used for water disinfection. However, future studies should concentrate 

on redesign of the NH material for improved inactivation. Results in this chapter serve to 
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further confirm that NHs are able to harness MW irradiation for inactivation of 

waterborne microorganisms at an even lower MW input power (60 W). 

 

Objective 4 (Chapter 5).  Determine the inactivation efficacy of the MW spectral 

conversion NHs for a wide range of waterborne 

microorganisms. 

 

With the goal of determining efficacy of the MW-enabled NH technology at 

inactivating a wide range of waterborne pathogens of environmental relevance, four 

species, of both pathogenic and surrogate microorganisms, were examined. Samples were 

irradiated using the frequency of conventional MW appliances (2450 MHz) at the 

maximum input power that the generator can allow for the design of the waveguide (70 

W). 

 

Baseline inactivation experiments served to establish working protocols for each 

microorganism and their resistance to inactivation. Irradiation times were adjusted 

individually, and samples were irradiated in cycles to minimize interference between 

inactivation mechanisms. Distinctive amounts of inactivation were obtained for each 

microorganism:  

• B. subtilis spores showed no significant inactivation after irradiation for 270 s. 

Increasing material concentration (from 1 to 10 mg/L) produced a minor increase 

in the removal of viable spores. 
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• L. pneumophila, results are more in agreement with results obtained with P. 

aeruginosa. However, 1.2-log reduction was only achieved after 360 s of 

irradiation in 60 s cycles.  

• F. columnare strains resulted in an important accomplishment after obtaining ~4 

log reduction of viable counts after only 60 s irradiation. This result is an 

important finding for the aquaculture industry in need of new disinfection 

methods to prevent the accumulation of chemical byproducts in the food chain. 

• Insubstantial inactivation of MS2 viruses was observed. 

 

Future Work 

Though this dissertation presents one of the first evidences that successfully 

utilized MW (one of the lowest energy radiation) to inactivate, i.e., reduce viable plate 

counts, waterborne microorganisms, there is substantial room for improvement. The 

inactivation achieved by the combination of the NH material and the MW power 

generation and irradiation setup did not achieve the levels of inactivation needed for 

reliable disinfection. Improved material design to better harness MW radiation and 

subsequently produce increased amount of ROS to inactive waterborne pathogens is 

necessary. Furthermore, device engineering utilizing the NHs also is desired for practical 

use of this technology as a point-of-use treatment solution. 

 

Future work can focus on the following key areas: 

• Redesign of NHs with a lower loading of Er2O3, which might enable 

improved absorption of MW radiation and thus will likely facilitate ROS 

production.  
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• Identify the most adequate loading/absorption of MW radiation ratio for 

the MWNT-Erbium NH or new materials. 

• Systematically assessing the role of surface charge of the microorganisms 

and the state of aggregation of the NHs on production of ROS and 

subsequent pathogenic inactivation is necessitated. 

• Evaluate responses of microorganisms to H2O2 disinfection processes with 

different qualities of water and NOM content, for any possible blocking 

effects. 

• Consider designing a NH where local heating of the material with highly 

heat conductive metals (like Ag) as well as ion donation (e.g., from Ag 

nanoparticles) can provide multi-pronged attack to better inactivate 

pathogens.  

• Developing new protocols to rapidly assess the inactivation efficiency of 

the system. 

• Obtaining and improving techniques for measuring ROS. ROS probes are 

expensive and their preparation is complex. Spin-trapping for small 

concentrations of nanomaterials is challenging. 

• Optimizing NH and/or bacterial concentration for achieving higher 

removal. 

• Further experimental investigations are needed to estimate the energetic 

balance of the system. As the optimal efficiency in the present study is not 

satisfactory for practical application, more efficient NHs and waveguide 

designs can now be implemented and tested with this development. 
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Potentiostats can elaborate on current produced while infra-red cameras 

can be used to assess local heating of the samples.  

• Redesigned NHs should be immobilized on a surface for enabling 

practical use of these materials. Ceramic membranes can be used as an 

option for such immobilization and testing. Later, ceramic vessels lined 

with the NHs can be designed and used as point-of-use devices.  

• Water quality can influence the efficiency and performance of the MW 

inactivation process. The role of natural organic matter (which can serve 

as scavengers of ROS) and turbidity should be studied  

• The safety of these materials needs to be assessed for this technology to be 

commercialized. Also, possible chemical by-product formation by 

unintended reactions of ROS with synthetic or natural organic molecules 

needs to be evaluated. 
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Appendices 

APPENDIX A – TABLES 

Table A.1: Loading ratios of the 3 NHs. 

No. Name Amount of MWNTs 

(mg) 

Amount of salt* 

(mg) 

Molar Ratio 

(C:Er3+) 

1 NH-1 50 115 16.04:1 

2 NH-2 50 230 8.02:1 

3 NH-3 50 460 4.01:1 

* Erbium salt: Er(NO3)3·5H2O 

 

Table A.2: EDX elemental composition of the NHs synthesized. 

Element Weight %* 
NH-1 NH-2 NH-3 

Carbon  41.36 23.82 7.47 
Erbium 47.91 64.12 80.11 
Oxygen 10.73 12.06 12.41 
Relative Ratios C:Er3+ 0.86 0.37 0.09 

*Weight % calculated as the atomic percentage times molecular weight divided by the 
total sum of elements detected. 

 

Table A.3:  Summary of XPS data and weight percentage of elements. 

XPS Region Weight %* 
NH-1 NH-2 NH-3 

C 1s  49.08 35.71 12.90 
Er 4d 38.16 49.35 69.13 
O 1s 12.76 14.94 17.97 
Relative Ratios C:Er3+ 1.29 0.72 0.19 

*Weight % calculated as the atomic percentage times molecular weight divided by the 
total sum of elements detected. 
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Table A.4:  Temperature increase after 20 s MW irradiation time at 10% power (0.0006 
kW·h). 

 Initial 
Temperature, 

ºC 

Final 
Temperature, 

ºC 

Delta 
Temp, ºC 

DI 22.10 23.27 1.17±0.12 

MWNT 23.23 24.03 0.80±0.10 

Salt* 23.27 24.37 1.10±0.17 

NH-1 23.40 25.50 2.10±0.30 

NH-2 23.67 24.87 1.20±0.17 

NH-3 23.33 24.37 1.03±0.06 

   * Erbium salt: Er(NO3)3·5H2O 
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APPENDIX B – FIGURES 

 

 

Figure A.1: STEM HAADF images of a representative ion-beam irradiated samples of 
NH-1. 
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Figure A.2: EDX spectrum of representative NH-1. Erbium, carbon, and oxygen 
elements are all identifiable. 
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Figure A.3: STEM images and elemental mapping of the NHs synthesized. 
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Figure A.4: TGA analyses of representative functionalized MWNT and NH samples. 
Temperatures of oxidation for the NHs are 475 ºC (NH-1), 474 ºC (NH-2), 
and 467 ºC (NH-3) respectively. 
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Figure A.5: Temperature differences between irradiated and microwave radiated 
samples. Differences are presented from room temperature (21 ºC).  
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Figure A.6: Irradiation setup for the MW oven. (a) Top view of the microtiter plate 
positioned on the turntable. (b) Microtiter plate as the samples are ready to 
be irradiated in the MW cavity. (c) Sample location at the microtiter plate 
(top view).  
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APPENDIX C – ROS GENERATION 

Oxidative stress is one of the key mechanisms causing antimicrobiality when 

nanoparticles interact with bacteria239. Such stresses are caused by an imbalance between 

damaging oxidants (e.g., H2O2 and OH•) and protective antioxidants (e.g., vitamin C and 

glutathione)239 within a nano-bio system. Studies have shown ROS generation from 

surfaces of metal oxide nanocrystals240,241. Oxygen can be activated to form ROS by both 

energy transfer and electron transfer processes. The former leads to the formation of 

singlet oxygen (1O2), while the latter results in the generation of superoxide (O2
•-), which 

undergoes further chemical transformation in water. 

 

When illuminated, metal oxides such as ZnO242 and TiO2
179, cause charge 

separation, generating a hole (h+) in the valence band (EV) and an electron (e-) in the 

conduction band (EC) (Table A.5). Holes extract electrons from water and/or hydroxyl 

ions, generating OH•. Electrons reduce O2 producing O2
•- and other ROS in a cascade of 

consecutive reactions (Table A.5). 

 

Studies have shown that 1O2 can be generated indirectly from metal oxide 

nanoparticles via the oxidation of O2
•-243,244 and when sufficient energy capable of 

reversing the spin on one of the unpaired electrons of O2 is absorbed, primarily through 

an energy transfer process245. Carbon-based photosensitizers (i.e. C60 fullerenes) have 

been shown to absorb UV or visible electromagnetic radiation and transfer it to 

surrounding molecules, and thereby facilitate energy or electron transfer that lead to the 

formation of 1O2 or O2
•-, respectively246. In particular, MWNTs can accept electrons and 
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aid in ballistic transport along MWNT25 axes, making these carbon structures excellent 

candidates to scatter electrons with enhanced surface area. 

Table A.5: ROS generating reactions247. 

𝑚𝑒𝑡𝑎𝑙	𝑜𝑥𝑖𝑑𝑒 + 𝑙𝑖𝑔ℎ𝑡 → ℎ* + 𝑒$ 

𝐻:𝑂 + ℎ* → 𝑂𝐻• + 𝐻*;     𝑂𝐻• + 𝐻* + 𝑒$ → 𝐻:𝑂 

𝑂: + 𝑒$ → 𝑂:•$ 

𝑂:•$ + 𝐻* → 𝐻𝑂:• 

𝑂:•$ + 𝐻* + 𝑒$ → 𝐻:𝑂: 

2𝐻𝑂:• → 𝐻:𝑂: + 𝑂: 

𝑂: + 2𝐻* + 2𝑒$ → 𝐻:𝑂: 

𝐻:𝑂: + 𝑂:•$ → 𝑂𝐻• + 𝑂: + 𝑂𝐻$ 

𝐻:𝑂: + 𝑒$ + 𝐻* → 𝐻:𝑂 + 𝑂𝐻• 
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APPENDIX D – ELECTRONIC STRUCTURE OF METAL OXIDES 

The band architecture of semiconductors can be used to understand the ROS 

generation mechanisms when comparing with redox potentials (EH) of different ROS. 

The electronic structure of semiconductors is characterized by the band-gap (EG), which 

is essentially an energy difference between the valence (EV) and conduction (EC) bands. 

Values of EG for metal oxides are dependent on the growth method, crystal structure, and 

defects. Different values of EG for TiO2 (2.9-3.3 eV), SiO2 (8-11 eV), ZnO (3.20-3.44 

eV), and lanthanide series Er2O3 (1.4-3.26 eV) have been reported248. When EG is small 

(0-4 eV) the material is considered to be a semiconductor; whereas for materials with 

higher EG values (e.g., 4-12 eV) are considered as insulators248. Although EG is reported 

extensively for different materials, there is a critical need for accurate measurements 

and/or theoretical estimations for the EG and the band structure of most semiconductors. 

Furthermore, EV and EC values are often presented in ways that prevent a straight-forward 

comparison to the redox potentials of aqueous electrolytes. For instance, in materials 

science the band energy positions are expressed with respect to the Fermi level of the 

material, rather than to the absolute vacuum scale (AVS). On the other hand, geochemical 

and electrochemical literature reports standard redox potentials for aqueous redox couples 

and with respect to the normal hydrogen electrode (NHE)249. 

 

In the context of electron transfer between semiconductors and aqueous redox 

species, it is crucial to identify the highest occupied molecular orbital (HOMO) and the 

lowest unoccupied molecular orbital (LUMO) in the semiconductor because those are the 

energy levels involved in the transfer. In most semiconductors, the energy states in the EV 

are completely occupied whereas those in the EC are empty. The Fermi level (EF) 
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represents the chemical potential of electrons in a semiconductor and can be considered 

as the absolute electronegativity (−𝜒) of a pristine semiconductor. The relationships 

between band edge energies (i.e., the bottom of EC and the top of EV) and 

electronegativity are shown in Eqs. A.1 and A.2249. 

 
𝐸s = −𝜒 + 0.5𝐸w       Eq. A.1 

𝐸x = −𝜒 − 0.5𝐸w       Eq. A.2 

 

Solution chemistry affects band edges, shifting them to higher or lower energy 

levels following a linear relation with respect to the solution’s pH, according to the 

Nernstian relation (Eqs. A.3 and A.4)250. 
 

𝐸s = −𝜒 + 0.5𝐸w + 0.059(𝑃𝑍𝑍𝑃 − 𝑝𝐻)   Eq. A.3 

𝐸x = −𝜒 − 0.5𝐸w + 0.059(𝑃𝑍𝑍𝑃 − 𝑝𝐻)   Eq. A.4 

 

Where, PZZP is the point of zero zeta potential of the bulk oxide. 

Thus, the values of conduction and valence band energies can be estimated using 

these set of equations. In Table S6, we present a comparison of the calculated values of 

band edge energies for TiO2, SiO2, ZnO, and Er2O3 at neutral pH for values of PZZP, 

electronegativities, and band gap energies found in the literature. 
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Table A.6: Calculated band edge energies of semiconductors at absolute vacuum scale 
(AVS) and normal hydrogen electrode (NHE). 

Metal 
Oxide 

PZZP 𝝌 
(eV) 

EG (eV)d EC (eV) 
AVS 

EV (eV) 
AVS 

EC (eV) 
NHE 

EV (eV) 
NHE 

SiO2 
2a 

6.46 

a 8, 10.4, 11 
-
1.86±0.79 

-
11.66±0.79 

-
2.65±0.79 7.16±0.79 

ZnO 
8.8 a 

5.75 

a 
3.26, 3.35, 

3.44 
-
3.97±0.04 -7.32±0.04 

-
0.53±0.04 2.82±0.04 

TiO2 
5.8 a 

5.83 

a 2.9, 3.3, 3.75 
-
4.24±0.21 -7.56±0.21 

-
0.26±0.98 3.06±0.21 

Er2O3 
8.8b 2.96c 1.4, 3.26, 5.3c 

-
0.19±0.98 -4.51±0.98 

-
3.31±0.98 0.01±0.98 

Values found in literature: a250, b251, c252, d248. The energy positions of band edges in the 
electrochemical scale can be converted as: 𝐸(n~�) = −𝐸 �x� − 4.5. 

 

In nanoparticle-mediated photocatalysis, ROS generation is dictated by an 

interfacial electron transfer processes. Only metal-oxide NPs with EG less than the 

incident photon energy (e.g., 3.1 eV [400 nm UV] and 12.4 eV [100 nm UV]) can be 

photo-excited253. Thus, TiO2 and Er2O3 with EG values as reported in Table S6 could 

potentially be photo-excited by 365 nm UV light (3.4 eV), while ZnO and SiO2 will not. 

The photo-excited electrons and holes can then react with an aqueous electron acceptor 

(i.e., molecular oxygen) and/or donor (i.e., water and hydroxyl ions), respectively to 

produce different ROS. 

 

To determine if ROS generation reactions are thermodynamically favorable, one 

can align the calculated values of EV and EC from Table S6 and EH values reported in 

Table S7. Such comparison shows evidence that the O2
•- generation potentials from 

excited electrons donated from SiO2, ZnO, TiO2, and Er2O3 with EC values of -2.65±0.79 

eV, -0.53±0.04 eV, -0.26±0.98 eV and -3.31±0.98 eV, respectively are less than the value 
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of EH for the O2/O2
•- couple (-0.33 eV). Values of EC for TiO2 is greater than the EH of 

O2/O2
•- (-0.33 eV); which indicates that at this pH, its reducing ability is insufficient to 

reduce O2. For other species such as H2O2 generation, theoretical estimation shows that 

metal oxides with EV values larger than EH value of 0.94-1.06 eV at pH 7 with respect to 

NHE can produce this ROS. Thus, SiO2 (7.16±0.79 eV), ZnO (2.82±0.04 eV), TiO2 

(3.06±0.21 eV), and Er2O3 (0.01±0.98 eV) can possibly generate H2O2. Similarly, OH• 

generation might also be theoretically achieved by metal oxides with EV values larger 

than EH 2.2 eV at pH 7 with respect to NHE. Thus, SiO2, ZnO, and TiO2, might 

theoretically oxidize H2O into OH•, while Er2O3 would not. 

 

Table A.7. Standard one-electron reduction potentials (EH) of ROS at pH 7 with respect 
to NHE. 

Couple* EH (eV) 

𝑂𝐻•, 𝐻*/𝐻:𝑂 2.31 

𝐻𝑂𝑂•, 𝐻*/𝐻:𝑂: 1.06 

𝑂:•$, 2𝐻*/𝐻:𝑂: 0.94 

𝑂:( ΔgT )/𝑂:•$ 0.65 

𝐻:𝑂:, 𝐻*/𝐻:𝑂, 𝑂𝐻• 0.32 

𝑂:/𝑂:•$ -0.33 

𝑂:, 𝐻*/𝐻𝑂:• -0.46 

𝐻:𝑂/𝑒\�$  -2.87 

*Listed in order from highly oxidizing to highly reducing247. 
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APPENDIX E – GROWTH MEDIA FORMULATIONS 

Anacker and Ordal medium 

Ingredient Amount (g/L) 
Tryptone 0.5 
Yeast extract 0.5 
Sodium acetate 0.2 
Beef extract 0.2 
DI water 1.0 
Adjust medium for final pH 7.3 ± 0.1. Autoclave at 121 ºC for 15 minutes. For solid medium, add 10 
g of agar to above medium. 

 

 ATCC Medium: 1099 CYE Buffered Medium  

Base Medium  

Ingredient 
Amount (g/L) 

Yeast Extract 10.0 
Charcoal (Sigma C-5510) 2.0 
ACES Buffer 10.0 
DI Water 0.980 
Adjust pH to 6.90 ± 0.05 using KOH (pH is critical). Autoclave at 121 ºC. Cool to 50 ºC. Aseptically add 
Solutions A and B (see below). Recheck pH and adjust if necessary. Allow sample to cool to room 
temperature before reading pH. Keep charcoal in suspension when dispensing. For solid medium, add 17 
grams of agar to above base medium. 
**Note: Medium should be wrapped in foil to protect from light.  
**Note: Be sure to allow solid products adequate time to dry (at least two days). Agar will become soft and 
unusable if it does not dry properly.  

Solution A* 

Ingredient Amount (g/L) 
L-Cysteine HCl 0.4 
DI Water 0.010 
*Filter Sterilize.  

Solution B* 
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Ingredient Amount (g/L) 
Fe-pyrophosphate 0.25 
DI Water 0.010 
*Filter Sterilize. Note: Keep soluble Ferric pyrophosphate dry and in the dark. Do not use if the chemical 
loses its green color and becomes brown or yellow. Do not heat over 60 ºC to dissolve. The mixture 
dissolves readily in a 50 ºC water bath.  

ATCC Medium: 271 Escherichia Medium 

Solution A 

Ingredient Amount (g/L) 
Tryptone 10.0 
Yeast extract 1.0 
NaCl 8.0 
DI Water 0.950 
Autoclave at 121 ºC. Cool to 50 ºC. Aseptically add Solutions B (see below). For solid medium, add 15 
grams of agar. For soft agar plates, add 3.75 grams of agar. 

Solution B* 

Ingredient Amount (g/L) 
Glucose 1.0 
CaCl2 0.294 
Thiamine 0.010 
DI Water 0.050 
*Filter Sterilize. 

 

2X SG medium – Sporulation of B. subtilis 

Ingredient Amount (g/L) 
Nutrient broth Difco (BD234000) 16 
Magnesium sulfate heptahydrate 0.5 
Potassium chloride 2 
Calcium nitrate 10-3 M 
Magnesium cloride 10-4 M 
Iron sulfate 10-6 M 
Glucose 0.1% 
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